JP2000203950A - Firing of cylindrical ceramic compact - Google Patents

Firing of cylindrical ceramic compact

Info

Publication number
JP2000203950A
JP2000203950A JP11006308A JP630899A JP2000203950A JP 2000203950 A JP2000203950 A JP 2000203950A JP 11006308 A JP11006308 A JP 11006308A JP 630899 A JP630899 A JP 630899A JP 2000203950 A JP2000203950 A JP 2000203950A
Authority
JP
Japan
Prior art keywords
firing
ceramic molded
molded body
alumina
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11006308A
Other languages
Japanese (ja)
Other versions
JP4382896B2 (en
Inventor
Koji Funaki
浩二 舟木
Hiroki Sugiura
宏紀 杉浦
Toru Shimamori
融 島森
Hiroya Ishikawa
浩也 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP00630899A priority Critical patent/JP4382896B2/en
Publication of JP2000203950A publication Critical patent/JP2000203950A/en
Application granted granted Critical
Publication of JP4382896B2 publication Critical patent/JP4382896B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To simply control the atmosphere of volatile components in a firing case to be optimum by setting the total surface area of ceramic compact and the volume of a firing case to satisfy a specific relation. SOLUTION: The total area R (cm2) of the surface of the ceramic compact and the volume S (cm3) of a firing case are set to satisfy the relation: 1<=S/R<=15. In the case when S/R is larger than 15, the atmosphere of volatile components in the firing case becomes thin and it becomes difficult to keep the sufficient atmosphere. For example, when β-alumina is fired, alkaline atmosphere in the firing case becomes thin, and the formation rate of β"-alumina decreases, thereby β-alumina sintered body having excellent electrical properties can not be obtained. In the case when S/R is lower than 1, the alkaline atmosphere in the firing case becomes too much thick, and sodium aluminate, which is poor in Na-ion conductivity, is formed on the surface of the β-alumina sintered body, thereby the electrical properties of the sintered body are reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、筒状セラミックス成形
体の焼成方法に関する。更に詳しくは、焼成中に構成成
分の一部が揮散しやすいようなセラミックスからなる筒
状セラミック成形体の焼成方法に関する。例えば、焼成
中に酸化ナトリウムが揮散しやすいベータアルミナ質成
形体の焼成方法として好適であり、ナトリウム硫黄電
池、ナトリウム溶融塩電池、AMTEC(Alkali Meta
l Thermo-Electric Convertor)、SOxセンサ等の高
強度を要求されるベータアルミナ質固体電解質管の製造
に適用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for firing a cylindrical ceramic compact. More specifically, the present invention relates to a method for firing a cylindrical ceramic molded body made of ceramics in which some of the constituent components are easily volatilized during firing. For example, it is suitable as a method for firing a beta-alumina shaped body in which sodium oxide is liable to volatilize during firing, and includes a sodium sulfur battery, a sodium molten salt battery, and an AMTEC (Alkali Meta
l Thermo-Electric Convertor), applicable to the preparation of beta-alumina solid electrolyte tube which require high strength such as SO x sensor.

【0002】[0002]

【従来の技術】ナトリウム−硫黄電池は、一方に陰極活
物質である金属ナトリウム、他方に陽極活物質である硫
黄を配し、両者をナトリウムイオンに対して選択的な透
過性を有するベータ・アルミナ固体電解質管で隔離し、
300〜350℃の高温で作動させる二次電池である。
このベータ・アルミナ固体電解質管は、放電時に陰極側
のナトリウムイオンを選択的に透過させ、陽極側に移動
させる、また充電時には陽極側のナトリウムイオンを選
択的に透過させ、陰極側に移動させる重要な役割を果た
している。
2. Description of the Related Art A sodium-sulfur battery has beta-alumina having one side provided with metallic sodium as a cathode active material and the other side provided with sulfur as an anode active material, and both having selective permeability to sodium ions. Isolate with a solid electrolyte tube,
It is a secondary battery operated at a high temperature of 300 to 350 ° C.
This beta-alumina solid electrolyte tube selectively transmits sodium ions on the cathode side during discharge and moves it to the anode side, and also selectively transmits sodium ions on the anode side during charge and moves it to the cathode side during charging. Plays a role.

【0003】しかし、ベータアルミナ質固体電解質管の
製造においては、焼成工程に起因する不具合が多いこと
が知られている。固体電解質管としての基本性能を左右
する問題としては、焼結体密度の低下、電気特性の不具
合が挙げられる。不具合発生の基本的な機構は以下のよ
うである。すなわち、焼成中にベータアルミナ質セラミ
ックスを構成する酸化ナトリウム等のアルカリ成分が揮
散しやすいため、いわゆるアルカリ雰囲気の制御が困難
となり、その結果、焼結体の組成比が所望の範囲から微
妙にずれてしまうからである。
[0003] However, it is known that in the production of beta-alumina solid electrolyte tubes, there are many problems caused by the firing step. Problems that affect the basic performance as a solid electrolyte tube include a decrease in sintered body density and a defect in electrical characteristics. The basic mechanism of the occurrence of the malfunction is as follows. That is, the alkali component such as sodium oxide constituting the beta-alumina ceramic is easily volatilized during firing, so that it is difficult to control the so-called alkaline atmosphere, and as a result, the composition ratio of the sintered body slightly deviates from a desired range. It is because.

【0004】かかる組成のずれは、焼結体の組織をポー
ラスにして焼結体密度を低下させたり、ベータアルミナ
以外の化合物を生成してナトリウムイオン伝導性を低下
させて電気特性の不具合を生ずる等の問題を引き起こ
す。焼成時のアルカリ雰囲気の制御方法としては、種々
の方法が検討されている。
[0004] Such a deviation in the composition causes the structure of the sintered body to be porous, thereby lowering the density of the sintered body, or generating a compound other than beta-alumina to lower the sodium ion conductivity, thereby causing a problem in electrical characteristics. Etc. cause problems. Various methods have been studied for controlling the alkaline atmosphere during firing.

【0005】一般的な方法としては、焼成容器内にいわ
ゆる目砂を設置する方法が知られている。ここにいう
「目砂」とは、アルカリ成分を含有する物質を表面積を
上げるべく砂状にしたものをいう。目砂に含まれるアル
カリ成分の量をコントロールすることで、セラミックス
の焼結性を制御するものである。
As a general method, there is known a method of installing so-called mesh sand in a firing vessel. The term "mesh sand" as used herein refers to a substance containing an alkali component formed into a sand to increase the surface area. By controlling the amount of the alkali component contained in the sand, the sinterability of the ceramics is controlled.

【0006】しかし、目砂に含まれるアルカリ成分の量
を精密にコントロールするのは容易ではなく、また、目
砂を製造するために手間やコストがかかってしまう問題
がある。さらに、焼成前に目砂を焼成容器内に設置し、
焼成後に目砂を取り除くという2つの作業が必要とな
る。これらの諸問題が影響して、工業的な量産工程が組
みにくく、コスト低減を図ることができなかった。
However, it is not easy to precisely control the amount of the alkali component contained in the sand, and there is a problem that it takes time and effort to produce the sand. In addition, place the sand in the firing vessel before firing,
Two operations of removing the sand after firing are required. Due to these problems, it was difficult to construct an industrial mass production process, and it was not possible to reduce costs.

【0007】上記技術以外にも、焼成時のアルカリ成分
の揮散を防止するために密閉容器内で焼成する方法が特
開平3−78974号公報に開示されている。具体的に
は、アルミナ、マグネシア、スピネル等からなる焼成容
器を被焼成物であるベータアルミナ成形体に被せて焼成
することで、焼成容器内をアルカリ雰囲気として酸化ナ
トリウムの揮散を抑える方法である。しかし、この方法
では、ベータアルミナ成形体の大きさや本数が変わる
と、焼結性や電気特性がばらつく問題が発生してしま
い、実質的には焼成容器内のアルカリ雰囲気が最適に制
御できない問題があった。
In addition to the above technique, Japanese Patent Laid-Open Publication No. 3-78974 discloses a method of firing in a closed vessel in order to prevent volatilization of an alkali component during firing. Specifically, this is a method in which a sintering container made of alumina, magnesia, spinel, or the like is placed on a beta-alumina molded body as a sintering object and sintering is performed, so that the inside of the sintering container is set to an alkaline atmosphere to suppress the volatilization of sodium oxide. However, in this method, when the size or the number of the beta-alumina molded body changes, a problem occurs in that the sinterability and electric characteristics vary, and the problem is that the alkali atmosphere in the firing vessel cannot be effectively controlled. there were.

【0008】[0008]

【発明が解決しようとする課題】本発明は、これら従来
技術が有する問題点を解決するものであり、簡便な手法
により焼成容器内の揮散成分の雰囲気を最適制御した筒
状セラミックス成形体の焼成方法を提供する。具体例と
しては、電気的特性及び機械的特性に優れたベータアル
ミナ質固体電解質管の工業的な量産方法として好適であ
る。すなわち、ナトリウム硫黄電池の固体電解質管に用
いる有底円筒状ベータアルミナ質セラミックス成形体を
焼成するにあたり、該成形体の表面積と焼成容器の容積
との関係を整合させて、焼成容器内のアルカリ雰囲気を
最適に制御するものである。
DISCLOSURE OF THE INVENTION The present invention solves the problems of the prior art, and sinters a cylindrical ceramic molded body in which the atmosphere of volatile components in a sintering vessel is optimally controlled by a simple method. Provide a way. As a specific example, it is suitable as an industrial mass production method of a beta-alumina solid electrolyte tube having excellent electrical characteristics and mechanical characteristics. That is, when firing a bottomed cylindrical beta-alumina ceramic molded product used for a solid electrolyte tube of a sodium-sulfur battery, the relationship between the surface area of the molded product and the volume of the firing container is matched, and the alkali atmosphere in the firing container is adjusted. Is optimally controlled.

【0009】[0009]

【課題を解決するための手段】請求項1に記載の筒状セ
ラミックス成形体の焼成方法は、セラミックス成形体の
表面積の総計R(単位:cm2)と焼成容器の容積をS
(単位:cm3)とを、所定の関係式を満たすように設
定することを要旨とする。
According to a first aspect of the present invention, there is provided a method for firing a cylindrical ceramic molded body, wherein the total surface area R (unit: cm 2 ) of the ceramic molded body and the volume of the firing vessel are set to S.
(Unit: cm 3 ) is set so as to satisfy a predetermined relational expression.

【0010】S/Rが15よりも大きい場合は、焼成容
器内の揮散成分の雰囲気が希薄となり、充分な雰囲気保
持ができなくなる。ベータアルミナを例にすれば、焼成
容器内のアルカリ雰囲気が希薄となり、その結果、β”
−アルミナ相の生成率が低下し、電気的特性の優れたベ
ータアルミナ質焼結体が得られなくなる。また、S/R
が1よりも小さい場合は、焼成容器内のアルカリ雰囲気
が濃密になりすぎて、ベータアルミナ質焼結体の表面に
ベータアルミナ質以外のアルミン酸ソーダ(NaAlO
2)が生成する。アルミン酸ソーダはナトリウムイオン
伝導性の非常に悪い物質であるため、得られるベータア
ルミナ質焼結体の電気的特性を低下させる。したがっ
て、S/Rの範囲が1以上15以下になるようにSとR
を設定する必要がある。S/Rのさらに好ましい範囲と
しては、1.5以上10以下である。かかる範囲に設定
することで、ベータアルミナ質焼結体の比抵抗値を大幅
に低減できる。
[0010] If the S / R is greater than 15, the atmosphere of the volatile components in the firing vessel becomes lean, making it impossible to maintain a sufficient atmosphere. Taking beta-alumina as an example, the alkaline atmosphere in the firing vessel becomes lean, resulting in β ″
-The generation rate of the alumina phase decreases, and a beta-alumina sintered body having excellent electrical properties cannot be obtained. Also, S / R
Is less than 1, the alkali atmosphere in the firing vessel becomes too dense, and the surface of the beta alumina sintered body is made of a sodium aluminate other than beta alumina (NaAlO).
2 ) Generate. Since sodium aluminate is a substance having extremely poor sodium ion conductivity, the electrical properties of the obtained beta alumina-based sintered body are deteriorated. Therefore, S and R are set so that the range of S / R becomes 1 or more and 15 or less.
Need to be set. A more preferred range of S / R is 1.5 or more and 10 or less. By setting the content in such a range, the specific resistance value of the beta alumina sintered body can be significantly reduced.

【0011】また、二以上の複数本のセラミックス成形
体を一つの焼成容器内で焼成する場合でも、各セラミッ
クス成形体の表面積の総計Rと焼成容器の容積Sとを整
合させることで、電気特性に優れた筒状セラミックス焼
結体を複数本同時に得られる。ベータアルミナを例にす
れば、比抵抗値を大幅に低減したベータアルミナ質焼結
体を複数本同時に得ることができるため、効率良く量産
できる。
Further, even when two or more ceramic molded bodies are fired in one firing vessel, the electrical characteristics can be adjusted by matching the total surface area R of each ceramic molded body with the volume S of the firing vessel. It is possible to obtain a plurality of cylindrical ceramic sinters excellent in quality at the same time. Taking beta-alumina as an example, a plurality of beta-alumina-based sintered bodies having significantly reduced specific resistance can be obtained at the same time, so that mass production can be performed efficiently.

【0012】本請求項にいう「筒状」とは、断面形状が
円形の円筒状、断面形状が多角形の角柱状等のみなら
ず、関数曲線等で示される連続曲線からなる断面形状を
有するあらゆる筒状のものも含み、さらには、有底円筒
状、有底角柱状、円錐状、角柱状といった有底構造物を
も包含する概念として定義される。また、本請求項にい
う「立てる」とは、基本的にはセラミックス成形体を自
立させることを言うが、柱状の支持体に筒状セラミック
ス成形体を緩挿した状態や、同じく柱状の支持体に有底
円筒状セラミックス成形体を倒立せしめて緩挿した状態
をも含む概念として定義される。これらの定義は以下の
請求項においても同様である。
The term "cylindrical" as used in the present invention has not only a cylindrical shape having a circular cross section and a polygonal prism shape in cross section, but also a cross sectional shape formed by a continuous curve represented by a function curve or the like. It is defined as a concept including any cylindrical structure, and further includes a bottomed structure such as a bottomed cylinder, a bottomed prism, a cone, and a prism. In addition, the term "standing" as used in the present claims basically means that the ceramic molded body is made to stand on its own, but the cylindrical ceramic molded body is loosely inserted into the columnar support, or the columnar support is Is defined as a concept including a state in which a cylindrical ceramic body with a bottom is inverted and loosely inserted. These definitions apply to the following claims.

【0013】請求項2に記載の筒状セラミックス成形体
の焼成方法は、セラミックス成形体の表面積の総計R
(単位:cm2)と焼成容器の容積をS(単位:cm3
とを、所定の関係式を満たすように設定するとともに、
通気性を有する焼成容器を用いて焼成することを要旨と
する。
According to a second aspect of the present invention, there is provided a method for firing a cylindrical ceramic molded body, the method comprising:
(Unit: cm 2 ) and the volume of the firing vessel are S (unit: cm 3 )
Are set so as to satisfy a predetermined relational expression,
The sintering is performed using a sintering container having air permeability.

【0014】通気性を有する焼成容器を用いて焼成容器
内の過剰な揮散成分の蒸気を外部へ適度に流出させるこ
とで、焼成容器内のアルカリ雰囲気を最適な状態にコン
トロールできる。0.4≦S/R≦2のような焼成容器
内の揮散成分の雰囲気が濃密になる条件において好適で
ある。特には、0.4≦S/R≦1のような焼成容器内
の揮散成分の雰囲気が極めて濃密になる条件において最
適である。ベータアルミナを例にすれば、係る構成を採
用することによって焼成容器内のアルカリ雰囲気を最適
な状態にコントロールし、比抵抗値等の電気特性に優れ
たナトリウム−硫黄電池用固体電解質が得られる。
[0014] By appropriately flowing out the excess vapor of the volatile components in the baking vessel to the outside using a baking vessel having air permeability, the alkali atmosphere in the baking vessel can be controlled to an optimum state. It is suitable under the condition that the atmosphere of the volatile component in the firing vessel becomes dense such as 0.4 ≦ S / R ≦ 2. In particular, it is optimal under the condition that the atmosphere of the volatile components in the firing vessel becomes extremely dense, such as 0.4 ≦ S / R ≦ 1. Taking beta-alumina as an example, by adopting such a configuration, the alkaline atmosphere in the firing vessel is controlled to an optimum state, and a solid electrolyte for a sodium-sulfur battery having excellent electrical properties such as specific resistance can be obtained.

【0015】S/Rが0.4未満の場合は、焼成容器内
にセラミックス成形体が入らないか、焼成容器でセラミ
ックス成形体を覆うことが非常に困難になる。また、S
/Rが2よりも大きい場合でも問題はなく、請求項1と
同様に15以下であればよい。
When the S / R is less than 0.4, the ceramic molded body does not enter the firing vessel, or it becomes very difficult to cover the ceramic molded body with the firing vessel. Also, S
There is no problem even if / R is larger than 2, and it is sufficient that the ratio is 15 or less as in the first aspect.

【0016】請求項3に記載の筒状セラミックス成形体
の焼成方法は、焼成容器に通気性を確保するための通気
孔を設けることを要旨とし、請求項2に記載する筒状セ
ラミックス成形体の焼成方法の好ましい実施形態を例示
したものである。
A third aspect of the present invention is directed to a method for firing a cylindrical ceramic molded body, the method comprising providing a ventilation hole in a firing vessel for ensuring air permeability. 1 illustrates a preferred embodiment of a firing method.

【0017】通気孔の形態は特に限定されるものではな
く、気体の通過が可能であれば本発明の目的を達成でき
る。焼成容器の一個所又は複数箇所に通気孔を設けるこ
とが望ましい。例えば、複数個の通気孔を設ける場合
は、焼成容器の壁面に等間隔で設けるのが好ましい。焼
成容器内の揮散成分の雰囲気に極端な濃淡が発生するの
を防止できるからである。
The form of the vent is not particularly limited, and the object of the present invention can be achieved as long as gas can pass through. It is desirable to provide ventilation holes at one or more locations in the firing vessel. For example, when a plurality of ventilation holes are provided, they are preferably provided at equal intervals on the wall surface of the firing vessel. This is because extreme shading can be prevented from occurring in the atmosphere of the volatile components in the firing vessel.

【0018】請求項4に記載の筒状セラミックス成形体
の焼成方法は、セラミックス成形体の表面積の総計R
(単位:cm2)と焼成容器の通気孔の通気性を律する
部位の断面積の総計Q(単位:cm2)とを所定の関係
式を満たすように設定することを要旨とし、請求項3に
記載の筒状セラミックス成形体の焼成方法のより好まし
い実施形態を例示したものである。
According to a fourth aspect of the present invention, there is provided a method for firing a cylindrical ceramic molded body, the method comprising:
(Unit: cm 2) and total Q (unit: cm 2) of the cross-sectional area of the portion governing breathable vent firing vessel and was the subject matter that is set to satisfy a predetermined relational expression, claim 3 2 illustrates a more preferred embodiment of the method for firing a cylindrical ceramic molded body described in 1).

【0019】上記Rと上記Qとの比R/Qは20以上が
好ましい。R/Qが20未満では、通気孔が大きすぎて
焼成容器内の揮散成分の雰囲気が希薄になり、十分な雰
囲気保持ができなくなるからである。ベータアルミナを
例にすれば、焼成容器内のアルカリ雰囲気が希薄とな
り、焼結体の電気特性が低下する。ベータアルミナの電
気特性を左右するβ”−アルミナ相の生成率が低下する
からである。
The ratio R / Q of R and Q is preferably 20 or more. If R / Q is less than 20, the ventilation holes are too large, and the atmosphere of the volatile components in the firing vessel is diluted, and it is not possible to maintain a sufficient atmosphere. Taking beta-alumina as an example, the alkaline atmosphere in the firing vessel becomes lean, and the electrical characteristics of the sintered body deteriorate. This is because the generation rate of β ″ -alumina phase, which affects the electrical characteristics of beta alumina, decreases.

【0020】R/Qには原則として上限はない。少なく
とも揮散成分が通過可能な通気孔が設けてあれば本発明
の目的を達成できるからである。R/Qの好ましい範囲
は、S/Rの値により変化する。S/Rが1未満(焼成
容器内の揮散成分の雰囲気が濃密な範囲)の場合、R/
Q=70〜1000の範囲が好ましい。S/Rが1〜2
の範囲では、R/Q=500〜15000の範囲が好ま
しい。S/Rが2を越える範囲では、R/Qは5000
以上が望ましい。ベータアルミナを例にすれば、R/Q
をかかる範囲に設定することで焼結体の比抵抗値を大幅
に低減できる。
R / Q has no upper limit in principle. This is because the object of the present invention can be achieved if at least a vent hole through which the volatile component can pass is provided. The preferred range of R / Q varies depending on the value of S / R. When S / R is less than 1 (the atmosphere of volatile components in the firing vessel is in a dense range), R /
Q = 70-1000 is preferred. S / R is 1-2
Is preferably in the range of R / Q = 500 to 15000. When S / R exceeds 2, R / Q is 5000.
The above is desirable. Taking beta alumina as an example, R / Q
Is set in such a range, the specific resistance value of the sintered body can be significantly reduced.

【0021】請求項5に記載の筒状セラミックス成形体
の焼成方法は、通気性を有する多孔質体からなる焼成容
器を用いることを要旨とし、請求項3と同様に、請求項
2に記載の筒状セラミックス成形体の焼成方法の好まし
い実施形態を例示したものである。本発明のように、焼
成容器の内外に連通した気孔を有して通気性のある多孔
体を焼成容器に用いても焼成容器内の揮発成分の雰囲気
濃度の制御が可能である。多孔体を用いることの他のメ
リットとしては、焼成容器自体が軽くなること、焼成容
器の繰り返し焼成寿命が長くなること等が挙げられる。
According to a fifth aspect of the present invention, there is provided a method of firing a cylindrical ceramic molded body, which comprises using a firing container made of a porous body having air permeability. 1 illustrates a preferred embodiment of a method for firing a cylindrical ceramic molded body. As in the present invention, even when a porous body having pores communicating with the inside and outside of the firing vessel and having air permeability is used for the firing vessel, the atmosphere concentration of the volatile component in the firing vessel can be controlled. Other advantages of using a porous body include that the firing container itself becomes lighter and that the repeated firing life of the firing container becomes longer.

【0022】請求項6に記載の筒状セラミックス成形体
の焼成方法は、多孔質体からなる焼成容器の気孔率が3
0%以下であることを要旨とし、請求項5に記載の筒状
セラミックス成形体の焼成方法のより好ましい実施形態
を例示したものである。焼成容器の見かけの気孔率が3
0%を越えると、揮散成分(ベータアルミナを例にすれ
ば、酸化ナトリウム成分等)が焼成容器の外へ過剰に流
出してしまい、焼結体の緻密化が阻害されたり、焼結体
の組成比が変動してしまうからである。
According to a sixth aspect of the present invention, there is provided a method for firing a cylindrical ceramic molded body, wherein the porosity of the porous firing body is 3%.
The gist is to be 0% or less, and illustrates a more preferred embodiment of the method for firing a cylindrical ceramic molded body according to claim 5. The apparent porosity of the firing vessel is 3
If it exceeds 0%, the volatile components (eg, sodium oxide component in the case of beta alumina) excessively flow out of the firing vessel, and the densification of the sintered body is hindered, and This is because the composition ratio fluctuates.

【0023】より具体的には、焼成容器の見かけ気孔率
が5〜30%の範囲が好ましく、10〜25%の範囲で
あるとより好ましい。焼成容器の見かけの気孔率をかか
る範囲に制御すれば、焼成容器内の揮散成分の流出速度
が適度に制御され、雰囲気調整がより容易になるからで
ある。
More specifically, the apparent porosity of the firing vessel is preferably in the range of 5 to 30%, more preferably in the range of 10 to 25%. If the apparent porosity of the firing vessel is controlled in such a range, the outflow rate of the volatile component in the firing vessel is appropriately controlled, and the atmosphere adjustment becomes easier.

【0024】請求項7に記載の筒状セラミックス成形体
の焼成方法は、有底円筒状ベータアルミナ質セラミック
ス成形体をマグネシア、スピネル、アルミナ、ジルコニ
アのいずれかから選ばれるセラミックス製焼成容器であ
ることを要旨とし、請求項1乃至請求項6のいずれかに
記載の筒状セラミックス成形体の焼成方法の好ましい実
施形態を例示したものである。
According to a seventh aspect of the present invention, in the method for firing a cylindrical ceramic molded body, the bottomed cylindrical beta-alumina ceramic molded body is a ceramic firing vessel selected from magnesia, spinel, alumina, and zirconia. The present invention exemplifies a preferred embodiment of the method for firing a cylindrical ceramic molded body according to any one of claims 1 to 6.

【0025】かかる構成をとることによって、焼成容器
内のアルカリ雰囲気を精密に制御可能となり、電気的特
性及び機械的特性に優れたベータアルミナ質焼結体を容
易に量産できる。焼成容器のより好ましい材質として
は、マグネシアまたはスピネルが好適である。ベータア
ルミナ質焼結体との化学的反応性に乏しいからである。
By adopting such a configuration, the alkali atmosphere in the firing vessel can be precisely controlled, and a beta alumina sintered body having excellent electrical and mechanical properties can be easily mass-produced. As a more preferable material of the firing container, magnesia or spinel is preferable. This is because the chemical reactivity with the beta alumina sintered body is poor.

【0026】[0026]

【実施例】以下に、実施例によって本発明を詳しく説明
する。尚、本実施例では有底円筒状ベータアルミナ質成
形体の焼成方法を例示するが、本発明の構成、作用・効
果、利用分野等は以下の実施例にのみ限定されるもので
はない。尚、実施例1は一つの焼成容器に一つのベータ
アルミナ質有底円筒状セラミックス成形体を入れて焼成
する、いわゆる一本焼成の例を示す。また、実施例2は
一つの焼成容器に複数本のベータアルミナ質有底円筒状
セラミックス成形体を入れて焼成する、いわゆる複数本
焼成の例を示す。
The present invention will be described below in detail with reference to examples. In the present embodiment, a method of firing a cylindrical beta-alumina compact with a bottom is illustrated, but the structure, operation, effect, application field, and the like of the present invention are not limited to the following embodiments. Example 1 shows an example of so-called single firing, in which one beta-alumina-based cylindrical ceramic body with a bottom is put in one firing vessel and fired. Example 2 shows an example of so-called multiple firing, in which a plurality of beta alumina-based cylindrical ceramic bodies with bottoms are placed in one firing vessel and fired.

【0027】(実施例1) (1)ベータアルミナ質有底円筒状セラミックス成形体
の製作 原料粉末には、純度99.9%のα−アルミナ粉末、試
薬1級品の炭酸ナトリウム、炭酸リチウムを用いた。ま
ず、α−アルミナと炭酸ナトリウムを、最終的に酸化ア
ルミニウム、酸化ナトリウムおよび酸化リチウムに換算
したときの重量部で、それぞれ90.4%、8.85%
および0.75%となるように秤量した。α−アルミナ
及び炭酸ナトリウムをロッキングミキサにて乾式で18
時間混合した。その後、この混合物を1250℃で10
時間仮焼した。仮焼物を解砕した後、振動ミルで乾式粉
砕して、平均粒径2μmのベータアルミナ粉砕粉末を得
た。
Example 1 (1) Production of Beta-Alumina Bottomed Cylindrical Ceramic Molded Body As raw material powder, α-alumina powder having a purity of 99.9%, first grade reagent sodium carbonate and lithium carbonate were used. Using. First, α-alumina and sodium carbonate were finally converted to aluminum oxide, sodium oxide and lithium oxide in parts by weight of 90.4% and 8.85%, respectively.
And 0.75%. α-Alumina and sodium carbonate are dried by a rocking mixer in dry
Mix for hours. The mixture is then cooled at 1250 ° C. for 10
It was calcined for hours. After pulverizing the calcined product, it was dry-pulverized with a vibration mill to obtain pulverized beta-alumina having an average particle size of 2 μm.

【0028】得られた粉砕粉末に炭酸リチウムを、最終
的に酸化アルミニウム、酸化ナトリウムおよび酸化リチ
ウムに換算したときの重量部で、それぞれ90.4%、
8.85%および0.75%となるように秤量し、バイ
ンダー及び分散剤とともに水溶媒中に混合してスラリと
し、スプレードライ法にて造粒粉末を調製した。この造
粒粉末をCIP法(冷間静水圧プレス法)により200
0kg/cm2の圧力で所定寸法の有底円筒状に成形し
た。得られた成形体をNC旋盤にて表1乃至表3に示す
外径及び長さの組み合わせになるように研削加工した。
研削後の成形体の肉厚としては、外径が2.0cmのチ
ューブは1.0mm、外径が3.0cmのチューブは1
mm、外径6.5cm、6.0cm、5.3cm、5.
0cm及び4.5cmのチューブは2.5mmとした。
Lithium carbonate was added to the obtained pulverized powder in an amount of 90.4% by weight in terms of finally converted into aluminum oxide, sodium oxide and lithium oxide.
It was weighed so as to be 8.85% and 0.75%, mixed with a binder and a dispersant in an aqueous solvent to form a slurry, and a granulated powder was prepared by a spray drying method. This granulated powder is subjected to a CIP method (cold isostatic pressing method) for 200 hours.
At a pressure of 0 kg / cm 2 , it was formed into a bottomed cylindrical shape having predetermined dimensions. The obtained molded body was ground by an NC lathe so as to have a combination of the outer diameter and the length shown in Tables 1 to 3.
The thickness of the molded body after grinding is 1.0 mm for a tube having an outer diameter of 2.0 cm, and 1 mm for a tube having an outer diameter of 3.0 cm.
mm, outer diameter 6.5 cm, 6.0 cm, 5.3 cm, 5.
The 0 cm and 4.5 cm tubes were 2.5 mm.

【0029】(2)ベータアルミナ質有底円筒状セラミ
ックス焼結体の製作(一本焼成) 焼成容器は純度99%のマグネシア製とした。焼成容器
の寸法は表1乃至表3に示す種々の形状を準備した。焼
成容器はそれぞれ通気孔無し、通気孔有り(図1、2)
及び多孔質の3つのタイプを用いた。焼成容器の通気孔
(図1、4及び5)は、面積Qが0.6cm2以下の場
合は焼成容器の上部に一個所、面積Qが4.0cm2
上の場合は焼成容器の上部と下部に四個所ずつ設けた。
(2) Manufacture of beta-alumina bottomed cylindrical ceramic sintered body (single firing) The firing vessel was made of magnesia having a purity of 99%. Various shapes shown in Tables 1 to 3 were prepared for the dimensions of the firing container. Each of the firing vessels has no ventilation holes and ventilation holes (Figs. 1 and 2)
And three types of porous. The vent hole (FIGS. 1, 4 and 5) of the firing container is provided at one position above the firing container when the area Q is 0.6 cm 2 or less, and at the upper portion when the area Q is 4.0 cm 2 or more. Four places were provided at the bottom.

【0030】有底円筒状ベータアルミナ成形体1をセッ
ター3の上に立てた後、該成形体の外周側に99%マグ
ネシア製焼成容器を設置した。焼成条件は、最高温度で
1570℃×30分保持して焼成を行った。焼結体の密
度は、ベータアルミナの吸湿による影響を避けるため
に、エタノールを用いたアルキメデス法で測定した。焼
結体の密度の測定値と原料組成から計算した理論密度か
ら相対密度を求めた。相対密度は98.6%以上を合格
とした。結果を「相対密度」として表1乃至表3に併記
した。
After the bottomed cylindrical beta-alumina compact 1 was erected on the setter 3, a 99% magnesia-made firing vessel was placed on the outer peripheral side of the compact. The firing was performed at a maximum temperature of 1570 ° C. for 30 minutes. The density of the sintered body was measured by the Archimedes method using ethanol in order to avoid the influence of moisture absorption of beta alumina. The relative density was determined from the measured density of the sintered body and the theoretical density calculated from the raw material composition. The relative density was 98.6% or more. The results are shown in Tables 1 to 3 as "relative density".

【0031】(3)内圧破壊強度 内圧破壊強度とは、有底円筒状のベータアルミナ質焼結
体の円筒内壁面全体に圧力媒体を介して均一に加圧して
いき、破壊した時点での印加圧力と有底円筒のサイズと
から算出して得られるものである。具体的には、円筒内
径をr1、円筒外径をr2、破壊時点での印加圧力をPと
したとき、内圧破壊強度σは以下の数式1により近似計
算される。各条件につき10本ずつの内圧破壊強度を測定
した。内圧破壊強度は155MPa以上を合格とした。
結果を「内圧強度」として表1乃至表3に併記した。
(3) Internal pressure rupture strength The internal pressure rupture strength is defined as the pressure applied at the time of breakage by uniformly pressing the entire inner wall surface of a cylindrical beta-alumina sintered body having a bottom through a pressure medium. It is obtained by calculating from the pressure and the size of the bottomed cylinder. Specifically, assuming that the inner diameter of the cylinder is r 1 , the outer diameter of the cylinder is r 2 , and the applied pressure at the time of breaking is P, the internal pressure breaking strength σ is approximately calculated by the following equation 1. Under each condition, the internal pressure breaking strength of 10 pieces was measured. The internal pressure breaking strength was 155 MPa or more.
The results are shown in Tables 1 to 3 as "internal pressure strength".

【0032】[0032]

【数1】σ=P×(r2 2+r1 2)/(r2 2−r1 2Σ = P × (r 2 2 + r 1 2 ) / (r 2 2 −r 1 2 )

【0033】(4)比抵抗値の測定 ここでいう比抵抗値とは、ナトリウムイオン伝導率をい
う。具体的には、アルゴン雰囲気下、グローブボックス
中で350℃に加熱し、ベータアルミナ焼結体の円筒内
側と円筒外側とに金属ナトリウムを接触させて、焼結体
の抵抗値を4端子法で測定した。比抵抗値は3.8Ω・
cm以下を合格とした。結果を「比抵抗値」として表1
乃至表3に併記した。
(4) Measurement of specific resistance value The specific resistance value referred to herein means sodium ion conductivity. Specifically, in a glove box, an atmosphere of argon is heated to 350 ° C. in a glove box, metallic sodium is brought into contact with the inside and outside of the cylinder of the beta alumina sintered body, and the resistance value of the sintered body is measured by a four-terminal method. It was measured. The specific resistance is 3.8Ω
cm or less was accepted. Table 1 shows the results as “specific resistance values”.
And Table 3 below.

【0034】(5)焼結体外表面の結晶相の測定 各条件で得られた焼結体の外表面を微少X線回折装置に
より調査し、外表面の結晶構造の同定を行った。結果
は、β−アルミナ相が同定されたものは「β」、β”−
アルミナ相が同定されたものは「β”」、アルミン酸ソ
ーダが同定されたものは「NaAlO2」として表1乃
至表3の「外表面の結晶相」に併記した。
(5) Measurement of crystal phase on outer surface of sintered body The outer surface of the sintered body obtained under each condition was examined with a micro X-ray diffractometer to identify the crystal structure of the outer surface. The results indicate that the β-alumina phase was identified as “β”, β ″-
Those in which the alumina phase was identified were indicated as “β”, and those in which sodium aluminate was identified were indicated as “NaAlO 2 ” in “Crystal phases on outer surface” in Tables 1 to 3.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 [Table 3]

【0038】(実施例2) (1)ベータアルミナ質有底円筒状セラミックス成形体
の製作 ベータアルミナ質有底円筒状セラミックス成形体の製作
は実施例1(1)に記載の方法で行った。得られた成形
体をNC旋盤にて表4乃至表5に示す外径及び長さの組
み合わせになるように研削加工した。研削後の成形体の
肉厚としては、外径が2.5cmのチューブは1.0m
m、外径が3.0cmのチューブは1mm、外径5.3
cmのチューブは2.5mmとした。
Example 2 (1) Production of a Beta-Alumina Bottomed Cylindrical Ceramic Forming Body A beta-alumina bottomed cylindrical ceramic forming body was produced by the method described in Example 1 (1). The obtained molded body was ground by an NC lathe so as to have a combination of the outer diameter and the length shown in Tables 4 and 5. As a thickness of the molded body after grinding, a tube having an outer diameter of 2.5 cm is 1.0 m.
m, 1 mm for a tube with an outer diameter of 3.0 cm, 5.3 outer diameter
The cm tube was 2.5 mm.

【0039】(2)ベータアルミナ質有底円筒状セラミ
ックス焼結体の製作(複数本焼成) 焼成容器は純度99%のマグネシア製とした。焼成容器
の寸法は表1乃至表4に示す種々の形状を準備した。焼
成容器はそれぞれ通気孔無し、通気孔有り(図3、2
0)及び多孔質の3つのタイプを用いた。焼成容器の通
気孔(図3、40及び50)は、焼成容器の上部と下部
に四個所ずつ設けた。その他は実施例1に準じて行っ
た。相対密度、内圧破壊強度、比抵抗値の測定及び焼結
体外表面の結晶相の測定は、実施例1(2)〜(5)に
準じて行った。結果を表4乃至表5に併記した。
(2) Manufacture of Beta-Alumina Bottom Cylindrical Ceramic Sintered Body (Several Firing) The firing vessel was made of magnesia having a purity of 99%. For the dimensions of the firing container, various shapes shown in Tables 1 to 4 were prepared. Each of the firing containers has no vent hole and vent holes (FIGS. 3 and 2).
0) and porous. The ventilation holes (FIGS. 3, 40 and 50) of the firing vessel were provided at four locations at the top and bottom of the firing vessel. Others were performed according to Example 1. The measurement of the relative density, the internal pressure breaking strength, the specific resistance value, and the measurement of the crystal phase on the outer surface of the sintered body were performed according to Examples 1 (2) to (5). The results are shown in Tables 4 and 5.

【0040】[0040]

【表4】 [Table 4]

【0041】[0041]

【表5】 [Table 5]

【0042】表1乃至表3は、実施例1における、いわ
ゆる一本焼成の結果を示す。表1は通常の焼成容器を用
いた結果である。表1に示す実施例である試料番号2乃
至試料番号7の結果より、優れた諸特性を有する焼結体
が得られることがわかる。
Tables 1 to 3 show the results of the so-called single firing in Example 1. Table 1 shows the results obtained using a normal firing container. From the results of Sample Nos. 2 to 7, which are Examples shown in Table 1, it is understood that sintered bodies having excellent various properties can be obtained.

【0043】S/Rが1.5よりも大きく15よりも小
さい実施例である試料番号4乃至試料番号7において
は、比抵抗値が3.1〜3.3Ωcmと良好な電気的特
性を示した。特には、S/Rが1.5よりも大きく10
よりも小さい実施例である試料番号4乃至試料番号6に
おいては、比抵抗値、相対密度、内圧強度の全てにおい
て良好な特性を示した。
Sample Nos. 4 to 7, which are examples in which the S / R is larger than 1.5 and smaller than 15, exhibit good electrical characteristics of 3.1 to 3.3 Ωcm. Was. In particular, if the S / R is greater than 1.5 and 10
Sample Nos. 4 to 6, which are smaller examples, exhibited good characteristics in all of the specific resistance value, the relative density, and the internal pressure strength.

【0044】一方、表1に示す試料番号1は、S/Rが
1よりも小さい比較例である。この場合、比抵抗値が
4.7Ωcmと電気的特性が劣る結果となった。この試
料番号1の外表面の結晶相を同定したところ、アルミン
酸ソーダ(NaAlO2)が検出された。試料番号1の
比抵抗値が高くなった原因は、該焼結体外表面にアルミ
ン酸ソーダに富んだ高抵抗層が形成されたためと推察さ
れる。また、表1に示す試料番号8は、S/Rが20よ
りも大きい比較例である。焼成容器内のアルカリ雰囲気
濃度が希薄なため焼結体の相対密度が上がらず、その結
果、電気的特性及び機械的特性が低下したことがわか
る。
On the other hand, Sample No. 1 shown in Table 1 is a comparative example in which the S / R is smaller than 1. In this case, the specific resistance was 4.7 Ωcm, resulting in inferior electrical characteristics. When the crystal phase on the outer surface of Sample No. 1 was identified, sodium aluminate (NaAlO 2 ) was detected. The reason why the specific resistance value of Sample No. 1 was increased is presumed to be that a high resistance layer rich in sodium aluminate was formed on the outer surface of the sintered body. Sample No. 8 shown in Table 1 is a comparative example in which the S / R is larger than 20. It can be seen that the relative density of the sintered body did not increase because the concentration of the alkali atmosphere in the firing vessel was low, and as a result, the electrical and mechanical properties were reduced.

【0045】表2は通気孔を有する焼成容器を用いた結
果である。表2に示す実施例である試料番号9乃至試料
番号13、試料番号15乃至試料番号18、試料番号2
0、試料番号21、試料番号23乃至試料番号25は、
S/Rが0.4よりも大きく15よりも小さい場合であ
る。これらの結果より、優れた諸特性を有する焼結体が
得られることがわかる。
Table 2 shows the results obtained by using a firing container having a vent hole. Sample Nos. 9 to 13, Sample Nos. 15 to 18, and Sample No. 2 which are the examples shown in Table 2
0, sample number 21, sample number 23 to sample number 25
This is the case where S / R is larger than 0.4 and smaller than 15. These results show that a sintered body having excellent various properties can be obtained.

【0046】S/Rが0.4よりも大きく2よりも小さ
い試料番号10乃至試料番号13、試料番号16乃至試
料番号18、試料番号20、試料番号21、試料番号2
3が焼結体の諸特性面でより好ましいことがわかる。こ
のうちS/Rが0.4〜1の範囲、且つ、R/Qが70
〜1000の範囲にある試料番号10乃至試料番号1
2、試料番号16、試料番号17と、S/Rが1〜2の
範囲、且つ、R/Qが500〜15000の範囲にある
試料番号20、試料番号21、試料番号23が特に電気
的特性面に優れることがわかる。
Sample No. 10 to Sample No. 13, Sample No. 16 to Sample No. 18, Sample No. 20, Sample No. 21, Sample No. 2 having an S / R larger than 0.4 and smaller than 2
3 is more preferable in terms of various characteristics of the sintered body. Among them, S / R is in the range of 0.4 to 1, and R / Q is 70.
Sample No. 10 to Sample No. 1 in the range of ~ 1000
2. Sample No. 16, Sample No. 17, and Sample No. 20, Sample No. 21, and Sample No. 23 whose S / R is in the range of 1-2 and R / Q is in the range of 500-15000 are particularly electric characteristics. It can be seen that the surface is excellent.

【0047】一方、R/Qが20未満の比較例である試
料番号14、試料番号19、試料番号22では、焼成容
器内のアルカリ雰囲気の希薄化により緻密化が阻害され
相対密度が低下し、焼結体の諸特性が低下していること
がわかる。また、S/Rが15を越える比較例である試
料番号26においても同様に、焼成容器内のアルカリ雰
囲気の希薄化により緻密化が阻害され相対密度が低下
し、焼結体の諸特性が低下していることがわかる。
On the other hand, in Comparative Examples No. 14, No. 19 and No. 22 in which R / Q was less than 20, the densification was inhibited by the dilution of the alkali atmosphere in the firing vessel, and the relative density decreased. It can be seen that various characteristics of the sintered body have been reduced. Similarly, in sample No. 26, which is a comparative example having an S / R of more than 15, the densification is inhibited by the dilution of the alkali atmosphere in the firing vessel, the relative density is reduced, and the properties of the sintered body are reduced. You can see that it is doing.

【0048】表3は多孔体からなる焼成容器を用いた結
果である。焼成容器の気孔率が30%以下の実施例であ
る試料番号27乃至試料番号31、試料番号34乃至試
料番号37においては、諸特性面で良好な結果が得られ
ることがわかる。このうち焼成容器の気孔率が10〜2
5%の範囲にある実施例である試料番号28乃至試料番
号30、試料番号34乃至試料番号36においては、特
に電気特性面で良好な結果が得られることがわかる
Table 3 shows the results obtained by using a firing container made of a porous material. It can be seen that in the sample Nos. 27 to 31 and the sample Nos. 34 to 37 of the examples in which the porosity of the firing container is 30% or less, good results are obtained in various characteristics. Of these, the porosity of the firing vessel is 10 to 2
It can be seen that in the sample numbers 28 to 30 and the sample numbers 34 to 36 which are the examples in the range of 5%, good results are obtained particularly in terms of electrical characteristics.

【0049】一方、焼成容器の気孔率が30%を越える
比較例である試料番号32及び試料番号38において
は、焼成容器内のアルカリ雰囲気の希薄化により緻密化
が阻害され相対密度が低下し、焼結体の諸特性が低下し
ていることがわかる。
On the other hand, in the sample Nos. 32 and 38, which are comparative examples in which the porosity of the firing vessel exceeds 30%, the densification is inhibited by the dilution of the alkali atmosphere in the firing vessel, and the relative density decreases. It can be seen that various characteristics of the sintered body have been reduced.

【0050】表4は通気孔を有する焼成容器と通気孔を
有しない焼成容器とを用いて複数本焼成を行った結果で
ある。通気孔を有する焼成容器を用いた実施例である試
料番号40乃至試料番号48、試料番号50、試料番号
52乃至試料番号55、試料番号57、試料番号58に
おいては、優れた諸特性を有する焼結体が複数本同時に
得られることがわかる。
Table 4 shows the results of firing a plurality of pieces using a baking vessel having vent holes and a baking vessel having no vent holes. Samples Nos. 40 to 48, 50, 52 to 55, 57, and 58, which are examples using a baking vessel having vent holes, have excellent properties. It can be seen that a plurality of aggregates can be obtained simultaneously.

【0051】通気孔を有しない焼成容器を用いた実施例
である試料番号51及び試料番号56においては、S/
Rを所定の範囲内に調整して焼成容器内のアルカリ雰囲
気を制御することで、同じく優れた諸特性を有する焼結
体が複数本同時に得られることがわかる。
In Sample Nos. 51 and 56, which are examples using a firing vessel having no vent hole, S / S
It can be seen that by adjusting R within a predetermined range and controlling the alkaline atmosphere in the firing vessel, a plurality of sintered bodies having the same excellent characteristics can be simultaneously obtained.

【0052】一方、通気孔を有せず、且つ、S/Rが1
未満の焼成容器を用いた比較例である試料番号39及び
試料番号49においては、電気的特性面で劣る結果とな
った。試料番号39及び試料番号49の外表面の結晶相
を同定したところ、アルミン酸ソーダ(NaAlO2
が検出された。試料番号39及び試料番号49の比抵抗
値が高くなった原因は、該焼結体外表面にアルミン酸ソ
ーダに富んだ高抵抗層が形成されたためと推察される。
On the other hand, there is no vent hole and S / R is 1
Sample Nos. 39 and 49, which are comparative examples using a firing container of less than 1, had poor electrical characteristics. When the crystal phases on the outer surfaces of Sample Nos. 39 and 49 were identified, sodium aluminate (NaAlO 2 )
Was detected. The reason why the specific resistance values of Sample No. 39 and Sample No. 49 were increased is presumed to be that a high resistance layer rich in sodium aluminate was formed on the outer surface of the sintered body.

【0053】表5は多孔体からなる焼成容器を用いて複
数本焼成を行った結果である。焼成容器の気孔率が30
%以下の実施例である試料番号59乃至試料番号63に
おいては、諸特性面で良好な焼結体が複数本同時に得ら
れることがわかる。このうち焼成容器の気孔率が10〜
25%の範囲にある実施例である試料番号60乃至試料
番号62においては、特に電気特性面で良好な焼結体が
複数本同時に得られることがわかる。
Table 5 shows the results of multiple firings using a firing container made of a porous material. The porosity of the firing vessel is 30
%, It can be seen that in samples No. 59 to sample No. 63 which are examples of not more than%, a plurality of sintered bodies excellent in various characteristics can be obtained at the same time. Of these, the porosity of the firing vessel is 10
It can be seen that in Sample Nos. 60 to 62, which are examples within the range of 25%, a plurality of sintered bodies having particularly good electrical characteristics can be obtained at the same time.

【0054】一方、焼成容器の気孔率が30%を越える
比較例である試料番号64においては、焼成容器内のア
ルカリ雰囲気の希薄化により緻密化が阻害され相対密度
が低下し、焼結体の諸特性が低下していることがわか
る。
On the other hand, in sample No. 64, which is a comparative example in which the porosity of the firing vessel exceeds 30%, the density is inhibited by the dilution of the alkali atmosphere in the firing vessel, the relative density is reduced, and It can be seen that various characteristics have been reduced.

【0055】[0055]

【発明の効果】本発明の焼成方法によれば、簡便な手法
により焼成容器内の揮散成分の雰囲気を最適制御した筒
状セラミックス成形体の焼成方法を提供することができ
る。具体例としては、電気的特性及び機械的特性に優れ
たベータアルミナ質固体電解質管の工業的な量産方法と
して好適である。すなわち、ナトリウム硫黄電池の固体
電解質管に用いる有底円筒状ベータアルミナ質セラミッ
クス成形体を焼成するにあたり、該成形体の表面積と焼
成容器の容積との関係を整合させて、焼成容器内のアル
カリ雰囲気を最適に制御することで、焼結体密度、電気
的特性及び機械的特性を良好にできる。
According to the firing method of the present invention, it is possible to provide a method for firing a cylindrical ceramic molded body in which the atmosphere of the volatile component in the firing vessel is optimally controlled by a simple method. As a specific example, it is suitable as an industrial mass production method of a beta-alumina solid electrolyte tube having excellent electrical characteristics and mechanical characteristics. That is, when firing a bottomed cylindrical beta-alumina ceramic molded product used for a solid electrolyte tube of a sodium-sulfur battery, the relationship between the surface area of the molded product and the volume of the firing container is matched, and the alkali atmosphere in the firing container is adjusted. Is optimally controlled, so that the sintered body density, electrical characteristics, and mechanical characteristics can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】通気孔を有する焼成容器を用いて一本焼成する
場合における有底円筒状セラミックス成形体の焼成容器
内への配置状態の説明図。
FIG. 1 is an explanatory view of an arrangement state of a bottomed cylindrical ceramic molded body in a firing container in the case of single firing using a firing container having a vent hole.

【図2】通気孔を有する焼成容器を用いて複数本焼成す
る場合における有底円筒状セラミックス成形体の集合体
の配置状態の説明図。
FIG. 2 is an explanatory diagram of an arrangement state of an aggregate of a bottomed cylindrical ceramic molded body when a plurality of firings are performed using a firing container having a vent hole.

【図3】通気孔を有する焼成容器を用いて複数本焼成す
る場合における有底円筒状セラミックス成形体の集合体
の焼成容器内への配置状態の説明図。
FIG. 3 is an explanatory view of an arrangement state of an aggregate of a bottomed cylindrical ceramic molded body in a firing container when a plurality of firings are performed using a firing container having vent holes.

【符号の説明】[Explanation of symbols]

1 セラミックス成形体。 10 有底円筒状セラミックス成形体の集合体。 2 一本焼成用の焼成容器。 20 複数本焼成用の焼成容器。 3 一本焼成用の焼成容器のセッター。 30 複数本焼成用の焼成容器のセッター。 4 一本焼成用の焼成容器上部に設けた通気孔。 40 複数本焼成用の焼成容器上部に設けた通気孔。 5 一本焼成用の焼成容器下部に設けた通気孔。 50 複数本焼成用の焼成容器下部に設けた通気孔。 1 Ceramic molded body. 10 An assembly of a bottomed cylindrical ceramic molded body. 2 A firing container for single firing. 20 A firing container for firing multiple pieces. 3 Setter of firing container for single firing. 30 Setter of firing container for multiple firing. 4 Ventilation holes provided at the top of the firing vessel for single firing. 40 Vent holes provided in the upper part of the firing vessel for firing a plurality of pieces. 5 Ventilation holes provided in the lower part of the firing vessel for single firing. 50 Vent holes provided in the lower part of the firing vessel for firing a plurality of pieces.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石川 浩也 愛知県名古屋市瑞穂区高辻町14番18号 日 本特殊陶業株式会社内 Fターム(参考) 4G030 AA02 AA03 AA07 AA17 AA36 BA03 CA01 CA07 CA09 5H029 AJ11 AK05 AL13 AM15 CJ02 CJ28 CJ30 DJ01 DJ13 DJ14 EJ08 HJ00 HJ09  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroya Ishikawa 14-18 Takatsuji-cho, Mizuho-ku, Nagoya-shi, Aichi F-term in Japan Special Ceramics Co., Ltd. 4G030 AA02 AA03 AA07 AA17 AA36 BA03 CA01 CA07 CA09 5H029 AJ11 AK05 AL13 AM15 CJ02 CJ28 CJ30 DJ01 DJ13 DJ14 EJ08 HJ00 HJ09

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 筒状セラミックス成形体を、該セラミッ
クス成形体の開口端部の少なくとも一部を接地せしめて
立てる工程と、該セラミックス成形体の外周面の少なく
とも一部を覆うように焼成容器を配置する工程とを有す
る筒状セラミックス成形体の焼成方法であって、 該セラミックス成形体の表面積の総計をR(単位:cm
2)、該焼成容器の容積をS(単位:cm3)とした場合
において、 上記Rと上記Sとを、以下の関係式を満たすように設定
することを特徴とする筒状セラミックス成形体の焼成方
法。1≦S/R≦15
1. A step of erecting a cylindrical ceramic molded body by grounding at least a part of an opening end of the ceramic molded body, and setting a firing container so as to cover at least a part of an outer peripheral surface of the ceramic molded body. Arranging the total surface area of the ceramic molded body as R (unit: cm).
2 ) When the volume of the firing container is S (unit: cm 3 ), R and S are set so as to satisfy the following relational expression. Firing method. 1 ≦ S / R ≦ 15
【請求項2】 筒状セラミックス成形体を、該セラミッ
クス成形体の開口端部の少なくとも一部を接地せしめて
立てる工程と、該セラミックス成形体の外周面の少なく
とも一部を覆うように焼成容器を配置する工程とを有す
る筒状セラミックス成形体の焼成方法であって、 該セラミックス成形体の表面積の総計をR(単位:cm
2)、該焼成容器の容積をS(単位:cm3)とした場合
において、 上記焼成容器が通気性を有し、且つ、上記Rと上記Sと
を、以下の関係式を満たすように設定することを特徴と
する筒状セラミックス成形体の焼成方法。 0.4≦S/R≦15
2. A step of erecting a cylindrical ceramic molded body by grounding at least a part of an opening end of the ceramic molded body, and setting a firing container so as to cover at least a part of an outer peripheral surface of the ceramic molded body. Arranging the total surface area of the ceramic molded body as R (unit: cm).
2 ) When the volume of the firing container is S (unit: cm 3 ), the firing container has air permeability, and R and S are set so as to satisfy the following relational expression. A method for firing a cylindrical ceramic molded body, comprising: 0.4 ≦ S / R ≦ 15
【請求項3】 請求項2に記載の筒状セラミックス成形
体の焼成方法であって、 前記通気性を有する焼成容器が、通気孔を有する焼成容
器であることを特徴とする筒状セラミックス成形体の焼
成方法。
3. The method for firing a cylindrical ceramic molded article according to claim 2, wherein the air-permeable firing container is a fired container having a vent hole. Firing method.
【請求項4】 請求項3に記載の筒状セラミックス成形
体の焼成方法であって、 前記セラミックス成形体の表面積の総計をR(単位:c
2)、前記焼成容器の通気孔の通気性を律する部位の
断面積の総計をQ(単位:cm2)とした場合におい
て、 上記Rと上記Qとを、以下の関係式を満たすように設定
することを特徴とする筒状セラミックス成形体の焼成方
法。20≦R/Q
4. The method for firing a cylindrical ceramic molded body according to claim 3, wherein the total surface area of the ceramic molded body is R (unit: c).
m 2 ), when the total cross-sectional area of the portion that regulates the air permeability of the ventilation holes of the baking vessel is Q (unit: cm 2 ), the above R and the above Q are set so as to satisfy the following relational expression. A firing method for a cylindrical ceramic molded body, which is set. 20 ≦ R / Q
【請求項5】 請求項2に記載の筒状セラミックス成形
体の焼成方法であって、 前記通気性を有する焼成容器が、多孔質体からなる焼成
容器であることを特徴とする筒状セラミックス成形体の
焼成方法。
5. The method for firing a cylindrical ceramic molded product according to claim 2, wherein the air-permeable firing container is a firing container made of a porous material. Body firing method.
【請求項6】 請求項5に記載の筒状セラミックス成形
体の焼成方法であって、 前記多孔質体からなる焼成容器の気孔率が30%以下で
あることを特徴とする筒状セラミックス成形体の焼成方
法。
6. The method for firing a cylindrical ceramic molded article according to claim 5, wherein the porosity of the firing container made of the porous body is 30% or less. Firing method.
【請求項7】 前記筒状セラミックス成形体が、有底円
筒状ベータアルミナ質セラミックス成形体であり、且
つ、上記焼成容器がマグネシア、スピネル、アルミナ、
ジルコニアのいずれかから選ばれるセラミックス製焼成
容器であることを特徴とする請求項1乃至請求項6のい
ずれかに記載の筒状セラミックス成形体の焼成方法。
7. The cylindrical ceramic molded body is a bottomed cylindrical beta-alumina ceramic molded body, and the firing container is made of magnesia, spinel, alumina,
The firing method for a cylindrical ceramic molded article according to any one of claims 1 to 6, wherein the firing step is a ceramic firing vessel selected from any of zirconia.
JP00630899A 1998-11-05 1999-01-13 Firing method for bottomed cylindrical beta-alumina ceramics compact Expired - Fee Related JP4382896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00630899A JP4382896B2 (en) 1998-11-05 1999-01-13 Firing method for bottomed cylindrical beta-alumina ceramics compact

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31424998 1998-11-05
JP10-314249 1998-11-05
JP00630899A JP4382896B2 (en) 1998-11-05 1999-01-13 Firing method for bottomed cylindrical beta-alumina ceramics compact

Publications (2)

Publication Number Publication Date
JP2000203950A true JP2000203950A (en) 2000-07-25
JP4382896B2 JP4382896B2 (en) 2009-12-16

Family

ID=26340408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00630899A Expired - Fee Related JP4382896B2 (en) 1998-11-05 1999-01-13 Firing method for bottomed cylindrical beta-alumina ceramics compact

Country Status (1)

Country Link
JP (1) JP4382896B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111799470A (en) * 2019-04-08 2020-10-20 宁德时代新能源科技股份有限公司 Positive pole piece and sodium ion battery
CN112018370A (en) * 2019-05-28 2020-12-01 中国科学院宁波材料技术与工程研究所 Preparation method of anode material or metal simple substance capable of being embedded with alkali metal ions
WO2021153400A1 (en) * 2020-01-30 2021-08-05 パナソニックIpマネジメント株式会社 Method for producing lithium transition metal complex oxide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111799470A (en) * 2019-04-08 2020-10-20 宁德时代新能源科技股份有限公司 Positive pole piece and sodium ion battery
CN111799470B (en) * 2019-04-08 2021-10-15 宁德时代新能源科技股份有限公司 Positive pole piece and sodium ion battery
CN112018370A (en) * 2019-05-28 2020-12-01 中国科学院宁波材料技术与工程研究所 Preparation method of anode material or metal simple substance capable of being embedded with alkali metal ions
CN112018370B (en) * 2019-05-28 2022-04-15 中国科学院宁波材料技术与工程研究所 Method for preparing metal simple substance
WO2021153400A1 (en) * 2020-01-30 2021-08-05 パナソニックIpマネジメント株式会社 Method for producing lithium transition metal complex oxide

Also Published As

Publication number Publication date
JP4382896B2 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
JP2009080970A (en) Lithium ion conductive solid electrolyte, and manufacturing method thereof
US4052538A (en) Method of making sodium beta-alumina powder and sintered articles
JP2003165767A (en) Spinel refractory and use of the same
Wang et al. Effect of B2O3 additives on the sintering and dielectric behaviors of CaMgSi2O6 ceramics
JP4382896B2 (en) Firing method for bottomed cylindrical beta-alumina ceramics compact
JPH04240155A (en) Beta-alumina-based sintered body and production thereof
NO146537B (en) PROCEDURE FOR THE PREPARATION OF A BETA-ALUMINA-BASED CERAMIC BODY WITH HIGH DENSITY AND LOW RESISTANCE FOR SODIUM CONDUCT
EP0781734B1 (en) Porous sintered lanthanum manganite bodies and method of manufacturing the same
JP2002128563A (en) Ceramic member for thermal treatment which has good thermal shock resistance
JP2000203932A (en) Bottomed cylindrical beta-alumina sintered body and its production
JP3656899B2 (en) High density barium zirconate sintered body and production method
JP6052279B2 (en) Beta alumina sintered body and manufacturing method thereof
JP2984208B2 (en) Molded body for ceramic sintered body, method for producing the same, ceramic sintered body using the molded body, and method for producing the same
JPH11154414A (en) Beta-alumina electrolyte and manufacture thereof
JP3586556B2 (en) Method for producing beta alumina electrolyte
JPH01310293A (en) Box for sintering ceramics
JP2000143331A (en) Production of beta aluminous sintered compact
Park et al. Fabrication of β-and β′′-Al2O3 tubes by pressureless powder packing forming and salt infiltration
JP2001151561A (en) Beta-alumina ceramic and its production process
JPH09221356A (en) Production of beta-alumina sintered compact
JP2001139367A (en) Production process for beta-alumina sintered body and beta-alumina sintered body
JPH0551279A (en) Production of porous ceramics
JP2014220175A (en) Lithium ion conductive solid electrolyte and method for manufacturing the same
JPH1149562A (en) Production of beta-alumina ceramic
JP2000143330A (en) Beta aluminous solid electrolyte and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080704

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees