JP2000200619A - Redox battery - Google Patents

Redox battery

Info

Publication number
JP2000200619A
JP2000200619A JP11002765A JP276599A JP2000200619A JP 2000200619 A JP2000200619 A JP 2000200619A JP 11002765 A JP11002765 A JP 11002765A JP 276599 A JP276599 A JP 276599A JP 2000200619 A JP2000200619 A JP 2000200619A
Authority
JP
Japan
Prior art keywords
current collector
conductive resin
collector plate
porous carbon
redox battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11002765A
Other languages
Japanese (ja)
Inventor
Mitsutaka Miyabayashi
光孝 宮林
Masahiro Sasaki
政弘 佐々木
Toshihiko Tanimoto
敏彦 谷本
Kanji Sato
完二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KASHIMAKITA KYODO HATSUDEN KK
Original Assignee
KASHIMAKITA KYODO HATSUDEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KASHIMAKITA KYODO HATSUDEN KK filed Critical KASHIMAKITA KYODO HATSUDEN KK
Priority to JP11002765A priority Critical patent/JP2000200619A/en
Publication of JP2000200619A publication Critical patent/JP2000200619A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a redox battery improved in contact resistance between a porous carbon electrode and a current collector, and simplified in assembly of battery components. by developing a current collector excellent in balance between conductivity and brittleness. SOLUTION: This redox battery is a circulating-liquid battery to be charged/ discharged by oxidizing/reducing reaction with a positive-electrode liquid and a negative-electrode liquid passed through a positive-electrode chamber and a negative-electrode chamber, respectively, separated from each other by a diaphragm and each having a liquid-permeable porous carbon electrode disposed therein. This redox battery is characterized in that the porous carbon electrode integrally fused with a collector plate made of a conductive resin and the conductive resin is essentially made up of carbon of 10 to 50 wt.% and a polyolefinic resin of 50 to 90 wt.% containing at least two kinds of olefine copolymers.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は液循環式電池に関す
る。より詳しくは、液循環式全バナジウムレドックス電
池に関するものである。
The present invention relates to a liquid circulation type battery. More specifically, the present invention relates to a liquid circulation type all-vanadium redox battery.

【0002】[発明の背景]現在、化石燃料の大量使用
による大気中炭酸ガス濃度の増加が著しく、地球の温暖
化が大きな問題となっている。このために、クリーンな
エネルギー源である太陽電池の開発が活発に行われてい
るが、太陽電池は、夜間や雨天時は発電できないため太
陽電池と組み合わせる高性能な2次電池の開発が待たれ
ている。
[Background of the Invention] At present, the concentration of carbon dioxide in the atmosphere is remarkably increased due to the large use of fossil fuels, and global warming is a major problem. For this reason, solar cells, which are clean energy sources, are being actively developed. However, since solar cells cannot generate power at night or in rainy weather, the development of high-performance secondary cells combined with solar cells is awaited. ing.

【0003】一方、従来の発電設備に於いても夜と昼等
で電力需要の差が大きく、需要のピークにあわせて発電
能力を備えねばならないため、発電設備の負荷率は低下
している。そのため大型の電力貯蔵電池により夜間電力
を貯蔵し、昼間活用することで運転負荷の平滑化を図
り、発電設備の負荷率を上げて効率的な運転を行うこと
が必要になってきており、大型の電力貯蔵電池の開発が
待たれている。さらには、電気自動車等の移動体電源に
適した出力密度の大きい2次電池の開発も待たれてい
る。
On the other hand, even in the conventional power generation equipment, the difference in power demand between night and day is large, and the power generation capacity must be provided in accordance with the peak of the demand, so that the load factor of the power generation equipment is reduced. For this reason, it is necessary to store power at night with a large power storage battery and use it during the day to smooth the operating load and raise the load factor of the power generation equipment for efficient operation. The development of power storage batteries is awaited. Further, development of a secondary battery having a high output density suitable for a mobile power source such as an electric vehicle is also awaited.

【0004】レドックスフロー電池はタッピングによっ
て太陽電池の出力電圧に合わせて充電できることや、構
造が比較的シンプルで大型化しやすい等の特徴を持つた
めに、上記の用途に適した新型の2次電池として有望で
ある。
A redox flow battery is characterized as being capable of being charged in accordance with the output voltage of a solar cell by tapping, and having a relatively simple structure and being easily enlarged, as a new type of secondary battery suitable for the above applications. Promising.

【0005】[0005]

【従来の技術】レドックスフロー型二次電池とは、電池
活物質が液状であり、正、負極の電池活物質を液透過型
の電解槽に流通せしめ、酸化還元反応を利用して充放電
を行うものであり、従来の二次電池と比べレドックスフ
ロー型二次電池は次の利点を有する。 (1) 蓄電容量を大きくするためには、貯蔵容器の容量を
大きくし、活物質量を増加させるだけでよく、出力を大
きくしない限り、電解槽自体はそのままでよい。 (2) 正、負極活物質は容器に完全に分離して貯蔵できる
ので、活物質が電極に接しているような電池と異なり、
自己放電の可能性が小さい。 (3) 本電池で使用する液透過型炭素多孔質電極において
は、活物質イオンの充放電反応(電極反応)は、単に、電
極表面で電子の交換を行うのみで、亜鉛ー臭素電池にお
ける、亜鉛イオンのように電極に析出することはないの
で、電池の反応が単純である。
2. Description of the Related Art A redox flow type secondary battery is a battery in which a battery active material is in a liquid state, positive and negative electrode battery active materials are passed through a liquid-permeable electrolytic cell, and charge and discharge are performed using an oxidation-reduction reaction. The redox flow type secondary battery has the following advantages as compared with the conventional secondary battery. (1) In order to increase the storage capacity, it is only necessary to increase the capacity of the storage container and increase the amount of active material, and the electrolytic cell itself may be used as long as the output is not increased. (2) Since the positive and negative electrode active materials can be completely separated and stored in the container, unlike batteries where the active material is in contact with the electrodes,
The possibility of self-discharge is small. (3) In the liquid permeable carbon porous electrode used in the present battery, the charge / discharge reaction of the active material ions (electrode reaction) is simply performed by exchanging electrons on the electrode surface, and in the zinc-bromine battery, The reaction of the battery is simple because it does not deposit on the electrode as zinc ions do.

【0006】しかし、レドックスフロー型二次電池でも
従来開発が行われてきた鉄ークロム系電池は、エネルギ
ー密度が小さく、イオン交換膜を介して鉄とクロムが混
合するなどの欠点があるために実用化にいたっていな
い。そのため全バナジウムレドックスフロー型電池(J.E
lectrochem.Soc.,133 1057(1986), 昭62-186473)が提案
されており、この電池は、鉄−クロム系電池に比し起電
力が高く、容量密度が大きく、また電解液が一元素系で
あるたがめ隔膜を介して正,負極液が相互に混合しても
充電によって簡単に再生することができ、電池容量が低
下せず,電解液を完全にクローズド化できる等の利点を
持っている。
However, iron-chromium-based batteries, which have been conventionally developed even in redox flow type secondary batteries, have low energy densities and have drawbacks such as mixing of iron and chromium via an ion exchange membrane. It has not been converted. Therefore, all vanadium redox flow batteries (JE
Electrochem. Soc., 133 1057 (1986), 62-186473) has been proposed, and this battery has a higher electromotive force, a higher capacity density, and a single electrolyte element as compared with an iron-chromium battery. Even if the positive and negative electrode solutions are mixed with each other via the stagnation membrane, it can be easily regenerated by charging, the battery capacity does not decrease, and the electrolyte solution can be completely closed. ing.

【0007】しかしながら、この全バナジウムレドック
スフロー型電池でも、液透過性の多孔性電極、炭素板か
らなる集電板、塩化ビニル樹脂製の集電板外枠、電解液
を正極室や負極室に分配して導入する塩ビ樹脂製の分液
板等の電池を構成する部品が多く、その組立が煩雑であ
り生産性の悪いことが問題であった。また、多孔性電極
と集電板との接触抵抗が高く、この観点からの改良も求
められていた。また、集電板に用いる炭素板も脆く、割
れた場合は正極、負極の電解液が混合して発熱するとい
う問題点があり、この観点からも改良が必要であった。
However, even in this all-vanadium redox flow battery, a liquid-permeable porous electrode, a current collector made of a carbon plate, an outer frame of a current collector made of a vinyl chloride resin, and an electrolytic solution are supplied to the positive electrode chamber and the negative electrode chamber. There are many parts constituting a battery such as a PVC resin separator to be distributed and introduced, and the assembly is complicated and the productivity is poor. Further, the contact resistance between the porous electrode and the current collector plate is high, and improvement from this viewpoint has been required. In addition, the carbon plate used as the current collector plate is also brittle, and when broken, there is a problem that the positive electrode and negative electrode electrolytes are mixed to generate heat, and from this viewpoint, improvement is necessary.

【0008】本発明者らは、これまでに全バナジウムレ
ドックスフロー型電池について種々の提案(特開平9−
223513号、特開平10−12261号、特願平1
0−53722号など)をしてきたが、これら提案をさ
らに改良しようとするものである。
The present inventors have proposed various proposals for an all-vanadium redox flow battery (Japanese Patent Application Laid-Open No.
No. 223513, Japanese Patent Application Laid-Open No. 10-12261, Japanese Patent Application No. 1
No. 0-53722), but these proposals are intended to be further improved.

【0009】[0009]

【発明が解決しようとする課題】かかる状況に鑑み、本
発明者等は、導電性と脆性のバランスに優れた集電体の
開発、多孔性炭素電極と集電体との接触抵抗の改良、電
池構成部品の組立工程の簡素化について鋭意検討した結
果、本発明に到達したものである。
In view of this situation, the present inventors have developed a current collector having an excellent balance between conductivity and brittleness, improved the contact resistance between the porous carbon electrode and the current collector, As a result of intensive studies on simplification of the assembling process of battery components, the present invention has been achieved.

【0010】[0010]

【課題を解決するための手段】本発明によれば、隔膜に
よって分離されかつ液透過性の多孔性炭素電極が配設さ
れた正極室及び負極室に、正極液と負極液を通液して酸
化還元反応を行い充放電する液循環式電池に於いて、該
多孔性炭素電極が導電性樹脂製集電板と融着一体化され
ており、その際該導電性樹脂が炭素 10重量%〜50
重量%及び少なくとも2種のオレフィンの共重合体を含
有するポリオレフィン系樹脂 50重量%〜90重量%
から本質的になることを特徴とするレドックス電池が提
供される。
According to the present invention, a positive electrode solution and a negative electrode solution are passed through a positive electrode chamber and a negative electrode chamber provided with a liquid-permeable porous carbon electrode separated by a diaphragm. In a liquid-circulating battery that performs an oxidation-reduction reaction and charges and discharges, the porous carbon electrode is fused and integrated with a conductive resin current collector plate, wherein the conductive resin contains 10% by weight of carbon or less. 50
% By weight and a polyolefin-based resin containing a copolymer of at least two olefins, from 50% by weight to 90% by weight.
And a redox battery characterized by consisting essentially of:

【0011】本発明の好ましい態様によれば、前記共重
合体ががランダム共重合体であることを特徴とするレド
ックス電池が提供される。
According to a preferred embodiment of the present invention, there is provided a redox battery, wherein the copolymer is a random copolymer.

【0012】本発明の好ましい態様によれば、前記導電
性樹脂製集電板が、オレフィン系重合体から構成される
絶縁性外枠と融着一化されているレドックス電池が提供
さらる。
According to a preferred aspect of the present invention, there is further provided a redox battery in which the conductive resin current collector plate is fused and integrated with an insulating outer frame made of an olefin polymer.

【0013】本発明の他の好ましい態様によれば、前記
導電性樹脂製集電板と、前記絶縁性外枠と、正極室およ
び負極室に正極液と負極液を導入する導入口を有する絶
縁性分液板とが融着一体化されており、その際分液板が
オレフィン系重合体から構成されているレドックス電池
が提供される。
According to another preferred embodiment of the present invention, there is provided an insulating member having the conductive resin current collector plate, the insulating outer frame, and an inlet for introducing a positive electrode solution and a negative electrode solution into a positive electrode chamber and a negative electrode chamber. The present invention provides a redox battery in which a liquid separating plate is fused and integrated, and in this case, the separating plate is made of an olefin-based polymer.

【0014】本発明の他の好ましい態様によれば、正極
室および負極室に正極液と負極液を導入する導入口が複
数のスリットからなり、それに電解液を供給するマニホ
ールドが連結して構成されるているレドックス電池が提
供される。
According to another preferred embodiment of the present invention, the inlet for introducing the positive electrode solution and the negative electrode solution into the positive electrode chamber and the negative electrode chamber comprises a plurality of slits, and the manifold for supplying the electrolytic solution is connected to the slits. Redox batteries are provided.

【0015】本発明の他の好ましい態様によれば、正極
室および負極室から正極液と負極液を排出する排出口
が、複数のスリットからなり、それに続くマニホールド
と連結して構成されているレドックス電池が提供され
る。
According to another preferred embodiment of the present invention, a redox outlet for discharging the positive electrode solution and the negative electrode solution from the positive electrode chamber and the negative electrode chamber is constituted by a plurality of slits and connected to a subsequent manifold. A battery is provided.

【0016】本発明の他の好ましい態様によれば、前記
多孔性炭素電極と前記集電板との融着一体化が、該集電
板を溶融成形する過程で、集電板を構成する導電性樹脂
が完全に固化しない軟化点以上の温度で多孔性炭素電極
を圧着させることにより行われるレドックス電池が提供
される。
According to another preferred aspect of the present invention, the fusion bonding of the porous carbon electrode and the current collector is performed by a process of melting and forming the current collector. A redox battery is provided, which is performed by pressing a porous carbon electrode at a temperature equal to or higher than a softening point at which a conductive resin is not completely solidified.

【0017】本発明の他の好ましい態様によれば、前記
多孔性炭素電極と前記集電板との融着一体化が、集電板
を構成する導電性樹脂が完全に固化しない軟化点以上の
温度で圧着することにより行われるレドックス電池が提
供される。
According to another preferred embodiment of the present invention, the fusion bonding of the porous carbon electrode and the current collector plate is performed at a temperature above the softening point at which the conductive resin constituting the current collector plate is not completely solidified. There is provided a redox battery performed by pressure bonding at a temperature.

【0018】本発明の他の好ましい態様によれば、前記
多孔性炭素電極と前記集電板との融着一体化が、前記導
電性の樹脂製集電板を軟化温度以上に加熱した後、前記
多孔性炭素電極を圧着することことにより行われるレド
ックス電池が提供される。
According to another preferred aspect of the present invention, the fusion bonding of the porous carbon electrode and the current collector plate is performed by heating the conductive resin current collector plate to a softening temperature or higher. A redox battery is provided which is performed by crimping the porous carbon electrode.

【0019】本発明の他の好ましい態様によれば、前記
導電性樹脂製集電板と絶縁性外枠と融着一体化が、超音
波のエネルギーを融着部に局部的に照射して加熱するこ
とにより行われるレドックス電池が提供される。
According to another preferred embodiment of the present invention, the conductive resin current collector plate and the insulating outer frame are integrated by fusion by locally irradiating ultrasonic energy to the fusion portion. A redox battery is provided.

【0020】本発明の他の好ましい態様によれば、前記
導電性の樹脂製集電板と前記多孔性炭素電極とを融着一
体化したものが金型にインサートされ、ついで前記絶縁
性外枠及び前記分液板を構成する樹脂組成物が射出成形
されることにより、絶縁性の外枠及び前記分液板が多孔
性炭素電極と共に一体成形されるレドックス電池が提供
される。
According to another preferred embodiment of the present invention, the conductive resin current collector plate and the porous carbon electrode fused and integrated are inserted into a mold, and then the insulating outer frame is formed. In addition, by injection molding the resin composition constituting the liquid separating plate, a redox battery in which the insulating outer frame and the liquid separating plate are integrally formed together with the porous carbon electrode is provided.

【0021】本発明の他の好ましい態様によれば、前記
正極液と負極液がバナジウムイオン濃度が0.5〜8.0
モル/リットルであるレドックス電池が提供される。
According to another preferred embodiment of the present invention, the positive electrode solution and the negative electrode solution have a vanadium ion concentration of 0.5 to 8.0.
Redox batteries are provided that are moles / liter.

【0022】本発明の他の好ましい態様によれば、前記
正極液と負極液がバナジウムの硫酸水溶液であり、且つ
電解液における硫酸根の濃度が0.5〜9.0モル/リッ
トルであるレドックス電池が提供される。
According to another preferred embodiment of the present invention, the positive electrode solution and the negative electrode solution are aqueous solutions of vanadium in sulfuric acid, and the concentration of sulfate in the electrolyte is 0.5 to 9.0 mol / l. A battery is provided.

【0023】[0023]

【発明の実施の形態】(1)多孔性炭素電極 本発明のレドックス電池に使用される電極は、液透過性
の多孔性炭素電極である。該電極は、好ましくは0.0
1〜1.0g/cc、より好ましくは0.08〜0.80
g/cc、最も好ましくは0.12〜0.50g/ccの
平均嵩密度を有するものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (1) Porous carbon electrode The electrode used in the redox battery of the present invention is a liquid-permeable porous carbon electrode. The electrodes are preferably 0.0
1 to 1.0 g / cc, more preferably 0.08 to 0.80
g / cc, most preferably from 0.12 to 0.50 g / cc.

【0024】(2)集電板 本発明のレドックス電池に使用される集電板は、導電性
樹脂製のものであり、これと上記多孔性炭素電極とが融
着一体化されていることを特徴とするものである。
(2) Current collecting plate The current collecting plate used in the redox battery of the present invention is made of a conductive resin, and it is required that this and the porous carbon electrode are fused and integrated. It is a feature.

【0025】(i)導電性樹脂:集電板を構成する導電
性樹脂は、10〜50重量%、好ましくは20〜45重
量%、より好ましくは25〜40重量%の炭素(a),
及び50〜90重量%、好ましくは55〜80重量%、
より好ましくは60〜75重量%の少なくとも2種のオ
レフィンの共重合体を含有するポリオレフィン系樹脂
(b)から本質的になるものである。
(I) Conductive resin: The conductive resin constituting the current collector plate contains 10 to 50% by weight, preferably 20 to 45% by weight, more preferably 25 to 40% by weight of carbon (a),
And 50 to 90% by weight, preferably 55 to 80% by weight,
More preferably, it consists essentially of a polyolefin-based resin (b) containing 60 to 75% by weight of a copolymer of at least two olefins.

【0026】(a)炭素 本発明での使用に適する炭素としては、カーボンブラッ
ク、炭素繊維、天然黒鉛、人造黒鉛等がある。カーボン
ブラックとしては、アセチレンブラック、ファーネスブ
ラック、サーマルブラック、チャンネルブラック等が用
いられる。炭素繊維としては、ポリアクリロニトリル系
炭素繊維、ピッチ系炭素繊維が用いられる。樹脂との分
散性と導電性とのバランスを良好に保持するために、カ
ーボンブラックと黒鉛等を混合して用いることもでき
る。
(A) Carbon Examples of carbon suitable for use in the present invention include carbon black, carbon fiber, natural graphite, artificial graphite, and the like. As carbon black, acetylene black, furnace black, thermal black, channel black and the like are used. As the carbon fibers, polyacrylonitrile-based carbon fibers and pitch-based carbon fibers are used. In order to maintain a good balance between the dispersibility with the resin and the conductivity, a mixture of carbon black and graphite can be used.

【0027】(b)ポリオレフィン系樹脂 上記炭素と共に導電性樹脂を構成するもう1つの必須成
分は、少なくとも2種のオレフィンの共重合体を含有す
るポリオレフィン系樹脂である。ポリオレフィン系樹脂
は、該共重合体のみで構成されている場合のほか、該共
重合体とオレフィンの単独重合体及び共重合体との混合
物を包含する。
(B) Polyolefin resin Another essential component of the conductive resin together with the carbon is a polyolefin resin containing a copolymer of at least two olefins. The polyolefin-based resin includes a mixture of the copolymer and an olefin homopolymer and a copolymer in addition to a case where the polyolefin-based resin is composed of only the copolymer.

【0028】上記少なくとも2種のオレフィンの共重合
体は、エチレン、プロピレン、ブテン、ペンテン、ヘキ
セン等のオレフィンの少なくとも2種の共重合により得
られる二元共重合体、三元共重合体などいかなるもので
あってもよい。好ましくは、プロピレンを主体とする、
例えばプロピレン60〜99.5重量、好ましくは80
〜99.0重量%、より好ましくは94〜98重量%
と、他のオレフィン、例えばエチレン0.5〜40重
量、好ましくは1.0〜20重量%、より好ましくは2
〜6重量%との共重合体である。該共重合体としては、
ランダム共重合体、ブロック共重合体などを挙げること
できるが、本発明のおいてはランダム共重合体が好まし
い。
The above-mentioned copolymer of at least two olefins may be any copolymer such as a binary copolymer or a terpolymer obtained by copolymerizing at least two types of olefins such as ethylene, propylene, butene, pentene and hexene. It may be something. Preferably, mainly propylene,
For example, propylene 60 to 99.5 weight, preferably 80
9999.0% by weight, more preferably 94-98% by weight
And other olefins, for example ethylene, 0.5 to 40% by weight, preferably 1.0 to 20% by weight, more preferably 2 to 40% by weight.
To 6% by weight. As the copolymer,
Although a random copolymer, a block copolymer, etc. can be mentioned, a random copolymer is preferred in the present invention.

【0029】上記したように、ポリオレフィン系樹脂は
少なくとも2種のオレフィンの共重合体を必須成分とし
て含有しなければならないが、該共重合体の外に任意成
分として含有することができるオレフィン系重合体とし
ては、例えばエチレン、プロピレン、ブテン、ヘキセン
などのオレフィンの単独重合体及び共重合体(必須成分
としての前記共重合体を除く)を挙げることができる。
これらの任意成分(使用する場合)は、ポリオレフィン
系樹脂当たり、5〜80重量%、好ましくは10〜60
重量%、最も好ましくは20〜50重量%の量である。
As described above, the polyolefin resin must contain a copolymer of at least two types of olefins as an essential component, but the olefin resin may contain an optional component in addition to the copolymer. Examples of the coalescence include homopolymers and copolymers of olefins such as ethylene, propylene, butene, and hexene (excluding the copolymer as an essential component).
These optional components (when used) are 5 to 80% by weight, preferably 10 to 60% by weight, based on the polyolefin resin.
%, Most preferably from 20 to 50% by weight.

【0030】(3)多孔性炭素電極と集電板との一体化 本発明の電池は、多孔性炭素電極が上記の導電性樹脂製
集電板と融着一体化されていることを特徴とする。導電
性樹脂製集電板と多孔性炭素電極との融着一体化は、導
電性の樹脂製集電板と多孔性炭素電極とを圧着した状態
で導電性樹脂製集電板の軟化温度以上に加熱することに
より融着一体化することができる。導電性樹脂製集電板
を軟化温度以上に加熱した後、液透過性の多孔性炭素電
極を圧着することで一体化することができる。150〜
300℃の融着温度が好ましく、160〜290℃の融
着温度がより好ましい。このような方法は導電性樹脂材
料から直接集電板/多孔性炭素電極の一体化物を製造す
る事ができるので、量産化に好ましい方法である。
(3) Integration of porous carbon electrode and current collector plate The battery of the present invention is characterized in that the porous carbon electrode is fused and integrated with the above-mentioned conductive resin current collector plate. I do. The fusion bonding of the conductive resin current collector and the porous carbon electrode is performed at a temperature equal to or higher than the softening temperature of the conductive resin current collector with the conductive resin current collector and the porous carbon electrode pressed. , And can be fused and integrated. After the conductive resin current collector plate is heated to a softening temperature or higher, a liquid-permeable porous carbon electrode can be integrated by pressure bonding. 150 ~
A fusion temperature of 300C is preferred, and a fusion temperature of 160-290C is more preferred. Such a method is preferable for mass production since an integrated product of the current collector / porous carbon electrode can be directly produced from the conductive resin material.

【0031】導電性樹脂製集電板と多孔性炭素電極との
融着一体化は、導電性樹脂製集電板を溶融成形する過程
で、樹脂製集電板が完全に固化しない軟化点温度以上で
多孔性炭素電極を圧着させ、融着一体化することもでき
る。
The fusion bonding of the conductive resin current collector plate and the porous carbon electrode is performed by melting the conductive resin current collector plate in a process of melting and forming the resin current collector plate at a softening point temperature at which the resin current collector plate is not completely solidified. As described above, the porous carbon electrode can be pressed and fused and integrated.

【0032】(4)集電板の外枠 本発明による集電板はその外周に絶縁性の外枠を有する
ことを特徴とする。この外枠はオレフィン系重合体の1
種、または2種以上の混合物からなる。
(4) Outer frame of current collector plate The current collector plate according to the present invention has an insulating outer frame on its outer periphery. This outer frame is made of olefin polymer 1
A species or a mixture of two or more species.

【0033】ここで使用することのできるオレフィン系
重合体としては、例えばエチレン、プロピレン、ブテ
ン、ヘキセンなどのオレフィンの単独重合体及び共重合
体がある。該オレフィン系重合体の非制限的な例として
は、プロピレンの単独重合体、プロピレンとエチレンと
の共重合体、エチレンの単独重合体、エチレンとプロピ
レンないしブテン、ヘキセン等との共重合体等の比較的
剛性の高い硬質材料がある。また、エチレンとプロピレ
ンとの共重合エラストマー、エチレンとプロピレンとエ
チリデンノルボルネン等のジエンとの共重合エラストマ
ー、エチレンとプロピレンないしブテン、ヘキセン等と
の共重合エラストマーなどの軟質材料を挙げることがで
きる。さらに、上記硬質材料と軟質材料との混合物から
なる熱可塑性エラストマーも使用することができ、その
場合は、硬質材料の含有量が該エラストマー当たり20
重量%以上であることが好ましく、30〜95重量%で
あることがより好ましく、35〜90重量%であること
が特に好ましい。
Examples of the olefin polymer that can be used here include homopolymers and copolymers of olefins such as ethylene, propylene, butene, and hexene. Non-limiting examples of the olefin-based polymer include a propylene homopolymer, a copolymer of propylene and ethylene, a homopolymer of ethylene, a copolymer of ethylene with propylene or butene, and hexene. There are hard materials that are relatively rigid. Further, soft materials such as a copolymer elastomer of ethylene and propylene, a copolymer elastomer of ethylene and propylene with a diene such as ethylidene norbornene, and a copolymer elastomer of ethylene with propylene or butene, hexene and the like can be given. Further, a thermoplastic elastomer composed of a mixture of the above-mentioned hard material and soft material can also be used. In this case, the content of the hard material is 20 per elastomer.
% By weight or more, more preferably from 30 to 95% by weight, and particularly preferably from 35 to 90% by weight.

【0034】本発明に用いる集電板は、厚さが好ましく
は0.1〜1.5mm、より好ましくは0.3〜1.3
mm、最も好ましくは0.5〜1.2mmである。
The current collector used in the present invention has a thickness of preferably 0.1 to 1.5 mm, more preferably 0.3 to 1.3.
mm, most preferably 0.5-1.2 mm.

【0035】(5)集電板と絶縁性外枠との融着一体化 導電性樹脂製集電板と上記絶縁性外枠との融着一体化
は、導電性樹脂製集電板と絶縁性外枠とを圧着した状態
で導電性樹脂製集電板と絶縁性外枠の軟化温度以上に加
熱することで融着一体化することができる。100〜3
00℃の融着温度が好ましく、130〜280℃の融着
温度がより好ましい。加熱は、遠赤外線で溶着部を過熱
する方法や、インパルスシーラー等で溶着部のみを局部
的に加熱することなどにより、おこなうことができる。
加熱は、なかでも超音波等のエネルギーを融着部に局部
的に照射することにより行うことが好ましい。
(5) Fusing and integrating the current collecting plate and the insulating outer frame The fusing and integrating the conductive resin current collecting plate and the insulating outer frame is performed by insulating the current collecting plate made of the conductive resin with the insulating resin. By heating the conductive resin current collector plate and the insulating outer frame to a temperature equal to or higher than the softening temperature of the insulating outer frame in a state where the insulating outer frame is press-bonded, fusion and integration can be performed. 100-3
A fusion temperature of 00C is preferred, and a fusion temperature of 130-280C is more preferred. Heating can be performed by a method of heating the welded portion with far infrared rays, or by locally heating only the welded portion with an impulse sealer or the like.
Heating is preferably performed by locally irradiating energy such as ultrasonic waves to the fusion bonding portion.

【0036】本発明に用いる絶縁性外枠は、厚さが好ま
しくは0.1〜1.5mm、より好ましくは0.4〜
1.3mm、最も好ましくは0.6〜1.2mmであ
る。
The thickness of the insulating outer frame used in the present invention is preferably 0.1 to 1.5 mm, more preferably 0.4 to 1.5 mm.
1.3 mm, most preferably 0.6-1.2 mm.

【0037】(6)集電板と多孔性炭素電極と分液板の
融着一体化 さらに、本発明は、導電性樹脂製集電板と、多孔性炭素
電極と、正極室および負極室に正極液と負極液を導入す
る導入口を有する絶縁性の分液板とが融着一体化されて
いることを特徴とする電池である。この絶縁性分配板
は、オレフィン系重合体の1種、または2種以上の混合
物からなる。ここで使用することができるオレフィン系
重合体の非制限的例は、上記(4)の項で、集電板外枠
に使用し得るオレフィン系重合体として例示したものを
挙げることができる。
(6) Fusing and integrating a current collector, a porous carbon electrode, and a liquid separating plate Further, the present invention provides a current collector made of a conductive resin, a porous carbon electrode, a positive electrode chamber and a negative electrode chamber. A battery characterized in that a positive electrode solution and an insulating separator having an inlet for introducing a negative electrode solution are fused and integrated. This insulating distribution plate is made of one or a mixture of two or more olefin polymers. Non-limiting examples of the olefin polymer that can be used here include those exemplified in the above section (4) as the olefin polymer that can be used for the outer frame of the current collector plate.

【0038】正極室および負極室に正極液と負極液を導
入する導入口を有する絶縁性の分液板と、絶縁性外枠
と、導電性樹脂製集電板とを融着一体化するには、それ
ぞれを軟化点温度以上で圧着し、一体化することができ
る。例えば、導電性樹脂製集電板と多孔性炭素電極とを
融着一体化したものを、金型にインサートし、そこに絶
縁性外枠及び分液板の材料を射出成形で一挙に一体化物
を成形することもできる。このような場合は、絶縁性外
枠及び分液板の材料は共に、同一組成のオレフィン系重
合体を選ぶことが好ましい。
In order to fuse and integrate an insulating separator having an inlet for introducing a positive electrode solution and a negative electrode solution into a positive electrode chamber and a negative electrode chamber, an insulating outer frame, and a conductive resin current collector plate. Can be integrated by pressing each other at a softening point temperature or higher. For example, a conductive resin current collector plate and a porous carbon electrode fused and integrated are inserted into a mold, and the materials of the insulating outer frame and the liquid separating plate are integrated at once by injection molding. Can also be formed. In such a case, it is preferable to select an olefin polymer having the same composition for both the insulating outer frame and the liquid separating plate.

【0039】(7)マニホールド 分液板には、さらに正極室および負極室から正極液と負
極液を排出する排出口が導入口に対峙して設置され、そ
れに電解液を供給するマニホールドが連結して構成され
る。さらに本発明は、正極室および負極室から正極液と
負極液を排出する導入口および排出口が、複数のスリッ
トからなり、それに続くマニホールドと連結して構成さ
れる電池である。
(7) Manifold A discharge port for discharging the positive electrode solution and the negative electrode solution from the positive electrode chamber and the negative electrode chamber is installed on the liquid separating plate so as to face the inlet, and a manifold for supplying an electrolytic solution is connected to the outlet. It is composed. Further, the present invention is a battery in which an inlet and an outlet for discharging the positive electrode solution and the negative electrode solution from the positive electrode chamber and the negative electrode chamber are formed of a plurality of slits and connected to a subsequent manifold.

【0040】(8)イオン交換膜(隔膜) 本発明のレドックス電池に用いることができるイオン交
換膜は、有機高分子からなるイオン交換膜を用いるのが
好ましい。カチオン交換膜、アニオン交換膜いずれのイ
オン交換膜も用いることができる。カチオン交換膜とし
ては、スチレンージビニルベンゼン共重合体をスルホン
化して得られるカチオン交換膜、テトラフルオロエチレ
ンとハ゜ーフルオロ・スルホニル・エトキシビニルエー
テルの共重合体をベースにスルホン酸基を導入したカチ
オン交換膜、テトラフルオロエチレンとカルボキシル基
を側鎖に持つハ゜ーフルオロビニルエーテルとの共重合
体からなるカチオン交換膜、芳香族ポリスルホン共重合
体をベースにスルホン酸基を導入したカチオン交換膜な
どを用いることができる。アニオン交換膜としては、ス
チレンージビニルベンゼン共重合体をベースにクロロメ
チル基の導入、アミノ化したアニオン交換膜、ビニルピ
リジンージビニルベンゼン共重合体を4級ビリジウム化
したアニオン交換膜、芳香族ポリスルホン共重合体をベ
ースにクロロメチル基の導入、アミノ化したアニオン交
換膜などを用いることができる。
(8) Ion Exchange Membrane (Diaphragm) As the ion exchange membrane that can be used in the redox battery of the present invention, it is preferable to use an ion exchange membrane made of an organic polymer. Either a cation exchange membrane or an ion exchange membrane can be used. Examples of the cation exchange membrane include a cation exchange membrane obtained by sulfonating a styrene divinylbenzene copolymer, and a cation exchange membrane in which a sulfonic acid group is introduced based on a copolymer of tetrafluoroethylene and perfluorosulfonylethoxyvinyl ether. A cation exchange membrane composed of a copolymer of tetrafluoroethylene and a perfluorovinyl ether having a carboxyl group in a side chain, a cation exchange membrane in which a sulfonic acid group is introduced based on an aromatic polysulfone copolymer, or the like can be used. . Examples of the anion exchange membrane include an anion exchange membrane obtained by introducing and aminating chloromethyl groups based on a styrene divinylbenzene copolymer, an anion exchange membrane obtained by quaternizing a vinylpyridine divinylbenzene copolymer, and an aromatic polysulfone. A chloromethyl group-introduced and aminated anion exchange membrane based on the copolymer can be used.

【0041】(9)電解液 本発明の電極に使用することができる電解液は、正極液
及び負極液共にバナジウムの水溶液であり、そのバナジ
ウムイオン濃度は0.5〜8モル/リットル、好ましくは
1.0〜4.5モル/リットル、最も好ましくは1.5〜
3.5モル/リットルである。バナジウムの濃度が、0.
5モル/リットル未満であると電池のエネルギー密度が
小さくなり、8.0モル/リットルを越えると、電解液の
粘度が高くなり電池セルの抵抗が高くなり、電力効率も
低いものとなる。また、電解液としてはバナジウムの硫
酸水溶液が好ましく用いられ、電解液における硫酸根の
濃度は、好ましくは0.5〜9.0モル/リットル、より
好ましくは好ましくは1.0〜8.0モル/リットル、特
に好ましくは1.5〜6.0モル/リットル以下である。
(9) Electrolyte solution The electrolyte solution that can be used for the electrode of the present invention is an aqueous solution of vanadium for both the positive electrode solution and the negative electrode solution, and the vanadium ion concentration is 0.5 to 8 mol / l, preferably 1.0-4.5 mol / l, most preferably 1.5-1.5 mol / l
3.5 mol / l. When the concentration of vanadium is
If it is less than 5 mol / l, the energy density of the battery will be low, and if it exceeds 8.0 mol / l, the viscosity of the electrolyte will increase, the resistance of the battery cell will increase, and the power efficiency will decrease. Further, as the electrolytic solution, an aqueous solution of vanadium in sulfuric acid is preferably used, and the concentration of sulfate in the electrolytic solution is preferably 0.5 to 9.0 mol / liter, more preferably 1.0 to 8.0 mol. / Liter, particularly preferably 1.5 to 6.0 mol / liter or less.

【0042】[0042]

【実施例】以下、実施例及び比較例に基づいて、本発明
を具体的に説明する。 実施例1 カーボンブラック30重量%、及びポリオレフィン系樹
脂組成物(エチレン含量4.5重量%のエチレン/プロ
ピレンランダム共重合体)70重量%からなる導電性樹
脂を厚み1mmにシート成形した。これを横幅1010
mm、縦幅420mmの導電性樹脂製集電板に打ち抜き
加工した。多孔性炭素電極として、嵩密度0.35g/
ccのセルロース系炭素繊維のフェルトを用いた。絶縁
性外枠として、ポリプロピレン40重量%及びエチレン
とプロピレンとエチリデンノルボルネンとの共重合エラ
ストマーの架橋物60重量%からなる熱可塑性エラスト
マーからなるオレフィン系重合体組成物から成形され
た、厚み1.2mmのシートを用いた。これを外形横幅
1120mm、外形縦幅720mm、内径横幅1010
mm、内径縦幅420mmに打ち抜き加工した。
The present invention will be specifically described below based on examples and comparative examples. Example 1 A sheet of a conductive resin composed of 30% by weight of carbon black and 70% by weight of a polyolefin resin composition (an ethylene / propylene random copolymer having an ethylene content of 4.5% by weight) was formed into a sheet having a thickness of 1 mm. This is width 1010
It was punched into a conductive resin current collector plate having a length of 420 mm and a width of 420 mm. As a porous carbon electrode, a bulk density of 0.35 g /
A cc cellulosic carbon fiber felt was used. As the insulating outer frame, a 1.2 mm thick molded from an olefin polymer composition comprising a thermoplastic elastomer composed of 40% by weight of polypropylene and 60% by weight of a crosslinked product of a copolymer elastomer of ethylene, propylene and ethylidene norbornene. Was used. The outer width is 1120 mm, the outer height is 720 mm, and the inner width is 1010.
mm and an inner diameter vertical width of 420 mm.

【0043】アルミ製の上金型及び下金型の内部に、上
記の導電性樹脂製集電板、多孔性炭素電極、絶縁性外枠
を図2に示すように設置し、金型をボルトで締めて、さ
らに内部を真空にした。金型を、赤外線加熱炉に入れて
加熱し、金型の温度を190℃とし、3分間保持した。
金型を外部に取り出し、冷却後、導電性樹脂製集電板、
多孔性炭素電極、絶縁性外枠が一体化された構造部品を
得た(図1参照)。得られた構造部品に、ポリプロピレ
ン樹脂製の分液板を配置し、その外側にパッキン、さら
にイオン交換膜を配置して21セルからなるスタックを
構成した。
The conductive resin current collector, the porous carbon electrode, and the insulating outer frame were placed inside the upper and lower molds made of aluminum as shown in FIG. And further evacuated the interior. The mold was placed in an infrared heating furnace and heated to a temperature of 190 ° C. for 3 minutes.
After taking out the mold and cooling, the current collector plate made of conductive resin,
A structural component in which the porous carbon electrode and the insulating outer frame were integrated was obtained (see FIG. 1). A liquid separating plate made of a polypropylene resin was arranged on the obtained structural component, packing and an ion-exchange membrane were arranged outside the liquid separating plate to form a stack of 21 cells.

【0044】該分液板には、正極室および負極室に正極
液と負極液を導入する導入口(4個)と正極室および負
極室から正極液と負極液を排出する排出口(4個)、お
よび導入口は4本のスリットとそれに電解液を供給する
マニホールド(18mm角であり、スリットは幅2.4
mm、深さ1mm、長さ14.5mmの直方体:図3参
照)が設置されており、排出口は4本のスリットとそれ
に続くマニホールドから構成されている。
The liquid separating plate has four inlets for introducing the positive and negative electrode solutions into the positive and negative electrode chambers and four outlets for discharging the positive and negative electrode solutions from the positive and negative electrode chambers. ) And the inlet are four slits and a manifold (18 mm square) for supplying an electrolytic solution to the slits, and the slits have a width of 2.4.
mm, a depth of 1 mm, and a length of 14.5 mm (see FIG. 3), and the outlet is composed of four slits followed by a manifold.

【0045】このようにして製造された導電性樹脂製集
電板、多孔性炭素電極、絶縁性外枠及び分液板の一体化
物を用いて電池セルのスタックを組み立て、正極液と負
極液がバナジウムイオン濃度が2モル/リットルの硫酸
水溶液であり、電解液における硫酸根の濃度が4モル/
リットルである電解液を電池の導入口から導入し、排出
口から排出しながら電池セル電圧1.65Vまで充電
し、電池セル電圧が1.16Vまで放電する充放電実験
を繰り返し実施した。結果を表−1に示す。なお、上記
で得た構造物品を繰り返し折り曲げる試験を行ったが、
5回以上の折り曲げに対して変化なかった。
The battery cell stack is assembled using the conductive resin current collector plate, the porous carbon electrode, the insulating outer frame and the separator plate thus manufactured, and the positive electrode solution and the negative electrode solution are combined. It is a sulfuric acid aqueous solution with a vanadium ion concentration of 2 mol / l, and the concentration of sulfate in the electrolyte is 4 mol / l.
A charge / discharge experiment was conducted in which a liter of electrolyte was introduced from the inlet of the battery, discharged from the outlet, charged to a battery cell voltage of 1.65 V, and discharged to a battery cell voltage of 1.16 V. The results are shown in Table 1. In addition, although the test which repeatedly bent the structural article obtained above was performed,
No change for 5 or more bends.

【0046】実施例2 導電性樹脂製集電板、多孔性電極、絶縁性外枠に、ポリ
プロピレンからなる分液板を実施例1と同様の手法で融
着一体化し、得られた一体化物を用いて電池セルのスタ
ックを構成し、同様に充放電実験を繰り返し実施した。
結果を表−1に示す。
Example 2 A liquid separating plate made of polypropylene was fused and integrated to a conductive resin current collecting plate, a porous electrode, and an insulating outer frame in the same manner as in Example 1, and the obtained integrated product was obtained. A stack of battery cells was configured using the same, and a charge / discharge experiment was repeated in the same manner.
The results are shown in Table 1.

【0047】実施例3 導電性樹脂製集電板をシート成形する過程で、まだ冷却
固化しない145℃で多孔性電極を圧着し融着一体化し
た以外は実施例1と同様にして融着一体化し充放電実験
を実施した。結果を表−1に示す。
Example 3 In the process of forming a conductive resin current collector sheet into a sheet, the same procedure as in Example 1 was carried out except that the porous electrode was pressed and fused and integrated at 145 ° C., which was not yet solidified by cooling. A charge / discharge experiment was performed. The results are shown in Table 1.

【0048】実施例4 導電性樹脂製集電板と絶縁性外枠の界面に超音波を局部
的に照射して融着一体化した以外は実施例1と同様にし
て融着一体化し充放電実験を実施した。結果を表−1に
示す。
Example 4 Fusion and integration and charge and discharge were performed in the same manner as in Example 1 except that the interface between the conductive resin current collector plate and the insulating outer frame was locally irradiated with ultrasonic waves to perform fusion and integration. An experiment was performed. The results are shown in Table 1.

【0049】比較例1 導電性樹脂製集電板の代わりに、炭素板を用い、炭素
板、多孔性電極、絶縁性外枠がすべて独立して分離した
部品として用いた以外は実施例1と同様にして電池セル
のスタックを構成し、同様に充放電実験を繰り返し実施
した。結果を表−1に示す。
Comparative Example 1 The procedure of Example 1 was repeated except that a carbon plate was used in place of the conductive resin current collector plate, and the carbon plate, the porous electrode, and the insulating outer frame were all used as independently separated parts. Similarly, a stack of battery cells was formed, and a charge / discharge experiment was repeated in the same manner. The results are shown in Table 1.

【0050】比較例2 ポリオレフィン系樹脂としてプロピレン単独重合体を用
いた以外は実施例1と同様にして融着一体化し充放電実
験を実施した。結果を表−1に示す。
Comparative Example 2 A charge / discharge experiment was carried out by fusing and integrating in the same manner as in Example 1 except that a propylene homopolymer was used as the polyolefin resin. The results are shown in Table 1.

【0051】[0051]

【表1】 [Table 1]

【0052】上記の結果から、本発明のレドックス電池
は、比較例の電池に比べ組み立て工程が簡略化されてい
ることに加えて、セル抵抗が小さく、高い電力効率を有
し、強度も優れていることがわかる。
From the above results, the redox battery of the present invention has a simplified cell assembling process as compared with the battery of the comparative example, and has a low cell resistance, high power efficiency, and excellent strength. You can see that there is.

【0053】[0053]

【発明の効果】上記実施例のレドックスフロー型電池
は、比較例の電池に比し組立工程が簡略されている事に
加え、セル抵抗が小さく、高い電力効率を有する。ま
た、耐衝撃性に優れる。また、本発明により、レドック
ス電池のセル抵抗を小さく、電力効率を高く、なおかつ
長期の充放電サイクル特性に優れた新規なレドックスフ
ロー型電池が提供される。
The redox flow battery of the above embodiment has a simpler assembly process than the battery of the comparative example, has a low cell resistance, and has high power efficiency. Also, it has excellent impact resistance. Further, according to the present invention, there is provided a novel redox flow battery having a low cell resistance, high power efficiency, and excellent long-term charge / discharge cycle characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の、導電性樹脂製集電板、多孔性炭素電
極及び絶縁性外枠が一体化された構造部品の概略説明図
である。
FIG. 1 is a schematic explanatory view of a structural component of the present invention in which a conductive resin current collector, a porous carbon electrode, and an insulating outer frame are integrated.

【図2】本発明の、導電性樹脂製集電板、多孔性炭素電
極及び絶縁性外枠が一体化された構造部品の成形に関す
る概略説明図である。
FIG. 2 is a schematic explanatory view related to the molding of a structural component in which a conductive resin current collector, a porous carbon electrode, and an insulating outer frame are integrated according to the present invention.

【図3】本発明のマニホールドを示す概略説明図であ
る。
FIG. 3 is a schematic explanatory view showing a manifold of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷本 敏彦 茨城県鹿島郡神栖町東和田16番地 鹿島北 共同発電株式会社V電池開発室内 (72)発明者 佐藤 完二 茨城県鹿島郡神栖町東和田16番地 鹿島北 共同発電株式会社V電池開発室内 Fターム(参考) 5H018 AA08 EE05 5H026 AA10 BB00 BB01 BB02 CC08 EE05 EE18 HH05 HH08 RR01 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Toshihiko Tanimoto 16 Towada, Kasu-gun, Kashima-gun, Ibaraki Prefecture V Battery Development Room, Kashima-Kita Co., Ltd. Kashimakita Joint Power Generation Co., Ltd. V Battery Development Room F-term (reference) 5H018 AA08 EE05 5H026 AA10 BB00 BB01 BB02 CC08 EE05 EE18 HH05 HH08 RR01

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 隔膜によって分離されかつ液透過性の多
孔性炭素電極が配設された正極室及び負極室に、正極液
と負極液を通液して酸化還元反応を行い充放電する液循
環式電池に於いて、該多孔性炭素電極が導電性樹脂製集
電板と融着一体化されており、その際該導電性樹脂が、
炭素 10重量%〜50重量%及び少なくとも2種のオ
レフィンの共重合体を含有するポリオレフィン系樹脂
50重量%〜90重量%から本質的になることを特徴と
するレドックス電池。
1. A liquid circulation system in which a positive electrode solution and a negative electrode solution are passed through a positive electrode chamber and a negative electrode chamber provided with a liquid-permeable porous carbon electrode separated by a diaphragm and charged and discharged by performing an oxidation-reduction reaction. In the type battery, the porous carbon electrode is fused and integrated with a conductive resin current collector plate, in which case the conductive resin is
Polyolefin resin containing 10% to 50% by weight of carbon and a copolymer of at least two olefins
A redox battery, consisting essentially of 50% to 90% by weight.
【請求項2】 前記共重合体がランダム共重合体である
請求項1記載のレドックス電池。
2. The redox battery according to claim 1, wherein the copolymer is a random copolymer.
【請求項3】 前記導電性樹脂製集電板が、オレフィン
系重合体から構成される絶縁性外枠と融着一体化されて
いる請求項1項記載のレドックス電池。
3. The redox battery according to claim 1, wherein the conductive resin current collector plate is fused and integrated with an insulating outer frame made of an olefin polymer.
【請求項4】 前記導電性樹脂製集電板と、前記絶縁性
外枠と、正極室および負極室に正極液と負極液を導入す
る導入口を有する絶縁性分液板とが融着一体化されてお
り、その際分液板がオレフィン系重合体から構成されて
いる請求項1項記載のレドックス電池。
4. The fusion-bonding of the conductive resin current collector plate, the insulating outer frame, and an insulating separator plate having inlets for introducing a positive electrode solution and a negative electrode solution into a positive electrode chamber and a negative electrode chamber. The redox battery according to claim 1, wherein the liquid separation plate is made of an olefin-based polymer.
【請求項5】 正極室および負極室に正極液と負極液を
導入する導入口が複数のスリットからなり、それに電解
液を供給するマニホールドが連結して構成されるている
請求項1記載のレドックス電池。
5. The redox according to claim 1, wherein an inlet for introducing a positive electrode solution and a negative electrode solution into the positive electrode chamber and the negative electrode chamber comprises a plurality of slits, and a manifold for supplying an electrolyte is connected to the slits. battery.
【請求項6】 正極室および負極室から正極液と負極液
を排出する排出口が、複数のスリットからなり、それに
続くマニホールドと連結して構成されている請求項1項
記載のレドックス電池。
6. The redox battery according to claim 1, wherein a discharge port for discharging the positive electrode solution and the negative electrode solution from the positive electrode chamber and the negative electrode chamber comprises a plurality of slits and is connected to a subsequent manifold.
【請求項7】 前記多孔性炭素電極と前記集電板との融
着一体化が、該集電板を溶融成形する過程で、該集電板
を構成する導電性樹脂が完全に固化しない軟化点以上の
温度で多孔性炭素電極を圧着させることにより行われる
請求項1項記載のレドックス電池。
7. The fusion bonding of the porous carbon electrode and the current collector plate is performed during the process of melt-forming the current collector plate so that the conductive resin constituting the current collector plate is not completely solidified. The redox battery according to claim 1, which is performed by pressing a porous carbon electrode at a temperature equal to or higher than a point.
【請求項8】 前記多孔性炭素電極と前記集電板との融
着一体化が、該集電板を構成する導電性樹脂が完全に固
化しない軟化点以上の温度で圧着することにより行われ
る請求項1記載のレドックス電池。
8. The fusion bonding of the porous carbon electrode and the current collector plate is performed by pressure bonding at a temperature higher than a softening point at which a conductive resin constituting the current collector plate is not completely solidified. The redox battery according to claim 1.
【請求項9】 前記多孔性炭素電極と前記集電板との融
着一体化が、前記導電性樹脂製集電板を軟化温度以上に
加熱した後、前記多孔性炭素電極を圧着することにより
行われる請求項1記載のレドックス電池。
9. The fusion bonding of the porous carbon electrode and the current collector plate is performed by heating the conductive resin current collector plate to a softening temperature or higher and then pressing the porous carbon electrode. The redox battery according to claim 1, which is performed.
【請求項10】 前記導電性の樹脂製集電板と前記絶縁
性外枠と融着一体化が、超音波のエネルギーを融着部に
局部的に照射して加熱することにより行われる請求項2
記載のレドックス電池。
10. The fusion bonding of the conductive resin current collector plate and the insulating outer frame is performed by locally irradiating ultrasonic energy to a fusion portion and heating the fusion portion. 2
A redox battery as described.
【請求項11】 前記導電性の樹脂製集電板と前記多孔
性炭素電極とを融着一体化したものが金型にインサート
され、ついで前記絶縁性外枠及び前記分液板を構成する
重合体が射出成形されることにより、絶縁性外枠及び前
記分液板が多孔性炭素電極と共に一体成形される請求項
2記載のレドックス電池。
11. A fusion-bonding of the conductive resin current collector plate and the porous carbon electrode is inserted into a mold, and then a weight constituting the insulating outer frame and the liquid separating plate is formed. The redox battery according to claim 2, wherein the insulative outer frame and the liquid separating plate are integrally formed together with a porous carbon electrode by injection molding the united body.
【請求項12】 前記正極液と負極液のバナジウムイオ
ン濃度が0.5〜8.0モル/リットルである請求項1項
記載のレドックス電池。
12. The redox battery according to claim 1, wherein the concentration of vanadium ions in the positive electrode solution and the negative electrode solution is 0.5 to 8.0 mol / L.
【請求項13】 前記正極液と負極液がバナジウムの硫
酸水溶液であり、且つ電解液における硫酸根の濃度が
0.5〜9.0モル/リットルである請求項1項記載のレ
ドックス電池。
13. The redox battery according to claim 1, wherein the cathode solution and the anode solution are aqueous solutions of vanadium in sulfuric acid, and the concentration of sulfate in the electrolyte is 0.5 to 9.0 mol / l.
JP11002765A 1999-01-08 1999-01-08 Redox battery Pending JP2000200619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11002765A JP2000200619A (en) 1999-01-08 1999-01-08 Redox battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11002765A JP2000200619A (en) 1999-01-08 1999-01-08 Redox battery

Publications (1)

Publication Number Publication Date
JP2000200619A true JP2000200619A (en) 2000-07-18

Family

ID=11538445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11002765A Pending JP2000200619A (en) 1999-01-08 1999-01-08 Redox battery

Country Status (1)

Country Link
JP (1) JP2000200619A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002101862A1 (en) * 2001-06-12 2002-12-19 Sumitomo Electric Industries, Ltd. Cell frame for redox-flow cell and redox-flow cell
JP2007128908A (en) * 2007-01-15 2007-05-24 Riken Corp Cell unit of solid polymer electrolyte fuel cell
US7855005B2 (en) 2007-02-12 2010-12-21 Deeya Energy, Inc. Apparatus and methods of determination of state of charge in a redox flow battery
US7919204B2 (en) 2008-10-10 2011-04-05 Deeya Energy, Inc. Thermal control of a flow cell battery
US7927731B2 (en) 2008-07-01 2011-04-19 Deeya Energy, Inc. Redox flow cell
US8230736B2 (en) 2008-10-10 2012-07-31 Deeya Energy, Inc. Level sensor for conductive liquids
US8231993B2 (en) 2008-10-10 2012-07-31 Deeya Energy, Inc. Flexible multi-walled tubing assembly
US8236463B2 (en) 2008-10-10 2012-08-07 Deeya Energy, Inc. Magnetic current collector
US8264202B2 (en) 2008-10-10 2012-09-11 Deeya Energy, Inc. Method and apparatus for determining state of charge of a battery using an open-circuit voltage
US8338008B2 (en) 2009-05-28 2012-12-25 Deeya Energy, Inc. Electrolyte compositions
US8349477B2 (en) 2009-05-28 2013-01-08 Deeya Energy, Inc. Optical leak detection sensor
US8394529B2 (en) 2009-05-28 2013-03-12 Deeya Energy, Inc. Preparation of flow cell battery electrolytes from raw materials
US8551299B2 (en) 2009-05-29 2013-10-08 Deeya Energy, Inc. Methods of producing hydrochloric acid from hydrogen gas and chlorine gas
US8587150B2 (en) 2008-02-28 2013-11-19 Deeya Energy, Inc. Method and modular system for charging a battery
US8587255B2 (en) 2009-05-28 2013-11-19 Deeya Energy, Inc. Control system for a flow cell battery
WO2014034758A1 (en) 2012-08-30 2014-03-06 株式会社カネカ Current collector for battery and battery using same
KR101371164B1 (en) 2010-11-15 2014-03-17 세하특허 주식회사 Manufacturing Method of Electrode for Redox Flow Battery and Redox Flow Battery thereof
US8723489B2 (en) 2009-05-28 2014-05-13 Deeya Energy, Inc. Bi-directional buck-boost circuit
WO2014080853A1 (en) 2012-11-22 2014-05-30 株式会社カネカ Collector for bipolar lithium ion secondary batteries, and bipolar lithium ion secondary battery
US8877365B2 (en) 2009-05-28 2014-11-04 Deeya Energy, Inc. Redox flow cell rebalancing
US8883297B2 (en) 2008-10-10 2014-11-11 Imergy Power Systems, Inc. Methods for bonding porous flexible membranes using solvent
US8951665B2 (en) 2010-03-10 2015-02-10 Imergy Power Systems, Inc. Methods for the preparation of electrolytes for chromium-iron redox flow batteries
US9281535B2 (en) 2010-08-12 2016-03-08 Imergy Power Systems, Inc. System dongle
EP2985827A4 (en) * 2013-04-11 2016-09-28 Showa Denko Kk Carbon member, carbon member manufacturing method, redox flow battery and fuel cell
JP2017107859A (en) * 2011-08-22 2017-06-15 エンシンク,インコーポレーテッド REVERSIBLE POLARITY OPERATION AND SWITCHING METHOD FOR ZnBr FLOW BATTERY WHEN CONNECTED TO COMMON DC BUS
KR20200072822A (en) * 2018-12-13 2020-06-23 한국에너지기술연구원 Electrode-current collector assembly and redox flow battery including the same
CN115332556A (en) * 2022-10-18 2022-11-11 潍柴巴拉德氢能科技有限公司 End plate assembly preparation method, end plate assembly and fuel cell stack

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002101862A1 (en) * 2001-06-12 2002-12-19 Sumitomo Electric Industries, Ltd. Cell frame for redox-flow cell and redox-flow cell
JP2007128908A (en) * 2007-01-15 2007-05-24 Riken Corp Cell unit of solid polymer electrolyte fuel cell
US7855005B2 (en) 2007-02-12 2010-12-21 Deeya Energy, Inc. Apparatus and methods of determination of state of charge in a redox flow battery
US8587150B2 (en) 2008-02-28 2013-11-19 Deeya Energy, Inc. Method and modular system for charging a battery
US7927731B2 (en) 2008-07-01 2011-04-19 Deeya Energy, Inc. Redox flow cell
US7919204B2 (en) 2008-10-10 2011-04-05 Deeya Energy, Inc. Thermal control of a flow cell battery
US8230736B2 (en) 2008-10-10 2012-07-31 Deeya Energy, Inc. Level sensor for conductive liquids
US8231993B2 (en) 2008-10-10 2012-07-31 Deeya Energy, Inc. Flexible multi-walled tubing assembly
US8236463B2 (en) 2008-10-10 2012-08-07 Deeya Energy, Inc. Magnetic current collector
US8264202B2 (en) 2008-10-10 2012-09-11 Deeya Energy, Inc. Method and apparatus for determining state of charge of a battery using an open-circuit voltage
US8883297B2 (en) 2008-10-10 2014-11-11 Imergy Power Systems, Inc. Methods for bonding porous flexible membranes using solvent
US8349477B2 (en) 2009-05-28 2013-01-08 Deeya Energy, Inc. Optical leak detection sensor
US8394529B2 (en) 2009-05-28 2013-03-12 Deeya Energy, Inc. Preparation of flow cell battery electrolytes from raw materials
US8587255B2 (en) 2009-05-28 2013-11-19 Deeya Energy, Inc. Control system for a flow cell battery
US9479056B2 (en) 2009-05-28 2016-10-25 Imergy Power Systems, Inc. Buck-boost circuit with protection feature
US8723489B2 (en) 2009-05-28 2014-05-13 Deeya Energy, Inc. Bi-directional buck-boost circuit
US9035617B2 (en) 2009-05-28 2015-05-19 Imergy Power Systems, Inc. Control system for a flow cell battery
US8877365B2 (en) 2009-05-28 2014-11-04 Deeya Energy, Inc. Redox flow cell rebalancing
US8338008B2 (en) 2009-05-28 2012-12-25 Deeya Energy, Inc. Electrolyte compositions
US8551299B2 (en) 2009-05-29 2013-10-08 Deeya Energy, Inc. Methods of producing hydrochloric acid from hydrogen gas and chlorine gas
US8951665B2 (en) 2010-03-10 2015-02-10 Imergy Power Systems, Inc. Methods for the preparation of electrolytes for chromium-iron redox flow batteries
US9281535B2 (en) 2010-08-12 2016-03-08 Imergy Power Systems, Inc. System dongle
KR101371164B1 (en) 2010-11-15 2014-03-17 세하특허 주식회사 Manufacturing Method of Electrode for Redox Flow Battery and Redox Flow Battery thereof
JP2017107859A (en) * 2011-08-22 2017-06-15 エンシンク,インコーポレーテッド REVERSIBLE POLARITY OPERATION AND SWITCHING METHOD FOR ZnBr FLOW BATTERY WHEN CONNECTED TO COMMON DC BUS
WO2014034758A1 (en) 2012-08-30 2014-03-06 株式会社カネカ Current collector for battery and battery using same
US10431830B2 (en) 2012-08-30 2019-10-01 Kaneka Corporation Current collector for battery and battery using same
WO2014080853A1 (en) 2012-11-22 2014-05-30 株式会社カネカ Collector for bipolar lithium ion secondary batteries, and bipolar lithium ion secondary battery
KR20150088254A (en) 2012-11-22 2015-07-31 가부시키가이샤 가네카 Collector for bipolar lithium ion secondary batteries, and bipolar lithium ion secondary battery
EP2985827A4 (en) * 2013-04-11 2016-09-28 Showa Denko Kk Carbon member, carbon member manufacturing method, redox flow battery and fuel cell
US10109870B2 (en) 2013-04-11 2018-10-23 Showa Denko K.K. Carbon member, carbon member manufacturing method, redox flow battery and fuel cell
KR20200072822A (en) * 2018-12-13 2020-06-23 한국에너지기술연구원 Electrode-current collector assembly and redox flow battery including the same
KR102213375B1 (en) * 2018-12-13 2021-02-09 한국에너지기술연구원 Electrode-current collector assembly and redox flow battery including the same
CN115332556A (en) * 2022-10-18 2022-11-11 潍柴巴拉德氢能科技有限公司 End plate assembly preparation method, end plate assembly and fuel cell stack

Similar Documents

Publication Publication Date Title
JP2000200619A (en) Redox battery
EP0790658B1 (en) Redox flow cell battery with vanadium electrolyte and a polysulfone-based semipermeable membrane
AU713708B2 (en) A redox flow type battery
US20110274988A1 (en) Batteries, fuel cells, and other electrochemical devices
US3573105A (en) Rechargeable non-aqueous alkalimetal-halogen electrochemical cells
CN101383403A (en) Compound ion exchange film and preparation thereof
JP3959749B2 (en) Metal hydride secondary battery with solid polymer electrolyte
KR20180100457A (en) Flow battery with hydrated ion-exchange membrane having maximum water domain cluster sizes
WO2021126073A1 (en) Membrane electrolysis cell and method of use
KR100263992B1 (en) Method of membrane and electrode assembly for proton exchange membrane fuel cell
CN110380073A (en) A kind of fuel battery metal pole plate and forming method
CN104332641A (en) Preparation method of composite bipolar plate
CN115000438A (en) Electrode frame and bipolar plate integrated structure applied to flow battery and electric pile
KR101586455B1 (en) Electrode current collector for redox flow battery, preparation method for the same, and redox flow battery
Lin et al. Research Progress of Zinc Bromine Flow Battery.
CN212907981U (en) Monomer electricity core, battery module and electric motor car
CN210576229U (en) Flow battery stack and heat insulation plate thereof
JP2017134938A (en) Redox secondary battery system
KR101871484B1 (en) Negative current collector for redox flow battery, and making method thereof
KR101796305B1 (en) Method for preparation of electrode current collector for redox flow battery
JPS63221562A (en) Redox-flow fuel cell
CN114520345B (en) Integrated electrode frame with bipolar plate and preparation and application thereof
US3565692A (en) Rechargeable non-aqueous alkali metal-halogen electrochemical cells
CN112838238B (en) Flow battery stack and heat insulation plate thereof
CN220400848U (en) Current stabilizing structure for battery and cylindrical sodium ion battery