JP2000199852A - Off-axis catoptric system - Google Patents
Off-axis catoptric systemInfo
- Publication number
- JP2000199852A JP2000199852A JP11001412A JP141299A JP2000199852A JP 2000199852 A JP2000199852 A JP 2000199852A JP 11001412 A JP11001412 A JP 11001412A JP 141299 A JP141299 A JP 141299A JP 2000199852 A JP2000199852 A JP 2000199852A
- Authority
- JP
- Japan
- Prior art keywords
- axis
- plane
- optical system
- mirror
- concave mirror
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70233—Optical aspects of catoptric systems, i.e. comprising only reflective elements, e.g. extreme ultraviolet [EUV] projection systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/02—Catoptric systems, e.g. image erecting and reversing system
- G02B17/06—Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
- G02B17/0626—Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using three curved mirrors
- G02B17/0636—Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using three curved mirrors off-axis or unobscured systems in which all of the mirrors share a common axis of rotational symmetry
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/02—Catoptric systems, e.g. image erecting and reversing system
- G02B17/06—Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
- G02B17/0647—Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using more than three curved mirrors
- G02B17/0657—Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using more than three curved mirrors off-axis or unobscured systems in which all of the mirrors share a common axis of rotational symmetry
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、遠方に位置する物
体の像を形成する反射光学系に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflection optical system for forming an image of a distant object.
【0002】[0002]
【従来の技術】口径が大きく、且つ、広フィールドでブ
ロードな波長域をカバーした光学系として3枚構成の反
射型アナスチグマート望遠鏡が知られている。例えば、
米国特許第4240707号には、凹凸凹の3枚の反射
鏡からなる反射光学系が開示されている。2. Description of the Related Art A three-reflection anastigmat telescope is known as an optical system having a large aperture, covering a wide field and a broad wavelength range. For example,
U.S. Pat. No. 4,240,707 discloses a reflecting optical system including three reflecting mirrors having concave and convex portions.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上述の
従来の軸外し反射光学系は、口径が大きく、広い画角に
渡って結像性能が良好であるが、一般に光学系のサイズ
が大きくなるという問題がある。例えば、人工衛星等の
プラットホームから地球上を観測するような場合、衛星
に占める観測機器の重量やサイズに制約があり、従来の
軸外し3枚反射光学系を用いることは必ずしも好ましく
ない。上記従来技術の反射光学系では、その全長がおよ
そ焦点距離の1.1倍程度と大きく、さらに軸外しで利
用した中心遮蔽のない系であるため、径方向のサイズも
大きいという問題がある。However, the above-mentioned conventional off-axis reflecting optical system has a large aperture and good image forming performance over a wide angle of view, but generally the size of the optical system becomes large. There's a problem. For example, when observing the earth from a platform such as an artificial satellite, the weight and size of the observation equipment occupied by the satellite are limited, and it is not always preferable to use a conventional off-axis three-reflection optical system. In the above-mentioned prior art reflecting optical system, the overall length is as large as about 1.1 times the focal length, and furthermore, since it is a system without off-center shielding used off-axis, there is a problem that the size in the radial direction is large.
【0004】そこで、本発明では、全長が短く径方向の
サイズの小さいコンパクトな光学系でありながら、極め
て良好な像を形成することができる軸外し反射光学系を
提供することを目的とする。Accordingly, an object of the present invention is to provide an off-axis reflecting optical system capable of forming an extremely excellent image while being a compact optical system having a short overall length and a small size in a radial direction.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
に、請求項1の発明にかかる反射光学系は、遠方物体の
像を光軸外の位置に形成する軸外し反射光学系であっ
て、光の入射側から順に、正パワーの第1凹面鏡と、負
パワーの凸面鏡と、正パワーの第2凹面鏡とを有し、前
記第1凹面鏡と前記凸面鏡とは実質的にアフォーカル光
学系を構成しており、前記凸面鏡と前記第2凹面鏡との
間の光路中には絞りが配置され、前記第1凹面鏡、前記
凸面鏡及び前記第2凹面鏡の反射面形状を非球面とした
ものである。In order to achieve the above object, a reflection optical system according to the present invention is an off-axis reflection optical system for forming an image of a distant object at a position off the optical axis. A first concave mirror having a positive power, a convex mirror having a negative power, and a second concave mirror having a positive power, wherein the first concave mirror and the convex mirror substantially form an afocal optical system. The diaphragm is arranged in an optical path between the convex mirror and the second concave mirror, and the first concave mirror, the convex mirror, and the second concave mirror have an aspherical reflecting surface.
【0006】また、請求項2の発明にかかる軸外し反射
光学系では、請求項1の反射光学系の構成を前提とし
て、前記絞りは前記光軸に対して偏心した位置に配置さ
れる。また、請求項3の発明にかかる軸外し反射光学系
では、請求項1の反射光学系の構成を基本とし、前記絞
りの位置に平面反射鏡が配置されるものである。また、
請求項4の発明にかかる軸外し反射光学系では、請求項
1〜3の反射光学系の構成を基本とし、以下の条件を満
足するものである。In the off-axis reflecting optical system according to the second aspect of the present invention, the stop is disposed at a position decentered with respect to the optical axis, based on the configuration of the reflecting optical system of the first aspect. An off-axis reflecting optical system according to a third aspect of the present invention is based on the configuration of the reflecting optical system of the first aspect, wherein a plane reflecting mirror is disposed at the position of the stop. Also,
The off-axis reflecting optical system according to the fourth aspect of the present invention satisfies the following conditions based on the configuration of the reflecting optical system according to the first to third aspects.
【0007】φ>φ1/(1+M) 但し φ :全系のパワー φ1:前記第1凹面鏡のパワー M :前記アフォーカル光学系の角倍率 である。Φ> φ1 / (1 + M) where φ: power of the entire system φ1: power of the first concave mirror M: angular magnification of the afocal optical system.
【0008】さて、上述の目的を達成するために、請求
項5の発明にかかる反射光学系は、遠方物体の像を光軸
外の位置に形成する軸外し反射光学系であって、光の入
射側から順に、正パワーの第1凹面鏡と、負パワーの凸
面鏡と、正パワーの第2凹面鏡とを有し、前記第1凹面
鏡と前記凸面鏡とは実質的にアフォーカル光学系を構成
しており、前記凸面鏡上であって前記光軸に対して偏心
した位置には絞りが配置され、前記第1凹面鏡、前記凸
面鏡及び前記第2凹面鏡の反射面形状を非球面としたも
のである。In order to achieve the above object, a reflecting optical system according to the present invention is an off-axis reflecting optical system for forming an image of a distant object at a position off the optical axis. In order from the incident side, it has a first concave mirror having a positive power, a convex mirror having a negative power, and a second concave mirror having a positive power. The first concave mirror and the convex mirror substantially constitute an afocal optical system. A stop is disposed on the convex mirror at a position eccentric with respect to the optical axis, and the first concave mirror, the convex mirror, and the second concave mirror have an aspherical reflecting surface shape.
【0009】[0009]
【発明の実施の形態】上述の如き、請求項1の発明にか
かる軸外し反射光学系においては、正パワーの第1凹面
鏡と負パワーの凸面鏡により実質的にアフォーカル系を
構成し、かつ凸面鏡と第2凹面鏡との間に絞りを配置す
るようにしているため、従来の三枚構成の反射光学系よ
りも格段に小型化を図ることが可能である。さらに各反
射鏡を非球面とすることにより、ペッツバール和を除く
他の収差に関して良好に補正し、優れた結像性能を達成
することができる。As described above, in the off-axis reflecting optical system according to the first aspect of the present invention, the first concave mirror having a positive power and the convex mirror having a negative power substantially constitute an afocal system, and the convex mirror is formed. Since the stop is arranged between the second concave mirror and the second concave mirror, it is possible to achieve a much smaller size than the conventional three-piece reflecting optical system. Further, by making each reflecting mirror aspherical, it is possible to satisfactorily correct aberrations other than the Petzval sum and achieve excellent imaging performance.
【0010】この構成において、上記絞りは、軸外し反
射光学系の光軸に対して偏心した位置に配置することが
好ましい。この構成により、結像性能のさらなる向上を
図ることが可能となる。また、請求項1の発明において
絞りの位置に平面反射面を配置すれば、この平面反射面
により光路を折り返して光学系全体のコンパクト化を図
ることができる。In this configuration, it is preferable that the stop be disposed at a position decentered with respect to the optical axis of the off-axis reflecting optical system. With this configuration, it is possible to further improve the imaging performance. Further, in the first aspect of the present invention, if a plane reflecting surface is disposed at the position of the stop, the optical path can be folded back by the plane reflecting surface, and the entire optical system can be made compact.
【0011】また、上記構成の何れかにおいて、軸外し
反射光学系は、 φ>φ1/(1+M) を満足することが好ましい。但し φ :全系のパワー φ1:前記第1凹面鏡のパワー M :前記アフォーカル光学系の角倍率 である。In any one of the above-mentioned structures, the off-axis reflecting optical system preferably satisfies φ> φ1 / (1 + M). Where φ: power of the entire system φ1: power of the first concave mirror M: angular magnification of the afocal optical system
【0012】本発明において、第1凹面鏡、凸面鏡、第
2凹面鏡のパワーをそれぞれφ1、φ2、φ3とし、全
系のパワーをφ、第1凹面鏡及び凸面鏡により構成され
るアフォーカル系の各倍率をMとするとき、 (a) M =−φ2/φ1 (b) φ3= Mφ が成立する。ここで、 (c) φ3>(φ1・φ2)/(φ1+φ2) の関係が成立するとき、小さなペッツバール和を達成す
るとともに、全系の小型化を達成することが可能とな
る。In the present invention, the powers of the first concave mirror, the convex mirror, and the second concave mirror are φ1, φ2, and φ3, respectively, the power of the entire system is φ, and each magnification of the afocal system constituted by the first concave mirror and the convex mirror is When M is set, (a) M = −φ2 / φ1 (b) φ3 = Mφ is satisfied. Here, (c) When the relationship of φ3> (φ1φ2) / (φ1 + φ2) is satisfied, it is possible to achieve a small Petzval sum and to achieve a reduction in the size of the entire system.
【0013】以上の(a)〜(c)式をまとめると、 φ >φ1/(1+M) が得られる。従って、上記条件式の範囲外となる場合に
は、全系の小型化を図る際に不利になるのみならず、ペ
ッツバール和を小さくすることが困難になるので広角化
を図る際に不利になる。When the above equations (a) to (c) are put together, φ> φ1 / (1 + M) is obtained. Therefore, when the value is out of the range of the conditional expression, it is disadvantageous not only in reducing the size of the entire system, but also in increasing the angle of view because it becomes difficult to reduce the Petzval sum. .
【0014】さて、請求項5の発明にかかる軸外し反射
光学系においては、凸面鏡上に光軸に対して偏心した絞
りを配置する構成としているため、凸面鏡と第2凹面鏡
との距離を短くして小型化を図ることができる。In the off-axis reflecting optical system according to the fifth aspect of the present invention, since a stop eccentric to the optical axis is arranged on the convex mirror, the distance between the convex mirror and the second concave mirror is reduced. Thus, downsizing can be achieved.
【0015】[0015]
【実施例】以下、本発明にかかる数値実施例を図面を参
照して説明する。以下の数値実施例の軸外し反射光学系
は、プッシュブルーム方式による走査(円環状フィール
ド内に配置されている1次元センサに対し、それに直交
する方向への走査)により2次元画像を形成する際に好
適な反射光学系であり、そのFナンバーが4〜6、その
画角が5°以上となるものである。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, numerical embodiments according to the present invention will be described with reference to the drawings. The off-axis reflecting optical system of the following numerical examples is used for forming a two-dimensional image by scanning by a push bloom method (scanning a one-dimensional sensor arranged in an annular field in a direction perpendicular to the one-dimensional sensor). The F-number is 4 to 6, and the angle of view is 5 ° or more.
【0016】[第1実施例]図1は、第1実施例の軸外
し反射光学系の光路図である。図1において、軸外し反
射光学系は、第1凹面鏡M1、凸面鏡M2及び第2凹面
鏡M3を有する。ここで各反射鏡M1〜M3の曲率中心
は、軸外し反射光学系の光軸上に配置されており、共軸
系をなしている。また、第1凹面鏡M1及び凸面鏡M2
の曲率中心位置は実質的に一致しており、これら第1凹
面鏡M1及び凸面鏡M2は実質的にアフォーカル系をな
している。FIG. 1 is an optical path diagram of an off-axis reflecting optical system according to a first embodiment. In FIG. 1, the off-axis reflecting optical system has a first concave mirror M1, a convex mirror M2, and a second concave mirror M3. Here, the centers of curvature of the respective reflecting mirrors M1 to M3 are arranged on the optical axis of the off-axis reflecting optical system, forming a coaxial system. Further, the first concave mirror M1 and the convex mirror M2
Are substantially coincident with each other, and the first concave mirror M1 and the convex mirror M2 substantially form an afocal system.
【0017】さて、図1において、遠方物体からの光束
は、光軸に対して所定の角度をなして第1反射鏡M1の
後方に存在する入射瞳へ向けて進行し、この第1反射鏡
M1にて反射された後に、凸面鏡M2で反射され、絞り
Sを介し、第2反射鏡M2にて反射される。第2反射鏡
からの光束は、光軸外の所定の位置に集光され物体像を
形成する。ここで、像面内における良像範囲(像面内で
良好な像を形成する範囲)は、光軸からはなれた位置に
ある円環状のフィールド内であり、ここにCCD等の光
電センサや写真フィルム等を配置すれば、物体像を得る
ことができる。In FIG. 1, a light beam from a distant object travels at a predetermined angle with respect to the optical axis toward an entrance pupil located behind the first reflecting mirror M1. After being reflected by M1, the light is reflected by the convex mirror M2, and is reflected by the second reflecting mirror M2 via the stop S. The light beam from the second reflecting mirror is condensed at a predetermined position outside the optical axis to form an object image. Here, the good image range in the image plane (the range in which a good image is formed in the image plane) is an annular field located at a position deviated from the optical axis. If a film or the like is arranged, an object image can be obtained.
【0018】各反射鏡M1〜M3の反射面の大きさ及び
形状は、像面上の良像範囲に到達する光束が各反射鏡に
より遮蔽されることがないように決定される。絞りSは
実質的に第2凹面鏡の前側焦点面に配置されており、第
1実施例の軸外し反射光学系は像側テレセントリックな
光学系となる。以下の表1〜表3に第1実施例の軸外し
反射光学系の光学データを掲げる。表1において、Fは
Fナンバ、fは全系の焦点距離を示し、曲率半径及び面
間隔の単位は一例としてmmが採用され、面間隔の符号
は反射面を経る毎に正負が逆転するものとする。また、
非球面となっている光学面には面番号の個所に*を付
し、この非球面データを表2に示してある。なお、各表
において「En」は10のn乗を表す。本実施例では、
非球面頂点での接平面を考え、光軸から接平面上に測っ
た距離をy、この接平面からの光軸に沿った方向での変
位(サグ量)をZとするとき、非球面形状式は以下の
(d)式で与えられる。The size and shape of the reflecting surface of each of the reflecting mirrors M1 to M3 are determined so that the light flux reaching the good image area on the image plane is not blocked by each of the reflecting mirrors. The stop S is disposed substantially at the front focal plane of the second concave mirror, and the off-axis reflecting optical system of the first embodiment is an image-side telecentric optical system. Tables 1 to 3 below show optical data of the off-axis reflecting optical system of the first embodiment. In Table 1, F represents the F number, f represents the focal length of the entire system, and the unit of the radius of curvature and the surface spacing is mm as an example, and the sign of the surface spacing is reversed in sign every time the light passes through the reflecting surface. And Also,
The aspherical optical surfaces are marked with * at the surface number, and the aspherical data is shown in Table 2. In each table, "En" represents 10 to the nth power. In this embodiment,
Considering the tangent plane at the vertex of the aspheric surface, when the distance measured from the optical axis on the tangent plane is y, and the displacement (sag amount) from the tangent plane in the direction along the optical axis is Z, the aspherical shape The equation is given by the following equation (d).
【0019】[0019]
【数1】 (Equation 1)
【0020】但し r:頂点曲率半径、 κ:円錐係数、 A:4次の非球面係数、 B:6次の非球面係数、 C:8次の非球面係数、 D:10次の非球面係数、 である。Where r: radius of curvature of the vertex, κ: cone coefficient, A: fourth-order aspherical coefficient, B: sixth-order aspherical coefficient, C: eighth-order aspherical coefficient, D: tenth-order aspherical coefficient ,.
【0021】また、表3には第1実施例の条件対応数値
を示す。表3において、φ(=1/f)は全系のパワ
ー、φ1は第1凹面鏡M1のパワー、φ2は凸面鏡のパ
ワー、φ3は第2凹面鏡のパワー、Mは第1凹面鏡M1
及び凸面鏡M2により構成されるアフォーカル系の角倍
率を示す。Table 3 shows numerical values corresponding to the conditions of the first embodiment. In Table 3, φ (= 1 / f) is the power of the whole system, φ1 is the power of the first concave mirror M1, φ2 is the power of the convex mirror, φ3 is the power of the second concave mirror, and M is the first concave mirror M1.
And the angular magnification of the afocal system constituted by the convex mirror M2.
【0022】[0022]
【表1】 [Table 1]
【0023】[0023]
【表2】[第1面(第1凹面鏡M1)] κ : 0.465694 A : 0.140575E-09 B : 0.663412E-16 C : 0.529192E-22 D : 0.727873E-28 [第2面(凸面鏡M2)] κ :-0.284650 A : 0.812558E-09 B : 0.000000E+00 C : 0.000000E+00 D : 0.000000E+00 [第4面(第2凹面鏡M3)] κ : 0.040075 A :0.000000E+00 B :0.255857E-15 C :0.000000E+00 D :0.000000E+00[Table 2] [First surface (first concave mirror M1)] κ: 0.465694 A: 0.140575E-09 B: 0.663412E-16 C: 0.529192E-22 D: 0.727873E-28 [Second surface (convex mirror M2)] ] Κ: -0.284650 A: 0.812558E-09 B: 0.000000E + 00 C: 0.000000E + 00 D: 0.000000E + 00 [Fourth surface (second concave mirror M3)] κ: 0.040075 A: 0.000000E + 00 B : 0.255857E-15 C: 0.000000E + 00 D: 0.000000E + 00
【0024】[0024]
【表3】φ1= 1.768E-3 φ2=-3.258E-3 φ3= 2.188E-3 M= 1.842 φ1/(1+M)= 6.22E-4 φ= 0.001 上記第1実施例の軸外し反射光学系の横収差図を図2
に、スポットダイアグラムを図3に示す。[Table 3] φ1 = 1.768E-3 φ2 = -3.258E-3 φ3 = 2.188E-3 M = 1.842 φ1 / (1 + M) = 6.22E-4 φ = 0.001 Off-axis reflecting optical system of the first embodiment. Fig. 2 shows the lateral aberration diagram of
FIG. 3 shows a spot diagram.
【0025】図2の横収差図において、軸外し反射光学
系の光軸をZ軸とし、このZ軸に垂直でかつ図1の紙面
内方向の軸をY軸、YZ平面に垂直な軸をZ軸とすると
き、図2(A)はYZ平面における入射角が−7.10
°でXZ平面における入射角が2.50°の場合に入射
瞳面における光束中のYZ断面の光線の横収差を示し、
図2(B)はYZ平面における入射角が−7.10°で
XZ平面における入射角が1.75°の場合に入射瞳面
における光束中のYZ断面の光線の横収差を示し、図2
(C)はYZ平面における入射角が−7.10°でXZ
平面における入射角が0.00°の場合に入射瞳面にお
ける光束中のYZ断面の光線の横収差を示す。図2
(D)はYZ平面における入射角が−7.10°でXZ
平面における入射角が2.50°の場合に入射瞳面にお
ける光束中のXZ断面の光線の横収差を示し、図2
(E)はYZ平面における入射角が−7.10°でXZ
平面における入射角が1.75°の場合に入射瞳面にお
ける光束中のXZ断面の光線の横収差を示し、図2
(F)はYZ平面における入射角が−7.10°でXZ
平面における入射角が0.00°の場合に入射瞳面にお
ける光束中のXZ断面の光線の横収差を示す。そして、
図3(A)はYZ平面における入射角が−7.10°で
XZ平面における入射角が2.50°の場合の像面での
スポットダイアグラム、図3(B)はYZ平面における
入射角が−7.10°でXZ平面における入射角が1.
75°の場合の像面でのスポットダイアグラム、図3
(C)はYZ平面における入射角が−7.10°でXZ
平面における入射角が0.00°の場合の像面でのスポ
ットダイアグラムである。In the transverse aberration diagram of FIG. 2, the optical axis of the off-axis reflecting optical system is the Z axis, the axis perpendicular to the Z axis, the axis in the plane of FIG. 1 is the Y axis, and the axis perpendicular to the YZ plane is the axis. Assuming the Z axis, FIG. 2A shows that the incident angle on the YZ plane is −7.10.
When the incident angle in the XZ plane is 2.50 °, the lateral aberration of the light beam in the YZ section in the light flux on the entrance pupil plane is shown,
FIG. 2B shows the lateral aberration of the light beam in the YZ section in the light beam on the entrance pupil plane when the incident angle on the YZ plane is −7.10 ° and the incident angle on the XZ plane is 1.75 °.
(C) shows that the incident angle on the YZ plane is −7.10 ° and the XZ
The horizontal aberration of the light beam in the YZ section in the light beam on the entrance pupil plane when the incident angle on the plane is 0.00 ° is shown. FIG.
(D) shows the case where the incident angle on the YZ plane is -7.10 [deg.] And XZ
FIG. 2 shows the lateral aberration of the light beam in the XZ section in the light beam on the entrance pupil plane when the incident angle on the plane is 2.50 °.
(E) shows that the incident angle on the YZ plane is −7.10 ° and the XZ
FIG. 2 shows the lateral aberration of the light beam on the XZ section in the light beam on the entrance pupil plane when the incident angle on the plane is 1.75 °.
(F) shows that the incident angle on the YZ plane is -7.10 ° and the XZ
The horizontal aberration of the light beam in the XZ section in the light beam on the entrance pupil plane when the incident angle on the plane is 0.00 ° is shown. And
FIG. 3A is a spot diagram on the image plane when the incident angle on the YZ plane is −7.10 ° and the incident angle on the XZ plane is 2.50 °, and FIG. At -7.10 °, the incident angle on the XZ plane is 1.
Spot diagram at the image plane at 75 °, FIG.
(C) shows that the incident angle on the YZ plane is −7.10 ° and the XZ
4 is a spot diagram on an image plane when an incident angle on a plane is 0.00 °.
【0026】以上の通り、第1実施例にかかる軸外し反
射光学系は、コンパクト化が図られているにもかかわら
ず、優れた結像性能を達成していることが分かる。図4
は、上記第1実施例の変形例を示す光路図であって、第
1実施例の軸外し反射光学系における絞りSの位置に平
面反射面M4を設けたものである。この図4からも明ら
かな通り、上記第1実施例の光学系よりもさらなるコン
パクト化が達成されている。なお、この変形例におい
て、光学データは上記表1〜表3の光学データと実質的
に同一(表1の第3面以降の面間隔の符号が逆転するだ
け)であるため、ここでは変形例の結像性能の説明を省
略する。As described above, it can be seen that the off-axis reflecting optical system according to the first embodiment achieves excellent imaging performance despite its compactness. FIG.
9 is an optical path diagram showing a modification of the first embodiment, in which a plane reflecting surface M4 is provided at the position of the stop S in the off-axis reflecting optical system of the first embodiment. As is clear from FIG. 4, the optical system according to the first embodiment is more compact. In this modification, the optical data is substantially the same as the optical data in Tables 1 to 3 described above (only the signs of the surface intervals after the third surface in Table 1 are reversed). The description of the imaging performance is omitted.
【0027】[第2実施例]図5は、第2実施例の軸外
し反射光学系の光路図である。図5において、軸外し反
射光学系は、第1凹面鏡M1、凸面鏡M2及び第2凹面
鏡M3を有する。ここで各反射鏡M1〜M3の曲率中心
は、軸外し反射光学系の光軸上に配置されており、共軸
系をなしている。また、第1凹面鏡M1及び凸面鏡M2
の曲率中心位置は実質的に一致しており、これら第1凹
面鏡M1及び凸面鏡M2は実質的にアフォーカル系をな
している。[Second Embodiment] FIG. 5 is an optical path diagram of an off-axis reflecting optical system of a second embodiment. In FIG. 5, the off-axis reflecting optical system has a first concave mirror M1, a convex mirror M2, and a second concave mirror M3. Here, the centers of curvature of the respective reflecting mirrors M1 to M3 are arranged on the optical axis of the off-axis reflecting optical system, forming a coaxial system. Further, the first concave mirror M1 and the convex mirror M2
Are substantially coincident with each other, and the first concave mirror M1 and the convex mirror M2 substantially form an afocal system.
【0028】さて、図5において、遠方物体からの光束
は、光軸に対して所定の角度をなして第1反射鏡M1の
後方に存在する入射瞳へ向けて進行し、この第1反射鏡
M1にて反射された後に、凸面鏡M2で反射され、絞り
Sを介し、第2反射鏡M2にて反射される。第2反射鏡
からの光束は、光軸外の所定の位置に集光され物体像を
形成する。ここで、像面内における良像範囲は、光軸か
らはなれた位置にある円環状のフィールド内である。各
反射鏡M1〜M3の反射面の大きさ及び形状は、像面上
の良像範囲に到達する光束が各反射鏡により遮蔽される
ことがないように決定される。In FIG. 5, a light beam from a distant object travels at a predetermined angle with respect to the optical axis toward an entrance pupil located behind the first reflecting mirror M1, and this first reflecting mirror After being reflected by M1, the light is reflected by the convex mirror M2, and is reflected by the second reflecting mirror M2 via the stop S. The light beam from the second reflecting mirror is condensed at a predetermined position outside the optical axis to form an object image. Here, the good image range in the image plane is within an annular field located at a position separated from the optical axis. The size and shape of the reflecting surface of each of the reflecting mirrors M1 to M3 is determined so that the light flux reaching the good image area on the image plane is not blocked by each of the reflecting mirrors.
【0029】第2実施例において、絞りSは実質的に第
2凹面鏡の前側焦点面上であって、光軸から偏心し且つ
光軸に対して傾けて配置されており、第2実施例の軸外
し反射光学系は像側テレセントリックな光学系となる。
以下の表4〜表6に第2実施例の軸外し反射光学系の光
学データを掲げる。表4において、FはFナンバ、fは
全系の焦点距離を示し、曲率半径及び面間隔の単位は一
例としてmmが採用され、面間隔の符号は反射面を経る
毎に正負が逆転するものとする。また、非球面となって
いる光学面には面番号の個所に*を付し、この非球面デ
ータを表5に示してある。また、絞りSの位置も表5に
示し、表5において、αは図5の紙面内での反時計回り
を正とする回転方向、Yは図5紙面内における上方を正
とするY軸方向である。また、非球面形状は上記(d)
式で与えられる。なお、各表において「En」は10の
n乗を表す。In the second embodiment, the stop S is substantially on the front focal plane of the second concave mirror, is eccentric from the optical axis, and is inclined with respect to the optical axis. The off-axis reflecting optical system is an image-side telecentric optical system.
Tables 4 to 6 below show optical data of the off-axis reflecting optical system of the second embodiment. In Table 4, F represents the F number, f represents the focal length of the entire system, the unit of the radius of curvature and the surface interval is mm as an example, and the sign of the surface interval reverses the sign every time the light passes through the reflecting surface. And In addition, an aspherical optical surface is marked with * at the surface number, and the aspherical data is shown in Table 5. The position of the stop S is also shown in Table 5. In Table 5, α is a rotation direction having a positive counterclockwise direction in the plane of FIG. 5, and Y is a Y-axis direction having a positive upper part in the plane of FIG. It is. In addition, the aspherical shape is the above (d)
Given by the formula. In each table, "En" represents 10 to the nth power.
【0030】表6に第2実施例の条件対応数値を示す。
表6において、φ(=1/f)は全系のパワー、φ1は
第1凹面鏡M1のパワー、φ2は凸面鏡のパワー、φ3
は第2凹面鏡のパワー、Mは第1凹面鏡M1及び凸面鏡
M2により構成されるアフォーカル系の角倍率を示す。Table 6 shows numerical values corresponding to the conditions in the second embodiment.
In Table 6, φ (= 1 / f) is the power of the entire system, φ1 is the power of the first concave mirror M1, φ2 is the power of the convex mirror, and φ3
Represents the power of the second concave mirror, and M represents the angular magnification of the afocal system constituted by the first concave mirror M1 and the convex mirror M2.
【0031】[0031]
【表4】 [Table 4]
【0032】[0032]
【表5】[第1面(第1凹面鏡M1)] κ : 0.490509 A : 0.140320E-09 B : 0.734189E-16 C : 0.419062E-22 D : 0.104637E-27 [第2面(凸面鏡M2)] κ :-0.529962 A :0.534990E-09 B :0.000000E+00 C :0.000000E+00 D :0.000000E+00 [第3面(絞りS)] α:-16.000000° Y: -8.178857 [第4面(第2凹面鏡M2)] κ : 0.074597 A : 0.000000E+00 B : 0.268568E-15 C : 0.000000E+00 D : 0.000000E+00[Table 5] [First surface (first concave mirror M1)] κ: 0.490509 A: 0.140320E-09 B: 0.734189E-16 C: 0.419062E-22 D: 0.104637E-27 [Second surface (convex mirror M2)] Κ: -0.529962 A: 0.534990E-09 B: 0.000000E + 00 C: 0.000000E + 00 D: 0.000000E + 00 [3rd surface (aperture S)] α: -16.000000 ° Y: -8.178857 [4th Surface (second concave mirror M2)] κ: 0.074597 A: 0.000000E + 00 B: 0.268568E-15 C: 0.000000E + 00 D: 0.000000E + 00
【0033】[0033]
【表6】φ1= 1.770E-3 φ2=-3.871E-3 φ3= 2.188E-3 M= 2.188 φ1/(1+M)= 5.55E-4 φ= 0.001 上記第2実施例の軸外し反射光学系の横収差図を図6
に、スポットダイアグラムを図7に示す。[Table 6] φ1 = 1.770E-3 φ2 = -3.871E-3 φ3 = 2.188E-3 M = 2.188 φ1 / (1 + M) = 5.55E-4 φ = 0.001 Off-axis reflecting optical system of the second embodiment. Fig. 6 shows the lateral aberration of
FIG. 7 shows a spot diagram.
【0034】図6の横収差図において、軸外し反射光学
系の光軸をZ軸とし、このZ軸に垂直でかつ図5の紙面
内方向の軸をY軸、YZ平面に垂直な軸をZ軸とすると
き、図6(A)はYZ平面における入射角が−7.10
°でXZ平面における入射角が2.50°の場合に入射
瞳面における光束中のYZ断面の光線の横収差を示し、
図6(B)はYZ平面における入射角が−7.10°で
XZ平面における入射角が1.75°の場合に入射瞳面
における光束中のYZ断面の光線の横収差を示し、図6
(C)はYZ平面における入射角が−7.10°でXZ
平面における入射角が0.00°の場合に入射瞳面にお
ける光束中のYZ断面の光線の横収差を示す。図6
(D)はYZ平面における入射角が−7.10°でXZ
平面における入射角が2.50°の場合に入射瞳面にお
ける光束中のXZ断面の光線の横収差を示し、図6
(E)はYZ平面における入射角が−7.10°でXZ
平面における入射角が1.75°の場合に入射瞳面にお
ける光束中のXZ断面の光線の横収差を示し、図6
(F)はYZ平面における入射角が−7.10°でXZ
平面における入射角が0.00°の場合に入射瞳面にお
ける光束中のXZ断面の光線の横収差を示す。そして、
図7(A)はYZ平面における入射角が−7.10°で
XZ平面における入射角が2.50°の場合の像面での
スポットダイアグラム、図7(B)はYZ平面における
入射角が−7.10°でXZ平面における入射角が1.
75°の場合の像面でのスポットダイアグラム、図7
(C)はYZ平面における入射角が−7.10°でXZ
平面における入射角が0.00°の場合の像面でのスポ
ットダイアグラムである。In the transverse aberration diagram of FIG. 6, the optical axis of the off-axis reflecting optical system is the Z axis, the axis perpendicular to the Z axis, the axis in the plane of FIG. 5 is the Y axis, and the axis perpendicular to the YZ plane is the axis. Assuming the Z axis, FIG. 6A shows that the incident angle on the YZ plane is −7.10.
When the incident angle in the XZ plane is 2.50 °, the lateral aberration of the light beam in the YZ section in the light flux on the entrance pupil plane is shown,
FIG. 6B shows the lateral aberration of the light beam of the YZ section in the light beam on the entrance pupil plane when the incident angle on the YZ plane is −7.10 ° and the incident angle on the XZ plane is 1.75 °.
(C) shows that the incident angle on the YZ plane is −7.10 ° and the XZ
The horizontal aberration of the light beam in the YZ section in the light beam on the entrance pupil plane when the incident angle on the plane is 0.00 ° is shown. FIG.
(D) shows the case where the incident angle on the YZ plane is -7.10 [deg.] And XZ
FIG. 6 shows the lateral aberration of the light beam in the XZ section in the light beam on the entrance pupil plane when the incident angle on the plane is 2.50 °.
(E) shows that the incident angle on the YZ plane is −7.10 ° and the XZ
FIG. 6 shows the lateral aberration of the light beam on the XZ section in the light beam on the entrance pupil plane when the incident angle on the plane is 1.75 °.
(F) shows that the incident angle on the YZ plane is -7.10 ° and the XZ
The horizontal aberration of the light beam in the XZ section in the light beam on the entrance pupil plane when the incident angle on the plane is 0.00 ° is shown. And
FIG. 7A is a spot diagram on the image plane when the incident angle on the YZ plane is −7.10 ° and the incident angle on the XZ plane is 2.50 °, and FIG. At -7.10 °, the incident angle on the XZ plane is 1.
Spot diagram at the image plane at 75 °, FIG.
(C) shows that the incident angle on the YZ plane is −7.10 ° and the XZ
4 is a spot diagram on an image plane when an incident angle on a plane is 0.00 °.
【0035】以上の通り、第2実施例にかかる軸外し反
射光学系は、コンパクト化が図られているにもかかわら
ず、優れた結像性能を達成していることが分かる。な
お、第2実施例の軸外し反射光学系において、第1実施
例の変形例と同様に絞りSの位置に平面反射面を配置す
ることも可能である。 [第3実施例]図8は、第3実施例の軸外し反射光学系
の光路図である。図8において、軸外し反射光学系は、
第1凹面鏡M1、凸面鏡M2及び第2凹面鏡M3を有す
る。ここで各反射鏡M1〜M3の曲率中心は、軸外し反
射光学系の光軸上に配置されており、共軸系をなしてい
る。また、第1凹面鏡M1及び凸面鏡M2の曲率中心位
置は実質的に一致しており、これら第1凹面鏡M1及び
凸面鏡M2は実質的にアフォーカル系をなしている。As described above, it can be seen that the off-axis reflecting optical system according to the second embodiment achieves excellent imaging performance despite its compactness. In the off-axis reflecting optical system of the second embodiment, it is also possible to dispose a flat reflecting surface at the position of the stop S as in the modification of the first embodiment. Third Embodiment FIG. 8 is an optical path diagram of an off-axis reflecting optical system according to a third embodiment. In FIG. 8, the off-axis reflecting optical system includes:
It has a first concave mirror M1, a convex mirror M2, and a second concave mirror M3. Here, the centers of curvature of the respective reflecting mirrors M1 to M3 are arranged on the optical axis of the off-axis reflecting optical system, forming a coaxial system. Further, the centers of curvature of the first concave mirror M1 and the convex mirror M2 substantially coincide with each other, and the first concave mirror M1 and the convex mirror M2 substantially form an afocal system.
【0036】さて、図8において、遠方物体からの光束
は、光軸に対して所定の角度をなして第1反射鏡M1の
後方に存在する入射瞳へ向けて進行し、この第1反射鏡
M1にて反射された後に、凸面鏡M2で反射されて、第
2反射鏡M2にて反射される。第2反射鏡からの光束
は、光軸外の所定の位置に集光され物体像を形成する。
ここで、像面内における良像範囲は、光軸からはなれた
位置にある円環状のフィールド内である。なお、各反射
鏡M1〜M3の反射面の大きさ及び形状は、像面上の良
像範囲に到達する光束が各反射鏡により遮蔽されること
がないように決定される。In FIG. 8, a light beam from a distant object travels at a predetermined angle with respect to the optical axis toward an entrance pupil located behind the first reflecting mirror M1. After being reflected by M1, the light is reflected by the convex mirror M2 and then reflected by the second reflecting mirror M2. The light beam from the second reflecting mirror is condensed at a predetermined position outside the optical axis to form an object image.
Here, the good image range in the image plane is within an annular field located at a position separated from the optical axis. The size and shape of the reflecting surface of each of the reflecting mirrors M1 to M3 are determined so that the light flux reaching the good image area on the image plane is not blocked by each of the reflecting mirrors.
【0037】第3実施例において、絞りSは実質的に凸
面鏡M2上であって、光軸から偏心して配置されてい
る。この構成により、凸面鏡M2と第2凹面鏡M3との
距離の短縮化を図ることができる。本実施例の軸外し反
射光学系の全長は、第2凹面鏡M3の焦点距離程度と短
縮化されている。以下の表7〜表9に第3実施例の軸外
し反射光学系の光学データを掲げる。表7において、F
はFナンバ、fは全系の焦点距離を示し、曲率半径及び
面間隔の単位は一例としてmmが採用され、面間隔の符
号は反射面を経る毎に正負が逆転するものとする。ま
た、非球面となっている光学面には面番号の個所に*を
付し、この非球面データを表8に示してある。また、絞
りSの位置も表8に示し、表8において、Yは図8紙面
内における上方を正とするY軸方向である。また、非球
面形状は上記(d)式で与えられる。なお、各表におい
て「En」は10のn乗を表す。In the third embodiment, the stop S is substantially on the convex mirror M2 and is arranged eccentrically from the optical axis. With this configuration, the distance between the convex mirror M2 and the second concave mirror M3 can be reduced. The total length of the off-axis reflecting optical system of this embodiment is reduced to about the focal length of the second concave mirror M3. Tables 7 to 9 below show optical data of the off-axis reflecting optical system of the third example. In Table 7, F
Denotes the F number, f denotes the focal length of the entire system, and the unit of the radius of curvature and the surface spacing is mm as an example, and the sign of the surface spacing is reversed every time the light passes through the reflecting surface. In addition, an aspherical optical surface is marked with * at the surface number, and the aspherical data is shown in Table 8. Table 8 also shows the position of the stop S. In Table 8, Y is the Y-axis direction with the upper part in the plane of FIG. 8 being positive. The aspheric shape is given by the above equation (d). In each table, "En" represents 10 to the nth power.
【0038】表9に第3実施例の条件対応数値を示す。
表9において、φ(=1/f)は全系のパワー、φ1は
第1凹面鏡M1のパワー、φ2は凸面鏡のパワー、φ3
は第2凹面鏡のパワー、Mは第1凹面鏡M1及び凸面鏡
M2により構成されるアフォーカル系の角倍率を示す。Table 9 shows numerical values corresponding to the conditions of the third embodiment.
In Table 9, φ (= 1 / f) is the power of the entire system, φ1 is the power of the first concave mirror M1, φ2 is the power of the convex mirror, and φ3
Represents the power of the second concave mirror, and M represents the angular magnification of the afocal system constituted by the first concave mirror M1 and the convex mirror M2.
【0039】[0039]
【表7】 [Table 7]
【0040】[0040]
【表8】[第1面(第1凹面鏡M1)] κ : 0.305421 A : 0.166975E-09 B : 0.409171E-16 C : 0.164100E-21 D :-0.315285E-27 [第2面(絞りS)] Y: 67.142857 [第3面(凸面鏡M2)] κ : 0.658059 A : 0.252641E-08 B : 0.000000E+00 C : 0.000000E+00 D : 0.000000E+00 [第4面(第2凹面鏡M3)] κ :-0.349477 A : 0.000000E+00 B : 0.977684E-15 C : 0.000000E+00 D : 0.000000E+00[Table 8] [First surface (first concave mirror M1)] κ: 0.305421 A: 0.166975E-09 B: 0.409171E-16 C: 0.164100E-21 D: -0.315285E-27 [Second surface (Aperture S )] Y: 67.142857 [Third surface (convex mirror M2)] κ: 0.658059 A: 0.252641E-08 B: 0.000000E + 00 C: 0.000000E + 00 D: 0.000000E + 00 [Fourth surface (second concave mirror M3) )] Κ: -0.349477 A: 0.000000E + 00 B: 0.977684E-15 C: 0.000000E + 00 D: 0.000000E + 00
【0041】[0041]
【表9】φ1= 1.848E-3 φ2=-4.041E-3 φ3= 2.188E-3 M= 2.188 φ1/(1+M)= 5.80E-4 φ= 0.001 上記第3実施例の軸外し反射光学系の横収差図を図9
に、スポットダイアグラムを図10に示す。[Table 9] φ1 = 1.848E-3 φ2 = -4.041E-3 φ3 = 2.188E-3 M = 2.188 φ1 / (1 + M) = 5.80E-4 φ = 0.001 Off-axis reflecting optical system of the third embodiment. Fig. 9 shows the lateral aberration diagram of
FIG. 10 shows a spot diagram.
【0042】図9の横収差図において、軸外し反射光学
系の光軸をZ軸とし、このZ軸に垂直でかつ図8の紙面
内方向の軸をY軸、YZ平面に垂直な軸をZ軸とすると
き、図9(A)はYZ平面における入射角が−7.10
°でXZ平面における入射角が2.50°の場合に入射
瞳面における光束中のYZ断面の光線の横収差を示し、
図9(B)はYZ平面における入射角が−7.10°で
XZ平面における入射角が1.75°の場合に入射瞳面
における光束中のYZ断面の光線の横収差を示し、図9
(C)はYZ平面における入射角が−7.10°でXZ
平面における入射角が0.00°の場合に入射瞳面にお
ける光束中のYZ断面の光線の横収差を示す。図9
(D)はYZ平面における入射角が−7.10°でXZ
平面における入射角が2.50°の場合に入射瞳面にお
ける光束中のXZ断面の光線の横収差を示し、図9
(E)はYZ平面における入射角が−7.10°でXZ
平面における入射角が1.75°の場合に入射瞳面にお
ける光束中のXZ断面の光線の横収差を示し、図9
(F)はYZ平面における入射角が−7.10°でXZ
平面における入射角が0.00°の場合に入射瞳面にお
ける光束中のXZ断面の光線の横収差を示す。そして、
図10(A)はYZ平面における入射角が−7.10°
でXZ平面における入射角が2.50°の場合の像面で
のスポットダイアグラム、図10(B)はYZ平面にお
ける入射角が−7.10°でXZ平面における入射角が
1.75°の場合の像面でのスポットダイアグラム、図
10(C)はYZ平面における入射角が−7.10°で
XZ平面における入射角が0.00°の場合の像面での
スポットダイアグラムである。In the transverse aberration diagram of FIG. 9, the optical axis of the off-axis reflecting optical system is the Z axis, the axis perpendicular to the Z axis, the axis in the plane of FIG. 8 is the Y axis, and the axis perpendicular to the YZ plane is the axis. Assuming the Z axis, FIG. 9A shows that the incident angle on the YZ plane is −7.10.
When the incident angle in the XZ plane is 2.50 °, the lateral aberration of the light beam in the YZ section in the light flux on the entrance pupil plane is shown,
FIG. 9B shows the lateral aberration of the light beam in the YZ section in the light beam on the entrance pupil plane when the incident angle on the YZ plane is −7.10 ° and the incident angle on the XZ plane is 1.75 °.
(C) shows that the incident angle on the YZ plane is −7.10 ° and the XZ
The horizontal aberration of the light beam in the YZ section in the light beam on the entrance pupil plane when the incident angle on the plane is 0.00 ° is shown. FIG.
(D) shows the case where the incident angle on the YZ plane is -7.10 [deg.] And XZ
FIG. 9 shows the lateral aberration of the light beam on the XZ section in the light beam on the entrance pupil plane when the incident angle on the plane is 2.50 °.
(E) shows that the incident angle on the YZ plane is −7.10 ° and the XZ
FIG. 9 shows the lateral aberration of the light beam on the XZ section in the light beam on the entrance pupil plane when the incident angle on the plane is 1.75 °.
(F) shows that the incident angle on the YZ plane is -7.10 ° and the XZ
The horizontal aberration of the light beam in the XZ section in the light beam on the entrance pupil plane when the incident angle on the plane is 0.00 ° is shown. And
FIG. 10A shows that the incident angle on the YZ plane is −7.10 °.
, The spot diagram on the image plane when the incident angle on the XZ plane is 2.50 °, and FIG. 10B shows the case where the incident angle on the YZ plane is −7.10 ° and the incident angle on the XZ plane is 1.75 °. FIG. 10C is a spot diagram on the image plane when the incident angle on the YZ plane is −7.10 ° and the incident angle on the XZ plane is 0.00 °.
【0043】以上の通り、第3実施例にかかる軸外し反
射光学系は、コンパクト化が図られているにもかかわら
ず、優れた結像性能を達成していることが分かる。As described above, it can be seen that the off-axis reflecting optical system according to the third embodiment achieves excellent imaging performance despite its compactness.
【0044】[0044]
【発明の効果】本発明によれば、第1の凹面鏡・凸面鏡・
第2の凹面鏡からなる中心遮蔽のない軸外し反射光学系
の各反射鏡を非球面とし、第1の凹面鏡と凸面鏡をアフ
ォーカル系とすることにより、従来に比べ光学系の小型
化を実現し、また、光学性能の優れた軸外し反射光学系
を提供することが可能となった。According to the present invention, the first concave mirror / convex mirror
By making each reflecting mirror of the off-axis reflecting optical system of the second concave mirror having no center shielding and having an aspherical surface and the first concave mirror and the convex mirror being an afocal system, the size of the optical system can be reduced as compared with the conventional one. Further, it has become possible to provide an off-axis reflecting optical system having excellent optical performance.
【図1】本発明にかかる第1実施例の光路図である。FIG. 1 is an optical path diagram of a first embodiment according to the present invention.
【図2】第1実施例の横収差図である。FIG. 2 is a lateral aberration diagram of the first example.
【図3】第1実施例のスポットダイアグラムである。FIG. 3 is a spot diagram of the first embodiment.
【図4】第1実施例の変形例を示す光路図である。FIG. 4 is an optical path diagram showing a modification of the first embodiment.
【図5】本発明にかかる第2実施例の光路図である。FIG. 5 is an optical path diagram of a second embodiment according to the present invention.
【図6】第2実施例の横収差図である。FIG. 6 is a lateral aberration diagram of the second embodiment.
【図7】第2実施例のスポットダイアグラムである。FIG. 7 is a spot diagram of a second embodiment.
【図8】本発明にかかる第3実施例の光路図である。FIG. 8 is an optical path diagram of a third embodiment according to the present invention.
【図9】第3実施例の横収差図である。FIG. 9 is a lateral aberration diagram of the third example.
【図10】第3実施例のスポットダイアグラムである。FIG. 10 is a spot diagram of the third embodiment.
M1:第1凹面鏡 M2:凸面鏡 M3:第2凹面鏡 M4:平面反射鏡 S :絞り M1: first concave mirror M2: convex mirror M3: second concave mirror M4: plane reflecting mirror S: stop
Claims (5)
軸外し反射光学系において、 光の入射側から順に、正パワーの第1凹面鏡と、負パワ
ーの凸面鏡と、正パワーの第2凹面鏡とを有し、 前記第1凹面鏡と前記凸面鏡とは実質的にアフォーカル
光学系を構成しており、 前記凸面鏡と前記第2凹面鏡との間の光路中には絞りが
配置され、 前記第1凹面鏡、前記凸面鏡及び前記第2凹面鏡の反射
面形状は非球面であることを特徴とする軸外し反射光学
系。1. An off-axis reflecting optical system for forming an image of a distant object at a position off the optical axis, a first concave mirror having a positive power, a convex mirror having a negative power, and a A second concave mirror, wherein the first concave mirror and the convex mirror substantially constitute an afocal optical system, and an aperture is disposed in an optical path between the convex mirror and the second concave mirror; An off-axis reflecting optical system, wherein the reflecting surfaces of the first concave mirror, the convex mirror, and the second concave mirror are aspherical.
置に配置されることを特徴とする請求項1記載の軸外し
反射光学系。2. The off-axis reflecting optical system according to claim 1, wherein said stop is disposed at a position decentered with respect to said optical axis.
ることを特徴とする請求項1記載の軸外し反射光学系。3. The off-axis reflecting optical system according to claim 1, wherein a plane reflecting mirror is disposed at a position of said stop.
請求項1乃至3の何れか一項記載の軸外し反射光学系。 φ>φ1/(1+M) 但し φ :全系のパワー φ1:前記第1凹面鏡のパワー M :前記アフォーカル光学系の角倍率 である。4. The off-axis reflecting optical system according to claim 1, wherein the following condition is satisfied. φ> φ1 / (1 + M) where φ: power of the entire system φ1: power of the first concave mirror M: angular magnification of the afocal optical system
軸外し反射光学系において、 光の入射側から順に、正パワーの第1凹面鏡と、負パワ
ーの凸面鏡と、正パワーの第2凹面鏡とを有し、 前記第1凹面鏡と前記凸面鏡とは実質的にアフォーカル
光学系を構成しており、 前記凸面鏡上であって前記光軸に対して偏心した位置に
は絞りが配置され、 前記第1凹面鏡、前記凸面鏡及び前記第2凹面鏡の反射
面形状は非球面であることを特徴とする軸外し反射光学
系。5. An off-axis reflecting optical system for forming an image of a distant object at a position off the optical axis, wherein a first concave mirror having a positive power, a convex mirror having a negative power, and a A first concave mirror and the convex mirror substantially constitute an afocal optical system, and an aperture is disposed on the convex mirror at a position eccentric to the optical axis. The off-axis reflecting optical system, wherein the first concave mirror, the convex mirror, and the second concave mirror have an aspherical reflecting surface shape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00141299A JP4292609B2 (en) | 1999-01-06 | 1999-01-06 | Off-axis reflection optics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00141299A JP4292609B2 (en) | 1999-01-06 | 1999-01-06 | Off-axis reflection optics |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000199852A true JP2000199852A (en) | 2000-07-18 |
JP4292609B2 JP4292609B2 (en) | 2009-07-08 |
Family
ID=11500781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP00141299A Expired - Fee Related JP4292609B2 (en) | 1999-01-06 | 1999-01-06 | Off-axis reflection optics |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4292609B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004295042A (en) * | 2003-03-28 | 2004-10-21 | Minolta Co Ltd | Image projector |
WO2006075316A1 (en) | 2005-01-13 | 2006-07-20 | Elop Electro-Optics Industries Ltd. | Three mirror anastigmatic telescope |
US7196315B2 (en) | 2003-05-26 | 2007-03-27 | Olympus Corporation | Eccentric optical system and optical apparatus using same |
US7411737B2 (en) | 2004-11-25 | 2008-08-12 | Konica Minolta Opto, Inc. | Projection optical system |
JP2009265257A (en) * | 2008-04-23 | 2009-11-12 | Mitsubishi Electric Corp | Imaging optical system |
JP2010039006A (en) * | 2008-07-31 | 2010-02-18 | Nidec Copal Corp | Wide dynamic range imaging apparatus |
JP2012530940A (en) * | 2009-06-19 | 2012-12-06 | コーニング インコーポレイテッド | Ultra-wideband compact optical system with multiple fields of view |
JP2013122538A (en) * | 2011-12-12 | 2013-06-20 | Samsung Techwin Co Ltd | Imaging optical system and imaging apparatus |
CN103246053A (en) * | 2013-04-09 | 2013-08-14 | 长春理工大学 | Wide-width off-axis three-reflection-mirror optical system adopting free curved surface |
CN103412397A (en) * | 2013-07-12 | 2013-11-27 | 中国电子科技集团公司第四十一研究所 | Large aperture laser far field distribution detection system based on beam transformation and method thereof |
CN103869595A (en) * | 2014-02-24 | 2014-06-18 | 北京空间机电研究所 | Focal plane adjustment method for off-axis three-lens camera |
US20200166737A1 (en) * | 2018-11-27 | 2020-05-28 | Fujifilm Corporation | Imaging optical system, projection display device, and imaging apparatus |
CN116909017A (en) * | 2023-09-13 | 2023-10-20 | 中国科学院长春光学精密机械与物理研究所 | Cooke type spherical image field three-reflection astigmatic telescope design method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101318029B (en) * | 2008-06-20 | 2012-02-01 | 周辉 | Plastic macromolecule polymeric material for eyes and uses thereof |
CN110031957B (en) * | 2018-01-12 | 2021-01-05 | 清华大学 | Free-form surface off-axis three-mirror imaging system |
-
1999
- 1999-01-06 JP JP00141299A patent/JP4292609B2/en not_active Expired - Fee Related
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004295042A (en) * | 2003-03-28 | 2004-10-21 | Minolta Co Ltd | Image projector |
US7196315B2 (en) | 2003-05-26 | 2007-03-27 | Olympus Corporation | Eccentric optical system and optical apparatus using same |
US7411737B2 (en) | 2004-11-25 | 2008-08-12 | Konica Minolta Opto, Inc. | Projection optical system |
US7880972B2 (en) | 2004-11-25 | 2011-02-01 | Konica Minolta Opto, Inc. | Projection optical system |
WO2006075316A1 (en) | 2005-01-13 | 2006-07-20 | Elop Electro-Optics Industries Ltd. | Three mirror anastigmatic telescope |
JP2009265257A (en) * | 2008-04-23 | 2009-11-12 | Mitsubishi Electric Corp | Imaging optical system |
JP2010039006A (en) * | 2008-07-31 | 2010-02-18 | Nidec Copal Corp | Wide dynamic range imaging apparatus |
JP2012530940A (en) * | 2009-06-19 | 2012-12-06 | コーニング インコーポレイテッド | Ultra-wideband compact optical system with multiple fields of view |
JP2013122538A (en) * | 2011-12-12 | 2013-06-20 | Samsung Techwin Co Ltd | Imaging optical system and imaging apparatus |
CN103246053A (en) * | 2013-04-09 | 2013-08-14 | 长春理工大学 | Wide-width off-axis three-reflection-mirror optical system adopting free curved surface |
CN103412397A (en) * | 2013-07-12 | 2013-11-27 | 中国电子科技集团公司第四十一研究所 | Large aperture laser far field distribution detection system based on beam transformation and method thereof |
CN103869595A (en) * | 2014-02-24 | 2014-06-18 | 北京空间机电研究所 | Focal plane adjustment method for off-axis three-lens camera |
US20200166737A1 (en) * | 2018-11-27 | 2020-05-28 | Fujifilm Corporation | Imaging optical system, projection display device, and imaging apparatus |
US10809506B2 (en) * | 2018-11-27 | 2020-10-20 | Fujifilm Corporation | Imaging optical system, projection display device, and imaging apparatus |
CN116909017A (en) * | 2023-09-13 | 2023-10-20 | 中国科学院长春光学精密机械与物理研究所 | Cooke type spherical image field three-reflection astigmatic telescope design method |
CN116909017B (en) * | 2023-09-13 | 2023-11-21 | 中国科学院长春光学精密机械与物理研究所 | Cooke type spherical image field three-reflection astigmatic telescope design method |
Also Published As
Publication number | Publication date |
---|---|
JP4292609B2 (en) | 2009-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6643062B1 (en) | Finder optical system and image pickup apparatus using the same | |
US6147808A (en) | Decentered image-forming optical system | |
US6788343B1 (en) | Image-forming optical system | |
US6124989A (en) | Image-forming optical system | |
US6510006B1 (en) | Image-forming optical system | |
US6185046B1 (en) | Multiple prism image forming optical system | |
EP1865350B1 (en) | Catadioptric panoramic optical imaging or projecting system | |
EP0921427B1 (en) | Optical element | |
US8248693B2 (en) | Reflective triplet optical form with external rear aperture stop for cold shielding | |
US6041193A (en) | Real-image zoom finder with rotationally asymmetric surface | |
US6078411A (en) | Real-image finder optical system and apparatus using the same | |
US6850370B2 (en) | Image-forming optical system | |
JP3929153B2 (en) | Imaging optics | |
JP2000199852A (en) | Off-axis catoptric system | |
US6178052B1 (en) | Finder optical system | |
US6178048B1 (en) | Image-forming optical system | |
JP4821057B2 (en) | Off-axis reflection optics | |
KR100626551B1 (en) | Image-erecting viewing optical system | |
JP4225606B2 (en) | Imaging optics | |
US11249292B2 (en) | Freeform surface off-axial three-mirror imaging system | |
JP2958124B2 (en) | Real image type variable magnification finder optical system | |
US6487374B1 (en) | Viewfinder optical system | |
US6222688B1 (en) | Decentered optical system | |
JP3300665B2 (en) | Real image finder optical system | |
US11099367B2 (en) | Freeform surface off-axial three-mirror imaging system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090302 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090317 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090330 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120417 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120417 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150417 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150417 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150417 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |