JP2000199751A - Determining method for corrosion resistance of zirconium alloy - Google Patents

Determining method for corrosion resistance of zirconium alloy

Info

Publication number
JP2000199751A
JP2000199751A JP11001070A JP107099A JP2000199751A JP 2000199751 A JP2000199751 A JP 2000199751A JP 11001070 A JP11001070 A JP 11001070A JP 107099 A JP107099 A JP 107099A JP 2000199751 A JP2000199751 A JP 2000199751A
Authority
JP
Japan
Prior art keywords
impedance
corrosion
frequency
logarithm
zirconium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11001070A
Other languages
Japanese (ja)
Inventor
Shiyuuichi Nanikawa
修一 何川
Yoshinori Eito
良則 栄藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Nuclear Fuel Development Co Ltd
Hitachi Ltd
Original Assignee
Toshiba Corp
Nippon Nuclear Fuel Development Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Nuclear Fuel Development Co Ltd, Hitachi Ltd filed Critical Toshiba Corp
Priority to JP11001070A priority Critical patent/JP2000199751A/en
Publication of JP2000199751A publication Critical patent/JP2000199751A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a determining method, in which the generation of the acceleration of a corrosion speed can be determined more precisely by a method wherein an AC voltage is applied to a zirconium alloy oxide film, an AC current which is output is measured and the corrosion resistance of a zirconium alloy is determined on the basis of the frequency dependence of an impedance. SOLUTION: In this method, an AC voltage ΔE is applied to a zirconium alloy oxide film, an AC current ΔI which is output is measured, and an impedance Z=ΔE/ΔI is found. Then, the frequency dependence of the obtained impedance Z is investigated. For example, in a frequency region of 10-3 to 104 Hz in a Bode diagram on logarithm vs. a phase angle θ at a frequency (ω/2π), a frequency region at 2 decades or more and in the range of a phase angle absolute value of 20 to 70 deg. exists continuously. In addition, inside the frequency region, a region in which a data point at [the logarithm of a logarithm vs. an impedance Z at the frequency (ω/2π)] can be approximated by a straight line (±0.15) at an inclination of -1/2 exists continuously for 1 decade or more. At this time, it is determined that the acceleration of a corrosion speed is generated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は原子炉に使用される
ジルコニウム合金の耐食性判定方法に関し、特に、一様
腐食の加速性の判定に有効な評価方法に関する。
The present invention relates to a method for judging the corrosion resistance of a zirconium alloy used in a nuclear reactor, and more particularly to an evaluation method effective for judging the acceleration of uniform corrosion.

【0002】[0002]

【従来の技術】現在、ジルコニウム合金は、沸騰水型軽
水炉、加圧水型軽水炉などにおいて、燃料被覆管および
炉心構造材料として広く使用されている。
2. Description of the Related Art At present, zirconium alloys are widely used as fuel cladding tubes and core structural materials in boiling water reactors, pressurized water reactors and the like.

【0003】これまで最も一般的に用いられてきたジル
コニウム合金は、ジルカロイ−2(Sn:l.2〜1.7
重量%、Fe:0.07〜0.20重量%、Cr:0.0
5〜0.16重量%、Ni:0.03〜0.08重量%、
残部:Zr)、および、ジルカロイ−4(Sn:l.2
〜1.7重量%、Fe:0.18〜0.24重量%、C
r:0.07〜0.13重量%、残部:Zr)であるが、
他にもZr−2.5%Nb、Zr−1%Nb合金なども
原子炉に適用されている。
The most commonly used zirconium alloy so far is zircaloy-2 (Sn: 1.2 to 1.7).
Wt%, Fe: 0.07 to 0.20 wt%, Cr: 0.0
5 to 0.16% by weight, Ni: 0.03 to 0.08% by weight,
The balance: Zr) and Zircaloy-4 (Sn: 1.2)
To 1.7% by weight, Fe: 0.18 to 0.24% by weight, C
r: 0.07 to 0.13% by weight, balance: Zr)
In addition, Zr-2.5% Nb, Zr-1% Nb alloy and the like are also applied to the nuclear reactor.

【0004】上記の合金は、主に、中性子経済性と耐食
性を考慮して開発された合金である。しかしながら、沸
騰水型原子炉においては、原子炉運転中に上記材料表面
に、ノジュラ一腐食と呼ばれるレンズ状の局部腐食が、
発生することが問題となっていた。
[0004] The above-mentioned alloys are alloys developed mainly in consideration of neutron economy and corrosion resistance. However, in a boiling water reactor, lens-shaped local corrosion called nodular corrosion occurs on the surface of the material during the operation of the reactor,
That was a problem.

【0005】ノジュラー腐食は、中性子照射につれて成
長し、腐食層が厚くなると剥離に至ることもある。従つ
て、ノジュラ一腐食の発生は、構造材の滅肉をもたらす
のみならず、腐食層の剥離により冷却材中の放射線濃度
を高め、定期検査時の被曝量を増加させる恐れがある。
[0005] Nodular corrosion grows with neutron irradiation, and may become exfoliated when the corrosion layer becomes thicker. Accordingly, the occurrence of nodular corrosion not only causes the structural material to lose its thickness, but also increases the radiation concentration in the coolant due to the exfoliation of the corroded layer, and may increase the radiation dose during the periodic inspection.

【0006】ノジュラ一腐食を防止するためα+β相、
あるいは、β相温度範囲に短時間加熱し、急冷する熱処
理方法(特公昭61−45699号、同63−5822
3号公報)および合金組成の変更(特関昭60−434
50号、同62−228442号公報)が知られてい
る。
An α + β phase for preventing nodular corrosion,
Alternatively, a heat treatment method of heating to a β-phase temperature range for a short time and quenching (Japanese Patent Publication Nos. 61-45699 and 63-5822).
No. 3) and a change in alloy composition (Sekisui 60-434)
No. 50, No. 62-228442).

【0007】上記のような改良によりノジュラ一腐食の
発生は抑制され、腐食形態は腐食生成物である酸化被膜
が均一に成長すると云う一様腐食へと変化しつつある。
[0007] With the above-mentioned improvement, the occurrence of nodular corrosion is suppressed, and the form of corrosion is changing to uniform corrosion in which an oxide film as a corrosion product grows uniformly.

【0008】耐ノジュラー腐食性が改善された上記材料
は、現在の実炉の運転条件下ではその機能を十分に果た
している。ところが、現在、原子力発電プラントの経済
性向上のため燃料の高燃焼度化が計画されている。
[0008] The above-mentioned materials having improved nodular corrosion resistance sufficiently fulfill their functions under the operating conditions of actual furnaces. However, at present, high burnup of fuel is planned to improve the economic efficiency of nuclear power plants.

【0009】原子炉燃料集合体の炉内滞在時間が長期化
すると、腐食量が大きくなり、材料にとって一層苛酷な
環境となる。一例を挙げると、腐食速度が最初のある期
間は低いが、高燃焼度で突然大きくなると云う腐食速度
の加速が懸念されている。
When the residence time of the reactor fuel assembly in the reactor is prolonged, the amount of corrosion increases and the environment becomes more severe for the material. By way of example, there is concern that the corrosion rate may be low for an initial period of time, but increase rapidly with high burnup.

【0010】このように腐食速度の加速が発生すると、
腐食量は腐食速度の加速前と比較して加速度的に増加す
るため、ノジュラ一腐食の場合と同じく構造材の減肉を
もたらすのみならず、腐食層の剥離により冷却材中の放
射線濃度を高め、定期検査時の被曝量を増加させる恐れ
がある。
As described above, when the corrosion rate is accelerated,
Since the amount of corrosion increases at an accelerated rate compared to before the acceleration of the corrosion rate, not only does the thickness of the structural material decrease as in the case of nodular corrosion, but also the radiation concentration in the coolant increases due to the peeling of the corrosion layer. In addition, there is a possibility that the radiation dose at the time of the periodic inspection will increase.

【0011】また、腐食速度の加速により、酸化反応に
よって発生する水素量も増加し、繊密で安定な酸化膜の
破壊により水素透過性も増加すると考えられるため、ジ
ルコニウム合金基材に吸収される水素吸収量が増加し、
構造材が脆化する可能性がある。
[0011] In addition, the acceleration of the corrosion rate increases the amount of hydrogen generated by the oxidation reaction, and it is considered that the hydrogen permeability increases due to the destruction of the fine and stable oxide film, so that the zirconium alloy substrate absorbs the hydrogen. Hydrogen absorption increases,
Structural materials may be embrittled.

【0012】上記から、腐食速度の加速の発生の有無を
把握することが重要となり、腐食速度の加速を判定する
耐食性評価法が所望されている。
[0012] From the above, it is important to know whether or not the acceleration of the corrosion rate has occurred, and a corrosion resistance evaluation method for determining the acceleration of the corrosion rate is desired.

【0013】これまで腐食速度の加速の発生の判定は、
酸化量や時間に対する腐食量の変化で判定を行つてい
た。即ち、腐食による重量増加あるいは酸化膜厚さを測
定し、試料間で比較すること、または、測定した腐食量
を時間に対する変化量の増加で判定していた。
Until now, the judgment of the occurrence of the acceleration of the corrosion rate has been made as follows.
Judgment was made based on changes in the amount of corrosion with respect to the amount of oxidation and time. That is, the weight increase due to corrosion or the thickness of the oxide film was measured and compared between samples, or the measured corrosion amount was determined based on the increase in the amount of change with time.

【0014】[0014]

【発明が解決しようとする課題】しかしながら、ジルコ
ニウム合金の一様腐食は、形成された酸化膜中の酸素イ
オンや電子の移動を介して進行するため、それらの移動
の障壁となる酸化膜の性質の変化により、腐食速度の加
速は発生するものと考えられる。
However, since the uniform corrosion of the zirconium alloy proceeds through the movement of oxygen ions and electrons in the formed oxide film, the property of the oxide film serving as a barrier to such movement is considered. It is considered that the change in the corrosion rate causes an increase in the corrosion rate.

【0015】このように腐食速度の加速は、酸化膜の性
質に大きく依存するので、腐食量が相対的に小さい場合
や、腐食量の変化量が小さい場合にも発生する可能性が
ある。
As described above, since the acceleration of the corrosion rate largely depends on the properties of the oxide film, it may occur even when the amount of corrosion is relatively small or when the amount of change in the amount of corrosion is small.

【0016】また、実際の原子炉で使用する場合、腐食
量を随時モニタすることは困難であり、実際には約1年
毎の照射サイクル毎に測定を行っている。従って、仮に
測定直前に腐食速度の加速が発生した場合、腐食量の変
化は殆ど無く、これまでの腐食量に基づく方法では、腐
食速度の加速を判定することは不可能である。
When used in an actual nuclear reactor, it is difficult to monitor the amount of corrosion at any time. In practice, measurement is performed at every irradiation cycle of about one year. Therefore, if the acceleration of the corrosion rate occurs immediately before the measurement, there is almost no change in the amount of corrosion, and it is impossible to determine the acceleration of the corrosion rate by a method based on the amount of corrosion so far.

【0017】上記のとおりジルコニウム合金について、
腐食速度の加速の発生の有無をより正確に判定する評価
方法が要望されている。
As described above, for the zirconium alloy,
There is a demand for an evaluation method for more accurately determining whether or not the corrosion rate has accelerated.

【0018】本発明の目的は、腐食速度の加速の発生の
有無をより正確に判定するジルコニウム合金の耐食性判
定方法の提供にある。
An object of the present invention is to provide a method for judging the corrosion resistance of a zirconium alloy, which more accurately judges whether or not the corrosion rate has accelerated.

【0019】[0019]

【課題を解決するための手段】上記目的を達成する本発
明の要旨は次のとおりである。
The gist of the present invention to achieve the above object is as follows.

【0020】〔1〕 ジルコニウム合金の表面に形成さ
れた酸化膜に、交流電圧ΔEを印加して出力される交流
電流ΔIを測定し、Z=ΔE/ΔIに基づくインピーダ
ンスZの周波数依存性により耐食性を判定することを特
徴とするジルコニウム合金の耐食性判定方法。
[1] An AC current ΔI output by applying an AC voltage ΔE to the oxide film formed on the surface of the zirconium alloy is measured, and the corrosion resistance is determined by the frequency dependence of the impedance Z based on Z = ΔE / ΔI. And a method for determining the corrosion resistance of a zirconium alloy.

【0021】〔2〕 前記インピーダンスZの周波数依
存性を、 ボード線図(周波数(ω/2π)の対数 vs 位相角
θ)における10~3Hz〜104Hzの周波数領域に、
連続して2decade以上、位相角の絶対値が20〜
70度の範囲である周波数領域が存在し、かつ、その周
波数領域内でボード線図(周波数(ω/2π)の対数 v
s インピーダンスZの対数)におけるデータ点が、傾き
−1/2の直線(±0.15)で近似できる領域が連続
して1decade以上存在するか、または、 ボード線図(周波数(ω/2π)の対数 vs インピ
ーダンスZの対数)における10~3Hz〜104Hzの
周波数領域のデータ点が、傾き−1/2の直線(±0.
15)で近似できる領域が連続して1decade以上
存在し、かつ、その周波数領域内でナイキスト線図(イ
ンピーダンスZの実数部Z’ vs インピーダンスZの虚
数部Z'')のデータ点が、傾き1(±0.2)の直線で
近似できるときに、腐食速度の加速が発生したと判定す
る前記のジルコニウム合金の耐食性判定方法。
[2] The frequency dependence of the impedance Z is expressed in a frequency range of 10 to 3 Hz to 10 4 Hz in a Bode diagram (logarithm of frequency (ω / 2π) vs. phase angle θ).
Continuously more than 2 decades, the absolute value of the phase angle is 20 to
There is a frequency range of 70 degrees, and the Bode diagram (logarithm of frequency (ω / 2π) v
s A region where the data point in the logarithm of the impedance Z can be approximated by a straight line having a slope of -1/2 (± 0.15) exists continuously for one or more decades, or a Bode diagram (frequency (ω / 2π) The data points in the frequency range of 10 to 3 Hz to 10 4 Hz in the logarithm of logarithm vs. the logarithm of impedance Z are plotted on a straight line (± 0.
15), a region that can be approximated by 15) exists continuously for one or more decades, and a data point of a Nyquist diagram (real part Z ′ of impedance Z vs. imaginary part Z ″ of impedance Z) has a slope of 1 in that frequency region. The method for judging the corrosion resistance of a zirconium alloy according to the above, wherein it is judged that the corrosion rate has accelerated when the straight line of (± 0.2) can be approximated.

【0022】即ち、本発明はジルコニウム合金酸化膜に
交流電圧ΔEを印加し、出力される交流電流ΔIを測定
し、Z=ΔE/ΔIより評価されるインピーダンスZの
周波数依存性を調べること(以下、交流インピーダンス
測定法と云う)により、腐食速度の加速の発生の有無を
判定する評価方法にある。
That is, according to the present invention, an AC voltage ΔE is applied to a zirconium alloy oxide film, the output AC current ΔI is measured, and the frequency dependence of the impedance Z evaluated from Z = ΔE / ΔI is examined (hereinafter referred to as “Z = ΔE / ΔI”). , AC impedance measurement method) to determine whether or not the corrosion rate is accelerated.

【0023】[0023]

【発明の実施の形態】前記の交流インピーダンス測定法
を用いた腐食速度の加速の発生有無の判定方法を以下に
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for judging the occurrence of acceleration of the corrosion rate by using the AC impedance measurement method will be described below.

【0024】実際の原子炉内でジルコニウム合金を使用
した場合と同様に、オートクレープによる腐食試験にお
いても、腐食速度の加速が発生することが知られてい
る。その一例を図4に示す。
It is known that the corrosion rate is accelerated in a corrosion test using an autoclave as in the case where a zirconium alloy is used in an actual nuclear reactor. An example is shown in FIG.

【0025】図4は、ジルカロイ−2を400℃、10
5気圧の水蒸気中で、約8000時間腐食させた時の腐
食増量(重量増加:mg/dm2)の経時変化を示す。
FIG. 4 shows that Zircaloy-2 was heated at 400.degree.
The change with time of the increase in corrosion (weight increase: mg / dm 2 ) when corroded in steam at 5 atm for about 8000 hours is shown.

【0026】図4から800時間から1000時間の間
で近似直線の傾きが変化しており、腐食速度の加速が発
生していることが分かる。
FIG. 4 shows that the slope of the approximate straight line changes between 800 hours and 1000 hours, indicating that the corrosion rate is accelerated.

【0027】上記の腐食試験後の試験片の中から、腐食
速度の加速が発生していない試験片(腐食試験時間:約
300時間後)と、腐食速度の加速が発生後の試験片
(腐食試験時間:約1300時間後)についてインピー
ダンス測定を行い、腐食速度の加速前後でのインピーダ
ンスの違いを調べた。
Among the test pieces after the corrosion test, a test piece in which the corrosion rate was not accelerated (corrosion test time: about 300 hours later) and a test piece in which the corrosion rate was accelerated (corrosion test) (Test time: after about 1300 hours), the impedance was measured, and the difference in impedance before and after the acceleration of the corrosion rate was examined.

【0028】交流電圧ΔEを印加し、出力される交流電
流ΔIを測定し、Z=ΔE/ΔIにより評価されるイン
ピーダンスZの周波数依存性を調べる交流インピーダン
ス測定においては、交流電圧ΔEおよび交流電流ΔIは
それぞれ複素数表示により、
In an AC impedance measurement in which an AC voltage ΔE is applied, an output AC current ΔI is measured, and a frequency dependence of an impedance Z evaluated by Z = ΔE / ΔI is measured, an AC voltage ΔE and an AC current ΔI Are represented by complex numbers, respectively.

【0029】[0029]

【数1】ΔE=|ΔE|exp(jωt) ΔI=|ΔI|exp〔j(ωt−θ)〕 と表わすことができる。また、インピーダンスZは、ΔE = | ΔE | exp (jωt) ΔI = | ΔI | exp [j (ωt−θ)] The impedance Z is

【0030】[0030]

【数2】 Z=ΔE/ΔI=(|ΔE|/|ΔI|)exp(jθ) =Z(cosθ+jsinθ) =Zcosθ+jZsin θ =Z'+Z'' となる。Z = ΔE / ΔI = (| ΔE | / | ΔI |) exp (jθ) = Z (cosθ + jsinθ) = Zcosθ + jZsinθ = Z ′ + Z ″

【0031】通常インピーダンス測定結果の解析には、
上記式中の変数を用いてボード線図1(周波数(ω/2
π)の対数 vs インピーダンスZの対数)、ボード線図
2(周波数(ω/2π)の対数 vs 位相角θ)、およ
び、ナイキスト線図(インピーダンスZの実数部Z’ v
s インピーダンスZの虚数部Z'')が利用されている。
Usually, the analysis of the impedance measurement results
The Bode diagram 1 (frequency (ω / 2
π) vs. logarithm of impedance Z), Bode plot 2 (logarithm of frequency (ω / 2π) vs. phase angle θ), and Nyquist plot (real part Z ′ v of impedance Z)
s The imaginary part Z '') of the impedance Z is used.

【0032】上記の腐食速度の加速が発生していない試
験片と、腐食速度の加速が発生後の試験片の2種につい
て、インピーダンス測定を行つた結果を図1に整理し
た。
FIG. 1 shows the results of impedance measurement of two types of test pieces, one in which the corrosion rate was not accelerated and the other in which the corrosion rate was accelerated.

【0033】図1はボード線図1、図2はボード線図
2、図3はナイキスト線図を示す。それぞれの図におい
て黒丸が腐食速度の加速前、白三角が腐食速度の加速後
の結果を示す。
FIG. 1 is a Bode diagram 1, FIG. 2 is a Bode diagram 2, and FIG. 3 is a Nyquist diagram. In each figure, the closed circles indicate the results before the corrosion rate was accelerated, and the open triangles indicate the results after the corrosion rate was accelerated.

【0034】図1〜3より、インピーダンスの周波数依
存性は、腐食速度の加速前後で明らかに異なっていた。
従って、ジルコニウム合金酸化膜について交流電圧ΔE
を印加し、出力される交流電流ΔIを測定して、Z=Δ
E/ΔIより評価されるインピーダンスZの周波数依存
性を調べること(以下交流インピーダンス測定法と称
す)により、腐食速度の加速の発生の有無を判定できる
ことが分かった。
From FIGS. 1 to 3, the frequency dependence of the impedance was clearly different before and after the acceleration of the corrosion rate.
Therefore, for the zirconium alloy oxide film, the AC voltage ΔE
Is applied, the output alternating current ΔI is measured, and Z = Δ
It was found that by examining the frequency dependence of the impedance Z evaluated from E / ΔI (hereinafter referred to as an AC impedance measurement method), it was possible to determine whether or not the corrosion rate had accelerated.

【0035】さらに判定条件を絞るために、腐食試験条
件が異なるもの(例えば、300℃水中腐食試験、40
0℃あるいは530℃腐食試験:実炉照射)、酸化膜厚
さが異なるもの(最大60μm)、組成が異なる種々の
ジルコニウム合金についてインピーダンス測定を行つ
た。
In order to further narrow down the judging conditions, those having different corrosion test conditions (for example, 300 ° C. water corrosion test, 40 ° C.
Impedance measurement was performed on various zirconium alloys having different oxide film thicknesses (up to 60 μm) and compositions having different oxide film thicknesses (0 ° C. or 530 ° C. corrosion test: actual furnace irradiation).

【0036】その結果を整理すると、腐食速度の加速が
発生後のインピーダンス応答では、共通して腐食速度の
加速前には認められなかった以下に示す二つの特徴のう
ち、少なくとも一つが認められた。
The results are summarized. In the impedance response after the acceleration of the corrosion rate, at least one of the following two characteristics that were not commonly observed before the acceleration of the corrosion rate was observed. .

【0037】 ボード線図(周波数(ω/2π)の対
数 vs 位相角)において、10~3Hz〜104Hzの周
波数領域で連続して、2decade以上、位相角の絶
対値が20〜70度の範囲に存在する周波数領域が存在
し、かつ、その周波数領域内でボード線図(周波数(ω
/2π)の対数 vs インピーダンスZの対数)におい
て、データ点が傾き−1/2の直線(±0.15)で近
似できる領域が連続してldecade以上存在する。
In the Bode diagram (logarithm of frequency (ω / 2π) vs. phase angle), the absolute value of the phase angle is 20 to 70 degrees at 2 decade or more continuously in the frequency range of 10 to 3 Hz to 10 4 Hz. And a Bode diagram (frequency (ω
/ 2π) vs. the logarithm of impedance Z), there is a continuous range of ldecade or more where data points can be approximated by a straight line with a slope of -1/2 (± 0.15).

【0038】 ボード線図(周波数(ω/2π)の対
数 vs インピーダンスZの対数)において、10~3Hz
〜104Hzの周波数領域でデータ点が傾き−1/2の
直線(±0.15)で近似できる領域が連続してlde
cade以上存在し、かつ、その周波数領域内でナイキ
スト線図(インピーダンスZの実数部Z' vs インピー
ダンスZの虚数部Z'')のデータ点が傾き1/2(±
0.2)の直線で近似できる。
In the Bode diagram (logarithm of frequency (ω / 2π) vs. logarithm of impedance Z), 10 to 3 Hz
In the frequency domain of 〜1010 4 Hz, the area where the data point can be approximated by a straight line with a slope of −−1 (± 0.15) is continuously
and the data points of the Nyquist diagram (real part Z ′ of impedance Z vs. imaginary part Z ″ of impedance Z) have a slope of 1/2 (±
0.2) can be approximated by a straight line.

【0039】従って、インピーダンスZの周波数依存性
を測定した結果について、ボード線図(周波数(ω/2
π)の対数 vs 位相角θ)において、10~3Hz〜10
4Hzの周波数領域で連続して2decade以上、位
相角の絶対値が20〜70度の範囲に存在する周波数領
域が存在し、かつ、その周波数領域内で、ボード線図
(周波数(ω/2π)の対数 vs インピーダンスZの対
数)において、データ点が傾き−1/2の直線(±0.
15)で近似できる領域が連続して1decade以上
存在する。
Accordingly, the results of measuring the frequency dependence of the impedance Z are shown in the Bode diagram (frequency (ω / 2
In logarithmic vs phase angle θ) of π), 10 ~ 3 Hz~10
In a frequency range of 4 Hz, there is a frequency range in which the absolute value of the phase angle is in the range of 20 to 70 degrees at least 2 decades continuously, and a Bode diagram (frequency (ω / 2π ) Vs. the logarithm of impedance Z), the data point is a straight line with a slope of -1/2 (± 0.
An area that can be approximated by 15) exists continuously for one or more decades.

【0040】ボード線図(周波数(ω/2π)の対数 v
s インピーダンスZの対数)において、10~3Hz〜1
4Hzの周波数領域でデータ点が傾き−1/2の直線
(±0.15)で近似できる領域が連続してldeca
de以上存在し、かつ、その周波数領域内でナイキスト
線図(インピーダンスZの実数部Z' vs インピーダン
スZの虚数部Z'')のデータ点が傾き1(土0.2)の
直線で近似できる。
Bode diagram (logarithm of frequency (ω / 2π) v
In logarithm) of s impedance Z, 10 ~ 3 Hz~1
0 4 Hz of continuous area which can be approximated by a straight line of -1/2 data points the slope in the frequency domain (± 0.15) ldeca
data points in the Nyquist diagram (real part Z 'of impedance Z vs. imaginary part Z''of impedance Z) which can be approximated by a straight line having a slope 1 (Soil 0.2) .

【0041】以上の2つのうち少なくとも一つが認めら
れる場合に、ジルコニウム合金の腐食速度の加速が発生
したものと判定することができる。
When at least one of the above two is recognized, it can be determined that the corrosion rate of the zirconium alloy has accelerated.

【0042】次に、本発明による交流インピーダンス測
定法は、一般的に腐食反応等の電極反応の解析に用いら
れている手法で、その測定装置について説明する。
Next, the AC impedance measuring method according to the present invention is a method generally used for analyzing an electrode reaction such as a corrosion reaction, and the measuring apparatus will be described.

【0043】作用電極に、表面に酸化膜が形成されたジ
ルコニウム合金製の試験片を使用し、電解液には特定の
溶液を使用する。
A test piece made of a zirconium alloy having an oxide film formed on its surface is used for the working electrode, and a specific solution is used for the electrolytic solution.

【0044】測定セル内に電解液を満たし、作用電極、
参照電極および対極を浸潰し、作用電極と対極との間に
交流電圧ΔEを印加し、その応答電流ΔIを測定する測
定部と、測定の制御、および、Z=ΔE/ΔIで表わさ
れるインピーダンスZを計算,記録を行う制御記録部を
有する測定装置を使用する。
A measuring cell is filled with an electrolytic solution, and a working electrode,
A measuring section for immersing the reference electrode and the counter electrode, applying an AC voltage ΔE between the working electrode and the counter electrode, and measuring the response current ΔI, controlling the measurement, and impedance Z expressed by Z = ΔE / ΔI A measurement device having a control recording unit for calculating and recording the value is used.

【0045】電解液として本実施例では0.05mol
/lの硫酸ナトリウム溶液を用い、Ar等のガスを通気
することにより脱気した。脱気は測定中も続けた。な
お、硫酸ナトリウム溶液以外にも、0.1規定の硫酸や
塩酸等の酸性溶液、あるいは、NaOH等のアルカリ溶
液について測定したが、0.05mol/lの硫酸ナト
リウム溶液を用いた場合と本質的に差はなく、一様腐食
の加速発生の判定に有効であることを確認した。
In this embodiment, 0.05 mol of an electrolyte is used.
Using a 1 / l sodium sulfate solution, degassing was performed by passing a gas such as Ar. Degassing continued during the measurement. In addition to the sodium sulfate solution, an acid solution such as 0.1 N sulfuric acid or hydrochloric acid, or an alkaline solution such as NaOH was measured. However, the measurement was essentially the same as that using a 0.05 mol / l sodium sulfate solution. There was no difference between them, and it was confirmed that it was effective for judging the occurrence of accelerated uniform corrosion.

【0046】また、試験片は次のようにして調製し、測
定セルに取り付けた。燃料被覆管から長さ20mm×縦
半割りに切り出し、測定部と導通のため、測定部以外の
酸化膜の一部を機械研磨により除去し、リード線を取り
付けた。この試験片を測定したい酸化膜の表面のみが電
解液に接するように、窓を空けた測定セルに押し付けて
取り付けた。
A test piece was prepared as follows and attached to a measurement cell. The fuel cladding tube was cut into a length of 20 mm and a half length, and a portion of the oxide film other than the measurement portion was removed by mechanical polishing for conduction with the measurement portion, and a lead wire was attached. This test piece was attached by pressing against a measurement cell with a window so that only the surface of the oxide film to be measured was in contact with the electrolyte.

【0047】試験片を取り付け後、測定セルを最低12
時間放置した。これは電解液が酸化膜中のポアやクラッ
クに浸入し、定常状態になるまでの時間を考慮したもの
である。
After attaching the test piece, the measuring cell
Left for hours. This takes into account the time required for the electrolyte to enter pores and cracks in the oxide film and reach a steady state.

【0048】12時間放置後、30分間自然浸漬電位の
測定を行い、その後この電位を基準として交流電圧を印
加し交流インピーダンス測定を行つた。
After standing for 12 hours, the potential of spontaneous immersion was measured for 30 minutes, and thereafter, an AC voltage was applied with reference to this potential to measure the AC impedance.

【0049】この時の交流印加電圧は、直流分極による
非定常状態を避けるため20〜100mVの微少電圧と
した。なお、測定は全て室温下で行つた。
The applied AC voltage at this time was a very small voltage of 20 to 100 mV in order to avoid an unsteady state due to DC polarization. All measurements were performed at room temperature.

【0050】測定した試料は、表1に示すように組成の
異なる10種の合金を用いた。これらは実際の原子炉で
4サイクル照射したもので、この時の重量増加を示す。
As the samples measured, ten kinds of alloys having different compositions as shown in Table 1 were used. These were irradiated for 4 cycles in an actual nuclear reactor, and showed an increase in weight at this time.

【0051】[0051]

【表1】 [Table 1]

【0052】前述のインピーダンスの周波数依存性の違
いより腐食速度の加速発生の有無を区別した。この結果
をブレークアウェイとして示した。腐食速度の加速が発
生したものは白丸印、発生していないものは×で示し
た。
The presence or absence of the acceleration of the corrosion rate was distinguished from the difference in the frequency dependence of the impedance. This result was shown as breakaway. Those in which the corrosion rate was accelerated were indicated by white circles, and those in which they did not occur were indicated by x.

【0053】この中で腐食増量(重量増加)が一番近い
合金8と合金10についての測定結果を図5〜7に示
す。
5 to 7 show the measurement results of alloys 8 and 10 having the closest corrosion increase (weight increase) among them.

【0054】図5はボード線図1、図6はボード線図
2、そして、図7はナイキスト線図を示す。図5〜7に
おいて黒丸が合金10、白三角が合金8を示す。
FIG. 5 is a Bode diagram 1, FIG. 6 is a Bode diagram 2, and FIG. 7 is a Nyquist diagram. 5 to 7, solid circles indicate alloy 10 and open triangles indicate alloy 8.

【0055】2種の測定結果を、前記のインピーダンス
の周波数依存性の違いより腐食速度の発生の有無を区別
すると、合金8には腐食速度の加速が発生し、合金10
は腐食速度の加速が発生していないことが分かった。
When the two types of measurement results are distinguished by the presence or absence of the corrosion rate from the difference in the frequency dependence of the impedance, the alloy 8 accelerates the corrosion rate and the alloy 10
It was found that no corrosion rate acceleration occurred.

【0056】以上の結果、重量増加では大きな差がな
く、腐食速度の加速の有無の判定が困難であった合金8
と合金10について、インピーダンスの周波数依存性を
調べることにより、容易にブレ一クアウェイの発生の有
無を調べることができた。
As a result, there was no significant difference in weight increase, and it was difficult to determine whether or not the corrosion rate was accelerated.
By examining the frequency dependence of the impedance of the alloy 10 and the alloy 10, the presence / absence of breakaway could be easily examined.

【0057】また、図3のように腐食量の経時変化をモ
ニタしなくても、腐食速度の加速の発生の有無を判定で
きた。
Further, as shown in FIG. 3, the presence or absence of acceleration of the corrosion rate could be determined without monitoring the temporal change of the corrosion amount.

【0058】[0058]

【発明の効果】本発明の耐食性判定方法によれば、ジル
コニウム合金について一様腐食のブレ一クアウェイの発
生の有無を、より正確に判定することができる。
According to the method for determining corrosion resistance of the present invention, it is possible to more accurately determine whether or not breakaway of uniform corrosion has occurred in a zirconium alloy.

【0059】さらに、ジルコニウム合金製材料の使用限
界を、より正確に把握できるので、経済的、かつ、安全
である。
Further, since the usage limit of the zirconium alloy material can be more accurately grasped, it is economical and safe.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ジルカロイ−2の400℃、105気圧水蒸気
中腐食試験における腐食速度の加速発生前と腐食速度の
加速発生後のインピーダンスの周波数依存性を示すグラ
フである。
FIG. 1 is a graph showing the frequency dependence of impedance before and after the occurrence of accelerated corrosion rate in a corrosion test of zircaloy-2 in steam at 400 ° C. and 105 atm.

【図2】ジルカロイ−2の400℃、105気圧水蒸気
中腐食試験における腐食速度の加速発生前と腐食速度の
加速発生後の位相角の周波数依存性を示すグラフであ
る。
FIG. 2 is a graph showing the frequency dependence of the phase angle before and after the occurrence of accelerated corrosion rate in a corrosion test of zircaloy-2 in steam at 400 ° C. and 105 atm.

【図3】ジルカロイ−2の400℃、105気圧水蒸気
中腐食試験における腐食速度の加速発生前と腐食速度の
加速発生後のナイキスト線図である。
FIG. 3 is a Nyquist diagram before and after the occurrence of an accelerated corrosion rate in a corrosion test of zircaloy-2 in steam at 400 ° C. and 105 atm.

【図4】ジルカロイ−2の400℃、100気圧水蒸気
中腐食試験における重量増加の経時変化を示すグラフで
ある。
FIG. 4 is a graph showing the time-dependent change in weight increase in a corrosion test of zircaloy-2 in steam at 400 ° C. and 100 atm.

【図5】本発明の実施例の結果の一例で4サイクル照射
された2種の合金のインピーダンスの周波数依存性を示
すグラフである。
FIG. 5 is a graph showing the frequency dependence of the impedance of two alloys irradiated for four cycles in one example of the results of the example of the present invention.

【図6】本発明の実施例の結果の一例で4サイクル照射
された2種の合金の位相角の周波数依存性を示すグラフ
である。
FIG. 6 is a graph showing the frequency dependence of the phase angle of two alloys irradiated for four cycles in an example of the results of the example of the present invention.

【図7】本発明の実施例の結果の一例で4サイクル照射
された2種の合金のナイキスト線図である。
FIG. 7 is a Nyquist diagram of two alloys irradiated for 4 cycles in an example of the results of the example of the present invention.

フロントページの続き (72)発明者 何川 修一 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発本部内 (72)発明者 栄藤 良則 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発本部内 Fターム(参考) 2G060 AA10 AD04 AE28 AE40 AF03 AF06 EA08 2G075 AA03 BA17 CA38 DA02 DA14 EA01 FA01 FB10 FB16 FC12 FD02 GA21 GA34 Continuing from the front page (72) Inventor Shuichi Nanagawa 7-2-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Power & Electricity Development Division, Hitachi, Ltd. (72) Inventor Yoshinori Eito 7, Omika-cho, Hitachi City, Ibaraki Prefecture No. 2 F-term (Reference) in Power & Electricity Development Division, Hitachi, Ltd. 2G060 AA10 AD04 AE28 AE40 AF03 AF06 EA08 2G075 AA03 BA17 CA38 DA02 DA14 EA01 FA01 FB10 FB16 FC12 FD02 GA21 GA34

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ジルコニウム合金の表面に形成された酸
化膜に、交流電圧ΔEを印加して出力される交流電流Δ
Iを測定し、Z=ΔE/ΔIに基づくインピーダンスZ
の周波数依存性により耐食性を判定することを特徴とす
るジルコニウム合金の耐食性判定方法。
1. An AC current Δ output by applying an AC voltage ΔE to an oxide film formed on a surface of a zirconium alloy.
I, and the impedance Z based on Z = ΔE / ΔI
A method for determining the corrosion resistance of a zirconium alloy, comprising determining the corrosion resistance based on the frequency dependence of the corrosion resistance.
【請求項2】 前記インピーダンスZの周波数依存性
を、 ボード線図(周波数(ω/2π)の対数 vs 位相角
θ)における10~3Hz〜104Hzの周波数領域に、
連続して2decade以上、位相角の絶対値が20〜
70度の範囲である周波数領域が存在し、かつ、その周
波数領域内でボード線図(周波数(ω/2π)の対数 v
s インピーダンスZの対数)におけるデータ点が、傾き
−1/2の直線(±0.15)で近似できる領域が連続
して1decade以上存在するか、または、 ボード線図(周波数(ω/2π)の対数 vs インピ
ーダンスZの対数)における10~3Hz〜104Hzの
周波数領域のデータ点が、傾き−1/2の直線(±0.
15)で近似できる領域が連続して1decade以上
存在し、かつ、その周波数領域内でナイキスト線図(イ
ンピーダンスZの実数部Z’ vs インピーダンスZの虚
数部Z'')のデータ点が、傾き1(±0.2)の直線で
近似できるときに、 腐食速度の加速が発生したと判定する請求項1に記載の
ジルコニウム合金の耐食性判定方法。
2. The frequency dependence of the impedance Z is expressed in a frequency range of 10 to 3 Hz to 10 4 Hz in a Bode diagram (logarithm of frequency (ω / 2π) vs. phase angle θ).
Continuously more than 2 decades, the absolute value of the phase angle is 20 to
There is a frequency range of 70 degrees, and the Bode diagram (logarithm of frequency (ω / 2π) v
s A region where the data point in the logarithm of the impedance Z can be approximated by a straight line having a slope of -1/2 (± 0.15) exists continuously for one or more decades, or a Bode diagram (frequency (ω / 2π) The data points in the frequency range of 10 to 3 Hz to 10 4 Hz in the logarithm of logarithm vs. the logarithm of impedance Z are plotted on a straight line (± 0.
15), a region that can be approximated by 15) exists continuously for one or more decades, and the data point of the Nyquist diagram (real part Z ′ of impedance Z vs. imaginary part Z ″ of impedance Z) has a slope of 1 The method for determining the corrosion resistance of a zirconium alloy according to claim 1, wherein it is determined that acceleration of the corrosion rate has occurred when it can be approximated by a straight line of (± 0.2).
JP11001070A 1999-01-06 1999-01-06 Determining method for corrosion resistance of zirconium alloy Pending JP2000199751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11001070A JP2000199751A (en) 1999-01-06 1999-01-06 Determining method for corrosion resistance of zirconium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11001070A JP2000199751A (en) 1999-01-06 1999-01-06 Determining method for corrosion resistance of zirconium alloy

Publications (1)

Publication Number Publication Date
JP2000199751A true JP2000199751A (en) 2000-07-18

Family

ID=11491275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11001070A Pending JP2000199751A (en) 1999-01-06 1999-01-06 Determining method for corrosion resistance of zirconium alloy

Country Status (1)

Country Link
JP (1) JP2000199751A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009031148A (en) * 2007-07-27 2009-02-12 Nippon Nuclear Fuel Dev Co Ltd Method and device for testing fuel-cladding tube
JP2015028433A (en) * 2013-07-30 2015-02-12 日立Geニュークリア・エナジー株式会社 Noble metal coverage monitoring method, noble metal coverage monitoring system and atomic energy plant operation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009031148A (en) * 2007-07-27 2009-02-12 Nippon Nuclear Fuel Dev Co Ltd Method and device for testing fuel-cladding tube
JP2015028433A (en) * 2013-07-30 2015-02-12 日立Geニュークリア・エナジー株式会社 Noble metal coverage monitoring method, noble metal coverage monitoring system and atomic energy plant operation method

Similar Documents

Publication Publication Date Title
Sabol et al. Development of a cladding alloy for high burnup
Garzarolli et al. Microstructure and corrosion studies for optimized PWR and BWR Zircaloy cladding
Dan et al. Effects of hydrogen on the anodic behavior of Alloy 690 at 60 C
JP3164611B2 (en) Method for suppressing stress corrosion cracking in primary coolant circuit of nuclear reactor
Urquhart et al. A Mechanism for the Effect of Heat‐Treatment on the Accelerated Corrosion of Zircaloy‐4 in High Temperature, High Pressure Steam
Garde et al. Corrosion behavior of Zircaloy-4 cladding with varying tin content in high-temperature pressurized water reactors
Banerjee et al. High temperature steam oxidation study on Zr–2.5% Nb pressure tube under simulated LOCA condition
Yueh et al. Improved ZIRLOTM cladding performance through chemistry and process modifications
WO1995000672A1 (en) Zirconium alloy with tin, nitrogen and niobium addition
Chen et al. Study of the passivation and repassivation behavior of pure titanium in 3.5 wt% NaCl solution and 6 M HNO3 solution
Huang et al. Potential dependent mechanism of the composition and electrochemical property of oxide films of Ti-6Al-3Nb-2Zr-1Mo
JP2000199751A (en) Determining method for corrosion resistance of zirconium alloy
JP2000329720A (en) Method for judging corrosion property of zirconium alloy
Stehle et al. Characterization of ZrO2 Films Formed In-Reactor and Ex-Reactor to Study the Factors Contributing to the In-Reactor Waterside Corrosion of Zircaloy
INDIG et al. Corrosion of sensitized austenitic stainless steel in hot aqueous solutions under natural and electrochemical control
Hickling et al. Electrochemical investigations of the resistance of Inconel 600, Incoloy 800, and Type 347 stainless steel to pitting corrosion in faulted PWR secondary water at 150 to 250 C
Peters Improved characterization of aqueous corrosion kinetics of Zircaloy-4
Kakiuchi et al. Irradiated behavior at high burnup for HiFi alloy
Forsberg et al. Studies of corrosion of cladding materials in simulated BWR environment using impedance measurements
Harrison et al. How does the electrochemical behaviour of stainless steel reflect that of its constituent elements?
Venugopal et al. Electrochemistry and corrosion of beryllium in buffered and unbuffered chloride solutions
Anghel et al. Test-Reactor Study of the Effect of Zirconia Coating of Inconel Spacer Cells on Shadow Corrosion
Borisov et al. The study of zirconium alloy coatings produced by microarc oxidation using Rutherford and nuclear backscattering spectrometry
Neves et al. Characterisation of oxide films formed on Alloy 600 in simulated PWR primary water
JPH0368852A (en) Deciding corrosion resistance of zirconium alloy