JP2000198118A - Mandrel for manufacturing flexible tubular resin structure - Google Patents

Mandrel for manufacturing flexible tubular resin structure

Info

Publication number
JP2000198118A
JP2000198118A JP11001258A JP125899A JP2000198118A JP 2000198118 A JP2000198118 A JP 2000198118A JP 11001258 A JP11001258 A JP 11001258A JP 125899 A JP125899 A JP 125899A JP 2000198118 A JP2000198118 A JP 2000198118A
Authority
JP
Japan
Prior art keywords
methyl
mandrel
pentene
polymer
cylindrical body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11001258A
Other languages
Japanese (ja)
Inventor
Takashi Nakahara
隆 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP11001258A priority Critical patent/JP2000198118A/en
Publication of JP2000198118A publication Critical patent/JP2000198118A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cylindrical body which is highly pliable and is hardly deformable at a high temperature by forming the cylindrical body consisting of a 4-methyl-1-pentene polymer with a specific thickness on the outer surface of a hollow cylindrical mandrel. SOLUTION: A 4-methyl-1-pentene polymer is a monopolymer of 4-methyl-1- pentene or a copolymer of 4-methyl-1-pentene and 2-20C α-olefin such as other ethylene or propylene, and is a polymer composed mainly of 4-methyl-1-pentene containing at least 80 wt.% 4-methyl-1-pentene structural unit. A cylindrical body comprising a 4-methyl-1-pentene polymer with at least 1 mm thickness is formed on the outer surface of a hollow cylindrical mandrel. It is possible to lower the bending modulus of elasticity by making the cylindrical body hollow and consequently make its winding around a drum easy during vulcanizing. Thus the cylindrical body of the described polymer shows high pliability, heat resistance and reliable mold release characteristics, and besides, is hardly deformable even at a high temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、管状樹脂構造体の
製造時に用いるマンドレル(中芯)に関し、さらに詳し
くは、耐熱性、離型性、柔軟性に優れた、可撓性の管状
樹脂構造体製造に好適なマンドレルに関するものであ
る。なお、可撓性管状樹脂構造体とは、ゴムホース、プ
ラスチックホース、プラスチック管、シリコンチューブ
などのような曲げ、丸め込み等が可能な管状樹脂構造体
を意味する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mandrel (middle core) used for manufacturing a tubular resin structure, and more particularly, to a flexible tubular resin structure having excellent heat resistance, release properties and flexibility. The present invention relates to a mandrel suitable for body production. The flexible tubular resin structure refers to a tubular resin structure that can be bent, rounded, and the like, such as a rubber hose, a plastic hose, a plastic tube, and a silicon tube.

【0002】[0002]

【従来の技術】可撓性管状樹脂構造体、例えばゴムホー
スは、一般に、真直ぐに伸ばしたマンドレルの表面に押
出機より押出した未加硫ゴムを被覆し、その上にファイ
バーを編み込み、さらにその上に未加硫ゴムを被覆した
後、ドラムに巻き付けて加硫釜で加硫、加硫後ドラムか
ら巻き出して真直ぐに伸ばし、その状態でマンドレルを
ある程度引き出したのち、引き出した部分を切断し次い
で水圧をかけてマンドレルをゴムホースから引き抜く工
程を経て製造されている。
2. Description of the Related Art In general, a flexible tubular resin structure, for example, a rubber hose, is obtained by coating a surface of a straightened mandrel with unvulcanized rubber extruded from an extruder, knitting a fiber thereon, and further forming a fiber. After coating with unvulcanized rubber, it is wound around a drum, vulcanized in a vulcanizing oven, unwound from the drum after vulcanization, straightened out, and in this state, the mandrel is pulled out to some extent, and the drawn out portion is cut and then It is manufactured through the process of pulling out the mandrel from a rubber hose by applying water pressure.

【0003】この様な製造工程に用いられるマンドレル
には、柔軟性と切断の容易性、さらには耐熱性と低い表
面張力、およびゴムホースから引き抜く際の滑り特性の
良いことなどが要求されることから、通常、ナイロンな
どのポリアミド、ポリエステル、EPDM、4−メチル
−1−ペンテン系重合体などのポリオレフィンよりなる
材質のものが用いられ、なかでもポリオレフィン重合体
またはポリオレフィン重合体を含む組成物、とりわけ4
−メチル−1−ペンテン系重合体は、表面張力がフッ素
樹脂に次いで低いため、ゴムホースを加硫した後、ホー
スから引き抜き易いという特徴をもち、また融点が22
0℃以上と高いため、通常のゴムの加硫条件ではほとん
どの場合使用可能であるので好適に用いられる。
[0003] The mandrel used in such a manufacturing process is required to have flexibility and easiness of cutting, heat resistance, low surface tension, and good sliding properties when pulled out from a rubber hose. Usually, a material composed of a polyolefin such as polyamide such as nylon, polyester, EPDM, and 4-methyl-1-pentene polymer is used. Among them, a polyolefin polymer or a composition containing a polyolefin polymer,
-Methyl-1-pentene-based polymer has a characteristic that surface tension is the second lowest after that of fluororesin, so that it is easy to pull out from a hose after vulcanizing a rubber hose and has a melting point of 22%.
Since it is as high as 0 ° C. or more, it can be used in most cases under ordinary vulcanization conditions of rubber, and is therefore preferably used.

【0004】ゴムホースの加硫は通常、マンドレル上に
形成された未加硫のゴムホースをドラムに巻き、スチー
ム加硫缶に入れて加熱する方法で行われる。この際マン
ドレルが硬いとドラムに巻きづらくなるため、マンドレ
ルには柔軟性が要求される。特に内径の大きなホースの
場合には使用するマンドレルの径も大きくなるため、マ
ンドレルの材料には、より高い柔軟性が必要となる。
[0004] Vulcanization of a rubber hose is usually carried out by winding an unvulcanized rubber hose formed on a mandrel around a drum, placing it in a steam vulcanizer and heating. At this time, if the mandrel is hard, it is difficult to wind around the drum, and therefore, the mandrel is required to have flexibility. In particular, in the case of a hose having a large inner diameter, the diameter of the mandrel to be used becomes large, so that the material of the mandrel requires higher flexibility.

【0005】現在市販されている4−メチル−1−ペン
テン系重合体組成物の曲げ弾性率は、280〜1800
MPaの範囲にあるが、内径15mm以上のホースに使
用するには250MPa以下の曲げ弾性率が求められて
いる。そのため、4−メチル−1−ペンテン系重合体お
よびその組成物の曲げ弾性率を下げるには軟化剤や軟質
樹脂をブレンドする方法が用いられる。しかしながら、
軟化剤や軟質樹脂のブレンド比を上げていくと、柔軟性
は向上するが、熱変形しやすくなり、ホースを加硫する
ときに変形しやすいという欠点があった。
A commercially available 4-methyl-1-pentene polymer composition has a flexural modulus of 280 to 1800.
Although it is in the range of MPa, a bending elastic modulus of 250 MPa or less is required for use in a hose having an inner diameter of 15 mm or more. Therefore, in order to lower the flexural modulus of the 4-methyl-1-pentene polymer and its composition, a method of blending a softener or a soft resin is used. However,
As the blending ratio of the softener and the soft resin is increased, the flexibility is improved, but it is easily deformed by heat, and there is a disadvantage that the hose is easily deformed when vulcanized.

【0006】[0006]

【発明が解決しようとする課題】本発明は、柔軟性が優
れているとともに、高温で変形しにくいマンドレルを提
供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a mandrel which is excellent in flexibility and hardly deforms at high temperatures.

【0007】[0007]

【課題を解決するための手段】上記の従来技術の問題点
を解決するため鋭意検討した結果、4−メチル−1−ペ
ンテン系重合体からなり、4−メチル−1−ペンテン系
重合体層の厚さが1mm以上の筒状の中空体を可撓性管
状樹脂構造体の製造用マンドレルに用いると、高い柔軟
性を持つとともに加硫時に変形し難いことを見出し本発
明を完成するに至った。
As a result of diligent studies to solve the above-mentioned problems of the prior art, a 4-methyl-1-pentene polymer layer was formed. When a cylindrical hollow body having a thickness of 1 mm or more was used for a mandrel for manufacturing a flexible tubular resin structure, it was found that it had high flexibility and was not easily deformed during vulcanization, and thus completed the present invention. .

【0008】すなわち本発明の可撓性管状樹脂構造体製
造用マンドレルは、中空筒状のマンドレルであって、少
なくとも該マンドレルの外表面に厚さ1mm以上の4−
メチル−1−ペンテン系重合体からなる筒状体を有する
ことを特徴としている。
That is, the mandrel for manufacturing a flexible tubular resin structure of the present invention is a hollow cylindrical mandrel, and at least an outer surface of the mandrel has a 4-mm-thick 4-mm or more.
It is characterized by having a cylindrical body composed of a methyl-1-pentene polymer.

【0009】本発明の好ましい態様においては、前記4
−メチル−1−ペンテン系重合体が、炭素数が2から2
0個のα−オレフィンと4−メチル−1−ペンテンのラ
ンダム共重合体であり、4−メチル−1−ペンテン構造
単位の含有率が80重量%以上であることが望ましく、
またα−オレフィンは、1−デセン、1−ドデセン、1
−テトラデセン、1−ヘキサデセン、1−オクタデセ
ン、これらのα−オレフイン2種類以上の混合物から選
ばれるものであることが望ましい。
In a preferred embodiment of the present invention,
-Methyl-1-pentene polymer having 2 to 2 carbon atoms
It is a random copolymer of 0 α-olefins and 4-methyl-1-pentene, and the content of 4-methyl-1-pentene structural units is preferably 80% by weight or more,
Α-olefins are 1-decene, 1-dodecene, 1
-Tetradecene, 1-hexadecene, 1-octadecene, and a mixture of two or more of these α-olefins are desirable.

【0010】[0010]

【発明の実施の形態】以下、本発明の可撓性管状樹脂構
造体製造用マンドレルについて詳細に説明する。本発明
で用いられる4−メチル−1−ペンテン系重合体とは、
4−メチル−1−ペンテンの単独重合体もしくは、4−
メチル−1−ペンテンと他のα−オレフィン、例えばエ
チレン、プロピレン、1−ブテン、1−ヘキセン、1−
オクテン、1−デセン、1−テトラデセン、1−オクタ
デセン等の炭素数2ないし20のα−オレフィンとの共
重合体で、4−メチル−1−ペンテン構造単位を80重
量%以上の量で含む4−メチル−1−ペンテンを主体と
した重合体である。好ましい共重合成分としては、1−
デセン、1−ドデカン、1−テトラデカン、1−ヘキサ
デカン、1−オクタデカンあるいは1−エイコセンであ
る。そして、これらのα−オレフィンは2種類以上が用
いられても良い。4−メチル−1−ペンテン系重合体の
共重合成分の構造単位含有量は20重量%以下であるこ
とが耐熱性の点で好ましい。また、本発明では、4−メ
チル−1−ペンテン系重合体は1種単独でも2種以上混
合しても用いることができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a mandrel for manufacturing a flexible tubular resin structure according to the present invention will be described in detail. The 4-methyl-1-pentene polymer used in the present invention is:
4-methyl-1-pentene homopolymer or 4-methyl-1-pentene
Methyl-1-pentene and other α-olefins such as ethylene, propylene, 1-butene, 1-hexene, 1-
A copolymer with an α-olefin having 2 to 20 carbon atoms such as octene, 1-decene, 1-tetradecene, and 1-octadecene, which contains 4-methyl-1-pentene structural unit in an amount of 80% by weight or more. -Methyl-1-pentene. Preferred copolymerization components include 1-
Decene, 1-dodecane, 1-tetradecane, 1-hexadecane, 1-octadecane or 1-eicosene. And two or more types of these α-olefins may be used. The structural unit content of the copolymer component of the 4-methyl-1-pentene polymer is preferably 20% by weight or less from the viewpoint of heat resistance. In the present invention, the 4-methyl-1-pentene polymer may be used alone or in combination of two or more.

【0011】このような4−メチル−1−ペンテン系重
合体のメルトフローレート(MFR)は、ASTM D
1238に準じ、荷重:5.0kg、温度:260℃の
条件で測定した値で、0.1ないし200g/10分の
範囲にあることが好ましい。さらには、1.0ないし1
50g/10分の範囲にあることが好ましい。
The melt flow rate (MFR) of such a 4-methyl-1-pentene polymer is ASTM D
It is preferably 0.1 to 200 g / 10 min when measured under the conditions of load: 5.0 kg and temperature: 260 ° C. according to 1238. Furthermore, 1.0 to 1
It is preferably in the range of 50 g / 10 minutes.

【0012】このような4−メチル−1−ペンテン系重
合体の具体例としては、三井化学(株)製のTPXTM
MX00l、MX002、MX004、MX021、M
X321、RT18あるいはDX845(いずれも製品
銘柄名)等が挙げられる。また、その他のメーカー製の
ものであっても上記の要件を満たす4−メチル−1−ペ
ンテン系重合体であれば、勿論、使用可能である。
A specific example of such a 4-methyl-1-pentene polymer is TPX manufactured by Mitsui Chemicals, Inc.
MX001, MX002, MX004, MX021, M
X321, RT18 or DX845 (all are product brand names). Of course, even if it is made by another manufacturer, it can be used as long as it is a 4-methyl-1-pentene polymer satisfying the above requirements.

【0013】本発明の4−メチル−1−ペンテン系重合
体には、必要に応じて、他の樹脂や、軟化剤、耐候安定
剤、耐熱安定剤、スリップ剤、核剤、顔料、染料等通常
ポリオレフィンに添加して使用される各種配合剤が、本
発明の目的を損わない範囲内で添加されてもよい。
The 4-methyl-1-pentene polymer of the present invention may optionally contain other resins, softeners, weather stabilizers, heat stabilizers, slip agents, nucleating agents, pigments, dyes, etc. Various compounding agents usually used in addition to the polyolefin may be added as long as the object of the present invention is not impaired.

【0014】また、本発明の4−メチル−1−ペンテン
系重合体には、各種の繊維、例えば、ガラス繊維、アラ
ミド繊維、或いは各種の補強剤、例えばシリカ、クレ
ー、カーボンブラック、タルク、炭酸カルシウムなど
を、本発明の目的を損わない範囲で添加してもよい。
The 4-methyl-1-pentene polymer of the present invention may contain various fibers, for example, glass fibers, aramid fibers, or various reinforcing agents, for example, silica, clay, carbon black, talc, carbonate. Calcium and the like may be added as long as the object of the present invention is not impaired.

【0015】本発明に係る可撓性管状樹脂構造体製造用
マンドレルは、中空筒状のマンドレルであって、少なく
とも該マンドレルの外表面に厚さ1mm以上の4−メチ
ル−1−ペンテン系重合体からなる筒状体が形成された
ものである。中空の筒状体にすることにより、従来の棒
状体のマンドレルに比べ、曲げ弾性率を低くすることが
出来き加硫時にドラムに巻きやすくなる。そして、マン
ドレルの少なくとも外表面に厚さ1mm以上の4−メチ
ル−1−ペンテン系重合体からなる筒状体が形成されて
いるので、4−メチル−1−ペンテン系重合体に曲げ弾
性率を下げる目的で軟化剤或いは軟質樹脂などをブレン
ドしたものに比べ、加硫時に変形を起こし難い。
The mandrel for manufacturing a flexible tubular resin structure according to the present invention is a hollow cylindrical mandrel, and a 4-methyl-1-pentene polymer having a thickness of at least 1 mm on at least the outer surface of the mandrel. Is formed. By making the hollow cylindrical body, the bending elastic modulus can be made lower than that of the conventional rod-shaped mandrel, and it becomes easy to wind around the drum at the time of vulcanization. And since the cylindrical body which consists of a 4-methyl-1-pentene polymer with a thickness of 1 mm or more is formed on at least the outer surface of the mandrel, the 4-methyl-1-pentene polymer has a flexural modulus of elasticity. Deformation is less likely to occur during vulcanization as compared with those blended with a softener or a soft resin for the purpose of lowering.

【0016】マンドレルを形成する中空の筒状体の肉厚
は、求められる曲げ弾性率に応じて適宜選ばれるが、通
常、1〜10mm程度である。また、マンドレルの少な
くとも外表面に形成される4−メチル−1−ペンテン系
重合体からなる筒状体は、厚さ1mm以上を有すれば4
−メチル−1−ペンテン系重合体単独でも良いし、その
内側に別の樹脂からなる筒状体が積層されていても良
い。積層される樹脂としては、ナイロン等のポリアミ
ド、ポリエステル、EPDMなどのほか、4−メチル−
1−ペンテン系重合体以外のポリオレフィンが挙げられ
る。本発明においては、成形し易さと経済性の点で、4
−メチル−1−ペンテン系重合体またはその組成物のみ
からなる筒状体で形成されることが望ましい。
The thickness of the hollow cylindrical body forming the mandrel is appropriately selected according to the required bending elastic modulus, but is usually about 1 to 10 mm. Further, if the cylindrical body made of 4-methyl-1-pentene polymer formed on at least the outer surface of the mandrel has a thickness of 1 mm or more, the cylindrical body is 4 mm thick.
-Methyl-1-pentene polymer may be used alone, or a cylindrical body made of another resin may be laminated inside the polymer. Examples of the resin to be laminated include polyamide such as nylon, polyester, EPDM, etc., and 4-methyl-
Polyolefins other than the 1-pentene polymer are exemplified. In the present invention, in terms of ease of molding and economy, 4
It is desirably formed of a cylindrical body composed of only a -methyl-1-pentene polymer or a composition thereof.

【0017】4−メチル−1−ペンテン系重合体からな
る筒状体の厚さが、1mmに満たないと、筒状体を曲げ
たときに筒状部分がつぶれ易くなり(キンクし易くな
り)好ましくない。
If the thickness of the tubular body made of 4-methyl-1-pentene polymer is less than 1 mm, the tubular portion is easily crushed when the tubular body is bent (kinking easily). Not preferred.

【0018】マンドレルの製造は、通常、4−メチル−
1−ペンテン系重合体を押出成形し、次いでマンドレル
の寸法精度を高めるために押出直後の溶融パリソンをサ
イザーに通すことによって行われる。すなわち、本発明
に係る4−メチル−1−ペンテン系重合体の中空筒状の
マンドレルは、例えば、押出部が円筒状のダイにより、
4−メチル−1−ペンテン系重合体を押出成形し、押出
直後の溶融パリソンをサイザーに通すことによって得ら
れる。
The production of mandrels is usually carried out with 4-methyl-
This is carried out by extruding a 1-pentene polymer and then passing a molten parison immediately after extrusion through a sizer in order to increase the dimensional accuracy of the mandrel. That is, the hollow cylindrical mandrel of the 4-methyl-1-pentene polymer according to the present invention is, for example, a die having a cylindrical extruded portion.
It is obtained by extruding a 4-methyl-1-pentene polymer and passing a molten parison immediately after extrusion through a sizer.

【0019】[0019]

【実施例】以下本発明のマンドレルについて実施例を示
すが、本発明はこれらの実施例に何ら限定されるもので
はない。
EXAMPLES Examples of the mandrel of the present invention will be described below, but the present invention is not limited to these examples.

【0020】実施例に示したマンドレルは下記の条件で
作製した。また、実施例に示した物性の測定方法と条件
を以下に示す。 [マンドレルの作製]4−メチル−1−ペンテン系重合
体組成物を45mmφの押出機(設定温度:280℃)
で押出断面の外径が16〜25mm、内径が5〜20m
mのダイを通して押出して、中空の円筒状マンドレルを
成形した。また、比較例では、4−メチル−1−ペンテ
ン系重合体組成物を45mmφの押出機(設定温度:2
80℃)で押出断面の外径が16〜25mmのダイを通
して押出して、中空ではないマンドレルを成形した。
The mandrel shown in the examples was manufactured under the following conditions. The methods and conditions for measuring the physical properties shown in the examples are shown below. [Preparation of Mandrel] Extruder of 45 mmφ of 4-methyl-1-pentene polymer composition (set temperature: 280 ° C.)
The outer diameter of the extruded cross section is 16 to 25 mm, and the inner diameter is 5 to 20 m
extruded through a m die to form a hollow cylindrical mandrel. In a comparative example, a 4-methyl-1-pentene polymer composition was extruded with a 45 mmφ extruder (set temperature: 2 mm).
(80 ° C) through a die having an outer diameter of 16 to 25 mm in an extruded cross section to form a solid mandrel.

【0021】[物性の評価] マンドレルの曲げ弾性率 ASTM D790に準じて曲げ弾性率を測定した。実
施例の中空のマンドレルについては、中空ではないもの
とみなして見かけの曲げ弾性率を求めた。 ビカット軟化点 ASTM D1525に準じてビカット軟化点を測定し
た。
[Evaluation of Physical Properties] The bending elastic modulus of the mandrel was measured in accordance with ASTM D790. The apparent bending elastic modulus of the hollow mandrel of the example was determined assuming that the hollow mandrel was not hollow. Vicat softening point The Vicat softening point was measured according to ASTM D1525.

【0022】(実施例1)4−メチル−1−ペンテン系
重合体(三井化学(株)製TPXTM MX002、MF
R:23g/10分)90重量部、パラフィン系オイル
(出光興産(株)製ダイアナプロセスオイルPw380)
10重量部を溶融ブレンドして作製した原料樹脂を、4
5mmφの押出機(設定温度:280℃)で押出断面が
外径18mm、内径15mmの円形のダイを通して押出
し、外径16mm、内径12mmの中空の円筒状マンド
レルを作製した。このマンドレルの曲げ弾性率、ピカッ
ト軟化点を測定した。結果を表1に示す。
Example 1 A 4-methyl-1-pentene polymer (TPX MX002, MF manufactured by Mitsui Chemicals, Inc.)
R: 23 g / 10 min) 90 parts by weight, paraffinic oil (Diana Process Oil Pw380 manufactured by Idemitsu Kosan Co., Ltd.)
Raw resin prepared by melt-blending 10 parts by weight
The extruder was extruded with a 5 mmφ extruder (setting temperature: 280 ° C.) through a circular die having an outer diameter of 18 mm and an inner diameter of 15 mm to produce a hollow cylindrical mandrel having an outer diameter of 16 mm and an inner diameter of 12 mm. The bending elastic modulus and the Piccat softening point of this mandrel were measured. Table 1 shows the results.

【0023】(実施例2)実施例1と同様にして作製し
た原料樹脂を、45mmφの押出機(設定温度:280
℃)で押出断面が外径26mm、内径20mmの円形の
ダイを通して押出し、外径24mm、内径18mmの中
空の円筒状マンドレルを作製した。このマンドレルの曲
げ弾性率、ビカット軟化点を測定した。結果を表1に示
す。
Example 2 A raw resin produced in the same manner as in Example 1 was extruded into a 45 mmφ extruder (set temperature: 280).
C), the mixture was extruded through a circular die having an outer diameter of 26 mm and an inner diameter of 20 mm to produce a hollow cylindrical mandrel having an outer diameter of 24 mm and an inner diameter of 18 mm. The bending elastic modulus and Vicat softening point of this mandrel were measured. Table 1 shows the results.

【0024】(実施例3)実施例1と同様にして作製し
た原料樹脂を、45mmφの押出機(設定温度:280
℃)で押出断面が外径18mm、内径12mmの円形の
ダイを通して押出し、外径16mm、内径10mmの中
空の円筒状マンドレルを作製した。このマンドレルの曲
げ弾性率、ビカット軟化点を測定した。結果を表1に示
す。
Example 3 A 45 mmφ extruder (set temperature: 280) was prepared by using a raw material resin produced in the same manner as in Example 1.
C.), the mixture was extruded through a circular die having an outer diameter of 18 mm and an inner diameter of 12 mm to produce a hollow cylindrical mandrel having an outer diameter of 16 mm and an inner diameter of 10 mm. The bending elastic modulus and Vicat softening point of this mandrel were measured. Table 1 shows the results.

【0025】(実施例4)実施例1と同様にして作製し
た原料樹脂を、45mmφの押出機(設定温度:280
℃)で押出断面が外径26mm、内径18mmの円形の
ダイを通して押出し、外径24mm、内径16mmの中
空の円筒状マンドレルを作製した。このマンドレルの曲
げ弾性率、ピカット軟化点を測定した。結果を表1に示
す。
(Example 4) A 45 mmφ extruder (set temperature: 280) was prepared by using a raw resin produced in the same manner as in Example 1.
C.), the mixture was extruded through a circular die having an outer diameter of 26 mm and an inner diameter of 18 mm to produce a hollow cylindrical mandrel having an outer diameter of 24 mm and an inner diameter of 16 mm. The bending elastic modulus and the Piccat softening point of this mandrel were measured. Table 1 shows the results.

【0026】(比較例1)実施例1と同様にして作製し
た原料樹脂を、45mmφの押出機(設定温度:280
℃)で押出断面が直径18mmの円形のダイを通して押
出し、外径16mmの中空ではないマンドレルを作製し
た。このマンドレルの曲げ弾性率、ピカット軟化点を測
定した。結果を表2に示す。 (比較例2)4−メチル−1−ペンテン系重合体(三井
化学(株)製TPXTM MX002、MFR:23g/10
分)85重量部、パラフィン系オイル(出光興産(株)製
ダイアナプロセスオイルPw380)15重量部を溶融
ブレンドして作製した原料樹脂を、45mmφの押出機
(設定温度:280℃)で押出断面が直径18mmの円
形のダイを通して押出し外径16mmの中空ではないマ
ンドレルを作製した。このマンドレルの曲げ弾性率、ビ
カット軟化点を測定した。結果を表2に示す。
Comparative Example 1 A raw material resin produced in the same manner as in Example 1 was extruded into a 45 mmφ extruder (set temperature: 280).
C), and extruded through a circular die having an extrusion cross section of 18 mm in diameter to produce a solid hollow mandrel having an outer diameter of 16 mm. The bending elastic modulus and the Piccat softening point of this mandrel were measured. Table 2 shows the results. (Comparative Example 2) 4-methyl-1-pentene polymer (TPX MX002, manufactured by Mitsui Chemicals, Inc., MFR: 23 g / 10
Min.) 85 parts by weight of a paraffinic oil (Diana Process Oil Pw380 manufactured by Idemitsu Kosan Co., Ltd.) was melt-blended with 15 parts by weight of a raw resin, and the extruded cross section was extruded with a 45 mmφ extruder (set temperature: 280 ° C.). A solid mandrel with an outer diameter of 16 mm was extruded through a circular die of 18 mm diameter. The bending elastic modulus and Vicat softening point of this mandrel were measured. Table 2 shows the results.

【0027】(比較例3)4−メチル−1−ペンテン系
重合体(三井化学(株)製TPXTM MX002、MF
R:23g/10分)60重量部、軟質樹脂(三井化学
(株)製、タフマーTMS−4030)30重量部、パラフ
ィン系オイル(出光興産(株)製ダイアナプロセスオイル
Pw380)10重量部を溶融ブレンドして作製した原
料樹脂を、45mmφの押出機(設定温度:280℃)
で押出断面が直径18mmの円形のダイを通して押出
し、外径16mmの中空ではないマンドレルを作製し
た。このマンドレルの曲げ弾性率、ビカット軟化点を測
定した。結果を表2に示す。
Comparative Example 3 4-Methyl-1-pentene Polymer (TPX MX002, MF manufactured by Mitsui Chemicals, Inc.)
R: 23 g / 10 min) 60 parts by weight, soft resin (Mitsui Chemicals)
A raw material resin prepared by melt-blending 30 parts by weight of Toughmer S-4030 manufactured by K.K. and 10 parts by weight of paraffinic oil (Diana Process Oil Pw380 manufactured by Idemitsu Kosan Co., Ltd.) was extruded into a 45 mmφ extruder (setting). (Temperature: 280 ° C)
And then extruded through a circular die having a diameter of 18 mm to produce a solid hollow mandrel having an outer diameter of 16 mm. The bending elastic modulus and Vicat softening point of this mandrel were measured. Table 2 shows the results.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 以上の実施例に示すように、本発明の中空筒状のマンド
レルではビカット軟化点を低下させることなくマンドレ
ルの見かけの弾性率を下げることができる。一方、比較
例に示すように軟化剤としてのオイルのブレンド量を増
やしたり、軟質樹脂をブレンドしたりすると、中空筒状
にしなくても曲げ弾性率を下げ得るが、同時にビカット
軟化点も低下し、ホース等の加硫工程で変形し易くな
る。
[Table 2] As shown in the above embodiments, the apparent elastic modulus of the mandrel can be reduced without lowering the Vicat softening point in the hollow cylindrical mandrel of the present invention. On the other hand, as shown in the comparative example, when the blending amount of the oil as a softening agent is increased or the soft resin is blended, the bending elastic modulus can be reduced without forming a hollow cylinder, but at the same time, the Vicat softening point also decreases. , Hoses and the like are easily deformed in the vulcanization process.

【0030】[0030]

【発明の効果】本発明のマンドレルは、曲げ弾性率が低
く柔軟性を有し、耐熱性、離型性にも優れるので、ホー
ス等の可撓性管状樹脂構造体の加硫の際、ドラムに巻き
やすくなるとともに、高温下で変形しにくい。特に内径
が15mm以上のゴムホース等の製造に使用される太径
の可撓性管状樹脂構造体製造用マンドレルとして好適に
用いることができる。
As described above, the mandrel of the present invention has a low flexural modulus and flexibility, and is excellent in heat resistance and releasability. In addition to being easily wound, it is not easily deformed at high temperatures. In particular, it can be suitably used as a mandrel for producing a large-diameter flexible tubular resin structure used for producing a rubber hose or the like having an inner diameter of 15 mm or more.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B32B 27/32 102 B32B 27/32 102 // B29K 21:00 105:24 B29L 23:00 Fターム(参考) 4F100 AK03B AK03H AK03J AK08B AK08J AK41 AK48 AK75 AK80B AL03B AT00A BA01 BA02 BA03 BA04 BA05 CA04 DA11 DD31 GB51 JJ03 JK07 JK13 JL14 YY00B 4F202 AA45 AG08 AJ03 AJ09 AJ11 CA27 CB02 CK81 CM26 4F203 AA45 AG08 AJ03 AJ09 AJ11 DA08 DA11 DB02 DC01 DL11 4F207 AA45 AG08 AJ03 AJ09 AJ11 KA01 KA17 KL88 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B32B 27/32 102 B32B 27/32 102 // B29K 21:00 105: 24 B29L 23:00 F term (reference ) 4F100 AK03B AK03H AK03J AK08B AK08J AK41 AK48 AK75 AK80B AL03B AT00A BA01 BA02 BA03 BA04 BA05 CA04 DA11 DD31 GB51 JJ03 JK07 JK13 JL14 YY00B 4F202 AA45 AG08 AJ03 AJ09 AJ11 A27 CB08 AG08 AJ03 AJ09 AJ11 KA01 KA17 KL88

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 中空筒状のマンドレルであって、少なく
とも該マンドレルの外表面に厚さ1mm以上の4−メチ
ル−1−ペンテン系重合体からなる筒状体を有すること
を特徴とする可撓性管状樹脂構造体製造用マンドレル。
1. A flexible tubular mandrel having a tubular body made of a 4-methyl-1-pentene polymer having a thickness of 1 mm or more on at least the outer surface of the mandrel. Mandrel for the production of conductive tubular resin structures.
【請求項2】 前記4−メチル−1−ペンテン系重合体
が、炭素数が2から20個のα−オレフィンと4−メチ
ル−1−ペンテンのランダム共重合体であり、4−メチ
ル−1−ペンテン構造単位の含有率が80重量%以上で
あることを特徴とする請求項1に記載の可撓性管状樹脂
構造体製造用マンドレル。
2. The 4-methyl-1-pentene polymer is a random copolymer of an α-olefin having 2 to 20 carbon atoms and 4-methyl-1-pentene, and The mandrel for manufacturing a flexible tubular resin structure according to claim 1, wherein the content of the pentene structural unit is 80% by weight or more.
【請求項3】 前記4一メチル−1−ペンテン系重合体
が、1−デセン、1−ドデセン、1−テトラデセン、1
−ヘキサデセン、1−オクタデセン、または、これらの
α−オレフイン2種類以上の混合物と、4一メチル−1
−ペンテンとのランダム共重合体であることを特徴とす
る請求項2に記載の可撓性管状樹脂構造体製造用マンド
レル。
3. The method of claim 1, wherein the 4-methyl-1-pentene polymer is 1-decene, 1-dodecene, 1-tetradecene,
Hexadecene, 1-octadecene, or a mixture of two or more of these α-olefins, and 4-methyl-1
The mandrel for manufacturing a flexible tubular resin structure according to claim 2, wherein the mandrel is a random copolymer with pentene.
JP11001258A 1999-01-06 1999-01-06 Mandrel for manufacturing flexible tubular resin structure Pending JP2000198118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11001258A JP2000198118A (en) 1999-01-06 1999-01-06 Mandrel for manufacturing flexible tubular resin structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11001258A JP2000198118A (en) 1999-01-06 1999-01-06 Mandrel for manufacturing flexible tubular resin structure

Publications (1)

Publication Number Publication Date
JP2000198118A true JP2000198118A (en) 2000-07-18

Family

ID=11496447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11001258A Pending JP2000198118A (en) 1999-01-06 1999-01-06 Mandrel for manufacturing flexible tubular resin structure

Country Status (1)

Country Link
JP (1) JP2000198118A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053423A1 (en) 2010-10-19 2012-04-26 三井化学株式会社 Poly-4-methyl-1-pentene based resin composition and molded products obtained from the composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053423A1 (en) 2010-10-19 2012-04-26 三井化学株式会社 Poly-4-methyl-1-pentene based resin composition and molded products obtained from the composition

Similar Documents

Publication Publication Date Title
CN104861252B (en) Crosslinked polyethylene product and preparation method thereof
CN101535382B (en) Organic fiber-reinforced composite resin composition and organic fiber-reinforced composite resin molding
JP4327956B2 (en) Fiber reinforced polypropylene composite
JP5599813B2 (en) Multiphase polymer composition useful for making cable insulation
CN106457688A (en) Support for laminate shaping and laminate shaped article using same, and method for manufacturing laminate shaped article
CN1863860B (en) Composition for heat-recoverable foam tubing
KR101526742B1 (en) A resin composition of carbon fiber reinforced polypropylene with excellent molding property
US4102855A (en) Compositions comprising EPDM, E/VA and poly-alpha-methylstyrene
JP2000198118A (en) Mandrel for manufacturing flexible tubular resin structure
JPH11323053A (en) Fluororesin composition, insulating tube, heat shrinkable tube and insulating electric wire all using the composition, and their production
KR100515621B1 (en) Fabrication method of artificial leather using ethylene-vinyl acetate copolymer
JP2001304463A (en) Fiber-reinforced resin pipe, fiber-reinforced multi-layer resin pipe, and manufacturing method for the pipes
JPH10100161A (en) Mandrel for manufacturing hose
CN104791555A (en) Low-temperature-impacting resistant PP-R composite pipe and manufacturing method thereof
WO2002053629A1 (en) Polymeric compound and process for its preparation
CA2130476A1 (en) Extrusion or blow-moulding of polyamide compositions
JPS62214920A (en) Mandrel for manufacturing hose
JP2004514747A (en) Super flexible pipe insulation
CN107987353B (en) Floor heating pipe with low linear expansion coefficient and preparation method thereof
JPH10264174A (en) Vulcanizing coating material and vulcanizing method using the material
JP2013028076A (en) Mandrel for manufacturing hose
JP7407840B2 (en) Sea-island composite fiber
JPH05278142A (en) Polybutene resin pipe
JP2002001811A (en) Method for manufacturing vinyl chloride resin tube
JPH11269330A (en) Highly heat-resistant thermoplastic elastomer composition