JP2000197420A - Phyto-remediation technology using sea water irrigation - Google Patents

Phyto-remediation technology using sea water irrigation

Info

Publication number
JP2000197420A
JP2000197420A JP11000860A JP86099A JP2000197420A JP 2000197420 A JP2000197420 A JP 2000197420A JP 11000860 A JP11000860 A JP 11000860A JP 86099 A JP86099 A JP 86099A JP 2000197420 A JP2000197420 A JP 2000197420A
Authority
JP
Japan
Prior art keywords
irrigation
salt
water
seawater
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11000860A
Other languages
Japanese (ja)
Inventor
Tetsuo Yakura
哲夫 矢倉
Noboru Endo
昇 遠藤
Mitsutake Yoshida
光毅 吉田
Yoshio Akiyoshi
美穂 秋吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP11000860A priority Critical patent/JP2000197420A/en
Publication of JP2000197420A publication Critical patent/JP2000197420A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a phyto-remediation technology effective for suppressing the salt concentration below a specific level to enable the planting of salt- resistant plants and prevent the desertification by carrying out the irrigation with sea water under a specific condition. SOLUTION: Irrigation with sea water is carried out in flooded state. Salt- resistant plants can be planted on the land irrigated with sea water by the above method. The salt concentration in the soil is lowered to <=4% by the realistic quantity of water supply by the leaching effect (wash-out of salt by a large amount of irrigation water) caused by the irrigation with sea water to obtain soil having salt concentration comparable to that of the supplied water. The effective salt-resistant plants are e.g. Phoenix dacylifera and others distributed over ten orders such as order Liliiflorae.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】海水灌漑を行い、耐塩性植物
を植生して砂漠化を防止することに関する。
The present invention relates to irrigating seawater and vegetating salt-tolerant plants to prevent desertification.

【0002】[0002]

【従来の技術】乾燥地・半乾燥地では水不足により灌漑
農業が行われているが、独特の自然条件により灌漑が原
因で農地に塩分集積が生じ、耕作が不能となり砂漠化が
促進される原因となっている。現行の砂漠緑化における
灌漑方式は点滴灌漑などの節水型灌漑が主流である。一
方、豊富にある海水を灌漑水に使用する海水灌漑の概念
は古く、1950年代に報告されている。しかし、海水
を陸地に導入した際の塩類集積の促進が懸念され、サウ
ジアラビア等でのみ一部試行されているのが現状であ
る。
2. Description of the Related Art Irrigated agriculture is carried out in arid and semi-arid lands due to lack of water. Due to unique natural conditions, irrigation causes salt accumulation in agricultural land, cultivation becomes impossible, and desertification is promoted. It has become. Water-saving irrigation such as drip irrigation is the mainstream irrigation method in the current desert greening. On the other hand, the concept of seawater irrigation, which uses abundant seawater for irrigation water, is old and was reported in the 1950s. However, there is a concern that salt accumulation may be promoted when seawater is introduced to land, and at present, only some trials have been conducted in Saudi Arabia and other countries.

【0003】深刻な塩害問題を抱えるアメリカも、アリ
ゾナ大学などを中心に塩性植物(Halophyte)を用いた
塩水栽培の研究を行っている。塩性植物を用いた海水灌
漑については、Halophyteを直接海水灌漑に利用する(G
lenn et al,1993)、120種類のHalophytesを海水灌
漑条件で評価した(Aronson、1988)など6報告があ
る。
[0003] The United States, which has a serious problem of salt damage, is conducting research on saltwater cultivation using a halophyte, mainly at the University of Arizona. For seawater irrigation using salty plants, Halophyte is used directly for seawater irrigation (G
lenn et al, 1993), and 120 reports of Halophytes evaluated under seawater irrigation conditions (Aronson, 1988).

【0004】塩水植物の利用可能性については、Tamali
x、Acasiaなどの樹木から飼料作物、油料作物まで、耐
塩性植物が数多く報告されている(バイオテクノロジー
協会報告1993、ISSN0729-0012)。木本類では
(ISBN 1 86320 07809)が参照される。しかし、い
ずれも経験的に塩に強いと言われる植物をリストアップ
する範疇を超えるものではなく、海水耐性評価試験をも
とにした植物分類を体系的に研究している事例はない。
[0004] For the availability of saline plants, see Tamali.
A number of salt-tolerant plants have been reported from trees such as x and Acasia to feed crops and oil crops (Biotechnology Association Report 1993, ISSN 0729-0012). For woody species, reference is made to (ISBN 1 86320 07809). However, none of them is beyond the category of empirically listing plants that are said to be salt-tolerant, and there are no cases of systematically studying plant classification based on seawater tolerance evaluation tests.

【0005】一方、耐塩性のメカニズムを明らかにしよ
うとする生理研究、遺伝学的研究報告は多いが、海水レ
ベルの濃度を対象にするには至っていない。近年のバイ
オテクノロジーを用いた遺伝的解析、組み換え植物の研
究報告も増加しているが、実際に耐塩性が長期的に機能
したと言う報告はない。ベタイングリシンという浸透圧
調整物質の合成遺伝子をタバコやイネに導入した報告で
も、わずか数日の結果であり、実用化に耐える機能向上
は得られていないのが現状である。
[0005] On the other hand, although there are many reports on physiological research and genetic research for elucidating the mechanism of salt tolerance, it has not been possible to target seawater-level concentrations. In recent years, reports on genetic analysis using biotechnology and research on recombinant plants have been increasing, but there is no report that salt tolerance actually functioned in the long term. Even a report of the introduction of a synthetic gene for an osmotic agent called betaine glycine into tobacco and rice is a result of only a few days, and at present the function has not been improved enough for practical use.

【0006】[0006]

【発明が解決しようとする課題】海水灌漑を行い、塩分
濃度を一定以下に抑制し、耐塩性植物を植生して砂漠化
防止に資することを課題とする。
It is an object of the present invention to perform seawater irrigation, suppress the salt concentration below a certain level, and vegetate a salt-tolerant plant to contribute to the prevention of desertification.

【0007】[0007]

【課題を解決するための手段】本発明者等は、上記課題
について鋭意研究を行ったところ、灌漑水量の調節及び
耐塩性植物の選択について有効な成果を得た。すなわ
ち、本発明は、(1)海水による灌漑を湛水状態で行う
ことを特徴とする灌漑方法、(2)海水による灌漑地に
耐塩性植物を植生することを特徴とする(1)記載の灌
漑方法に関する。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies on the above problems, and have obtained effective results in controlling the amount of irrigation water and selecting salt-tolerant plants. That is, the present invention provides (1) an irrigation method characterized in that irrigation with seawater is performed in a flooded state, and (2) vegetation of salt-tolerant plants in an irrigated area with seawater. Regarding irrigation methods.

【0008】CO2増加防止策として、植物の炭酸固定
能力を使った二酸化炭素固定が効率的である。植物の炭
酸固定能力は森林で6t/ha(イネ1t/ha)と推定さ
れ、緑化面積に比例してCO2削減率の向上が期待され
る。一方、CO2増加に起因する地球温暖化現象は砂漠
化を加速させ、地球規模での砂漠化は、毎年約600万
haの規模で進行している。現在地球上の三分の一は砂漠
地帯で、植生がほとんどない。この砂漠を緑化すると、
1〜6t/haの二酸化炭素が固定され、同時に砂漠化防
止技術にもなる。
As a measure to prevent an increase in CO 2 , it is effective to fix carbon dioxide using the ability of plants to fix carbon dioxide. The carbon dioxide fixation capacity of plants is estimated to be 6 t / ha (rice 1 t / ha) in forests, and an improvement in the CO 2 reduction rate is expected in proportion to the area of greenery. On the other hand, global warming caused by an increase in CO 2 accelerates desertification, and global desertification is about 6 million annually.
Progressing on a ha scale. Currently one-third of the planet is desert, with little vegetation. Greening this desert,
1 to 6 t / ha of carbon dioxide is fixed, and at the same time, it is also a technology for preventing desertification.

【0009】本発明は、豊富にある海水(あるいは塩
水)を用いて緑化を行うことにより、二酸化炭素を削減
するとともに、砂漠化を防止する技術の開発に関するも
のである。本発明者等は、海水で土壌が常に湿った状態
(近似的な水田、あるいは間断灌漑により土壌を湿った
状態に保つ)に保つことにより、海水の塩分濃度が3%
以下の場合、土壌中塩分濃度を4%以下に抑止できるこ
とを見出した。
[0009] The present invention relates to the development of a technique for reducing carbon dioxide and preventing desertification by performing greening using abundant seawater (or salt water). By keeping the soil constantly moist with seawater (approximately paddy or keeping the soil moist by intermittent irrigation), the inventors have found that the salt concentration of seawater is 3%.
In the following cases, it has been found that the salt concentration in soil can be suppressed to 4% or less.

【0010】土壌中塩分濃度は、主として蒸発散量で決
定されるので供給水量を無限大にすれば、土壌中の塩分
濃度は供給水濃度と同じになることが期待される。一
方、供給水をカットすれば土壌蒸発により土壌中塩分濃
度は高まる。本発明方法を用いることにより、リーチン
グ(大量の灌漑水により塩分を洗い流すこと)効果が働
き、現実的な供給水量で土壌中塩分濃度は4%以下とな
る。
The salinity in soil is mainly determined by the amount of evapotranspiration, so that if the amount of supplied water is made infinite, it is expected that the salinity in soil will be the same as the concentration of supplied water. On the other hand, if the supply water is cut, the salt concentration in soil increases due to soil evaporation. By using the method of the present invention, a leaching effect (washing out salt with a large amount of irrigation water) works, and the salinity in soil becomes 4% or less at a realistic amount of supplied water.

【0011】すなわち、湛水状態で海水灌漑を行えば、
供給水の塩分濃度と土壌中塩分濃度はほぼ同程度とな
る。本発明において、「湛水状態」とは、水が常時湛え
られる場合と、ある間隔で湛水と排水とを繰り返す場合
(半湛水)の両方を含む。降雨を考慮しない場合の長期
的な塩分の収支式は、Scofieldの塩分収支式をもとに、
塩類集積防止項目を加えて次のように表される。
That is, if seawater irrigation is performed in a flooded state,
The salinity of the feedwater and the salinity of the soil are almost the same. In the present invention, the “flooded state” includes both a case where water is constantly flooded and a case where flooding and drainage are repeated at a certain interval (semi-flooded). The long-term salinity formula without considering rainfall is based on Scofield's salinity formula.
It is expressed as follows by adding the items for preventing salt accumulation.

【0012】Viw・Ciw+Vgw・Cgw+Sm+Sf−Vdw・Cdw−
Sp−Sc−A=ΔSsw ここで ΔSsw:圃場土壌溶液中塩類の増加量 Viw、Vgw、Vdw:灌漑水、地下水、排水の量(Vgwは地下
水面から根群域へ上昇移動する水の量) Ciw、Cgw、Cdw:灌漑水、地下水、排水の塩類濃度 Sm:土壌の風化、塩類堆積物の溶解から土壌溶液へ入る
塩類の量 Sf:農薬、肥料、改良剤、堆肥等から加わる可溶性塩類
の量 Sp:灌漑後に土壌中へ沈積する灌漑中の可溶性塩類の量 Sc:作物の収穫によって土壌溶液中から取り除かれる塩
類の量 A:塩類集積防止方法によって取り除かれる塩類の量 海水を用いて持続的に灌漑が可能となるためには、 ΔSsw≦0 となることが必要である。
Viw · Ciw + Vgw · Cgw + Sm + Sf−Vdw · Cdw−
Sp-Sc-A = ΔSsw where ΔSsw: amount of increase in salt in field soil solution Viw, Vgw, Vdw: amount of irrigation water, groundwater, and drainage (Vgw is the amount of water that moves upward from the groundwater surface to the root area) Ciw, Cgw, Cdw: Salt concentration of irrigation water, groundwater, drainage Sm: Amount of salts entering soil solution from soil weathering, dissolution of salt sediments Sf: Soluble salts added from pesticides, fertilizers, improvers, compost, etc. Amount Sp: Amount of soluble salts in the irrigation deposited in soil after irrigation Sc: Amount of salts removed from soil solution by crop harvesting A: Amount of salts removed by salt accumulation prevention method Sustainable using seawater In order for irrigation to be possible, it is necessary that ΔSsw ≦ 0.

【0013】水収支は、次式で表される。 Viw+Vgw=Vdw+ET ET;蒸発散量The water balance is expressed by the following equation. Viw + Vgw = Vdw + ET ET; Evapotranspiration

【0014】このScofieldの塩分収支式を用いてΔSsw
すなわち圃場土壌溶液中塩類の増加量を測定したとこ
ろ、標準的灌漑水量(年平均約30mm/day)に50mm/d
ay増加させると約3.7%まで抑制することができるこ
とがわかった。灌漑期間中の塩分濃度を4%以下に抑制
するためには、30mm/dayの灌漑水量の増加が必要で、
これは通常の2倍程度となり、この灌漑水量を2倍程度
に増加することは、現実的な灌漑水量で対応できる。
(図1)
Using this Scofield salt balance equation, ΔSsw
That is, when the amount of increase in salt in the field soil solution was measured, the standard irrigation water amount (annual average about 30 mm / day) was 50 mm / d.
It was found that it was possible to suppress up to about 3.7% by increasing ay. In order to reduce the salinity during the irrigation period to 4% or less, it is necessary to increase the irrigation water volume by 30 mm / day.
This is about twice the normal amount, and increasing this amount of irrigation water about twice can be handled with a realistic amount of irrigation water.
(Fig. 1)

【0015】海水以外の塩分濃度の薄い灌漑水が利用で
きれば、塩分濃度上昇を抑制するのに好都合である。雨
水と異なり比較的安定して供給の見込める河口付近の汽
水域の海水を利用した場合の灌漑について検討してみ
た。汽水の塩分濃度は場所により異なるが、実際的な値
として2.0%程度である。普通の海水と異なり水量に
限度があるので、灌漑の一時期に利用することができ
る。灌漑初期の段階で汽水を使用すると、図2に示す様
に、初期の塩分濃度は一時的に減少するが、最終的には
影響がなくなる結果となる。そこで図3に示すように、
間断的に純海水の代わりに汽水を利用することにする
と、最大4%程度に灌漑水の濃度を抑制することができ
る。
If irrigation water having a low salt concentration other than seawater can be used, it is advantageous to suppress an increase in salt concentration. I examined irrigation using seawater in brackish water near the estuary, where supply is relatively stable, unlike rainwater. Although the salt concentration of brackish water varies depending on the location, it is about 2.0% as a practical value. Unlike ordinary seawater, the amount of water is limited, so it can be used at one time of irrigation. The use of brackish water at the early stage of irrigation temporarily reduces the initial salinity, but eventually has no effect, as shown in FIG. Therefore, as shown in FIG.
If brackish water is used intermittently instead of pure seawater, the concentration of irrigation water can be reduced to a maximum of about 4%.

【0016】時期的な汽水の水量、灌漑水量により、そ
の具体的方法は異なってくるが、一時的にせよ海水のみ
の灌漑の補助手段として汽水を利用することは有効な方
法であることがわかった。また、海水には窒素及びリン
が不足しているが、汽水に含まれている生活排水の中の
窒素及びリンにより補填されることにより、灌漑地に植
生される植物に対して施肥する必要がなくなるという効
果も奏することができる。本発明において、「海水」と
は、「汽水」及び「塩水」を含むものとする。
Although the specific method differs depending on the amount of brackish water and irrigation water, the use of brackish water as an auxiliary means for irrigation of seawater alone is an effective method even temporarily. Was. In addition, although seawater lacks nitrogen and phosphorus, it is necessary to fertilize plants vegetated in irrigated land by supplementing with nitrogen and phosphorus in domestic wastewater contained in brackish water. The effect of disappearing can also be achieved. In the present invention, "seawater" includes "brass water" and "brine water".

【0017】次に本発明の灌漑方法を適用するには、4
%以下の濃度で生存可能な緑化資材(植物)が必要であ
る。緑化資材として、耐塩性を持つ植物の評価試験を行
った結果、約25種の植物が海水で3〜6ヶ月、あるも
のは2〜3年の期間生存することを見出した。
Next, to apply the irrigation method of the present invention, 4
A viable greening material (plant) is required at a concentration of less than 10%. As a result of an evaluation test of a plant having salt tolerance as a greening material, it was found that about 25 kinds of plants survived in seawater for 3 to 6 months, and some plants for 2 to 3 years.

【0018】耐塩性植物としては、Phoenix dacylifer
a、Crinum asiaticum、Ophiopogonjaponicus、Juncus s
p.Iran、Festuca arundinacea、Zoysia marcrostachya、
Zoysia tenuifolia、Zoysia matrella、Cynodon dactyl
on、Spartina alterniflora、Spartina patens、Sporob
olus virginus、Paspalum sp.Hawai、 Fimbristyliss
p.、Chenopodium album、Chenopodium stenophyllum、C
henopodium acuminatum、Atriplex patula、Atriplex g
melinii、Atriplex subcordata、Suaeda maritima、Sal
icornia bigelovii、 Lampranthus sp. Sesuvium sp. Se
suvium portulacastrum、Portulaca pilosa、Limonium
wrightii、Tamalix sp.Sedum sp.Acacia amplicepus、A
cacia bivenosa、Rhizophora sp. Conocarpus sp. Cocc
olba unifera、Avicennia germinans、Aviceria marin
a、Cnidium japonicum、Hedyotis biflora、 Eucalyptus
camal、 Bruguiera nucronata、 Kandelia candel、 Mala
lenca leucadendra、 Salvadra persica、 Casuarina cun
ning hamiana、 Casuarina gluaca、 Casuarina equiseti
folia、 Casuarina obesaまたはIxeris stoloniferaのい
ずれかが有効であることがわかった。
As salt-tolerant plants, Phoenix dacylifer
a, Crinum asiaticum, Ophiopogonjaponicus, Juncus s
p.Iran, Festuca arundinacea, Zoysia marcrostachya,
Zoysia tenuifolia, Zoysia matrella, Cynodon dactyl
on, Spartina alterniflora, Spartina patens, Sporob
olus virginus, Paspalum sp.Hawai, Fimbristyliss
p., Chenopodium album, Chenopodium stenophyllum, C
henopodium acuminatum, Atriplex patula, Atriplex g
melinii, Atriplex subcordata, Suaeda maritima, Sal
icornia bigelovii, Lampranthus sp. Sesuvium sp. Se
suvium portulacastrum, Portulaca pilosa, Limonium
wrightii, Tamalix sp. Sedum sp. Acacia amplicepus, A
cacia bivenosa, Rhizophora sp. Conocarpus sp. Cocc
olba unifera, Avicennia germinans, Aviceria marin
a, Cnidium japonicum, Hedyotis biflora, Eucalyptus
camal, Bruguiera nucronata, Kandelia candel, Mala
lenca leucadendra, Salvadra persica, Casuarina cun
ning hamiana, Casuarina gluaca, Casuarina equiseti
Either folia, Casuarina obesa or Ixeris stolonifera has been found to be effective.

【0019】これらは、ユリ目、カヤツリグサ目、イネ
目、ナデシコ目、イソマツ目、スミレ目、マンサク目、
セリ目、アカネ目及びキク目の10目に分布している。
この他、乾燥地における農業では、灌漑と同時に土壌水
分、地下水位調節のための排水管理も不可欠であり、排
水路、暗渠を整備し、地下水位を限界深以下に下げる工
夫が必要となる。地下水位の深さは、土壌の成層状態な
どによって異なるが、砂質土壌では1.2〜1.5m、粘
土質土壌では1.5〜2.0mの深さが一つの目安とされ
ている。すなわち、特別な手法によらず、塩分濃度を抑
制するための制御可能項目としては、蒸発散量、減水
深、灌漑水量及び作物の吸収による塩分除去量等が挙げ
られる。
These include Lilies, Cyperaceae, Poaceae, Nadesicoceae, Isopine, Violets, Mansaceae,
It is distributed in the tenth order of Acer, Rubiaceae and Chrysanthemum.
In addition, in agriculture in arid land, drainage control for controlling soil moisture and groundwater level is indispensable at the same time as irrigation. It is necessary to improve drainage channels and culverts and to devise ways to lower the groundwater level below the critical depth. The depth of the groundwater level varies depending on the stratification state of the soil, etc., but one guideline is a depth of 1.2 to 1.5 m for sandy soil and 1.5 to 2.0 m for clayey soil. . That is, irrespective of a special method, the controllable items for suppressing the salt concentration include evapotranspiration, water reduction depth, irrigation water, and salt removal by crop absorption.

【0020】[0020]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0021】[0021]

【実施例1】ライシメータを使用した海水灌漑実験 1)模擬砂漠圃場 図4に示すようにライシメータ(水収支の測定できる土
槽)を造成した。平面形状1.7m×1.7m、深さ50cm
の大きさで、貯水できるようにビニールで防水し、下隅
部には排水口を設けバルブを設置した。 2)土壌 砂漠土壌を模擬するために、千葉県市原市産の山砂を充
填した。物性を表1に示す。
Example 1 Seawater irrigation experiment using lysimeter 1) Simulated desert field As shown in FIG. 4, a lysimeter (earth tank capable of measuring water balance) was constructed. Plane shape 1.7m × 1.7m, depth 50cm
The size of the tank is waterproof with vinyl so that water can be stored, and a drain port is provided in the lower corner and a valve is installed. 2) Soil In order to simulate desert soil, mountain sand from Ichihara City, Chiba Prefecture was filled. Table 1 shows the physical properties.

【0022】[0022]

【表1】 [Table 1]

【0023】3)方法 (1)湛水 東京湾の海水を灌漑水として用い、常時湛水するように
して排水量を設定し、圃場の塩分濃度の変化を測定し
た。排水は、純排水量と減水深を合わせて、一日あたり
20mmとした。
3) Method (1) Flooding Using seawater from Tokyo Bay as irrigation water, the amount of drainage was set so as to be constantly flooded, and the change in salinity in the field was measured. The drainage was set to 20 mm per day, including the net drainage and the reduction depth.

【0024】(2)半湛水 東京湾の海水により湛水状態まで灌水し、排水口を開け
て排水し、水位が土壌表面から下10cmになるように設
定した。その後3〜4日かけて自然排水した。これを1
サイクルとして繰り返しおこなった。上記実験の結果、
ビニール温室内の気温・湿度の変化を図5に示す。測定
時刻は毎日午前10時とした。天候の変化により値の変
動は見られたが、平均気温はほぼ40℃前後となり、砂
漠の日中の気温に近い状態となった。図6は湛水灌漑を
行った場合の圃場内塩分濃度の変化を示す。
(2) Semi-flooding Water was immersed in the seawater of Tokyo Bay until it was flooded, the drain was opened, and the water was drained. The water level was set to be 10 cm below the soil surface. After that, natural drainage was performed for 3 to 4 days. This one
It was repeated as a cycle. As a result of the above experiment,
FIG. 5 shows changes in temperature and humidity in the vinyl greenhouse. The measurement time was 10 am every day. Although the values fluctuated due to changes in the weather, the average temperature was around 40 ° C., close to the daytime temperature in the desert. FIG. 6 shows a change in the salt concentration in the field when flooding irrigation is performed.

【0025】灌漑を行うに従って、塩分濃度は海水塩分
濃度の3%から次第に上昇し、4ヶ月後には約4%にな
ったが、4%にほぼ収束していく傾向が見られる。図7
は半湛水条件による灌漑の場合の圃場内塩分濃度の変化
を示す。栽培植物を植えていたため、初期は真水を使用
し、塩分濃度は0%であったが、海水使用後は次第に上
昇し、4ヶ月後には4%を越えた。以上の仮定でサウジ
アラビアの蒸発散量を算定した場合の結果を、図8に示
す。これからわかるように、蒸発散量が全体的に増加し
ているため、圃場塩分濃度も全体として上昇し、7%を
越えることもあるが、灌漑水量を国内の場合より30mm
/day程度以上増加すれば、灌漑期間の終了時期にはほぼ
国内の水準にもどり、持続的に灌漑が可能なことが示唆
されている。
As the irrigation is performed, the salinity gradually increases from 3% of the seawater salinity and reaches about 4% after 4 months, but tends to almost converge to 4%. FIG.
Shows the change of salinity in the field in the case of irrigation under semi-flooded condition. Since cultivated plants were planted, fresh water was used initially and the salt concentration was 0%, but gradually increased after using seawater, and exceeded 4% four months later. FIG. 8 shows the results obtained when the evapotranspiration in Saudi Arabia was calculated based on the above assumptions. As can be seen, the overall salinity of the field also rises due to the overall increase in evapotranspiration, which may exceed 7%, but the irrigation water volume is 30 mm higher than in Japan.
If it increases by about / day or more, it will almost return to the domestic level at the end of the irrigation period, suggesting that irrigation can be sustained.

【0026】[0026]

【実施例2】数ヶ月以上にわたる中長期的な圃場塩分濃
度の管理目標レベルを設定するため、耐塩性植物を用い
て、塩分濃度と植物の耐塩性の関係についての海水灌漑
実験を行った。選択された耐塩性のある栽培植物は、図
9に示すとおりである。
Example 2 In order to set a target management level of field salinity over a period of several months over a medium to long term, seawater irrigation experiments were conducted on the relationship between salinity and plant salinity using salt-tolerant plants. The selected salt-tolerant cultivated plants are as shown in FIG.

【0027】栽培圃場は、ビニール温室内にあるライシ
メータ(図4)を使用し、砂土壌に植物を生育させた。
栽培植物を植えてから約1ヶ月、活着させるために水道
水により、湛水させずに成育させた。活着後、1.塩分
濃度3%の海水により湛水状態まで灌水し、2.排水口
を開けて排水し、水位が土壌表面から下10cmになるよ
うに設定した。3.その後3〜4日で自然排水させた。
これを1サイクルとして繰り返し行った。
The cultivation field used a lysimeter (FIG. 4) in a vinyl greenhouse to grow plants on sandy soil.
The cultivated plants were grown for about one month without flooding with tap water to survive. After the rooting, 1. water was immersed in seawater with a salt concentration of 3% until the state of flooding, and 2. drainage was opened and drained, and the water level was set to be 10 cm below the soil surface. 3. After 3 to 4 days, the water was drained naturally.
This was repeated as one cycle.

【0028】試験結果を図10に示す。樹木は塩分濃度2
%を越えると枯れる傾向にあり、TAMALIXを除く
と海水の塩分濃度3%に耐えることは難しい。単子葉類
は、特にギョウギシバ系ではダメージを受けても、4%
程度の塩分濃度に耐えて約半年以上生存することがわか
った。双子葉類では、シロザが強く、4%濃度に耐える
ことがわかったが、他の種類は樹木と同様2%を越える
と枯れる傾向にある。多肉植物のタイトゴメは、4%で
も生存することがわかった。従って、植物の側から塩分
濃度を考慮すると、圃場における目標とすべき管理塩分
濃度値としては、4%と設定しても現存する耐塩性植物
の現状から見て現実的な値である。
FIG. 10 shows the test results. Trees have a salinity of 2
%, It tends to wither, and it is difficult to withstand a salt concentration of 3% in seawater except for TAMALIX. Monocotyledons are 4% even if damaged
It was found that it survived about half a year tolerating moderate salt concentration. In dicotyledons, shiroza was found to be strong and tolerated 4% concentration, but other species tended to wither at 2% or more like trees. The succulent tight turtle was found to survive even at 4%. Therefore, in consideration of the salt concentration from the plant side, even if it is set to 4% as the target management salt concentration value in the field, it is a realistic value in view of the current state of the existing salt-tolerant plants.

【0029】[0029]

【実施例3】実施例1と同じ条件で、海水灌漑による雑
草(栽培目的以外の植物)除去効果を試験してみたとこ
ろ、図11のような結果を得た。すなわち、海水灌漑する
ことによって、除草剤を使用せずに多くの雑草が3ヶ月
以内に枯死することが分かった。
Example 3 The effect of removing weeds (plants other than those for cultivation purposes) by seawater irrigation was tested under the same conditions as in Example 1, and the results as shown in FIG. 11 were obtained. That is, it was found that many weeds die within 3 months without using herbicides by seawater irrigation.

【0030】[0030]

【発明の効果】海水灌漑技術と海水で生存できる植物と
を組み合わせることにより、真水の少ない地域(砂漠)
を緑化することができ、緑化植物の炭酸固定により二酸
化炭素の削減が期待でき、地域温暖化現象の緩和に寄与
できる。また、除草剤を使用せずに雑草を除去できる効
果も有する。
By combining seawater irrigation technology with plants that can survive in seawater, areas with little fresh water (deserts)
Can be planted, carbon dioxide can be reduced by carbonation fixation of planting plants, and it can contribute to the mitigation of local warming phenomenon. It also has the effect of removing weeds without using a herbicide.

【図面の簡単な説明】[Brief description of the drawings]

【図1】灌漑水量と圃場塩分濃度との関係を示す図。FIG. 1 is a diagram showing the relationship between irrigation water volume and field salinity.

【図2】初期に汽水を利用した場合の圃場塩分濃度の変
化を示す図。
FIG. 2 is a diagram showing a change in field salinity when brackish water is used at the beginning.

【図3】間断的な汽水の利用による灌漑を示す図。FIG. 3 is a diagram showing irrigation using intermittent brackish water.

【図4】ライシメータ断面図と湛水灌漑を示す図。FIG. 4 is a diagram showing a lysimeter cross section and flooded irrigation.

【図5】温室内の気温と湿度の変化を示す図。FIG. 5 is a diagram showing changes in temperature and humidity in a greenhouse.

【図6】湛水において圃場塩分濃度の変化を示す図。FIG. 6 is a diagram showing a change in field salinity during flooding.

【図7】半湛水において圃場塩分濃度の変化を示す図。FIG. 7 is a diagram showing a change in field salinity in semi-flooded water.

【図8】カフジにおける圃場塩分濃度の変化を示す図。FIG. 8 is a diagram showing a change in field salinity in Kafuji.

【図9】選択された耐塩性のある栽培植物の一覧を示す
図。
FIG. 9 is a diagram showing a list of selected salt-tolerant cultivated plants.

【図10】中・長期海水耐性試験結果を示す図。FIG. 10 is a view showing the results of a middle / long-term seawater resistance test.

【図11】海水除草効果を示す図。FIG. 11 is a view showing a seawater weeding effect.

【図12】海水除草効果を示す図。図11の続き。FIG. 12 is a view showing a seawater weeding effect. Continuation of FIG.

【図13】海水除草効果を示す図。図12の続き。FIG. 13 is a view showing a seawater weeding effect. Continuation of FIG.

【図14】海水除草効果を示す図。図13の続き。FIG. 14 is a view showing a seawater weeding effect. Continuation of FIG.

フロントページの続き (72)発明者 吉田 光毅 東京都新宿区西新宿一丁目25番1号 大成 建設株式会社内 (72)発明者 秋吉 美穂 東京都新宿区西新宿一丁目25番1号 大成 建設株式会社内 Fターム(参考) 2B022 AA01 AB02 AB20 DA19 Continuing from the front page (72) Inventor Mitsuki Yoshida 1-25-1, Nishishinjuku, Shinjuku-ku, Tokyo Taisei Construction Co., Ltd. (72) Inventor Miho Akiyoshi 1-25-1, Nishishinjuku, Shinjuku-ku, Tokyo Taisei Construction F term in the company (reference) 2B022 AA01 AB02 AB20 DA19

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 海水による灌漑を湛水状態で行うことを
特徴とする灌漑方法。
1. An irrigation method characterized by performing irrigation with seawater in a flooded state.
【請求項2】 海水による灌漑地に耐塩性植物を植生す
ることを特徴とする請求項1記載の灌漑方法。
2. The irrigation method according to claim 1, wherein a salt-tolerant plant is vegetated in a seawater irrigated area.
JP11000860A 1999-01-06 1999-01-06 Phyto-remediation technology using sea water irrigation Pending JP2000197420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11000860A JP2000197420A (en) 1999-01-06 1999-01-06 Phyto-remediation technology using sea water irrigation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11000860A JP2000197420A (en) 1999-01-06 1999-01-06 Phyto-remediation technology using sea water irrigation

Publications (1)

Publication Number Publication Date
JP2000197420A true JP2000197420A (en) 2000-07-18

Family

ID=11485430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11000860A Pending JP2000197420A (en) 1999-01-06 1999-01-06 Phyto-remediation technology using sea water irrigation

Country Status (1)

Country Link
JP (1) JP2000197420A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100694827B1 (en) * 2005-12-29 2007-03-13 주식회사 시내 & 들 Method of producing halophytes for planting in salt damaged area
KR100694828B1 (en) * 2006-01-02 2007-03-13 주식회사 시내 & 들 Method for planting halophytes into salt damaged area
KR100815496B1 (en) * 2006-06-20 2008-03-20 주식회사 시내 & 들 Method of Adapting Non-Halophytes to Halophytes using Soil Amelioration Composition
JP2020114188A (en) * 2019-01-18 2020-07-30 国立大学法人 鹿児島大学 Method for culturing salicornia europaea l.
CN116368984A (en) * 2023-04-10 2023-07-04 中国水利水电科学研究院 Method for cooperatively solving water shortage and salinization of oasis irrigation in arid region

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100694827B1 (en) * 2005-12-29 2007-03-13 주식회사 시내 & 들 Method of producing halophytes for planting in salt damaged area
KR100694828B1 (en) * 2006-01-02 2007-03-13 주식회사 시내 & 들 Method for planting halophytes into salt damaged area
KR100815496B1 (en) * 2006-06-20 2008-03-20 주식회사 시내 & 들 Method of Adapting Non-Halophytes to Halophytes using Soil Amelioration Composition
JP2020114188A (en) * 2019-01-18 2020-07-30 国立大学法人 鹿児島大学 Method for culturing salicornia europaea l.
CN116368984A (en) * 2023-04-10 2023-07-04 中国水利水电科学研究院 Method for cooperatively solving water shortage and salinization of oasis irrigation in arid region
CN116368984B (en) * 2023-04-10 2023-11-10 中国水利水电科学研究院 Method for cooperatively solving water shortage and salinization of oasis irrigation in arid region

Similar Documents

Publication Publication Date Title
Manik et al. Soil and crop management practices to minimize the impact of waterlogging on crop productivity
Wen et al. Soil erosion control practices in the Chinese Loess Plateau: A systematic review
Klingebiel et al. Land-capability classification
Holmes et al. A decision-making framework for restoring riparian zones degraded by invasive alien plants in South Africa
Shaxson et al. Optimizing soil moisture for plant production: The significance of soil porosity
CN101790933B (en) Method for constructing water fluctuation belt vegetations of Three Gorges reservoir by vertical arrangement of arbor-bush-grass
Armitage Irrigated forestry in arid and semi-arid lands: a synthesis
Ramoliya et al. Effect of increasing salt concentration on emergence, growth and survival of seedlings of Salvadora oleoides (Salvadoraceae)
Gurnell Analogies between mineral sediment and vegetative particle dynamics in fluvial systems
Confalonieri et al. Scientific contribution on combining biophysical criteria underpinning the delineation of agricultural areas affected by specific constraints
Tsubo et al. Effects of soil clay content on water balance and productivity in rainfed lowland rice ecosystem in Northeast Thailand
Sarvade et al. Soil and water conservation techniques for sustainable agriculture
Allen et al. Irrigation and water management
Glenn et al. Deficit irrigation of a landscape halophyte for reuse of saline waste water in a desert city
Kaila et al. Assessment of phosphorus retention efficiency of blanket peat buffer areas using a laboratory flume approach
JP2000197420A (en) Phyto-remediation technology using sea water irrigation
Dhiman et al. Water management for sustainability of irrigated agriculture: An Indian perspective
RU2401906C2 (en) Method for revegetation biodraining of irrigated land soils, which are salinised
Ahmad Soil water management systems for a drier Caribbean.
Rashid et al. Assessment of runoff and sediment losses under different slope gradients and crop covers in semi-arid watersheds.
Ramoliya et al. Effect of salinization of soil on emergence, growth and survival of seedlings of Acacia nilotica
Tiwari et al. Soil Conservation and Restoration: Strategies to Combat Soil Erosion and Rehabilitate Degraded Lands
Qamar et al. Management of Crops in Water-Logged Soil
Ulén et al. Phosphorus load from agricultural land to the Baltic Sea
Southorn Farm Irrigation