JP2000195646A - Manufacture of spark plug, and spark plug - Google Patents

Manufacture of spark plug, and spark plug

Info

Publication number
JP2000195646A
JP2000195646A JP10370500A JP37050098A JP2000195646A JP 2000195646 A JP2000195646 A JP 2000195646A JP 10370500 A JP10370500 A JP 10370500A JP 37050098 A JP37050098 A JP 37050098A JP 2000195646 A JP2000195646 A JP 2000195646A
Authority
JP
Japan
Prior art keywords
tip
spark plug
main body
metal shell
ground electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10370500A
Other languages
Japanese (ja)
Inventor
Hideki Teramura
英己 寺村
Akira Hirose
彰 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP10370500A priority Critical patent/JP2000195646A/en
Publication of JP2000195646A publication Critical patent/JP2000195646A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spark Plugs (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method giving high joint strength and being less liable to cause defects in a boundary face of joint, in the case of a spark plug with a main metallic part made up by joining a body part to an end part, different in material from each other. SOLUTION: An end part 1B, with which a ground electrode 4 is unified, of a main metallic part 1 is formed of a heat-resisting second structure 51 while the second structure 51 is joined by friction grip joint to a first structure 50 of a ferrous metal. In comparison with the conventional resistance welding method, troubles such as defects are less liable to occur. and the manufacturing yield can be enhanced. In comparison with the resistance welding method, the joint strength of a body part 1A to the end part 1B is enhanced, and such a trouble that the body part 1A comes off the end part 1B from a defective part, is less liable to occur, if a thread part 7 is formed by rolling, etc., on an outer circumferential surface of the main metallic part 1 in extending relation from the body part 1A to the end part 1B, or if some shock is exerted thereon when a spark plug is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は内燃機関に使用され
るスパークプラグに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spark plug used for an internal combustion engine.

【0002】[0002]

【従来の技術】内燃機関用のスパークプラグは一般に、
中心電極の周囲に絶縁体を配し、その外側にさらに筒状
の主体金具を配するとともに、その主体金具の端面に接
地電極の基端部を溶接等により接合し、先端側を中心電
極に対向させた構造を有している。しかしながら、レー
ス用等の特に苛酷な条件にてスパークプラグを使用する
場合、高温下にて激しい衝撃が繰返し加わることから、
溶接接合した接地電極が基端部で折れたりするトラブル
が発生することがある。そこで、このような使用環境を
想定した自動車用スパークプラグの中には、別体の接地
電極を主体金具に接合するのではなく、同一の素材から
の切削等により主体金具先端部と接地電極とを一体形成
したタイプのものが開発されている。この構造によれ
ば、接地電極の基端側に溶接部が形成されないので、接
地電極の耐折損性を大幅に向上することができる。
BACKGROUND OF THE INVENTION Spark plugs for internal combustion engines are generally
An insulator is arranged around the center electrode, and a cylindrical metal shell is further arranged outside the metal shell.The base end of the ground electrode is joined to the end face of the metal shell by welding or the like, and the tip side is used as the center electrode. It has a structure that faces each other. However, when using spark plugs under particularly severe conditions such as for racing, severe impacts are repeatedly applied at high temperatures,
In some cases, the ground electrode welded may be broken at the base end. Therefore, instead of joining a separate ground electrode to the metal shell, some of the automotive spark plugs supposed to be used in this environment have the metal shell tip and the ground electrode formed by cutting from the same material. Are integrally formed. According to this structure, since no welded portion is formed on the base end side of the ground electrode, the breakage resistance of the ground electrode can be significantly improved.

【0003】ところで、スパークプラグの接地電極は、
シリンダヘッド内で高温にさらされることから、Ni合
金等の耐熱合金で構成する必要がある。このような接地
電極を、上記のように主体金具と一体形成しようとすれ
ば、当然主体金具も耐熱合金で構成する必要が生ずる。
しかしながら、主体金具の全体を高価な耐熱合金で構成
することは製造コストの大幅なアップを招くので、通常
は接地電極が一体化される主体金具の先端部のみを耐熱
合金で構成し、残余の本体部分を炭素鋼など安価な鉄系
材料で構成して、両者を接合する方式が採用されてい
る。この接合方法として、従来、抵抗溶接が採用されて
いる。
By the way, the ground electrode of the spark plug is
Since it is exposed to a high temperature in the cylinder head, it must be made of a heat-resistant alloy such as a Ni alloy. If such a ground electrode is to be integrally formed with the metal shell as described above, the metal shell must of course be made of a heat-resistant alloy.
However, forming the entire metal shell from an expensive heat-resistant alloy causes a significant increase in manufacturing cost. Therefore, usually, only the tip of the metal shell to which the ground electrode is integrated is formed from a heat-resistant alloy, and the remaining metal is used. A method is adopted in which the main body is made of an inexpensive iron-based material such as carbon steel, and the two are joined. Conventionally, resistance welding is employed as this joining method.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、抵抗溶
接法の場合、欠陥等の溶接不具合が発生しやすく、歩留
まり低下を招きやすい欠点がある。その原因としては、
本体部と先端部との被接合面に局所的な凹凸による接触
ムラや酸化被膜等が存在していると、通電の均一性が損
なわれて溶接状態が安定しにくくなり、発熱が不均一と
なって溶接欠陥を生じやすくなることが考えられる。接
合界面に溶接欠陥が発生すると、例えば、本体部と先端
部とにまたがる形で主体金具の外周面に取付ねじ部を転
造等により形成しようとした場合に、本体部と先端部と
が欠陥部分から剥離したりするトラブルが発生すること
もある。
However, in the case of the resistance welding method, welding defects such as defects are apt to occur, and there is a disadvantage that the yield is easily reduced. The cause is
If there is uneven contact or oxide film due to local irregularities on the surface to be joined between the main body and the tip, the uniformity of energization will be impaired and the welding state will be difficult to stabilize, resulting in uneven heat generation. It is conceivable that welding defects easily occur. When a welding defect occurs at the joint interface, for example, when the mounting screw portion is formed by rolling or the like on the outer peripheral surface of the metal shell so as to straddle the main body portion and the front end portion, the main body portion and the front end portion are defective. Troubles such as peeling off from parts may occur.

【0005】また、仮に欠陥の少ない溶接部が形成され
たとしても、抵抗溶接においては通電発熱に伴う拡散接
合機構が主体になるため、生産性を考慮した比較的短時
間の通電では十分な厚さの拡散接合層が形成されず、接
合強度が不足しやすい欠点がある。
[0005] Even if a weld having few defects is formed, the resistance welding mainly involves a diffusion bonding mechanism associated with heat generation by energization. However, there is a disadvantage that the diffusion bonding layer is not formed, and the bonding strength tends to be insufficient.

【0006】本発明の課題は、互いに材質の異なる本体
部と先端部とを接合して主体金具を構成したスパークプ
ラグにおいて、接合強度が高く、また接合界面に欠陥が
生じにくく製造歩留まりが良好なスパークプラグの製造
方法と、それによって製造可能なスパークプラグとを提
供することにある。
An object of the present invention is to provide a spark plug in which a metal shell is formed by joining a main body portion and a tip portion made of different materials to each other, so that the joining strength is high, a defect is not generated at the joining interface, and the production yield is good. It is an object of the present invention to provide a method for manufacturing a spark plug and a spark plug that can be manufactured thereby.

【0007】[0007]

【課題を解決するための手段及び作用・効果】本発明
は、中心電極と、その中心電極の外側に設けられた絶縁
体と、その絶縁体の外側に設けられた主体金具と、その
主体金具に基端側が一体化され、先端側が中心電極と対
向する接地電極とを備えたスパークプラグの製造方法に
係り、上記の課題を解決するために、主体金具を軸線方
向において二分し、接地電極が一体化される側を先端
部、残余の部分を本体部として、本体部となるべき鉄系
金属製の第一構造体と、先端部となるべき第二構造体で
あって、第一構造体を構成する鉄系金属よりも耐熱性が
良好な金属材料にて構成された第二構造体とを、軸線方
向において摩擦接合する摩擦接合工程を含むことを特徴
とする。
The present invention provides a center electrode, an insulator provided outside the center electrode, a metal shell provided outside the insulator, and the metal shell. According to a method for manufacturing a spark plug having a base end side integrated with a ground electrode whose front end side is opposed to a center electrode, in order to solve the above-described problems, the metal shell is bisected in the axial direction, and the ground electrode is A first structure made of an iron-based metal to be a main body, and a second structure to be a front end, the first structure being a main body, with a side to be integrated being a front end and a remaining part being a main body. And a second structural body made of a metal material having better heat resistance than the ferrous metal.

【0008】上記の製法によれば、主体金具の接地電極
が一体化される側の先端部を、耐熱性の第二構造体によ
り形成する一方、この第二構造体を鉄系金属の第一構造
体と摩擦接合により接合することにより、従来の抵抗溶
接法と比較して欠陥等の不具合が発生しにくくなり、製
造歩留まりの向上を図ることができる。また、抵抗溶接
法と比較して、主体金具の第一構造体に基づく本体部
と、同じく第二構造体に基づく先端部との接合強度が向
上し、例えば本体部と先端部とにまたがる形で主体金具
の外周面に取付ねじ部を転造等により形成したり、ある
いはスパークプラグ使用時に多少の衝撃が加わったりし
ても、本体部と先端部とが欠陥部分から剥離したりする
トラブルが極めて発生しにくくなる。
According to the above-mentioned manufacturing method, the tip of the metal shell on the side where the ground electrode is integrated is formed of the heat-resistant second structure, and the second structure is formed of the first metal of the ferrous metal. By joining to the structure by friction joining, defects such as defects are less likely to occur as compared with the conventional resistance welding method, and the production yield can be improved. In addition, compared to the resistance welding method, the joining strength between the main body portion of the metal shell based on the first structure and the tip portion also based on the second structure is improved, and, for example, a shape extending over the main body portion and the tip portion. Even if the mounting screw is formed on the outer peripheral surface of the metal shell by rolling, etc., or if a slight impact is applied when using a spark plug, there is a problem that the main body and the tip will peel off from the defective part. It is extremely unlikely to occur.

【0009】上記の製法により、接合部の欠陥が減少
し、また接合強度が向上する要因は下記のように推測さ
れる。摩擦接合法は、被接合物同士を接合界面にて互い
に接触させつつ相対的に運動させ、その摩擦による発熱
を利用して接合を行う。被接合物同士が界面を挟んで激
しく運動することから、局所的な凹凸による接触ムラが
生じにくく、界面全体にわたって均一な発熱を期待する
ことができる。また、抵抗加熱の場合は、酸化被膜等の
存在による電気的な導通不良が通電電流値、ひいては発
熱量に大きな影響を与えるのに対し、通電を利用しない
摩擦接合は当然のことながら電気的な導通状態にはほと
んど無関係であり、処理前の接合界面の清浄度にそれほ
ど敏感に影響されることなく、均一な発熱状態が形成さ
れる。その結果、発熱が不均一に基づく欠陥が生じにく
くなると考えられる。
[0009] The factors that reduce the defects at the joints and improve the joint strength by the above manufacturing method are presumed as follows. In the friction welding method, objects to be welded are relatively moved while being in contact with each other at a welding interface, and welding is performed using heat generated by the friction. Since objects to be bonded violently move across the interface, contact unevenness due to local unevenness is unlikely to occur, and uniform heat generation can be expected over the entire interface. In addition, in the case of resistance heating, electrical conduction failure due to the presence of an oxide film or the like has a large effect on an energized current value and, consequently, a calorific value. Almost independent of the conduction state, a uniform heat generation state is formed without being so sensitively affected by the cleanliness of the bonding interface before processing. As a result, it is considered that a defect based on uneven heat generation hardly occurs.

【0010】また、摩擦接合法と抵抗溶接法とでは、下
記のようなさらに重要な相違点が存在する。すなわち、
抵抗溶接法では、接合処理中に被接合物(第一構造体と
第二構造体)同士が相対運動を全く起こさないため、接
合機構は被接合物間の接触界面を介した成分拡散が専ら
主体となる。従って、前述の通り短時間の通電加熱で
は、十分な厚さの拡散層形成が望めない場合がある。ま
た、第一構造体と第二構造体との各主成分元素の相互拡
散速度が必ずしも同じであるとは限らず、場合によって
は両者には大きな差が存在する。その結果、いわゆるカ
ーケンダール効果により、接合界面に多数のボイドが形
成されることがある。これらはいずれも接合の信頼性の
低下を招来しうる。
[0010] Further, the following important differences exist between the friction welding method and the resistance welding method. That is,
In the resistance welding method, the objects to be joined (the first structure and the second structure) do not move relative to each other at all during the joining process, and therefore, the joining mechanism is exclusively based on the diffusion of components through the contact interface between the objects to be joined. Be the subject. Therefore, as described above, the formation of a diffusion layer having a sufficient thickness may not be expected by short-time heating. Further, the mutual diffusion rates of the main component elements of the first structure and the second structure are not always the same, and in some cases, there is a large difference between the two. As a result, a large number of voids may be formed at the bonding interface due to the so-called Kirkendale effect. All of these can lead to a decrease in the reliability of the joint.

【0011】これに対し、摩擦接合法においては、摩擦
発熱による拡散接合効果に加え、第一構造体と第二構造
体とが界面を挟んで激しく相対運動するので、発熱・軟
化した接触部分に激しい機械的混合力が加わることとな
る。その結果、図4(b)に示すように、第一構造体と
第二構造体との界面はその混合効果により複雑に入り組
んだ構造を呈するものとなり、また、さらに進んでは同
図(c)に示すように、熱的な拡散処理では望むべくも
ない機械合金化層をかなりの厚さで形成することができ
る。また、第一構造体と第二構造体との間に上記のよう
な相互拡散係数の差が存在していたとしても、機械的混
合力が加わることで均一な合金状態が得られるので、欠
陥も少なくなる。なお、機械合金化層の両側には、それ
ぞれ拡散層が形成されることもあるが、通電発熱の場合
と異なり、摩擦熱が両構造体の接触界面付近にて局所的
に発生し、界面から離れた部分では構造体の運動(例え
ば高速回転)に伴う冷却効果も加わるので、抵抗溶接法
の場合よりもその厚さは小さくなる。従って、上記相互
拡散係数の差に起因したボイド等の発生も抑制すること
ができる。以上のことから、本発明によれば、主体金具
の本体部と先端部との接合の信頼性を高めることができ
る。
On the other hand, in the friction joining method, in addition to the diffusion joining effect due to frictional heating, the first structure and the second structure move vigorously relative to each other across the interface. Intense mechanical mixing forces will be applied. As a result, as shown in FIG. 4B, the interface between the first structure and the second structure has a complicated and complicated structure due to the mixing effect, and further proceeds to FIG. 4C. As shown in FIG. 5, a thermal alloying treatment can produce a mechanical alloying layer of a considerable thickness, which is not desired. Further, even if there is a difference in the mutual diffusion coefficient between the first structure and the second structure as described above, a uniform alloy state can be obtained by applying a mechanical mixing force. Is also reduced. Diffusion layers may be formed on both sides of the mechanical alloying layer, however, unlike in the case of energization and heating, frictional heat is locally generated near the contact interface between both structures, and from the interface. Since the cooling effect accompanying the movement of the structure (for example, high-speed rotation) is added to the distant portion, the thickness is smaller than that of the resistance welding method. Therefore, the occurrence of voids and the like due to the difference between the mutual diffusion coefficients can be suppressed. As described above, according to the present invention, it is possible to increase the reliability of joining between the main body and the distal end of the metal shell.

【0012】上記本発明のスパークプラグの製造方法に
おいては、摩擦接合を行う前又は行った後において第二
構造体に対し、切削、切断及び研磨の少なくともいずれ
かを含む除去加工を施して、接地電極及び先端部に予定
された部分以外を除去することにより、該第二構造体に
接地電極部分を形成する加工工程を行うことができる。
材料状態においてもともと1つのものである第二構造体
から、不要部分の除去により接地電極を形成すること
で、接地電極と主体金具との間に接合部が形成されなく
なり、接地電極の耐折損性を大幅に向上することができ
る。
In the method for manufacturing a spark plug according to the present invention, before or after performing the friction joining, the second structure is subjected to a removing process including at least one of cutting, cutting, and polishing to ground. By removing portions other than the electrode and the portion intended for the tip portion, a processing step of forming a ground electrode portion on the second structure can be performed.
By forming the ground electrode by removing unnecessary parts from the second structure, which is originally one in the material state, no joint is formed between the ground electrode and the metal shell, and the ground electrode has a breakage resistance. Can be greatly improved.

【0013】摩擦接合工程は、第一構造体と第二構造体
とを接合面にて当接させて軸線方向に加圧しつつ、それ
らを該軸線周りに相対回転させることにより両者を摩擦
接合する形で実施できる。これにより、両構造体の接合
面に機械的な相対運動力を効率よく加えることができ、
ひいては良好な接合状態を簡単に形成することができ
る。
In the friction joining step, the first structure and the second structure are brought into contact with each other at the joint surface and pressurized in the axial direction, and are relatively rotated around the axis to frictionally join them. It can be implemented in the form. As a result, a mechanical relative kinetic force can be efficiently applied to the joint surface of the two structures,
As a result, a good bonding state can be easily formed.

【0014】第二構造体はNi系耐熱合金にて構成する
ことができる。Ni系耐熱合金は、高温強度に優れ、か
つ第一構造体の主成分であるFeとの親和性も高いの
で、高強度の接合状態を形成可能である。
The second structure can be made of a Ni-based heat-resistant alloy. Since the Ni-based heat-resistant alloy has excellent high-temperature strength and high affinity with Fe, which is a main component of the first structure, a high-strength bonded state can be formed.

【0015】上記のような本発明の製造方法により、下
記のような特有の構造を有する本発明のスパークプラグ
が実現される。該スパークプラグは、主体金具を軸線方
向において二分し、接地電極が一体化される側を先端
部、残余の部分を本体部として、本体部が鉄系金属によ
り構成され、先端部及びこれに一体化された接地電極と
が、本体部を構成する鉄系金属よりも耐熱性が良好な金
属材料にて構成され、本体部と先端部との間には、それ
ら本体部と先端部の各主成分金属元素が、各々両部の中
間の組成比率にて混在した接合層が形成される。そし
て、図6に模式的に示すように、接合層内の任意の位置
における、本体部の主成分金属元素たるFe(以下、本
体主成分という)の重量濃度をNA、該本体主成分の本
体部内での平均重量濃度をNAM、同じく先端部内での平
均重量濃度をNATとし、また接合層内の任意の位置にお
ける先端部の主成分金属元素(以下、先端主成分とい
う)の重量濃度をNB、該先端主成分の先端部内での平
均重量濃度をNBT、同じく本体部内での平均重量濃度を
NBMとして、接合層内の本体主成分の相対濃度SAを、 SA=(NA−NAT)/(NAM−NAT); 接合層内の先端主成分の相対濃度SBを、 SB=(NB−NBM)/(NBT−NBM); にてそれぞれ定義したときに、接合層には、0.3≦S
B/(SA+SB)≦0.7となる領域が、厚さ3μm以
上にて形成されていることを特徴とする。
By the manufacturing method of the present invention as described above, the spark plug of the present invention having the following specific structure is realized. In the spark plug, the metal shell is bisected in the axial direction, and the side where the ground electrode is integrated is the tip, and the remaining part is the main body. The main body is made of an iron-based metal. The grounded electrode is made of a metal material having better heat resistance than the iron-based metal constituting the main body, and between the main body and the distal end, each of the main body and the distal end is formed. A bonding layer in which the component metal elements are mixed at an intermediate composition ratio between the two parts is formed. Then, as schematically shown in FIG. 6, the weight concentration of Fe (hereinafter, referred to as main body main component) as a main metal element of the main body portion at an arbitrary position in the bonding layer is set to NA, The average weight concentration in the part is NAM, the average weight concentration in the tip part is NAT, and the weight concentration of the main component metal element at the tip part (hereinafter referred to as tip main component) at an arbitrary position in the bonding layer is NB. Assuming that the average weight concentration in the tip portion of the tip main component in the tip portion is NBT and the average weight concentration in the body portion is NBM, the relative concentration SA of the main component in the bonding layer is given by: SA = (NA−NAT) / ( NAM-NAT); When the relative concentration SB of the tip main component in the bonding layer is defined as: SB = (NB−NBM) / (NBT−NBM), 0.3 ≦ S
A region where B / (SA + SB) ≦ 0.7 is formed with a thickness of 3 μm or more.

【0016】0.3≦SB/(SA+SB)≦0.7とな
る領域を厚さ3μm以上確保することで、主体金具の第
一構造体に基づく本体部と、同じく第二構造体に基づく
先端部との間には、欠陥が少なく強度の優れた接合状態
を形成することができる。例えば従来の抵抗溶接法で
は、第一構造体と第二構造体との間には熱的な成分拡散
が生ずるのみであるから、図7(a)に示すように、先
端主成分と本体主成分との濃度は接合界面を経てほぼ連
続的に変化するものとなり、かつ通電発熱時間が比較的
短く抑えられることから、その濃度変化領域の厚さも小
さくなる。従って、0.3≦KB≦0.7(ただし、KB
=SB/(SA+SB))となる領域の厚さtも、精々2
μm以下の小さなものとなる。しかしながら、摩擦接合
による本発明の方法を採用した場合は、図7(b)に示
すように、前述の機械合金化効果により第一構造体と第
二構造体との各材質がほぼ均等に混合され、先端主成分
と本体主成分との、接合方向の各濃度変化率が前後の拡
散領域よりも小さく抑えられる層(前述の機械合金化領
域に対応するものである)が、接合界面付近に相当の厚
さにて形成される。その結果、上記領域の厚さtを、抵
抗溶接法では不可能であった3μm以上の大きな値にて
確保することができ、接合の信頼性が高められる。な
お、該厚さtは、より望ましくは5μm以上にて形成さ
れているのがよい。
By securing an area of 0.3 ≦ SB / (SA + SB) ≦ 0.7 with a thickness of 3 μm or more, the main body of the metal shell based on the first structure and the tip of the metal shell based on the second structure are also formed. A bonded state having few defects and excellent strength can be formed with the portion. For example, in the conventional resistance welding method, only thermal component diffusion occurs between the first structure and the second structure. Therefore, as shown in FIG. The concentration of the component changes almost continuously through the bonding interface, and the heat generation time is kept relatively short, so that the thickness of the concentration change region also becomes small. Therefore, 0.3 ≦ KB ≦ 0.7 (where KB
= SB / (SA + SB)) also has a thickness t of at most 2.
It is as small as μm or less. However, when the method of the present invention based on friction welding is employed, as shown in FIG. 7B, the respective materials of the first structure and the second structure are almost uniformly mixed due to the mechanical alloying effect described above. A layer (corresponding to the aforementioned mechanical alloying region) in which the rate of change of each concentration in the joining direction between the tip main component and the main body main component is suppressed to be smaller than the diffusion regions before and after is formed near the joining interface. It is formed with a considerable thickness. As a result, the thickness t of the region can be secured at a large value of 3 μm or more, which was impossible by the resistance welding method, and the reliability of the joining is improved. The thickness t is more desirably 5 μm or more.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態を図面
を用いて説明する。図1に示す本発明の一例たるスパー
クプラグ100は、筒状の主体金具1、該主体金具1の
内側に嵌め込まれた絶縁体2、その絶縁体2から先端部
が露出した状態でその内側に設けられる中心電極3、及
びその主体金具3に基端側が一体化され、先端側が中心
電極3と対向する接地電極4とを備えている。
Embodiments of the present invention will be described below with reference to the drawings. A spark plug 100 as an example of the present invention shown in FIG. 1 includes a cylindrical metal shell 1, an insulator 2 fitted inside the metal shell 1, and a tip portion exposed from the insulator 2 with the tip end exposed. A center electrode 3 is provided and a ground electrode 4 whose base end is integrated with the metal shell 3 and whose front end faces the center electrode 3.

【0018】絶縁体2は、例えばアルミナあるいは窒化
アルミニウム等のセラミック焼結体により構成され、自
身の軸縁方向に沿って形成された貫通孔6に中心電極3
がはめ込まれている。
The insulator 2 is made of, for example, a ceramic sintered body such as alumina or aluminum nitride, and has a central electrode 3 in a through hole 6 formed along its own axial edge direction.
Is inset.

【0019】また、主体金具1は、全体が円筒状に形成
されており、スパークプラグ1のハウジングを構成す
る。該主体金具1は軸線方向において二分され、接地電
極4が一体化される側を先端部1B、残余の部分を本体
部1Aとして、本体部1Aが低炭素鋼等の鉄系金属によ
り構成され、先端部1B及びこれに一体化された接地電
極4とが、本体部1Aを構成する鉄系金属よりも耐熱性
が良好な金属材料、例えばインコネル600(「インコ
ネル(Inconel)」は英国Inco社の商標名)等のNi基
耐熱合金にてにて構成されている。主体金具1の先端側
の外周面には、上記本体部1Aと先端部1Bとにまたが
る形態で取付ねじ部7が形成されている。他方、本体部
1Aには、取付ねじ部7の基端側に隣接する形でガスシ
ール部1cと六角部1eとが形成されている。また、1
dは、絶縁体2に対し主体金具1を固定するための加締
部である。
The metal shell 1 is formed in a cylindrical shape as a whole, and forms a housing of the spark plug 1. The metal shell 1 is bisected in the axial direction, and the side where the ground electrode 4 is integrated is the tip 1B, and the remaining part is the main body 1A, and the main body 1A is made of an iron-based metal such as low carbon steel. The tip portion 1B and the ground electrode 4 integrated with the tip portion 1B are made of a metal material having better heat resistance than the iron-based metal constituting the main body portion 1A, for example, Inconel 600 (“Inconel” is a product of Inco UK). (Trade name) or the like. On the outer peripheral surface on the distal end side of the metal shell 1, a mounting screw portion 7 is formed so as to extend over the main body portion 1A and the distal end portion 1B. On the other hand, in the main body 1A, a gas seal portion 1c and a hexagonal portion 1e are formed adjacent to the base end side of the mounting screw portion 7. Also, 1
d is a caulking part for fixing the metal shell 1 to the insulator 2.

【0020】接地電極4は、主体金具1の先端面に対
し、基端部4aが内向きに傾斜する形で一体化される一
方、先端部4bは中心電極3の先端面とほぼ平行となる
ようにこれと対向している。また、基端部4aは先端部
4bよりも太径に形成されている。これにより、衝撃等
を受けたときの接地電極4の耐折損性が一層高められて
いる。この実施例では、基端部4aの両側面を裾拡がり
形態のテーパ面とすることで、これを広幅化している。
The ground electrode 4 is integrated with the distal end surface of the metal shell 1 such that the base end 4a is inclined inward, while the distal end 4b is substantially parallel to the distal end surface of the center electrode 3. As opposed to this. Further, the base end 4a has a larger diameter than the tip 4b. Thereby, the breakage resistance of the ground electrode 4 when receiving an impact or the like is further enhanced. In this embodiment, both sides of the base end portion 4a are formed as tapered surfaces in a flared form to widen the width.

【0021】次に、主体金具1の本体部1Aと先端部1
Bとの間には、図4(c)に模式的に示すように、それ
ら本体部1Aの主成分金属元素(この場合、Fe)と、
先端部1B主成分金属元素(この場合、Ni)とが、各
々両部の中間の組成比率にて混在した接合層が形成され
る。この接合層には、図6にてすでに説明した通り、K
B=SB/(SA+SB)として、0.3≦KB≦0.7と
なる領域が厚さ3μm以上、望ましくは5μm以上にて
形成される。
Next, the main body 1A of the metal shell 1 and the tip 1
As shown schematically in FIG. 4 (c), the main component metal element (Fe in this case) of the main body 1A and
A bonding layer is formed in which the tip portion 1B main component metal element (in this case, Ni) is mixed at an intermediate composition ratio between the two portions. As described above with reference to FIG.
Assuming that B = SB / (SA + SB), a region where 0.3 ≦ KB ≦ 0.7 is formed with a thickness of 3 μm or more, preferably 5 μm or more.

【0022】このようなスパークプラグ100は、例え
ば次のようにして製造できる。図2(a)に示すよう
に、主体金具1の本体部1Aとなるべき第一構造体50
と、先端部1Bとなるべき第二構造体51とを用意す
る。この実施例では、第一構造体50は低炭素鋼で構成
され、鍛造加工によりガスシール部1cと六角部1eと
がすでに形成されている。ただし、この段階において先
端側の筒状部7aには、取付ねじ部7はまだ形成されて
おらず、また、摩擦接合の面圧を均一化するために、筒
状部7aの先端は閉じた形状とされている。さらに、そ
の閉じた先端面の中央には、接合初期段階にて摩擦圧力
を面中央部に集中させ、該中央部の発熱ひいては材料軟
化を促進するために、凸部7bが形成されている。一
方、第二構造体51は、Ni基耐熱合金により、筒状部
7aと略同一外径の中実円柱形状に形成されている。な
お、この実施例では、第一構造体50の筒状部7aの軸
線方向長さは約22.5mm、第二構造体51の軸線方
向長さは約7mmにそれぞれ設定している。
Such a spark plug 100 can be manufactured, for example, as follows. As shown in FIG. 2A, a first structure 50 to be the main body 1A of the metal shell 1
And a second structure 51 to be the tip 1B. In this embodiment, the first structure 50 is made of low carbon steel, and the gas seal portion 1c and the hexagonal portion 1e are already formed by forging. However, at this stage, the mounting screw portion 7 is not yet formed in the cylindrical portion 7a on the distal end side, and the distal end of the cylindrical portion 7a is closed in order to equalize the surface pressure of the friction welding. It is shaped. Further, a convex portion 7b is formed at the center of the closed front end surface in order to concentrate frictional pressure in the central portion of the surface at the initial stage of joining and to promote heat generation in the central portion and further softening of the material. On the other hand, the second structure 51 is formed of a Ni-based heat-resistant alloy into a solid columnar shape having substantially the same outer diameter as the cylindrical portion 7a. In this embodiment, the axial length of the cylindrical portion 7a of the first structure 50 is set to about 22.5 mm, and the axial length of the second structure 51 is set to about 7 mm.

【0023】これらの第一構造体50と第二構造体51
とを、筒状部7aの先端面と第二構造体51の一方の端
面とが対向するように、略同軸的な位置関係にてそれぞ
れチャックC1,C2に把持する。この状態で、図2
(b)に示すように、例えば第二構造体51を静止・固
定した状態にて、第一構造体50を軸線周りにチャック
C1とともに回転させる(図2(b)以下ではチャック
の図示を省略する)。
The first structure 50 and the second structure 51
Are gripped by the chucks C1 and C2 in a substantially coaxial positional relationship such that the distal end surface of the cylindrical portion 7a and one end surface of the second structure 51 face each other. In this state, FIG.
As shown in FIG. 2B, for example, in a state where the second structure 51 is stationary and fixed, the first structure 50 is rotated around the axis together with the chuck C1 (the chuck is not shown in FIG. 2B and thereafter). Do).

【0024】この状態で、第一構造体50と第二構造体
51とを軸線方向に相対的に接近させる(例えば第二構
造体51を固定して第一構造体50をこれに向けて接近
させる)ことにより、図2(c)に示すように、筒状部
7aの先端面と第二構造体51の端面とを当接させ、軸
線方向に加圧しながら第一構造体50の回転を継続す
る。これにより、筒状部7aと第二構造体51とはその
当接面(接合面)において摩擦発熱し、周囲にバリBを
生じながら接合される。このとき、両構造体50,51
間の相対回転速度を上げるために、第二構造体51を第
一構造体51と逆方向に回転させるようにしてもよい。
In this state, the first structure 50 and the second structure 51 are relatively approached in the axial direction (for example, the second structure 51 is fixed and the first structure 50 is approached toward the first structure 50). As a result, as shown in FIG. 2 (c), the end surface of the cylindrical portion 7a is brought into contact with the end surface of the second structure 51, and the rotation of the first structure 50 is performed while pressing in the axial direction. continue. As a result, the cylindrical portion 7a and the second structure 51 generate frictional heat at the contact surface (joining surface) thereof, and are joined together while generating burrs B around them. At this time, both structures 50, 51
The second structure 51 may be rotated in the opposite direction to the first structure 51 in order to increase the relative rotation speed between them.

【0025】図4(a)は当接直前の接合界面の様子
を、(b)は接合進行中の推定される接合界面の様子を
それぞれ模式的に示すものである。第一構造体50と第
二構造体51との界面は、発熱により軟化し、さらにそ
の軟化した材料が回転摩擦による機械的な力により激し
く混合されて、互いに複雑に入り組んだ構造を形成す
る。そして、同図(c)に示すように、この混合領域
は、やがて機械合金化層を形成するものと推測される。
また、引き続き発生する摩擦熱により、機械合金化層の
両側には、それぞれ若干の拡散層が形成される場合があ
る。
FIG. 4A schematically shows a state of the bonding interface immediately before the contact, and FIG. 4B schematically shows a state of the bonding interface estimated during the progress of the bonding. The interface between the first structure 50 and the second structure 51 is softened by heat generation, and the softened material is vigorously mixed by mechanical force due to rotational friction to form a complicated and complicated structure. Then, as shown in FIG. 3C, it is presumed that this mixed region eventually forms a mechanical alloying layer.
In addition, a slight diffusion layer may be formed on both sides of the mechanical alloying layer due to the friction heat generated subsequently.

【0026】図3は、摩擦接合開始から終了に至る、第
一構造体50と第二構造体51との回転制御パターンの
一例を示すものである。第一構造体50が目標回転速度
NSに到達したら、第一構造体50と第二構造体51と
の相対接近を開始し、両者が当接すると軸方向接合荷重
が増大をはじめる(例えば時刻T1)。第一構造体50
と第二構造体51との間の摩擦発熱が大きくなり、材料
の軟化が進むと、第一構造体50と第二構造体51との
相対接近を継続していても、材料の塑性流動により荷重
の増加は鈍る形となる。
FIG. 3 shows an example of a rotation control pattern of the first structure 50 and the second structure 51 from the start to the end of the friction welding. When the first structure 50 reaches the target rotation speed NS, the relative approach between the first structure 50 and the second structure 51 is started, and when they come into contact, the axial joining load starts to increase (for example, at time T1). ). First structure 50
When the heat generated by friction between the first structure 50 and the second structure 51 increases and the material softens, even if the first structure 50 and the second structure 51 continue to approach each other, the plastic flow of the material causes The increase in load becomes dull.

【0027】接合処理を終了する際は、第一構造体50
の回転を急停止すると、軟化領域に強い慣性力が作用し
て破断等のトラブルが生ずることがあるので、第二構造
体51を第一構造体50と同方向に回転開始させ(時刻
T2)、第一構造体50と略同速度となったところで
(時刻T3)一定の回転数でしばらく回転を継続する。
これにより、第二構造体51と第一構造体50との接合
界面における相対回転速度が0となり、摩擦発熱は停止
する。そして、軟化領域の温度が下がって硬化し、接合
状態が安定化する。なお、第二構造体51及び第一構造
体50の回転は継続されているから、その表層部に生ず
る気流により冷却が促進される。冷却が完了すれば、第
二構造体51と第一構造体50との回転を停止する(時
刻T4,T5)。
When the joining process is completed, the first structure 50
When the rotation of the first structure is suddenly stopped, a strong inertial force acts on the softened region and a trouble such as breakage may occur. Therefore, the second structure 51 is started to rotate in the same direction as the first structure 50 (time T2). When the speed becomes substantially the same as that of the first structure 50 (time T3), the rotation is continued for a while at a constant rotation speed.
As a result, the relative rotational speed at the joint interface between the second structure 51 and the first structure 50 becomes 0, and frictional heat generation stops. Then, the temperature of the softened region is lowered and hardened, and the bonding state is stabilized. In addition, since the rotation of the second structure 51 and the first structure 50 is continued, the cooling is promoted by the airflow generated in the surface layer portion. When the cooling is completed, the rotation of the second structure 51 and the first structure 50 is stopped (time T4, T5).

【0028】なお、接合終了後の冷却を行う際に、第一
構造体50の回転速度を減速させつつ第二構造体51の
回転を増速させ、略同速度となったところで一定の回転
数で回転を継続させるようにしてもよい。
When cooling after the joining is completed, the rotation speed of the second structure 51 is increased while the rotation speed of the first structure 50 is reduced, and when the rotation speed becomes substantially the same, a constant rotation speed is reached. Alternatively, the rotation may be continued.

【0029】図2に戻り、摩擦接合が終了すれば、
(d)に示すように、バリBを切削等により除去し、さ
らに(e)に示すように、第二構造体50の先端側を外
形切削することにより接地電極4を形成し、貫通孔6の
穿孔を行うとともに、第二構造体51と第一構造体50
との外面に、両者にまたがる形態で取付ねじ部7を転造
により形成する。これにより、第一構造体50に基づく
本体部1Aと、第二構造体51に基づく先端部1B(接
地電極4が一体化されている)とが摩擦接合された主体
金具1が得られる。第一構造体50と第二構造体51と
の接合層は、摩擦接合により前述の通り欠陥の少ないも
のとなっているので、例えばねじ転造の際に界面剥離等
の不具合が極めて生じにくい。
Returning to FIG. 2, when the friction welding is completed,
As shown in (d), the burr B is removed by cutting or the like, and further, as shown in (e), the tip side of the second structure 50 is externally cut to form the ground electrode 4, and the through hole 6 is formed. Of the second structure 51 and the first structure 50
On the outer surface of the above, a mounting screw portion 7 is formed by rolling in such a manner as to extend over both. Thereby, the metal shell 1 in which the main body 1A based on the first structure 50 and the tip 1B (in which the ground electrode 4 is integrated) based on the second structure 51 is frictionally joined is obtained. Since the joining layer between the first structure 50 and the second structure 51 has a small number of defects as described above due to the friction joining, problems such as interface peeling during thread rolling are extremely unlikely to occur.

【0030】なお、図5に示すように、切削等により接
地電極4を予め第二構造体51に形成しておき、これを
第一構造体50に摩擦接合するようにしてもよい。
As shown in FIG. 5, the ground electrode 4 may be formed on the second structure 51 in advance by cutting or the like, and this may be frictionally joined to the first structure 50.

【0031】上記の主体金具1に絶縁体2及び中心電極
3を組み付ければ、図1に示すスパークプラグ100が
得られる。スパークプラグ100は、その取付ねじ部7
においてエンジンブロック(特にレース用車エンジンの
もの)に取り付けられ、燃焼室に供給される混合気への
着火源として使用される。
When the insulator 2 and the center electrode 3 are assembled to the metal shell 1, the spark plug 100 shown in FIG. 1 is obtained. The spark plug 100 has its mounting screw 7
Is mounted on an engine block (particularly that of a racing car engine) and is used as a source of ignition for an air-fuel mixture supplied to a combustion chamber.

【0032】図8は、摩擦接合した第一構造体50と第
二構造体51との接合層付近の断面に対し、SEMに付
属したEPMAにより面分析したときの、Ni
((a))及びFe((b))の各特性X線像(倍率:
約750倍)と、接合界面を横切る分析線(各特性X線
像に対し→で示す)上にて、各特性X線の強度分布を線
分析した結果の一例を示している(特性X線像では、明
るい部分ほど特性X線が高い。すなわち、元素濃度が高
いことを意味する)。また、図9(a)〜(c)は、抵
抗溶接により接合したものについて、同様の分析を行っ
た結果である。まず、抵抗溶接品のNi(図9(a))
及びFe(図9(b))の特性X線像においては、Ni
を主体とする第二構造体側に、第一構造体側からのFe
成分がある程度拡散していることがわかるが、第二構造
体側へのNi成分の拡散はほとんど生じていないことが
わかる。また、図9(c)の線分析プロファイルによれ
ば、前記した0.3≦KB≦0.7となる領域(先端主
成分元素はNi)の厚さtは約2μmである。これに対
し、摩擦接合を行ったものは、0.3≦KB≦0.7と
なる領域の厚さtは約10.7μmである。また、接合
層の厚さ方向略中央には、NiとFeとの濃度変化率が
前後の拡散領域よりも小さく抑えられた層が、およそ8
μm程度の厚さで形成されている。これは、第一構造体
と第二構造体との各材質が、機械合金化効果によりほぼ
均等に混合されて生じたものと推測される。
FIG. 8 shows Ni cross-sections of the cross-section near the bonding layer between the first structure 50 and the second structure 51 that have been friction-welded, using EPMA attached to the SEM.
((A)) and characteristic X-ray images of Fe ((b)) (magnification:
This shows an example of the result of line analysis of the intensity distribution of each characteristic X-ray on an analysis line (shown by → for each characteristic X-ray image) crossing the bonding interface (about 750 times) (characteristic X-ray). In the image, the brighter part has higher characteristic X-rays, which means that the element concentration is higher). FIGS. 9A to 9C show the results of the same analysis performed on the members joined by resistance welding. First, Ni of the resistance welded product (FIG. 9A)
And in the characteristic X-ray image of Fe (FIG. 9B), Ni
On the side of the second structure mainly composed of
It can be seen that the components have diffused to some extent, but that the Ni components have hardly diffused to the second structure side. According to the line analysis profile shown in FIG. 9C, the thickness t of the above-mentioned region where 0.3 ≦ KB ≦ 0.7 (the main component element at the tip is Ni) is about 2 μm. On the other hand, in the case where the friction welding is performed, the thickness t of the region where 0.3 ≦ KB ≦ 0.7 is about 10.7 μm. In addition, approximately at the center in the thickness direction of the bonding layer, a layer in which the rate of change of the concentration of Ni and Fe is suppressed to be smaller than that of the diffusion regions before and after is approximately 8%.
It is formed with a thickness of about μm. This is presumably because the respective materials of the first structure and the second structure were substantially uniformly mixed due to the mechanical alloying effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のスパークプラグの一例を示す縦断面図
及び平面図。
FIG. 1 is a longitudinal sectional view and a plan view showing an example of a spark plug of the present invention.

【図2】その主体金具の製造方法。FIG. 2 shows a method of manufacturing the metal shell.

【図3】摩擦接合時の回転制御パターンの一例を示す模
式図。
FIG. 3 is a schematic diagram showing an example of a rotation control pattern during friction welding.

【図4】摩擦接合部の形成過程を推定して示す模式図。FIG. 4 is a schematic diagram estimating and showing a process of forming a frictional joint.

【図5】第二構造体に予め接地電極を形成した後、摩擦
接合を行う工程の例を示す説明図。
FIG. 5 is an explanatory view showing an example of a step of performing friction welding after forming a ground electrode in advance on a second structure.

【図6】接合層付近の、本体主成分元素と先端主成分元
素との分布状況を模式的に示す図。
FIG. 6 is a view schematically showing a distribution state of a main component element and a tip main component element in the vicinity of a bonding layer.

【図7】本体主成分元素と先端主成分元素との分布状況
の、抵抗溶接品と摩擦接合品との違いを対照して説明す
る図。
FIG. 7 is a view for explaining the distribution of the main component elements of the main body and the main component elements of the tip in comparison with the difference between the resistance welded product and the friction bonded product.

【図8】摩擦接合品の接合界面付近のEPMAによるN
i及びFeの特性X線像と、その線分析プロファイル。
FIG. 8 shows N by EPMA near the joining interface of a friction-joined product.
Characteristic X-ray images of i and Fe and their line analysis profiles.

【図9】抵抗溶接品の接合界面付近のEPMAによるN
i及びFeの特性X線像と、その線分析プロファイル。
FIG. 9 shows N by EPMA near the joining interface of a resistance welded product.
Characteristic X-ray images of i and Fe and their line analysis profiles.

【符号の説明】[Explanation of symbols]

1 主体金具 1A 本体部 1B 先端部 2 絶縁体 3 中心電極 4 接地電極 50 第一構造体 51 第二構造体 100 スパークプラグ REFERENCE SIGNS LIST 1 metal shell 1A main body 1B tip 2 insulator 3 center electrode 4 ground electrode 50 first structure 51 second structure 100 spark plug

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 中心電極と、その中心電極の外側に設け
られた絶縁体と、その絶縁体の外側に設けられた主体金
具と、その主体金具に基端側が一体化され、先端側が前
記中心電極と対向する接地電極とを備えたスパークプラ
グの製造方法であって、 前記主体金具を軸線方向において二分し、前記接地電極
が一体化される側を先端部、残余の部分を本体部とし
て、前記本体部となるべき鉄系金属製の第一構造体と、
前記先端部となるべき第二構造体であって、前記第一構
造体を構成する鉄系金属よりも耐熱性が良好な金属材料
にて構成された第二構造体とを、前記軸線方向において
摩擦接合する摩擦接合工程を含むことを特徴とするスパ
ークプラグの製造方法。
1. A center electrode, an insulator provided outside the center electrode, a metal shell provided outside the insulator, and a base end side integrated with the metal shell, and a tip end side having the center. A method for manufacturing a spark plug comprising an electrode and a ground electrode opposed to the spark plug, wherein the metal shell is bisected in the axial direction, a side where the ground electrode is integrated is a tip, and a remaining part is a main body. A first structure made of an iron-based metal to be the main body,
The second structure to be the tip portion, a second structure made of a metal material having better heat resistance than the iron-based metal constituting the first structure, and the second structure in the axial direction A method for manufacturing a spark plug, comprising a friction joining step of friction joining.
【請求項2】 前記摩擦接合を行う前又は行った後にお
いて前記第二構造体に対し、切削、切断及び研磨の少な
くともいずれかを含む除去加工を施して、前記接地電極
及び前記先端部に予定された部分以外を除去することに
より、該第二構造体に前記接地電極部分を形成する加工
工程を含む請求項1記載のスパークプラグの製造方法。
2. Before or after performing the friction welding, the second structure is subjected to a removing process including at least one of cutting, cutting, and polishing, and is scheduled on the ground electrode and the distal end portion. The method for manufacturing a spark plug according to claim 1, further comprising a processing step of forming the ground electrode portion on the second structure by removing portions other than the formed portion.
【請求項3】 前記摩擦接合工程において、前記第一構
造体と前記第二構造体とを接合面にて当接させて前記軸
線方向に加圧しつつ、それらを該軸線周りに相対回転さ
せることにより両者を摩擦接合する請求項1又は2に記
載のスパークプラグの製造方法。
3. In the friction joining step, the first structure and the second structure are brought into contact with each other at a joint surface and pressurized in the axial direction, and are relatively rotated around the axis. The method for producing a spark plug according to claim 1, wherein the two are friction-welded by the method.
【請求項4】 前記第二構造体はNi系耐熱合金にて構
成されている請求項1ないし3のいずれかに記載のスパ
ークプラグの製造方法。
4. The method according to claim 1, wherein the second structure is made of a Ni-based heat-resistant alloy.
【請求項5】 中心電極と、その中心電極の外側に設け
られた絶縁体と、その絶縁体の外側に設けられた主体金
具と、その主体金具に基端側が一体化され、先端側が前
記中心電極と対向する接地電極とを備えたスパークプラ
グであって、 前記主体金具を軸線方向において二分し、前記接地電極
が一体化される側を先端部、残余の部分を本体部とし
て、前記本体部が鉄系金属により構成され、前記先端部
及びこれに一体化された接地電極とが、前記本体部を構
成する鉄系金属よりも耐熱性が良好な金属材料にて構成
され、前記本体部と前記先端部との間には、それら本体
部と先端部の各主成分金属元素が、各々両部の中間の組
成比率にて混在した接合層が形成されるとともに、 前記接合層内の任意の位置における、前記本体部の主成
分金属元素たるFe(以下、本体主成分という)の重量
濃度をNA、該本体主成分の前記本体部内での平均重量
濃度をNAM、同じく前記先端部内での平均重量濃度をN
ATとし、また前記接合層内の任意の位置における前記先
端部の主成分金属元素(以下、先端主成分という)の重
量濃度をNB、該先端主成分の前記先端部内での平均重
量濃度をNBT、同じく本体部内での平均重量濃度をNBM
として、 前記接合層内の前記本体主成分の相対濃度SAを、 SA=(NA−NAT)/(NAM−NAT); 前記接合層内の前記先端主成分の相対濃度SBを、 SB=(NB−NBM)/(NBT−NBM); にてそれぞれ定義したときに、前記接合層には、0.3
≦SB/(SA+SB)≦0.7となる領域が、厚さ3μ
m以上にて形成されていることを特徴とするスパークプ
ラグ。
5. A center electrode, an insulator provided outside the center electrode, a metal shell provided outside the insulator, a base end side integrated with the metal shell, and a tip side being the center. A spark plug including an electrode and a ground electrode facing the electrode, wherein the metal shell is bisected in the axial direction, the side where the ground electrode is integrated is a tip, and the remaining part is a body, the body being Is formed of an iron-based metal, the tip and the ground electrode integrated therewith are formed of a metal material having better heat resistance than the iron-based metal forming the main body, and the main body and Between the tip portion, a bonding layer in which the main component metal elements of the main body portion and the tip portion are mixed at an intermediate composition ratio of both portions is formed, and any of the bonding layers The main metal element of the main body at the position That Fe (hereinafter, body referred ingredient) the weight concentration of NA, NAM average weight concentration within the body portion of the body main component, also the average weight concentration within the tip portion N
AT, the weight concentration of the main component metal element (hereinafter referred to as the tip main component) at the tip portion at an arbitrary position in the bonding layer is NB, and the average weight concentration of the tip main component in the tip portion is NBT. , The average weight concentration in the body
The relative concentration SA of the main body main component in the bonding layer is: SA = (NA−NAT) / (NAM−NAT); The relative concentration SB of the tip main component in the bonding layer is: SB = (NB −NBM) / (NBT−NBM);
The region where ≦ SB / (SA + SB) ≦ 0.7 has a thickness of 3 μm.
A spark plug characterized by being formed with a length of at least m.
【請求項6】 前記先端主成分がNiである請求項5記
載のスパークプラグ。
6. The spark plug according to claim 5, wherein said tip main component is Ni.
【請求項7】 前記主体金具の外周面には、前記本体部
と前記先端部とにまたがる形態で取付ねじ部が形成され
ている請求項5又は6に記載のスパークプラグ。
7. The spark plug according to claim 5, wherein a mounting screw portion is formed on an outer peripheral surface of the metal shell so as to extend over the main body portion and the distal end portion.
【請求項8】 前記接地電極は、前記主体金具の前記先
端部に一体化される基端部が、先端部よりも太径に形成
されている請求項5ないし7のいずれかに記載のスパー
クプラグ。
8. The spark according to claim 5, wherein a base end of the ground electrode integrated with the front end of the metal shell has a larger diameter than a front end. plug.
JP10370500A 1998-12-25 1998-12-25 Manufacture of spark plug, and spark plug Pending JP2000195646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10370500A JP2000195646A (en) 1998-12-25 1998-12-25 Manufacture of spark plug, and spark plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10370500A JP2000195646A (en) 1998-12-25 1998-12-25 Manufacture of spark plug, and spark plug

Publications (1)

Publication Number Publication Date
JP2000195646A true JP2000195646A (en) 2000-07-14

Family

ID=18497074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10370500A Pending JP2000195646A (en) 1998-12-25 1998-12-25 Manufacture of spark plug, and spark plug

Country Status (1)

Country Link
JP (1) JP2000195646A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093431A (en) * 2003-09-19 2005-04-07 Ge Jenbacher Gmbh & Co Ohg Spark plug for internal combustion engine
KR101562151B1 (en) 2011-07-28 2015-10-20 다나카 기킨조쿠 고교 가부시키가이샤 Clad electrode for spark plug, and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093431A (en) * 2003-09-19 2005-04-07 Ge Jenbacher Gmbh & Co Ohg Spark plug for internal combustion engine
KR101562151B1 (en) 2011-07-28 2015-10-20 다나카 기킨조쿠 고교 가부시키가이샤 Clad electrode for spark plug, and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP3897391B2 (en) Friction stir welding method for metal joining members
US20030181121A1 (en) Method of making a spark plug
KR101562151B1 (en) Clad electrode for spark plug, and method for manufacturing the same
US11189993B2 (en) Spark plug and method for manufacturing a spark plug
JP2011036878A (en) Rotary tool for friction stir spot welding
WO2005050803A1 (en) Spark plug manufacturing method
JP5173036B2 (en) Spark plug for internal combustion engine and method of manufacturing spark plug
JPH08246821A (en) Valve seat
JPH0668955A (en) Spark plug and manufacture thereof
WO2016043130A1 (en) Tape material having clad structure for manufacturing ignition plug electrode
JP2002033176A (en) Spark plug and manufacturing method thereof
JP2002248582A (en) Friction stir welding method
JP2000195646A (en) Manufacture of spark plug, and spark plug
JP2001126845A (en) Method of manufacturing spark plug for internal combustion engine
JP2002224857A (en) Joining structure and joining method between hollow members made of respectively different kinds of metal
JP4401150B2 (en) Manufacturing method of spark plug
JP2003266182A (en) Friction stir welding method for different kind of metallic material
JPH11354251A (en) Spark plug
JP3876166B2 (en) Manufacturing method of spark plug
JP2000040577A (en) Spark plug and its manufacture
JPH10121921A (en) Valve seat for internal combustion engine
JP7156541B2 (en) Bonded joint, automotive member, and method for manufacturing bonded joint
JP4017416B2 (en) Manufacturing method of spark plug
JP7390269B2 (en) Spark plug
JPH0734387B2 (en) Spark plug for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061226