JP2000193656A - Automatic drainage analyzer - Google Patents

Automatic drainage analyzer

Info

Publication number
JP2000193656A
JP2000193656A JP10367758A JP36775898A JP2000193656A JP 2000193656 A JP2000193656 A JP 2000193656A JP 10367758 A JP10367758 A JP 10367758A JP 36775898 A JP36775898 A JP 36775898A JP 2000193656 A JP2000193656 A JP 2000193656A
Authority
JP
Japan
Prior art keywords
sample
gas
liquid
sample liquid
processing container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10367758A
Other languages
Japanese (ja)
Other versions
JP3656441B2 (en
Inventor
Tomio Kawashima
富男 川島
Toshiharu Anzai
俊治 安西
Shigeyuki Ota
茂行 太田
Atsushi Kawamura
篤 川村
Toyofumi Yoshida
豊文 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP36775898A priority Critical patent/JP3656441B2/en
Publication of JP2000193656A publication Critical patent/JP2000193656A/en
Application granted granted Critical
Publication of JP3656441B2 publication Critical patent/JP3656441B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately analyze halogenated hydrocarbon contained in process drainage by controlling a sampling process, a feeding process of a sample liquid, a processing process, a gas feeding process and an analyzing process in sequence via a control device. SOLUTION: This analyze can conduct a continuous automatic analysis in a short time, without using manual labor by implementing a series of operations including a sampling process of a sample liquid, a preprocessing process of a sample processing container, a feeding process of the sample liquid, a processing process of the sample liquid, a feeding process of sample gas, an analyzing process, a drying process of a gas feed pipe and a cleaning process of a filter via a control device. The drainage analyzer is applicable to not only materials having the boiling points from -20 deg.C to 200 deg.C, such as halogenated hydrocarbon but also other materials used for the gas-liquid equilibrium analysis. The sample processing container may be set to the gas-liquid equilibrium state through decompression via a condenser and a vacuum pump to lower the gas-liquid equilibrium temperature of high-boiling point materials, and the sample gas is collected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排水の分析装置で
あり、特に、プロセス排水、地下水、井戸水等に含有す
るハロゲン化炭化水素を自動分析する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for analyzing wastewater, and more particularly to an apparatus for automatically analyzing halogenated hydrocarbons contained in process wastewater, groundwater, well water and the like.

【0002】[0002]

【従来の技術】従来、プロセス排水等に含有のハロゲン
化炭化水素(ジクロロメタン、トリクロロエチレン、テ
トラクロロエチレン等)は、JISK0125によるヘ
ッドスペース・ガスクロマトグラフ法がある。この方法
は採取した試料液をバイアル瓶で、25℃で気液平衡状
態にした後、ガス部をガスクロマトグラフで分析する方
法である。又、試料液中に空気や窒素を吹き込むバブリ
ング法は、含有のハロゲン化炭化水素を前記空気で追い
出して、そのガスを分析する方法である。又、試薬とハ
ロゲン化炭化水素を反応させ、生成する蛍光縮合物を測
定する方法がある。
2. Description of the Related Art Conventionally, there is a headspace gas chromatography method according to JIS K0125 for halogenated hydrocarbons (dichloromethane, trichloroethylene, tetrachloroethylene, etc.) contained in process wastewater and the like. This method is a method in which a collected sample solution is brought into a gas-liquid equilibrium state at 25 ° C. in a vial bottle, and then the gas portion is analyzed by gas chromatography. The bubbling method in which air or nitrogen is blown into a sample solution is a method in which halogenated hydrocarbons contained are expelled by the air and the gas is analyzed. There is also a method in which a reagent is reacted with a halogenated hydrocarbon to measure a fluorescent condensate produced.

【0003】[0003]

【発明が解決しようとする課題】前記分析方法は、いず
れも試料液を採取したり、気液平衡状態まで昇温したり
等の作業は、人手で行っている。また、前記ヘッドスペ
ース・ガスクロマトグラフ法は、気液平衡状態になるま
で、約30分以上かかり、試料採取から分析終了まで約
2時間を要する。バブリング法は、試料液に空気や窒素
ガスを吹き込むために、ハロゲン化炭化水素濃度が希釈
され、正確な濃度分析を得ることができない。蛍光縮合
物を測定する方法は、試薬と反応させるために、反応可
能な物質はハロゲン化炭化水素に限定され、その他の物
質の測定には不適である。以上のように、従来の分析方
法は、何れも、短時間に且つ精度よく分析することが困
難である。そこで、本発明は、かかる課題を解消する自
動排水分析装置を提供するものである。
In each of the above-mentioned analysis methods, operations such as collecting a sample liquid and raising the temperature to a gas-liquid equilibrium state are performed manually. In addition, the headspace gas chromatograph method requires about 30 minutes or more to reach a gas-liquid equilibrium state, and requires about 2 hours from sampling to completion of analysis. In the bubbling method, since air or nitrogen gas is blown into a sample solution, the concentration of the halogenated hydrocarbon is diluted, and accurate concentration analysis cannot be obtained. In the method of measuring a fluorescent condensate, a reactable substance is limited to a halogenated hydrocarbon because it reacts with a reagent, and is not suitable for measurement of other substances. As described above, it is difficult to analyze all of the conventional analysis methods in a short time and with high accuracy. Therefore, the present invention provides an automatic drainage analyzer that solves such a problem.

【0004】[0004]

【課題を解決するための手段】請求項1の自動排水分析
装置は、制御装置を介して、サンプリング工程から順
次、試料液の供給工程、試料液の処理工程、試料ガスの
送気工程、分析工程の処理をする自動化を図るものであ
り、時間的、労力面において経済性に富む。請求項2の
自動排水分析装置は、制御装置によって試料液のサンプ
リング工程、試料液の供給工程、試料液の処理工程、試
料ガスの送気工程、分析工程を実施し、試料液の供給工
程の前段階において、試料処理容器を試料液により洗浄
することによって、前回の試料液と混ざることなく、新
たな試料液の受入れができる。請求項3の自動排水分析
装置は、試料ガスの送気工程において、試料液、水道水
又は洗浄水等を用いて、試料処理容器のガス槽の試料ガ
スを分析機器に送気することによって、簡便に、試料ガ
スを送り込むことができる。
According to the first aspect of the present invention, there is provided an automatic drainage analyzer, wherein a sample liquid supply step, a sample liquid treatment step, a sample gas supply step, and an analysis step are sequentially performed from a sampling step through a control unit. It is intended to automate the processing of the process, and is economical in terms of time and labor. The automatic drainage analyzer according to claim 2 performs a sample liquid sampling step, a sample liquid supply step, a sample liquid processing step, a sample gas supply step, and an analysis step by the control device, and performs the sample liquid supply step. By washing the sample processing container with the sample liquid in the previous stage, a new sample liquid can be received without being mixed with the previous sample liquid. The automatic drainage analyzer according to claim 3, in the gas supply step of the sample gas, by using a sample liquid, tap water, or washing water, etc., by sending the sample gas in the gas tank of the sample processing container to the analysis device, The sample gas can be easily sent.

【0005】請求項4の自動排水分析装置は、試料液を
採取するサンプル保管槽とサンプル保管槽の試料液を試
料処理容器に供給するに当たって汚物除去をするフィル
タを洗浄水を介して洗浄可能に構成してあることによっ
て、異物を含まない試料液での分析が可能であると共
に、連続自動分析を可能にする。請求項5の自動排水分
析装置は、試料ガスの送気工程が終了後に、送気管内に
置換ガスを送気することによって、送気管内を乾燥させ
ることができ、水分除去によって試料ガスの吸収が防止
でき、正確な分析を可能にする。
According to a fourth aspect of the present invention, there is provided an automatic drainage analyzer, wherein a sample storage tank for collecting a sample liquid and a filter for removing dirt when supplying the sample liquid in the sample storage tank to the sample processing container can be washed through the washing water. With this configuration, it is possible to perform analysis using a sample liquid containing no foreign matter, and to enable continuous automatic analysis. The automatic drainage analyzer according to claim 5 can dry the inside of the air supply pipe by feeding the replacement gas into the air supply pipe after the gas supply step of the sample gas is completed, and can absorb the sample gas by removing water. Can be prevented and accurate analysis can be performed.

【0006】[0006]

【発明の実施の態様】本発明の実施の形態を図を参照し
て説明する。図1はプロセス排水等に含有のハロゲン化
炭化水素(ジクロロメタン、トリクロロエチレン、テト
ラクロロエチレン等)の自動排水分析装置の全体図であ
り、サンプリング部、試料液処理部、分析部及び制御部
で構成する。先ず、サンプリング部について説明する
と、サンプル保管槽2は試料液を貯留するものであり、
底部2aが尖塔状で排出したとき残液が残らない形状の
筒体である。又、プロセス排水等から試料液ポンプ1等
を介して、前記サンプル保管槽2に試料液を送液する入
口管1aが、サンプル保管槽2の上部に接続してある。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an overall view of an automatic drainage analyzer for halogenated hydrocarbons (e.g., dichloromethane, trichloroethylene, tetrachloroethylene, etc.) contained in process wastewater and the like, and includes a sampling unit, a sample liquid treatment unit, an analysis unit, and a control unit. First, the sampling section will be described. The sample storage tank 2 stores a sample liquid.
The bottom 2a is a cylinder having a shape in which no residual liquid remains when discharged in a spire shape. An inlet pipe 1a for sending a sample solution from the process wastewater or the like to the sample storage tank 2 via a sample liquid pump 1 or the like is connected to an upper portion of the sample storage tank 2.

【0007】前記サンプル保管槽2の底部には、逆U字
状の循環排出管3が設置してあり、この頂部3aがサン
プル保管槽の液位となる。又、サンプル保管槽2の底部
にはドレン電磁弁Aを介して排出管4が設けてある。
尚、サンプル保管槽2には、常時多量の試料液を流し、
循環排出管3よりオーバーフローさせており、サンプル
保管槽2の滞留時間を短くしているので、試料液の入れ
替えが早くでき、試料処理容器10にはいつも新しい試
料液の供給可能である。又、前記サンプル保管槽2の液
位のほぼ中央となる位置には、異物を除去するフィルタ
5が取り付けてあり、試料液電磁弁Bを介して、試料処
理容器10に、ヘッド差で供給可能な供給管7が設けて
ある。尚、前記フィルタ5の下流側(試料液電磁弁Bの
上流側)には、洗浄水電磁弁Cを介して洗浄管6が接続
してあり、この洗浄液によって、前記フィルタ5の洗浄
を可能にする。又、フィルタ5の下流側の供給管7に
は、必ずしも必要でない、試料ガスの送気に使用する水
道管18が、水道水電磁弁Gを介して接続してある。
At the bottom of the sample storage tank 2, an inverted U-shaped circulation discharge pipe 3 is installed, and the top 3a is the liquid level of the sample storage tank. A discharge pipe 4 is provided at the bottom of the sample storage tank 2 via a drain solenoid valve A.
It should be noted that a large amount of the sample liquid is always flowed into the sample storage tank 2,
Since the sample is overflowed from the circulation discharge pipe 3 and the residence time of the sample storage tank 2 is shortened, the replacement of the sample liquid can be performed quickly, and a new sample liquid can always be supplied to the sample processing container 10. A filter 5 for removing foreign matter is attached at a position substantially at the center of the liquid level of the sample storage tank 2, and can be supplied to the sample processing container 10 via the sample liquid solenoid valve B with a head difference. Supply pipe 7 is provided. A washing pipe 6 is connected to the downstream side of the filter 5 (upstream of the sample liquid solenoid valve B) via a washing water solenoid valve C, and the washing liquid enables the filter 5 to be washed. I do. Further, a water supply pipe 18 which is not always necessary and is used for feeding the sample gas is connected to the supply pipe 7 on the downstream side of the filter 5 via a tap water solenoid valve G.

【0008】次に、試料液処理部の構成について説明す
ると、前記試料処理容器10は50〜2000mlの容
量であり、後述する分析機器(ガスクロマトグラフ)2
0に到る送気管15の置換が十分に行え、且つ、試料ガ
スが得られることと、気液平衡状態になるまでに要する
時間を考慮すると共に、試料液は試料処理容器10の4
0〜60%に充填すること等を考慮して選定する。
Next, the configuration of the sample liquid processing section will be described. The sample processing container 10 has a capacity of 50 to 2000 ml, and has an analytical instrument (gas chromatograph) 2 described later.
In addition to taking into account that the gas supply pipe 15 can be sufficiently replaced with zero and that the sample gas is obtained and that the time required for the gas-liquid equilibrium state is achieved,
It is selected in consideration of filling to 0 to 60%.

【0009】そして、この試料処理容器10は、水を媒
体の恒温槽11に入れられ、この恒温槽11はヒータで
所定温に保持されると共に、撹拌棒(スターラー)を介
して撹拌可能になっている。尚、この撹拌操作は、早期
に気液平衡状態にするので望ましいが、必ずしも必要で
ない。また、ハロゲン化炭化水素の分析における気液平
衡温度は、30〜70℃で、望ましくは35〜60℃で
あり、試料処理容器10内の試料液量及び昇温時間等を
考慮してヒータ前記容量を選定する。即ち、この気液平
衡温度を30℃以下にすると、気液平衡状態になるまで
に多くの時間を要する一方、70℃以上では水蒸気の発
生が多くなり分析精度の低下を招来するし、後記の送気
管15内において、水蒸気が結露してハロゲン化炭化水
素を吸収して分析精度の低下となる。そのため、気液平
衡温度を35〜60℃に設定すると、各成分の蒸気圧
(分圧)が高くなり、ハロゲン化炭化水素の分析感度の
向上となって、2ppbの微量まで測定可能となる。
The sample processing vessel 10 is filled with water in a constant temperature bath 11 of a medium. The constant temperature bath 11 is maintained at a predetermined temperature by a heater and can be stirred through a stirrer (stirrer). ing. Note that this stirring operation is desirable because it brings the gas-liquid equilibrium state at an early stage, but is not always necessary. The vapor-liquid equilibrium temperature in the analysis of the halogenated hydrocarbon is 30 to 70 ° C., preferably 35 to 60 ° C., and the temperature of the heater is determined in consideration of the amount of the sample liquid in the sample processing container 10 and the heating time. Select the capacity. That is, if the gas-liquid equilibrium temperature is set to 30 ° C. or lower, it takes a lot of time to reach the gas-liquid equilibrium state. In the air supply pipe 15, water vapor is condensed and absorbs halogenated hydrocarbons, thereby lowering the analysis accuracy. Therefore, when the vapor-liquid equilibrium temperature is set to 35 to 60 ° C., the vapor pressure (partial pressure) of each component is increased, the analysis sensitivity of the halogenated hydrocarbon is improved, and a trace amount of 2 ppb can be measured.

【0010】又、前記気液平衡状態に到るまでの所要時
間は、8〜30分でよく、12〜25分が望ましい。こ
の所要時間を短時間(例えば8分以下)で行うと、気液
平衡状態にならない状態での分析となって、分析精度の
低下となるし、30分以上となると、気液平衡状態は変
わらず、時間の浪費であると共に、分解する物質が生ず
る。
The time required to reach the gas-liquid equilibrium state may be 8 to 30 minutes, preferably 12 to 25 minutes. If this required time is performed in a short time (for example, 8 minutes or less), the analysis will be performed in a state where the gas-liquid equilibrium is not attained, and the analysis accuracy will be reduced. Time consuming and decomposes substances.

【0011】又、試料処理容器10内の試料液の全量を
抜くために、液抜き管13が底部近くに挿入してあり、
液抜電磁弁Dを介してアスピレータ(図示略)等で排出
可能になっている。一方、試料処理容器10の上部に
は、試料ガスを送気する送気管15が施設してあり、そ
の途中には、置換電磁弁(3方電磁弁)Eと切換電磁弁
(6方電磁弁)Fが直列に装着してある。そして、前記
置換電磁弁Eには、置換ガス(窒素ガスや空気等)を送
り込む置換管14が接続してあり、送気管15等の置換
を行う。又、前記切換電磁弁Fは、図3(A)(B)に
示すように6方弁であり、(1)は送気ガス(窒素ガス
等)に、(3)は送気管15に、(2)と(5)は定量管(テフ
ロンチューブで形成の容量2ml)16に接続してあ
り、(4)は排気管17に、(6)は分析機器(ガスクロマト
グラフ)20に接続してある。そして、この切換電磁弁
Fは、常時は、(1)と(6)、(2)と(3)、(4)と(5)が導通の
排気側であり、試料ガスを採取するときには、(1)と
(2)、(3)と(4)、(5)と(6)を導通の採取側にして行われ
る。ガスクロマトグラフ20はよく知られた分析計であ
り、分析結果はデータ処理機21を介して分析結果を出
力する。
A drain pipe 13 is inserted near the bottom in order to drain the entire amount of the sample liquid in the sample processing container 10,
The liquid can be discharged by an aspirator (not shown) or the like via a liquid draining electromagnetic valve D. On the other hand, an air supply pipe 15 for supplying a sample gas is provided at the upper part of the sample processing container 10, and a replacement solenoid valve (3-way solenoid valve) E and a switching solenoid valve (6-way solenoid valve) are provided in the middle thereof. ) F is mounted in series. The replacement solenoid valve E is connected to a replacement pipe 14 for sending a replacement gas (nitrogen gas, air, or the like), and replaces the air supply pipe 15 and the like. The switching solenoid valve F is a six-way valve as shown in FIGS. 3A and 3B. (1) is for an air supply gas (such as nitrogen gas), (3) is for an air supply pipe 15, (2) and (5) are connected to a quantitative tube (volume of 2 ml formed with a Teflon tube) 16, (4) is connected to an exhaust pipe 17, and (6) is connected to an analytical instrument (gas chromatograph) 20. is there. The switching solenoid valve F is normally on the exhaust side where (1) and (6), (2) and (3), and (4) and (5) are conducting, and when the sample gas is collected, (1) and
(2), (3) and (4), and (5) and (6), with the conducting side being the sampling side. The gas chromatograph 20 is a well-known analyzer, and the analysis result is output via a data processor 21.

【0012】次に、制御部の制御装置25は、前記構成
の分析装置の各機器を制御し、この自動分析の制御過程
について、図2(A)(B)を参照して説明する。尚、
各工程は、電磁弁等の操作終了によったり、タイマー
(制御装置内蔵)によるタイムアップによって制御す
る。
Next, the control unit 25 of the control unit controls each device of the analyzer having the above-described configuration, and a control process of the automatic analysis will be described with reference to FIGS. still,
Each step is controlled by terminating the operation of a solenoid valve or the like or by time-up by a timer (built-in control device).

【0013】(1)試料液のサンプリング工程 ドレン電磁弁Aと試料液電磁弁Bを閉にし、試料液ポン
プ1を起動すると、試料液は入口管1a、サンプル保管
槽2、循環排出管3を介して循環し、サンプル保管槽2
には新たな試料液が貯留される。
(1) Sample Liquid Sampling Step When the drain electromagnetic valve A and the sample liquid electromagnetic valve B are closed and the sample liquid pump 1 is started, the sample liquid passes through the inlet pipe 1a, the sample storage tank 2, and the circulation discharge pipe 3. Circulates through the sample storage tank 2
, A new sample liquid is stored.

【0014】(2)試料処理容器の前処理工程 この処理において、試料処理容器10は、置換ガスが送
気管15に送気可能側に置換電磁弁Eを切換えてある
(後記の(7)で処理済)と共に、試料液電磁弁Bが閉
状態で、閉鎖状態であり、撹拌棒(スターラー)を停止
する。そして、液抜電磁弁Dを開にした後に、アスピレ
ータ等を介して試料処理容器10内の試料液を抜いた後
に、試料液電磁弁Bを開にして、サンプル保管槽2から
試料液をフィルタ5を介して、試料処理容器の80〜1
00%になるまで充填する。そして、再度、液抜電磁弁
Dを開にした後に、アスピレータ等を介して、試料処理
容器10内の試料液を抜くと、試料処理容器10内は新
たな試料液で洗浄されて空になる。そのため、前回の試
料液と交ざることなく、新たな試料液の受入れができ
る。
(2) Pretreatment Step of Sample Processing Vessel In this process, the sample processing vessel 10 switches the replacement solenoid valve E to the side where the replacement gas can be supplied to the air supply pipe 15 (see (7) described later). The sample liquid solenoid valve B is in a closed state with the sample liquid solenoid valve B closed, and the stirring rod (stirrer) is stopped. Then, after opening the liquid draining electromagnetic valve D, the sample liquid in the sample processing container 10 is drained through an aspirator or the like, and then the sample liquid electromagnetic valve B is opened to filter the sample liquid from the sample storage tank 2. 5 through 80-1 of the sample processing container
Fill to 00%. Then, after opening the liquid draining electromagnetic valve D again, when the sample liquid in the sample processing container 10 is drained via an aspirator or the like, the inside of the sample processing container 10 is washed with a new sample liquid and becomes empty. . Therefore, a new sample liquid can be received without intersecting with the previous sample liquid.

【0015】(3)試料液の供給工程 次に、前記(2)の工程で、試料液で洗浄された試料処
理容器10に、試料液を供給するために試料液電磁弁B
を開にすると、サンプル保管槽2の試料液はフィルタ5
を介して試料処理容器10に供給される。そして、試料
処理容器の40〜60%なったとき、試料液電磁弁Bを
閉にして供給を停止する。
(3) Step of Supplying Sample Liquid Next, in the step (2), the sample liquid solenoid valve B is used to supply the sample liquid to the sample processing container 10 which has been washed with the sample liquid.
Is opened, the sample liquid in the sample storage tank 2 is
Is supplied to the sample processing container 10 through the. When the amount of the sample processing container reaches 40 to 60%, the sample liquid solenoid valve B is closed to stop the supply.

【0016】(4)試料液の処理工程 そして、試料処理容器10内の試料液を撹拌棒等で撹拌
すると共に、恒温槽11を介して試料処理容器10が気
液平衡温度まで昇温すると共に維持する。尚、この気液
平衡温度は50℃で、所要時間は約20分で行う。
(4) Sample Liquid Processing Step The sample liquid in the sample processing container 10 is agitated with a stirring rod or the like, and the temperature of the sample processing container 10 is raised to the gas-liquid equilibrium temperature via the thermostat 11. maintain. The vapor-liquid equilibrium temperature is 50 ° C. and the required time is about 20 minutes.

【0017】(5)試料ガスの送気工程 試料処理容器10のガス槽の試料ガスをガスクロマトグ
ラフ20に送気するために、試料処理容器10内に媒体
(試料液、水道水、洗浄水等)を注水することによっ
て、ガス槽の試料ガスの排出ができる。そこで、先ず、
切換電磁弁Fを排気側(図3(A))を維持する一方、
置換電磁弁Eは、置換ガスが送気管15に送気不可側に
切り換えて、置換ガスの送気管15への送気を停止す
る。
(5) Sample Gas Supply Step In order to send the sample gas in the gas tank of the sample processing container 10 to the gas chromatograph 20, a medium (sample liquid, tap water, washing water, etc.) is placed in the sample processing container 10. ), The sample gas in the gas tank can be discharged. So, first,
While maintaining the switching solenoid valve F on the exhaust side (FIG. 3A),
The replacement solenoid valve E switches the replacement gas to the side where the supply of the replacement gas to the air supply pipe 15 is impossible, and stops the supply of the replacement gas to the air supply pipe 15.

【0018】(イ)そして、試料液電磁弁Bを開にし
て、試料液を試料処理容器10に供給すると、試料ガス
は送気管15から切換電磁弁Fの(3)に入り、(2)(5)の
定量管16を経て(4)の排気管17から排気される。こ
の処置によって、前記経路は試料ガスによって置換され
る。一方、送気ガス(窒素ガス)は切換電磁弁Fの(1)
から入り、(6)から分析機器20に流入し、この経路は
窒素ガスで置換される。
(A) Then, when the sample liquid solenoid valve B is opened and the sample liquid is supplied to the sample processing container 10, the sample gas enters (3) of the switching solenoid valve F from the air supply pipe 15 and (2) The gas is exhausted from the exhaust pipe 17 of (4) through the quantitative pipe 16 of (5). By this measure, the path is replaced by the sample gas. On the other hand, the supply gas (nitrogen gas) is supplied by the switching solenoid valve F (1)
, And flows into the analyzer 20 from (6), and this path is replaced with nitrogen gas.

【0019】その後、切換電磁弁Fを採取側(図3
(B))に切り換えると、送気ガスは切換電磁弁Fの
(1)から入り、(2)(5)の定量管16を経て、(6)から分析
機器20に流入し、前記定量管16内の試料ガスは分析
機器20に送り込まれて定量のサンプル採取が可能であ
る。一方、試料ガスは送気管15から切換電磁弁Fの
(3)に入り、(4)の排気管17から排気される。
Thereafter, the switching solenoid valve F is moved to the sampling side (FIG. 3).
(B)), the supply gas is supplied to the switching solenoid valve F.
It enters from (1), passes through the quantitative tube 16 of (2) and (5), flows into the analytical device 20 from (6), and the sample gas in the quantitative tube 16 is sent to the analytical device 20 to collect a quantitative sample. Is possible. On the other hand, the sample gas is supplied from the air supply pipe 15 to the switching solenoid valve F.
After entering (3), the air is exhausted from the exhaust pipe 17 of (4).

【0020】(ロ)又、他の方法について説明すると、
水道水電磁弁Gを開にして、水道水を水道水管18を介
して試料処理容器10に送る。これによって、試料処理
容器10内の試料ガスは、送気管15に送られるので、
前記(イ)と同様の操作によって、試料ガスをガスクロ
マトグラフ20に送気可能になる。
(B) Another method will be described.
The tap water solenoid valve G is opened, and tap water is sent to the sample processing container 10 through the tap water pipe 18. Thereby, the sample gas in the sample processing container 10 is sent to the air supply pipe 15,
The sample gas can be sent to the gas chromatograph 20 by the same operation as the above (a).

【0021】(ハ)又、後記で詳述するフィルタ5等の
洗浄をする「洗浄水」を使用するときには、フィルタ5
の下流に電磁弁(図示略)を設置して、洗浄水がフィル
タ5側に流れないようにする。そして、洗浄水電磁弁C
を開にして、洗浄水を試料処理容器10に送ることによ
って、試料処理容器10内の試料ガスは、送気管15に
送られ、前記(イ)と同様の操作によって、試料ガスを
ガスクロマトグラフ20に送気可能になる。尚、この洗
浄水の使用は、フィルタ5等の洗浄にために設置の施設
(洗浄水配管6、洗浄水電磁弁C)を使用することがで
きるので、設備の簡素化を図ることができる。
(C) When using "wash water" for washing the filter 5 and the like described in detail below, the filter 5
An electromagnetic valve (not shown) is provided downstream of the filter to prevent the washing water from flowing to the filter 5 side. And the washing water solenoid valve C
Is opened, and the cleaning water is sent to the sample processing container 10, whereby the sample gas in the sample processing container 10 is sent to the air supply pipe 15, and the sample gas is transferred to the gas chromatograph 20 by the same operation as in (a). It becomes possible to send air. The use of this washing water can use the installed facilities (washing water piping 6, washing water solenoid valve C) for washing the filter 5 and the like, so that the equipment can be simplified.

【0022】以上のように、試料処理容器10内に試料
液等を供給することによって、簡便に、試料ガスは送気
管15に送られ、送気管15内の置換を行った後に、ガ
スクロマトグラフ20に送気するので、ガスクロマトグ
ラフ20には試料ガスのみが送られる。
As described above, by supplying the sample liquid or the like into the sample processing container 10, the sample gas is easily sent to the gas supply pipe 15, and after the gas supply pipe 15 is replaced, the gas chromatograph 20 , Only the sample gas is sent to the gas chromatograph 20.

【0023】(6)分析工程 ガスクロマトフラフ20に送られた試料ガスは分析され
て、分析結果はデータ処理機21を介して分析結果を出
力する。
(6) Analysis Step The sample gas sent to the gas chromatograph 20 is analyzed, and the analysis result is output via the data processor 21.

【0024】(7)送気管15の乾燥工程 この工程は、特に、試料ガスにハロゲン化炭化水素を含
む場合に備えるものであり、前記(5)の試料ガスの送
気工程が終了した後には、置換ガスが送気管15に送気
可能側に置換電磁弁Eを切換えると共に、切換電磁弁F
を排気側(図3(A))に切り換えて、排気管17を介
して排出可能にする。置換ガスは、送気管15、定量管
16内の試料ガスの放出を行い、それらの経路内の水分
除去を行うと共に乾燥させる。そのため、水分による試
料ガスの吸収が防止でき、正確な分析が可能となる。
尚、この工程は、ハロゲン化炭化水素以外の物質の場合
には、必ずしも必要でない。
(7) Step of drying the gas supply pipe 15 This step is provided especially when the sample gas contains a halogenated hydrocarbon. After the step (5), the sample gas supply step is completed. , The switching solenoid valve E is switched to a side where the replacement gas can be supplied to the air supply pipe 15 and the switching solenoid valve F
Is switched to the exhaust side (FIG. 3 (A)) so that exhaust can be performed via the exhaust pipe 17. The replacement gas releases the sample gas in the air supply pipe 15 and the fixed quantity pipe 16, removes water in those paths, and is dried. Therefore, absorption of the sample gas by moisture can be prevented, and accurate analysis can be performed.
This step is not always necessary for substances other than halogenated hydrocarbons.

【0025】(8)フィルタ5の洗浄工程 プロセス排水等の試料液に含有のゴミ等は、フィルタ5
で除去されるので、フィルタ5の洗浄を要すると共に、
サンプル保管槽2の底部に溜る汚物等を除去する必要が
ある。そこで、これらフィルタ5、サンプル保管槽2の
洗浄を行うには、前記(5)の試料ガスの送気に使用す
る媒体によって、下記の時に行うが、毎回行う必要はな
い。
(8) Filter 5 Cleaning Step Dust and the like contained in the sample liquid such as process wastewater are removed by the filter 5.
So that the filter 5 needs to be washed and
It is necessary to remove dirt and the like accumulated at the bottom of the sample storage tank 2. Therefore, the filter 5 and the sample storage tank 2 are cleaned at the following times, depending on the medium used for supplying the sample gas in the above (5), but need not be performed every time.

【0026】(イ)媒体に「試料液」を使用するときに
は、この試料液は、試料処理容器10内のガスを送気管
15からガスクロマトフラフ20に送気するのに使用す
るために、この処理の終了後において実施する(図2
(A))。そして、試料液ポンプ1を停止すると共に試
料液電磁弁Bを閉にし、ドレン電磁弁Aを開にして、サ
ンプル保管槽2内の試料液を抜きながら、洗浄水電磁弁
Cを開にする。そして、洗浄水を洗浄管6から流すと、
洗浄水はフィルタ5からサンプル保管槽2に流れ込み、
フィルタ5とサンプル保管槽2を洗浄した後、ドレン電
磁弁Aを介して排出管4から排出される。
(A) When a “sample liquid” is used as a medium, this sample liquid is used for sending gas in the sample processing container 10 from the air supply pipe 15 to the gas chromatograph 20. This is performed after the processing is completed (FIG. 2
(A)). Then, the sample solution pump 1 is stopped, the sample solution solenoid valve B is closed, the drain solenoid valve A is opened, and the washing water solenoid valve C is opened while draining the sample solution in the sample storage tank 2. Then, when the washing water flows from the washing pipe 6,
The washing water flows from the filter 5 into the sample storage tank 2,
After the filter 5 and the sample storage tank 2 have been washed, they are discharged from the discharge pipe 4 via the drain solenoid valve A.

【0027】(ロ)一方、媒体に「水道水」を使用する
場合には、試料液が試料液電磁弁Bを開にしてサンプル
保管槽2から試料処理容器10に供給された後、即ち、
前記「(3)試料液の供給」の終了以降に行うことがで
きるので(図2(B))、前記(イ)の時期に実施して
もよい。この処理は、前記(イ)と同様に、試料液ポン
プ1を停止、試料液電磁弁Bを閉、ドレン電磁弁Aを
開、洗浄水電磁弁Cを開にした後に、洗浄水を洗浄管6
から流すと、フィルタ5とサンプル保管槽2が共に洗浄
される。
(B) On the other hand, when “tap water” is used as the medium, the sample liquid is supplied from the sample storage tank 2 to the sample processing vessel 10 by opening the sample liquid solenoid valve B, ie,
Since it can be performed after the end of “(3) Supply of sample liquid” (FIG. 2B), it may be performed at the time of (A). In this process, the sample liquid pump 1 is stopped, the sample liquid solenoid valve B is closed, the drain solenoid valve A is opened, the washing water solenoid valve C is opened, and then the washing water is flushed. 6
, The filter 5 and the sample storage tank 2 are both washed.

【0028】この様に、フィルタ5、サンプル保管槽2
の洗浄を同時に自動的に行うことによって、連続自動分
析を可能にする。尚、前記(イ)又は(ロ)のフィルタ
等の洗浄が終了したときには、前記「(1)試料のサン
プリング」工程に戻る。
As described above, the filter 5 and the sample storage tank 2
By automatically performing the washing of the sample simultaneously, continuous automatic analysis is enabled. When the washing of the filter (a) or (b) is completed, the process returns to the "(1) sample sampling" step.

【0029】以上のように、制御装置25を介して、
(1)試料液のサンプリング工程、(2)試料処理容器
の前処理工程、(3)試料液の供給工程、(4)試料液
の処理工程、(5)試料ガスの送気工程、(6)分析工
程、(7)送気管の乾燥工程、(8)フィルタの洗浄工
程の一連の操作を実施することによって、人手を介さず
に、且つ、短時間で連続自動分析をすることができる。
尚、前記自動排水分析装置は、ハロゲン化炭化水素の沸
点が−20〜200℃の物質に適用する例を示したが、
気液平衡による分析を用いる他の物質に適用できること
はいうまでもないし、高沸点物における気液平衡温度を
下げるために、試料処理容器10に凝縮器と真空ポンプ
を介して、減圧化で気液平衡状態にして、試料ガスを採
取する構成であってもよい。
As described above, through the control device 25,
(1) sample liquid sampling step, (2) sample processing container pretreatment step, (3) sample liquid supply step, (4) sample liquid processing step, (5) sample gas feeding step, (6) By performing a series of operations of the analysis step, (7) drying step of the air supply pipe, and (8) washing step of the filter, continuous automatic analysis can be performed in a short time without manual operation.
In addition, although the said automatic drainage analyzer showed the example applied to the substance whose boiling point of a halogenated hydrocarbon is -20-200 degreeC,
It goes without saying that the analysis by gas-liquid equilibrium can be applied to other substances. In order to lower the gas-liquid equilibrium temperature of high-boiling substances, the sample processing vessel 10 is evacuated through a condenser and a vacuum pump. A configuration in which the sample gas is collected in a liquid equilibrium state may be employed.

【0030】[0030]

【発明の効果】請求項1の自動排水分析装置は、制御装
置を介して、サンプリング工程から順次、試料液の供給
工程、処理工程、送気工程、分析工程の処理をする自動
化を図るものであり、時間的、労力面において経済性に
富む。請求項2の自動排水分析装置は、試料液の供給工
程の前段階において、試料処理容器を試料液を介して洗
浄することによって、前回の試料液と交ざることなく、
新たな試料液での分析ができる。請求項3の自動排水分
析装置は、試料ガスの送気工程において、試料液、水道
水又は洗浄水等を用いて、試料処理容器のガス槽の試料
ガスを分析機器に送気することによって、簡便に、試料
ガスを送り込むことができる。請求項4の自動排水分析
装置は、試料液を採取するサンプル保管槽とサンプル保
管槽の試料液を試料処理容器に供給するに当たって汚物
除去をするフィルタを洗浄水を介して洗浄可能に構成し
てあることによって、異物を含まない試料液での分析が
可能であると共に、連続自動分析を可能にする。請求項
5の自動排水分析装置は、試料ガスの送気工程が終了後
に、送気管内に置換ガスを送気することによって、送気
管内を乾燥させることができ、水分除去によって試料ガ
スの吸収が防止でき、正確な分析を可能にする。
According to the first aspect of the present invention, there is provided an automatic drainage analyzer which automates processing of a sample liquid supply step, a processing step, an air supply step, and an analysis step from a sampling step through a control device. Yes, economical in terms of time and labor. The automatic drainage analyzer according to claim 2 cleans the sample processing container via the sample liquid at a stage prior to the sample liquid supply step, so that the sample processing container does not intersect with the previous sample liquid.
Analysis with a new sample solution is possible. The automatic drainage analyzer according to claim 3, in the gas supply step of the sample gas, by using a sample liquid, tap water, or washing water, etc., by sending the sample gas in the gas tank of the sample processing container to the analysis device, The sample gas can be easily sent. The automatic drainage analyzer according to claim 4 is configured such that a sample storage tank for collecting the sample liquid and a filter for removing dirt when supplying the sample liquid in the sample storage tank to the sample processing container can be washed through the washing water. This makes it possible to perform analysis using a sample liquid that does not contain foreign matter, and also enables continuous automatic analysis. The automatic drainage analyzer according to claim 5 can dry the inside of the air supply pipe by feeding the replacement gas into the air supply pipe after the gas supply step of the sample gas is completed, and can absorb the sample gas by removing water. Can be prevented and accurate analysis can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】自動排水装置の全体図である。FIG. 1 is an overall view of an automatic drainage device.

【図2】(A)(B)は、制御工程を示す図である。FIGS. 2A and 2B are diagrams showing a control process.

【図3】(A)(B)は切換電磁弁Fの導通状態の概念
を示す図である。
FIGS. 3A and 3B are diagrams showing a concept of a conductive state of a switching solenoid valve F. FIGS.

【符号の説明】[Explanation of symbols]

1 試料液ポンプ 2 サンプル保管槽 3 循環排出管 5 フィルタ 10 試料処理容器 15 送気管 16 定量管 17 排気管 20 分析機器(ガスクロマトグラフ) 25 制御装置 A ドレン電磁弁 B 試料液電磁弁 C 洗浄水電磁弁 D 液抜電磁弁 E 置換電磁弁(3方電磁弁) F 切換電磁弁(6方電磁弁) G 水道水電磁弁 DESCRIPTION OF SYMBOLS 1 Sample liquid pump 2 Sample storage tank 3 Circulation discharge pipe 5 Filter 10 Sample processing container 15 Air supply pipe 16 Quantitative pipe 17 Exhaust pipe 20 Analytical equipment (gas chromatograph) 25 Controller A Drain solenoid valve B Sample liquid solenoid valve C Wash water electromagnetic Valve D Drainage solenoid valve E Replacement solenoid valve (3-way solenoid valve) F Switching solenoid valve (6-way solenoid valve) G Tap water solenoid valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 太田 茂行 徳島県徳島市川内町中島575−1 東亞合 成株式会社徳島工場内 (72)発明者 川村 篤 徳島県徳島市川内町中島575−1 東亞合 成株式会社徳島工場内 (72)発明者 吉田 豊文 徳島県徳島市川内町中島575−1 東亞合 成株式会社徳島工場内 Fターム(参考) 2G058 AA01 AA03 BA07 BA08 BB06 BB10 DA09 EA17 EC05 FB01 FB12 GA14 GE01  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shigeyuki Ota 575-1 Nakajima, Kawauchi-cho, Tokushima City, Tokushima Prefecture Toa Gosei Securities Co., Ltd. (72) Inventor Atsushi Kawamura 575-1, Nakajima, Kawauchi-cho, Tokushima City, Tokushima In the Tokushima Plant of Gosei Co., Ltd. (72) Inventor Toyofumi Yoshida 575-1 Nakajima, Kawauchi-cho, Tokushima City, Tokushima Prefecture GE01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 試料液をサンプル保管槽へ採取するサン
プリング工程、前記サンプル保管槽から試料を試料処理
容器に供給する試料液の供給工程、試料液を気液平衡状
態にする試料液の処理工程、平衡状態の試料ガスを分析
機器に送る試料ガスの送気工程、分析機器で分析を行う
分析工程で構成し、 前記サンプリング工程から順次、試料液の供給工程、処
理工程、送気工程、分析工程を制御装置を介して制御す
ることを特徴とする自動排水分析装置。
1. A sampling step of collecting a sample liquid into a sample storage tank, a step of supplying a sample liquid to supply a sample from the sample storage tank to a sample processing container, and a step of processing the sample liquid to bring the sample liquid into a gas-liquid equilibrium state , A sample gas sending step for sending a sample gas in an equilibrium state to an analytical instrument, and an analyzing step for performing analysis with an analytical instrument. The sample liquid supplying step, the processing step, the gas sending step, and the analysis are sequentially performed from the sampling step. An automatic drainage analyzer, wherein the process is controlled via a control device.
【請求項2】 試料液の供給工程の前段階において、試
料処理容器を試料液により洗浄することを特徴とする請
求項1の自動排水分析装置。
2. The automatic drainage analyzer according to claim 1, wherein the sample processing container is washed with the sample liquid before the step of supplying the sample liquid.
【請求項3】 試料ガスの送気工程において、試料液、
水道水又は洗浄水等を用いて、試料処理容器のガス槽の
試料ガスを分析機器に送気することを特徴とする請求項
1又は請求項2の自動排水分析装置。
3. The method according to claim 1, wherein in the step of feeding the sample gas, a sample liquid,
3. The automatic drainage analyzer according to claim 1, wherein the sample gas in the gas tank of the sample processing container is supplied to the analyzer using tap water or washing water.
【請求項4】 試料液を採取するサンプル保管槽とサン
プル保管槽の試料液を試料処理容器に供給するにあたっ
て汚物除去をするフィルタを洗浄水を介して洗浄可能に
構成してあることを特徴とする請求項1、請求項2又は
請求項3の自動排水分析装置。
4. A sample storage tank for collecting a sample liquid and a filter for removing contaminants when supplying the sample liquid in the sample storage tank to the sample processing container are configured to be washable through washing water. 4. The automatic drainage analyzer according to claim 1, 2 or 3, wherein:
【請求項5】 試料ガスの送気工程が終了後に、送気管
内に置換ガスを送気することを特徴とする請求項1、請
求項2、請求項3又は請求項4の自動排水分析装置。
5. The automatic drainage analyzer according to claim 1, wherein the replacement gas is supplied into the gas supply pipe after the sample gas supply step is completed. .
JP36775898A 1998-12-24 1998-12-24 Automatic drainage analyzer Expired - Lifetime JP3656441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36775898A JP3656441B2 (en) 1998-12-24 1998-12-24 Automatic drainage analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36775898A JP3656441B2 (en) 1998-12-24 1998-12-24 Automatic drainage analyzer

Publications (2)

Publication Number Publication Date
JP2000193656A true JP2000193656A (en) 2000-07-14
JP3656441B2 JP3656441B2 (en) 2005-06-08

Family

ID=18490126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36775898A Expired - Lifetime JP3656441B2 (en) 1998-12-24 1998-12-24 Automatic drainage analyzer

Country Status (1)

Country Link
JP (1) JP3656441B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109459275A (en) * 2018-10-15 2019-03-12 浙江省海洋水产研究所 A kind of petrochemical industry garden water body matter characteristic contamination collector
WO2020022413A1 (en) * 2018-07-25 2020-01-30 ダイキン工業株式会社 Gas concentration prediction method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0968485A (en) * 1995-08-30 1997-03-11 Mitsubishi Chem Corp Sample feeder in sucker for analyzing total organic halogen
JPH1010102A (en) * 1996-06-20 1998-01-16 Shimadzu Corp Water-quality analyzing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0968485A (en) * 1995-08-30 1997-03-11 Mitsubishi Chem Corp Sample feeder in sucker for analyzing total organic halogen
JPH1010102A (en) * 1996-06-20 1998-01-16 Shimadzu Corp Water-quality analyzing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020022413A1 (en) * 2018-07-25 2020-01-30 ダイキン工業株式会社 Gas concentration prediction method
JPWO2020022413A1 (en) * 2018-07-25 2021-03-25 ダイキン工業株式会社 Gas concentration prediction method
CN109459275A (en) * 2018-10-15 2019-03-12 浙江省海洋水产研究所 A kind of petrochemical industry garden water body matter characteristic contamination collector
CN109459275B (en) * 2018-10-15 2021-01-05 浙江省海洋水产研究所 Collector for characteristic pollutants of water quality in petrochemical park

Also Published As

Publication number Publication date
JP3656441B2 (en) 2005-06-08

Similar Documents

Publication Publication Date Title
JP3229088B2 (en) Automatic gas sampling method and automatic gas analysis method
CN110320380B (en) Automatic analysis device and automatic analysis method
KR101992612B1 (en) Autosampler for continuous water monitoring equipment
JP2000193656A (en) Automatic drainage analyzer
US5723093A (en) Apparatus for the continuous sampling and analysis of a liquid effluent
US11366044B2 (en) Method for operating an automatic analysis apparatus
JPH01209372A (en) Cleaner for automatic chemical analyzer
JP2004251797A (en) Automatic analyzer
JPH1090134A (en) Method and analyzer for analyzing water for trace volatile organic compound
RU2525305C2 (en) Device for gas-fluid extraction and method of gas-fluid extraction
JP3216714B2 (en) Gas sampling device, gas analyzer and gas analysis method using the same
JPH10332658A (en) Method for separation of liquid sample component and apparatus used for the method
NO982219L (en) Procedure for the liquid treatment of samples for microscopic examination
JPH11169840A (en) Waste water treatment analyzing method and device therefor
JP7514501B1 (en) Water Analysis Equipment
WO2024034216A1 (en) Combustion gas absorption solution production apparatus, and combustion ion chromatograph
JPS5850447A (en) Automatic separator/concentrator for analysis
JP3047365B2 (en) Cleaning device for automatic biochemical analyzer
CN218584727U (en) Chromatographic analyzer is from belt cleaning device
JPH09304374A (en) Device for monitoring volatile organic compound
US20100175457A1 (en) Apparatus and method for analytic analysis utilizing methanol rinsing
CN209117573U (en) A kind of laboratory treatment earth pillar leacheate and the device for measuring heavy metal in leacheate
JP3329939B2 (en) Catecholamine analysis method and analyzer
JP2996827B2 (en) Automatic analyzer
JPH08101102A (en) Sampling device for sample in environment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term