JP2000193610A - Content rate measuring method of neutron absorbing material and neutron irradiator used for the same - Google Patents

Content rate measuring method of neutron absorbing material and neutron irradiator used for the same

Info

Publication number
JP2000193610A
JP2000193610A JP10372684A JP37268498A JP2000193610A JP 2000193610 A JP2000193610 A JP 2000193610A JP 10372684 A JP10372684 A JP 10372684A JP 37268498 A JP37268498 A JP 37268498A JP 2000193610 A JP2000193610 A JP 2000193610A
Authority
JP
Japan
Prior art keywords
neutron
measurement
measuring
absorbing substance
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10372684A
Other languages
Japanese (ja)
Inventor
Hiroshi Miyamoto
宏 宮本
Takuichi Imanaka
拓一 今中
Hideo Nabeshima
秀雄 鍋島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Non Destructive Inspection Co Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Non Destructive Inspection Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, Non Destructive Inspection Co Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP10372684A priority Critical patent/JP2000193610A/en
Publication of JP2000193610A publication Critical patent/JP2000193610A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To measure the content rate of neutron-absorbing material with simple nondestructive method. SOLUTION: A measurement sample S is a board-shaped stainless steel containing neutron absorbing material, such as boron or the like. A polyethylene reflector 18 is arranged on one side of the measurement sample S, and a neutron radiation source 15 and a neutron measuring element 17, such as a boron trifluoride counter tube or the like, are arranged on the other side of the measurement sample S. Irradiating neutrons emitted from the neutron radiation source 15 are scattered and decelerated by the reflector 18, and a part thereof is reflected to the neutron measuring element 17 side. A surface density of the neutron absorbing material is obtained by counting, by the neutron measuring element 17, thermal neutrons permeating the measurement sample S among the thermal neutrons, a part of the scattered and reflected neutrons R, and the content rate of the neutron absorbing material in the measurement sample S is measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ボロン等中性子吸
収物質の含有率測定方法及びこれに用いる中性子照射器
に関する。さらに詳しくは、測定試験体を透過する熱中
性子を前記中性子測定素子により計数することで測定試
験体の中性子吸収物質の含有率を測定する中性子吸収物
質の含有率測定方法及びこれに用いる中性子照射器に関
するものである。
The present invention relates to a method for measuring the content of a neutron absorbing substance such as boron and a neutron irradiator used for the method. More specifically, a neutron-absorbing substance content measuring method for measuring the content of a neutron-absorbing substance by measuring thermal neutrons transmitted through a measuring specimen by the neutron measuring element, and a neutron irradiator used for the method It is about.

【0002】[0002]

【従来の技術】従来、ステンレス鋼板中のボロン濃度を
測定するに当たっては、測定試験体からサンプルを採取
し、湿式法でサンプルを溶かして化学分析により当該濃
度を求めていた。したがって、この従来方法によれば、
測定試験体を破壊する必要があり、また、ボロン濃度の
ステンレス鋼板における分散の程度も把握できなかっ
た。
2. Description of the Related Art Conventionally, in measuring the boron concentration in a stainless steel plate, a sample was taken from a test specimen, the sample was dissolved by a wet method, and the concentration was determined by chemical analysis. Therefore, according to this conventional method,
It was necessary to destroy the measurement specimen, and the degree of dispersion of the boron concentration in the stainless steel plate could not be determined.

【0003】[0003]

【発明が解決しようとする課題】かかる従来の実状に鑑
みて、本発明の目的は、簡易な非破壊的手法により中性
子吸収物質の含有率を測定することが可能な中性子吸収
物質の含有率測定方法及びこれに用いる中性子照射器を
提供することにある。
DISCLOSURE OF THE INVENTION In view of such a conventional situation, an object of the present invention is to measure the content of a neutron absorbing substance capable of measuring the content of the neutron absorbing substance by a simple non-destructive method. A method and a neutron irradiator used for the method.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係る中性子吸収物質の含有率測定方法の特
徴は、測定試験体の一方に反射材を配置し、前記測定試
験体の他方に中性子線源と中性子測定素子とを配置し、
前記中性子線源より発せられ且つ前記反射材により散乱
減速させられた熱中性子のうち前記測定試験体を透過す
る熱中性子を前記中性子測定素子により計数することで
前記測定試験体の中性子吸収物質の含有率を測定するこ
とにある。本発明は、例えば、前記測定試験体をステン
レス鋼とし、前記中性子吸収物質をボロンとし、前記反
射材をポリエチレンとし、前記中性子測定素子を三ふっ
化硼素計数管として実施するとよい。
In order to achieve the above object, a feature of the method for measuring the content of a neutron absorbing substance according to the present invention is that a reflective material is arranged on one of the measurement specimens and the other of the measurement specimens A neutron source and a neutron measuring element are arranged in
The neutron-absorbing substance contained in the measurement specimen is counted by counting the thermal neutrons transmitted from the measurement specimen among the thermal neutrons emitted from the neutron beam source and the scattering of which is slowed down by the reflector, by the neutron measurement element. Is to measure the rate. In the present invention, for example, the measurement test body may be made of stainless steel, the neutron absorbing substance may be made of boron, the reflective material may be made of polyethylene, and the neutron measuring element may be implemented as a boron trifluoride counter tube.

【0005】例えば、252Cf等の自発核分裂時に生じ
る中性子は、2MeV程度の高エネルギーを有する高速
中性子と呼ばれ、物質中を透過し又は物質により散乱さ
れる中性子は物質中の原子に衝突することで減速し、や
がて、室温と平衡状態となる0.5eV以下程度の低エ
ネルギーを有する熱中性子となる。熱中性子は種々の原
子に吸収されることで核反応を起こさせる確率が高い。
中性子吸収物質を含む測定試験体となる材料はこのよう
な熱中性子の透過を抑制する目的を有しており、本発明
では前記中性子測定素子による計数値で測定試験体の中
性子遮蔽能力が一定レベルを越えるか否かを判定する。
For example, neutrons generated at the time of spontaneous fission such as 252 Cf are called fast neutrons having a high energy of about 2 MeV, and neutrons transmitted through or scattered by a substance collide with atoms in the substance. , And eventually becomes a thermal neutron having a low energy of about 0.5 eV or less, which is in equilibrium with room temperature. Thermal neutrons have a high probability of causing a nuclear reaction by being absorbed by various atoms.
The material serving as a measurement specimen containing a neutron absorbing substance has the purpose of suppressing such thermal neutron transmission, and in the present invention, the neutron shielding ability of the measurement specimen is a constant level by the count value of the neutron measurement element. Is determined.

【0006】上記本発明の特徴によれば、測定試験体の
一方に反射材を配置し、前記測定試験体の他方に中性子
線源と中性子測定素子とを配置しているので、前記中性
子線源より発せられた高速中性子は前記測定試験体を透
過した後に反射材において散乱減速させられ、その一部
が熱中性子となって中性子測定素子側に反射する。発明
者らの実験により、中性子線源から発生する中性子を反
射材に透過させた後に測定試験体を透過させる場合に比
べて、本発明の如く測定試験体を一旦透過させて反射材
中で中性子を反射させる方が熱中性子の発生効率は格段
に高いことが判明した。したがって、上記本発明の特徴
によれば、中性子線源から発せられた中性子を効率よく
熱中性子となるように減速させ、多くの熱中性子を測定
試験体中へ透過させることが可能である。
According to the above-mentioned feature of the present invention, the reflector is disposed on one of the measurement specimens, and the neutron source and the neutron measurement element are disposed on the other of the measurement specimens. The high-speed neutrons emitted are transmitted through the measuring test body and then scattered and decelerated by the reflecting material, and a part of the neutrons becomes thermal neutrons and is reflected toward the neutron measuring element. According to the experiments by the inventors, neutrons generated from a neutron source are transmitted through a reflective material and then transmitted through the measured test object, as compared with the case where the neutrons are once transmitted through the reflective test material as in the present invention. It was found that the efficiency of thermal neutron generation was significantly higher when the light was reflected. Therefore, according to the above-mentioned feature of the present invention, it is possible to reduce the neutrons emitted from the neutron radiation source so that the neutrons are efficiently converted into thermal neutrons, and to transmit a large amount of thermal neutrons into the measurement specimen.

【0007】本発明に係る中性子吸収物質の含有率測定
方法の他の特徴は、含まれる中性子吸収物質の表面密度
が既知である前記測定試験体を用いて中性子吸収物質の
表面密度と前記計数値との相関を表す検量線をあらかじ
め作成し、前記測定試験体の本測定時における前記計数
値を求めると共に前記相関を求めた基準測定時から前記
本測定時に至るまでの経時による減衰と前記相関とを考
慮して前記本測定時での前記測定試験体における中性子
吸収物質の表面密度を求めることにより中性子吸収物質
の含有率を測定することにある。
Another feature of the method for measuring the content of a neutron absorbing substance according to the present invention is that the surface density of the neutron absorbing substance and the counted value are measured using the measurement specimen whose surface density of the contained neutron absorbing substance is known. The calibration curve representing the correlation with the pre-created, the measurement value of the measurement test specimen at the time of the main measurement and the correlation with the decay and the correlation over time from the time of the reference measurement to the time of the main measurement obtained the correlation. In consideration of the above, the surface density of the neutron absorbing substance in the measurement specimen at the time of the main measurement is determined to measure the content of the neutron absorbing substance.

【0008】中性子線源を含む測定系の正当性を検証す
るに際しては、含まれる中性子吸収物質の表面密度が既
知で異なる2種類の標準試験体の前記計数値の比が誤差
の伝播に基づく範囲内にあることを確認することで検量
線との関係を明確にすればよい。また、含まれる中性子
吸収物質の表面密度が既知で異なる2種類の標準試験体
のそれぞれについて、前記基準測定時から前記本測定時
に至るまでの経時による減衰を考慮して前記本測定時で
の理論計数値をそれぞれ求め、前記2種類の標準試験体
のそれぞれについての前記本測定時における実際の測定
計数値が前記理論計数値の標準偏差を3倍した値の範囲
内であることを確認することでも中性子線源を含む測定
系の正当性を検証することができる。
In verifying the validity of a measurement system including a neutron source, the ratio of the count values of two types of standard specimens having different known surface densities of the neutron absorbing substance contained therein is determined based on an error propagation. The relationship with the calibration curve may be clarified by confirming that it is within the range. In addition, for each of the two types of standard test specimens having known and different surface densities of the neutron absorbing substances contained therein, the theory at the time of the main measurement is considered in consideration of attenuation with time from the reference measurement to the main measurement. Calculate the count values and confirm that the actual measurement count value at the time of the main measurement for each of the two types of standard specimens is within a range of three times the standard deviation of the theoretical count value. However, the validity of the measurement system including the neutron source can be verified.

【0009】上記いずれかの特徴に示す中性子吸収物質
の含有率測定方法に用いる本発明に係る中性子照射器の
特徴は、中性子の減速材で形成された基礎部14と、第
一,第二コリメーター11,12と、前記基礎部14に
形成した前記第一,第二コリメーター11,12用孔の
側面及び底部並びに前記基礎部14の外面を覆う中性子
の遮蔽材13と、前記第一コリメーター11の底部に配
置した中性子線源15と、前記第二コリメーター12の
底部に配置した中性子検出素子17とを備え、前記第一
コリメーター11と前記第二コリメーター12とを近接
させたことにある。
The feature of the neutron irradiator according to the present invention used in the method for measuring the content of the neutron absorbing substance shown in any of the above features is that the base portion 14 made of a neutron moderator and the first and second cores are provided. Meters 11, 12; a neutron shielding material 13 that covers the side and bottom of the holes for the first and second collimators 11, 12 formed in the base portion 14 and the outer surface of the base portion 14; A neutron source 15 arranged at the bottom of the meter 11 and a neutron detector 17 arranged at the bottom of the second collimator 12 are provided, and the first collimator 11 and the second collimator 12 are brought close to each other. It is in.

【0010】同中性子照射器の特徴構成によれば、中性
子の遮蔽材で全体を囲むことで中性子が不測に漏洩する
ことを防止する。第一コリメーターは中性子線源から発
せられた中性子の不要な拡散を防ぎ、第二コリメーター
は熱中性子ノイズを入射角の限定により除去する。そし
て、第一、第二コリメーターを互いに近接させて連通さ
せることで、反射材台から反射される熱中性子を効率よ
く第二コリメーター内に導入可能にしてある。
According to the characteristic configuration of the neutron irradiator, accidental leakage of neutrons can be prevented by surrounding the whole with a neutron shielding material. The first collimator prevents unwanted diffusion of neutrons emitted from the neutron source, and the second collimator removes thermal neutron noise by limiting the angle of incidence. Then, by bringing the first and second collimators into close proximity to each other and communicating with each other, thermal neutrons reflected from the reflector base can be efficiently introduced into the second collimator.

【0011】[0011]

【発明の効果】このように、上記本発明に係る中性子吸
収物質の含有率測定方法の特徴によれば、反射材中での
反射により中性子線源から発せられた中性子を効率よく
熱中性子となるように減速させ、多くの熱中性子を測定
試験体中へ透過させることが可能となった。その結果、
短時間に測定が可能となり、実用的な中性子吸収物質の
含有率測定方法を提供し得るに至った。しかも、本発明
によれば、例えば原子炉や加速器を必要とせず、少量の
中性子線源を用いるだけでも簡単に試験が行えるように
なった。
As described above, according to the feature of the method for measuring the content of a neutron absorbing substance according to the present invention, neutrons emitted from a neutron source by reflection in a reflecting material are efficiently converted into thermal neutrons. Thus, it is possible to allow many thermal neutrons to penetrate into the test specimen. as a result,
The measurement can be performed in a short time, and a practical method for measuring the content of a neutron absorbing substance can be provided. Moreover, according to the present invention, for example, a test can be easily performed by using only a small amount of a neutron source without requiring a nuclear reactor or an accelerator.

【0012】また、上記他の特徴によれば、あらかじめ
求めた上記相関を利用して中性子吸収物質の含有率を簡
単に求めることができるようになった。
Further, according to the above-mentioned other feature, the content of the neutron absorbing substance can be easily obtained by utilizing the correlation obtained in advance.

【0013】さらに、測定値が誤差の伝播範囲内や理論
値の標準偏差を3倍した値の範囲内にあることの確認で
簡易に中性子線源を含む測定系の正当性を保証すること
が可能となった。
Further, it is possible to easily assure the validity of the measurement system including the neutron source by confirming that the measured value is within the range of error propagation or within the range of three times the standard deviation of the theoretical value. It has become possible.

【0014】一方、中性子照射器の特徴構成によれば、
反射材台から反射される熱中性子を効率よく第二コリメ
ーター内に導入可能にすることによっても、さらに短時
間で測定を行うことが可能となった。
On the other hand, according to the characteristic configuration of the neutron irradiator,
By enabling the thermal neutrons reflected from the reflector base to be efficiently introduced into the second collimator, the measurement can be performed in a shorter time.

【0015】[0015]

【発明の実施の形態】次に、図1〜図3を参照しなが
ら、本発明の第一実施形態を説明する。図1,2は中性
子吸収物質含有率測定装置1中の中性子照射器10周囲
における構造を示す断面図である。
Next, a first embodiment of the present invention will be described with reference to FIGS. 1 and 2 are cross-sectional views showing the structure around the neutron irradiator 10 in the neutron absorbing substance content measuring device 1.

【0016】図示しないテーブルに支持された厚み70
〜100mm程度の中性子反射材(吸収材)であるポリ
エチレンよりなる厚板状の反射材台18上に、測定対象
となる平板状の測定試験体Sを載置してある。中性子照
射器10は測定試験体S上で複数箇所に移動させられて
各箇所における中性子吸収物質の含有率を測定すること
が可能となっている。
A thickness 70 supported by a table (not shown)
A flat plate-shaped measurement specimen S to be measured is placed on a thick plate-shaped reflector base 18 made of polyethylene which is a neutron reflector (absorber) of about 100 mm. The neutron irradiator 10 is moved to a plurality of locations on the measurement specimen S, so that the neutron absorbing material content at each location can be measured.

【0017】中性子照射器10は中性子の減速材たるポ
リエチレンで形成された基礎部14に第一,第二コリメ
ーター11,12用の孔を形成すると共にこれら孔の側
面及び底部並びに基礎部14の外面全体を中性子吸収断
面積の大きな中性子の遮蔽材たるカドミウム板13で全
体を囲むことで中性子が不測に漏洩することを防止して
いる。第一コリメーター11は中性子線源15から発せ
られた中性子の不要な拡散を防ぎ、第二コリメーター1
2は熱中性子ノイズを入射角の限定により除去する。第
一、第二コリメーター11,12を形成するための基礎
部14の孔は互いに近接させて連通させることで、反射
材台18から反射される熱中性子を効率よく第二コリメ
ーター内12に導入可能にしてある。第一、第二コリメ
ーター11,12間に位置するカドミウム板13は他の
部分よりも厚肉に形成してある。そして、測定試験体S
としては、例えばボロンを中性子吸収体として分散させ
たステンレス鋼(B−SUS等)の板を用いる。なお、
基礎部14をなす中性子の減速材としては、ボロン等の
中性子吸収体を含有するポリエチレン等を用いてもよ
い。
The neutron irradiator 10 forms holes for the first and second collimators 11 and 12 in a base portion 14 made of polyethylene, which is a neutron moderator, and forms side and bottom portions of these holes and the base portion 14. Surrounding the entire outer surface with a cadmium plate 13 as a neutron shielding material having a large neutron absorption cross-sectional area prevents neutrons from leaking unexpectedly. The first collimator 11 prevents unnecessary diffusion of neutrons emitted from the neutron radiation source 15 and the second collimator 1
2 removes thermal neutron noise by limiting the incident angle. The holes of the base portion 14 for forming the first and second collimators 11 and 12 are brought close to each other and communicated with each other, so that the thermal neutrons reflected from the reflector base 18 can be efficiently placed in the second collimator 12. It can be introduced. The cadmium plate 13 located between the first and second collimators 11 and 12 is formed thicker than other portions. And the measurement specimen S
For example, a plate of stainless steel (B-SUS or the like) in which boron is dispersed as a neutron absorber is used. In addition,
As a neutron moderator constituting the base portion 14, polyethylene containing a neutron absorber such as boron may be used.

【0018】第一コリメーター11内の底部に取り付け
た中性子線源15は着脱可能である。本実施形態におい
てはこの中性子線源15として252Cfを用いている。
この中性子線源15から発生する中性子は高速中性子で
ある。
The neutron source 15 attached to the bottom of the first collimator 11 is detachable. In the present embodiment, 252 Cf is used as the neutron source 15.
Neutrons generated from the neutron source 15 are fast neutrons.

【0019】一方、第二コリメーター12の底部と連通
する横方向への貫通孔に筒状の中性子検出素子17を貫
通させることで、第二コリメーター12内に中性子検出
素子17を配置してある。この中性子検出素子17には
熱中性子に対する感度の高い三ふっ化硼素(BF3)ガ
スを封入した三ふっ化硼素計数管を用いている。
On the other hand, the neutron detection element 17 is disposed in the second collimator 12 by passing the cylindrical neutron detection element 17 through a through hole in the lateral direction communicating with the bottom of the second collimator 12. is there. As the neutron detecting element 17, a boron trifluoride counter tube filled with boron trifluoride (BF 3 ) gas having high sensitivity to thermal neutrons is used.

【0020】中性子線源15から発せられた照射中性子
Bは測定試験体S中の中性子吸収物質の影響は未だ受け
にくく、測定試験体Sを貫通してその一部が反射材台1
8内で散乱反射する。その後、再び測定試験体Sに向か
う散乱反射中性子R中には多くの熱中性子が含まれてお
り、この熱中性子は測定試験体S中の中性子吸収物質に
吸収され易い。したがって、中性子検出素子17により
測定される熱中性子の単位時間あたりの計数値は測定試
験体Sの有無や測定試験体S中の中性子吸収物質の表面
密度によって変化することとなり、これによって中性子
遮蔽能力の判定が可能となる。
Irradiated neutrons B emitted from the neutron source 15 are still hardly affected by the neutron absorbing substance in the measurement specimen S, and penetrate through the measurement specimen S, and a part thereof is reflected on the reflection material table 1.
8 is scattered and reflected. After that, many thermal neutrons are included in the scattered reflection neutrons R toward the measurement specimen S again, and this thermal neutron is easily absorbed by the neutron absorbing substance in the measurement specimen S. Therefore, the count value of thermal neutrons per unit time measured by the neutron detection element 17 changes depending on the presence or absence of the measurement specimen S and the surface density of the neutron absorbing material in the measurement specimen S, and thereby, the neutron shielding ability Can be determined.

【0021】図3は本発明に係る中性子吸収物質含有率
測定装置1の全体を示す概略ブロック図であり、この中
性子吸収物質含有率測定装置1は、プリアンプ21、高
電圧供給器22、信号波形整形器23及びモニター24
を備えている。上述のプロセスにより中性子検出素子1
7に入射した熱中性子は核反応によりアルファ粒子を放
出し、その飛程に沿って三ふっ化硼素ガスが電離されて
パルス電流が流れる。このパルス電流をプリアンプ21
により増幅し信号波形成型器23によってパルス波形を
整形し、パルスの高さに応じた信号をモニター24にス
ペクトルとして表示する。但し、本発明ではスペクトル
の情報は用いないが、全体の熱中性子計数値を測定対象
とする。
FIG. 3 is a schematic block diagram showing the entire neutron absorbing substance content measuring apparatus 1 according to the present invention. The neutron absorbing substance content measuring apparatus 1 includes a preamplifier 21, a high voltage supply 22, a signal waveform. Shaper 23 and monitor 24
It has. Neutron detecting element 1 by the above process
The thermal neutrons incident on 7 emit alpha particles by a nuclear reaction, and the boron trifluoride gas is ionized along its range, and a pulse current flows. This pulse current is supplied to the preamplifier 21
And a pulse waveform is shaped by the signal waveform shaper 23, and a signal corresponding to the pulse height is displayed on the monitor 24 as a spectrum. However, in the present invention, the information of the spectrum is not used, but the total thermal neutron count is measured.

【0022】次に、図5及び図6を参照しながら、本発
明の第二実施形態を説明する。なお、以下の実施形態に
おいて上記第一実施形態と同様の部材には同一の符号を
附してある。
Next, a second embodiment of the present invention will be described with reference to FIGS. In the following embodiments, the same members as those in the first embodiment are denoted by the same reference numerals.

【0023】上記実施形態では中性子線源15からの中
性子の拡散を防ぐ第一コリメーター11と入射する中性
子ノイズを除去するための第二コリメーター12とが別
に設けてあった。しかし、本第二実施形態では、先の第
一,第二コリメーター11,12に相当する機能を1箇
所のみに設けた共用コリメーター19により代用してい
る。本第二実施形態によれば、共用コリメーター19に
面する測定試験体Sの面積が小さいので、より狭い範囲
での中性子遮蔽能力の分布を判定することが可能であ
る。
In the above embodiment, the first collimator 11 for preventing neutron diffusion from the neutron source 15 and the second collimator 12 for removing incident neutron noise are separately provided. However, in the second embodiment, the function corresponding to the first and second collimators 11 and 12 is replaced by the shared collimator 19 provided only in one place. According to the second embodiment, since the area of the measurement specimen S facing the common collimator 19 is small, it is possible to determine the distribution of the neutron shielding ability in a narrower range.

【0024】さらに、本発明の他の実施形態を列挙す
る。上記各実施形態では、中性子検出素子として三ふっ
化硼素計数管を用いたが、この中性子検出素子には、熱
中性子に対して感度の高い他の種の検出器を用いること
ができる。
Further, other embodiments of the present invention will be listed. In each of the above embodiments, a boron trifluoride counter was used as a neutron detecting element. However, another type of detector having high sensitivity to thermal neutrons can be used as the neutron detecting element.

【0025】上記各実施例では、中性子線源15に252
Cfを用いたが、他の中性子線源、例えば、241Am−
Be等を用いてもよい。
[0025] In the embodiments described above, the neutron source 15 252
Cf was used, but other neutron sources, such as 241 Am-
Be or the like may be used.

【0026】本発明は、上述のステンレス鋼の他に、炭
素鋼、1 1/4 Cr−0.5Mo鋼、2 1/4 Cr−1M
o鋼、3.0 Cr−0.5Mo鋼等の鋼材に特に好適
に実施できる他、Al等Fe以外の金属材料に対しても
実施可能である。
The present invention provides, in addition to the above stainless steel, carbon steel, 1 1/4 Cr-0.5Mo steel, 2 1/4 Cr-1M
The present invention can be particularly preferably applied to steel materials such as o-steel and 3.0 Cr-0.5Mo steel, and can also be applied to metal materials other than Fe such as Al.

【0027】本発明に用いる反射材としては、ポリエチ
レンの他、グラファイト、パラフィンやポリプロピレン
等の炭化水素等を用いてもよい。
As the reflector used in the present invention, other than polyethylene, hydrocarbons such as graphite, paraffin and polypropylene may be used.

【0028】なお、高速中性子とは500KeV以上の
エネルギーを有する中性子をいい、熱中性子とは0.5
eV以下のエネルギーを有する中性子をいう場合もある
が、本明細書中の具体的数値は発明の実施態様の一例を
示すものであって、本発明にいう高速中性子及び熱中性
子とは、必ずしもこれらの具体的数値に限定されるもの
ではない。
The fast neutron is a neutron having an energy of 500 KeV or more, and the thermal neutron is 0.5 neutron.
Although neutrons having an energy of eV or less may be referred to, specific numerical values in the present specification show an example of an embodiment of the present invention, and fast neutrons and thermal neutrons referred to in the present invention are not necessarily those neutrons. However, the present invention is not limited to the specific numerical values.

【0029】[0029]

【実施例】次に、中性子の計数値を測定すると共に測定
試験体Sの中性子遮蔽能力を判定する実施例について説
明する。まず、試験片として1.57%と1.1%のボ
ロンを含む試験体(B−SUS材)を使用し、1.0m
t(12.18[mg/cm2])〜69.8mm
t(704.5[mg/cm2])の板厚(ボロン表面密
度)に対する散乱中性子を測定し、検量線を作成した。
中性子線源に用いた252Cfの中性子線源強度は検量線
作成日である基準日から9日後で33.8μCiであっ
た。ボロン含有率M[%]で板厚H[mm]のボロン表
面密度D[mg/cm2]は、次式により求めた。な
お、B−SUS材(ステンレス鋼)の密度は7.76
[g/cm3]とした。 D=7.76×M×H [mg/cm2
Next, an embodiment in which the neutron count value is measured and the neutron shielding ability of the test specimen S is determined will be described. First, a test piece (B-SUS material) containing 1.57% and 1.1% boron was used as a test piece, and 1.0 m
m t (12.18 [mg / cm 2]) ~69.8mm
Scattered neutrons were measured for a plate thickness (boron surface density) of t (704.5 [mg / cm 2 ]), and a calibration curve was created.
The neutron source intensity of 252 Cf used for the neutron source was 33.8 μCi 9 days after the reference date, which is the calibration curve creation date. The boron surface density D [mg / cm 2 ] of the plate thickness H [mm] at the boron content M [%] was determined by the following equation. The density of the B-SUS material (stainless steel) is 7.76.
[G / cm 3 ]. D = 7.76 × M × H [mg / cm 2 ]

【0030】横軸にボロン表面密度、縦軸に中性子計数
値を取りその結果を図4のグラフに示す。測定条件は3
分間/3回とし、その平均値を示す。ボロン表面密度が
低い領域(〜70[mg/cm2])では、ボロン表面
密度の増加と伴に中性子吸収割合が急激に増加するが、
その後は緩やかとなり(70〜200[mg/c
2])ある限度(〜200[mg/cm2])を超える
と、変化は殆ど見られなくなる。換言すればB−SUS
板厚が厚くなるにもかかわらず、中性子計数値はほぼ一
定値を保つことがわかる。
The horizontal axis represents the boron surface density, and the vertical axis represents the neutron count, and the results are shown in the graph of FIG. Measurement conditions are 3
Minutes / 3 times, the average value is shown. In the region where the boron surface density is low (up to 70 [mg / cm 2 ]), the neutron absorption ratio sharply increases with the increase in the boron surface density.
After that, it becomes moderate (70-200 [mg / c
m 2 ]), when a certain limit (〜200 [mg / cm 2 ]) is exceeded, little change is observed. In other words, B-SUS
It can be seen that the neutron count value remains almost constant despite the increase in the plate thickness.

【0031】また、検量線作成日である基準日における
ボロン濃度1.57%のB材及びC材の中性子計数値N
b,Ncを実際に計数(測定)した。1回あたりの測定時
間を3分とし、3回測定を行ってその平均値を求めた。 B材:1.0mmt Nb=26112[count](3分/3回) C材:1.3mmt Nc=23190[count](3分/3回)
Further, the neutron counts N and B of the materials B and C having a boron concentration of 1.57% on the reference date, which is the date on which the calibration curve was prepared.
b and Nc were actually counted (measured). The measurement time per measurement was 3 minutes, and the measurement was performed three times, and the average value was obtained. Material B: 1.0 mm t Nb = 26112 [count] (3 minutes / 3 times) Material C: 1.3 mm t Nc = 23190 [count] (3 minutes / 3 times)

【0032】次に、このデータを利用して基準日におけ
る誤差の伝播を計算する。Nb,Ncは実際の計数値で
あるから、各計数値の標準偏差σは各計数値の平方根で
ある。B材,C材の誤差範囲dNb,dNcは、計数値の
標準偏差の3倍として求められ、次の通りとなる。 dNb=±485(計数値26112の3σ) dNc=±457(計数値23190の3σ)
Next, the propagation of the error on the reference date is calculated using this data. Since Nb and Nc are actual count values, the standard deviation σ of each count value is the square root of each count value. The error ranges dNb and dNc of the materials B and C are obtained as three times the standard deviation of the count value, and are as follows. dNb = ± 485 (3σ of count value 26112) dNc = ± 457 (3σ of count value 23190)

【0033】ここで、誤差の伝播の範囲をdxとする
と、次式が成立する。 dx2=(Nc/Nb22dNb2+(1/Nb)2dNc2 =1/(26112)4[(23190)2(485)2+(26112)2( 457)2] =2.151×10-18[1.265×1014+1.424×1014] =5.784×10-4
Here, assuming that the range of error propagation is dx, the following equation is established. dx 2 = (Nc / Nb 2 ) 2 dNb 2 + (1 / Nb) 2 dNc 2 = 1 / (26112) 4 [(23190) 2 (485) 2 + (26112) 2 (457) 2 ] = 2. 151 × 10 −18 [1.265 × 10 14 + 1.424 × 10 14 ] = 5.784 × 10 −4

【0034】よって、dx=0.0241となる。一
方、Nc/Nb=23190/26112=0.8881
である。
Therefore, dx = 0.0241. On the other hand, Nc / Nb = 23190/26112 = 0.8881
It is.

【0035】よって誤差の伝播範囲は次の通りとなる。 0.8881±0.0241=0.864〜0.912Therefore, the propagation range of the error is as follows. 0.8881 ± 0.0241 = 0.864 to 0.912

【0036】上述の基準日の21日後に実際に試験体測
定を開始する。試験体測定(BD,BE材)の前に基準
試験体(B,C材)を測定し、その計数比が誤差の伝播
に基づく範囲内にあることを確認し、測定系(測定シス
テム)の正当性を検証する。 B材:1.0mmt:Nb=26000[count](3分/3回) C材:1.3mmt:Nc=22835[count](3分/3回)
The test specimen measurement is actually started 21 days after the reference date. Before the test object measurement (BD, BE material), measure the reference test object (B, C material), confirm that the count ratio is within the range based on the propagation of error, and check the measurement system (measurement system). Verify correctness. Material B: 1.0 mm t : Nb = 26000 [count] (3 minutes / 3 times) Material C: 1.3 mm t : Nc = 22835 [count] (3 minutes / 3 times)

【0037】よって、誤差の伝播は次の通りとなる。 Nc/Nb=22835/26000=0.878 この値は先に求めた誤差の伝播範囲である0.864〜
0.912の間の値でありシステムの正当性が検証され
た。
Therefore, the propagation of the error is as follows. Nc / Nb = 22835/26000 = 0.778 This value is 0.864 to 0.864 which is the propagation range of the error determined earlier.
The value was between 0.912 and the validity of the system was verified.

【0038】一方、他の手法により、この測定システム
の正当性を検証してみる。B材,C材の基準日より21
日後における理論上の計数値N'b0,N'c0を求める。 N'b0=Nb0exp(−0.693t/T) =26112exp(−21×0.693/2.64×365)=25720 N'c0=23190exp(−21×0.693/2.64×365) =22842
On the other hand, another method is used to verify the validity of this measurement system. 21 days from the reference date for B and C materials
The theoretical count values N'b0 and N'c0 after the day are obtained. N′b0 = Nb0exp (−0.693t / T) = 26112exp (−21 × 0.693 / 2.64 × 365) = 25720 N′c0 = 23190exp (−21 × 0.693 / 2.64 × 365) = 22842

【0039】ここでTは252Cfの半減期で2.64
年、tは経過日数で21日間である。N'b0,N'c0は共
に理論計数値であるから、各理論計数値の標準偏差σは
各理論計数値の平方根である。検証は理論計数値の標準
偏差の3倍である3σの範囲内に実際の測定値が入るか
否かを確認する。 N'b0−3(N'b0)1/2<N'b<N'b0+3(N'b0)1/2 25720-3(25720)1/2<26000<25720+3(25720)1/2 25240<26000<26200 したがって、B材について測定は正当といえる。
Where T is 2.64 with a half-life of 252 Cf.
The year and t are 21 days in elapsed days. Since N′b0 and N′c0 are both theoretical count values, the standard deviation σ of each theoretical count value is the square root of each theoretical count value. The verification checks whether or not the actual measured value falls within the range of 3σ, which is three times the standard deviation of the theoretical count value. N'b0-3 (N'b0) 1/2 <N'b <N'b0 + 3 (N'b0) 1/2 25720-3 (25720) 1/2 <26000 <25720 + 3 (25720) 1/2 25240 <26000 <26200 Therefore, it can be said that the measurement of the material B is valid.

【0040】次にC材について検討する。 N'c0−3(N'c0)1/2<N'c<N'c0+3(N'c0)1/2 22842-3(22842)1/2<22835<22842+3(22842)1/2 22389<22835<23295 よって、C材についても測定は正当といえ、これらの結
果よりシステム全体の正当性が検証された。
Next, the material C will be examined. N'c0-3 (N'c0) 1/2 <N'c <N'c0 + 3 (N'c0) 1/2 22842-3 (22842) 1/2 <22835 <22842 + 3 (22842) 1/2 22389 <22835 <23295 Therefore, it can be said that the measurement was also valid for the C material, and from these results, the validity of the entire system was verified.

【0041】次に、測定試験体であるBD材、BE材の
許容計数値を求める。BD材のボロン表面密度34.1
[mg/cm2]での検量線から求まる許容計数値につ
いては基準日に作成した検量線のボロン表面密度が3
4.1[mg/cm2]のときの中性子計数値を求め当
該日までの減衰を考慮し、標準偏差の3倍を加えた値を
許容値として設定する。基準日の21日後である測定日
では15689[count/3分]が許容値となる。
BE材のボロン表面密度37.9[mg/cm2]での
検量線から求まる許容計数値についても、検量線からB
Dと同様に求める。BD材と同様に14800[cou
nt/3分]となる。
Next, an allowable count value of the BD material and the BE material which are the measurement specimens is determined. Boron surface density of BD material 34.1
Regarding the allowable count value obtained from the calibration curve in [mg / cm 2 ], the boron surface density of the calibration curve prepared on the reference day is 3
The neutron count value at the time of 4.1 [mg / cm 2 ] is obtained, and considering the attenuation up to the day, a value obtained by adding three times the standard deviation is set as an allowable value. On the measurement date 21 days after the reference date, 15689 [count / 3 minutes] is the allowable value.
The allowable count value obtained from the calibration curve at a boron surface density of BE of 37.9 [mg / cm 2 ] of the BE material is also represented by B from the calibration curve.
Determined in the same way as D. 14800 [cou] like BD material
nt / 3 minutes].

【0042】実際の測定は200×300×4mmt
BD材及びBE材のほぼ中央で3回行った。BD材にお
ける測定値は、14332,14398,14393
[count]であり、許容計数値である15689
[count]よりも小さかった。また、BE材におけ
る測定値は、13656,13658,13437[c
ount]であり、許容計数値である14800[co
unt]よりも小さかった。したがって、これらBD材
及びBE材の中性子遮蔽能力が十分であると判定するこ
とが可能である。これにより測定は終了するが、測定開
始時と同様に測定終了時にもB,C材の計数値比較によ
り測定システムの正当性を確認してもよい。
The actual measurement was carried out three times at substantially the center of a BD material and a BE material of 200 × 300 × 4 mm t . The measured values of the BD material are 14332, 14398, 14393.
[Count], which is an allowable count value of 15689
It was smaller than [count]. The measured value of the BE material is 13656, 13658, 13437 [c
out] and the permissible count value of 14800 [co
unt]. Therefore, it is possible to determine that the neutron shielding ability of these BD materials and BE materials is sufficient. This completes the measurement, but the validity of the measurement system may be confirmed by comparing the count values of the B and C materials at the end of the measurement as well as at the start of the measurement.

【0043】ところで、上記実施例では、実際の測定計
数値を許容計数値と比較することにより中性子遮蔽能力
を判定した。しかし、実際の計数値を上述の式により経
時減衰を考慮して基準日における計数値として求め、さ
らに図4に示す相関を用いて推定ボロン表面密度を求
め、この値が許容表面密度よりも大であるか否かにより
中性子遮蔽能力を判定することも可能である。
In the above embodiment, the neutron shielding ability was determined by comparing the actual measured count value with the allowable count value. However, the actual count value is calculated as the count value on the reference date in consideration of the time-dependent decay according to the above formula, and further, the estimated boron surface density is calculated using the correlation shown in FIG. It is also possible to determine the neutron shielding ability based on whether or not

【0044】また、ボロン含有率M[%]は、求められ
たボロン表面密度D[mg/cm2]と板厚H[mm]
及び測定試験体Sの密度ρ[g/cm3]とを用いて最
終的に次式により求めることができる。 M=D/(ρ・H) [%]
The boron content M [%] is determined by the obtained boron surface density D [mg / cm 2 ] and the thickness H [mm].
And the density ρ [g / cm 3 ] of the measurement specimen S can be finally obtained by the following equation. M = D / (ρ · H) [%]

【0045】なお、特許請求の範囲の項に記入した符号
は、あくまでも図面との対照を便利にするためのものに
すぎず、これらの記入により本発明は添付図面の構成に
限定されるものではない。
It should be noted that the reference numerals entered in the claims are merely for convenience of comparison with the drawings, and the present invention is not limited to the configuration of the accompanying drawings by these entries. Absent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いる中性子照射器の断面図である。FIG. 1 is a cross-sectional view of a neutron irradiator used in the present invention.

【図2】図1のI−I線断面図である。FIG. 2 is a sectional view taken along line II of FIG. 1;

【図3】本発明に用いる中性子吸収物質含有率測定装置
の概略ブロック図である。
FIG. 3 is a schematic block diagram of a neutron absorbing substance content measuring device used in the present invention.

【図4】ボロン表面密度と中性子計数値との関係を表す
グラフである。
FIG. 4 is a graph showing a relationship between a boron surface density and a neutron count value.

【図5】本発明の第二実施形態に用いる中性子照射器の
断面図である。
FIG. 5 is a sectional view of a neutron irradiator used in a second embodiment of the present invention.

【図6】図5のII−II線断面図である。FIG. 6 is a sectional view taken along line II-II of FIG.

【符号の説明】[Explanation of symbols]

1 中性子吸収物質含有率測定装置 10 中性子照射器 11 第一コリメーター 12 第二コリメーター 13 カドミウム板 14 基礎部 15 中性子線源 17 中性子検出素子(三ふっ化硼素計数管) 18 反射材台 19 共用コリメーター 21 プリアンプ 22 高電圧供給器 23 信号波形整形器 24 モニター 30 中性子照射器 S 測定試験体 B 照射中性子 R 散乱反射中性子 REFERENCE SIGNS LIST 1 neutron absorbing substance content measuring device 10 neutron irradiator 11 first collimator 12 second collimator 13 cadmium plate 14 base unit 15 neutron radiation source 17 neutron detection element (boron trifluoride counter tube) 18 reflector base 19 common Collimator 21 Preamplifier 22 High voltage supply 23 Signal waveform shaper 24 Monitor 30 Neutron irradiator S Measurement specimen B Irradiated neutron R Scattered neutron

───────────────────────────────────────────────────── フロントページの続き (72)発明者 今中 拓一 大阪市西区北堀江1丁目18番14号 非破壊 検査株式会社内 (72)発明者 鍋島 秀雄 東京都千代田区大手町1丁目1番3号 住 友金属工業株式会社内 Fターム(参考) 2G001 AA04 AA05 BA11 CA04 DA01 DA02 GA01 HA01 JA17 KA01 LA02 MA05 NA15 NA16 SA02 SA03 SA12 2G088 EE29 FF09 GG05 JJ01 JJ11 JJ29 JJ30 LL26  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Takuichi Imanaka 1-18-14 Kitahorie, Nishi-ku, Osaka-shi Non-Destructive Inspection Co., Ltd. (72) Inventor Hideo Nabeshima 1-1-1, Otemachi, Chiyoda-ku, Tokyo No. 3 Sumitomo Metal Industries Co., Ltd. F term (reference) 2G001 AA04 AA05 BA11 CA04 DA01 DA02 GA01 HA01 JA17 KA01 LA02 MA05 NA15 NA16 SA02 SA03 SA12 2G088 EE29 FF09 GG05 JJ01 JJ11 JJ29 JJ30 LL26

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 測定試験体(S)の一方に反射材(1
8)を配置し、前記測定試験体(S)の他方に中性子線
源(15)と中性子測定素子(17)とを配置し、前記
中性子線源(15)より発せられ且つ前記反射材(1
8)により散乱減速させられた熱中性子(R)のうち前
記測定試験体(S)を透過する熱中性子(R)を前記中
性子測定素子(17)により計数することで前記測定試
験体(S)の中性子吸収物質の含有率を測定する中性子
吸収物質の含有率測定方法。
A reflector (1) is provided on one of the test specimens (S).
8), a neutron source (15) and a neutron measuring element (17) are arranged on the other side of the measurement specimen (S), and the reflection material (1) emitted from the neutron source (15) and
The neutron measuring element (17) counts the thermal neutrons (R) that pass through the measuring test body (S) among the thermal neutrons (R) whose scattering has been slowed down by 8), thereby measuring the measuring test body (S). A method for measuring the content of a neutron absorbing substance, which measures the content of a neutron absorbing substance.
【請求項2】 含まれる中性子吸収物質の表面密度が既
知である前記測定試験体(S)を用いて中性子吸収物質
の表面密度と前記計数値との相関を表す検量線をあらか
じめ作成し、前記測定試験体(S)の本測定時における
前記計数値を求めると共に前記相関の基準測定時から前
記本測定時に至るまでの経時による減衰と前記相関とを
考慮して前記本測定時での前記測定試験体(S)におけ
る中性子吸収物質の表面密度を求めることにより中性子
吸収物質の含有率を測定する請求項1に記載の中性子吸
収物質の含有率測定方法。
2. A calibration curve representing the correlation between the surface density of the neutron absorbing substance and the count value is prepared in advance using the measurement specimen (S) in which the surface density of the contained neutron absorbing substance is known, The measurement value of the measurement specimen (S) at the time of the main measurement is determined, and the measurement at the time of the main measurement is performed in consideration of the attenuation over time from the reference measurement of the correlation to the main measurement and the correlation. The method for measuring the content of a neutron absorbing substance according to claim 1, wherein the content of the neutron absorbing substance is measured by determining the surface density of the neutron absorbing substance in the test body (S).
【請求項3】 含まれる中性子吸収物質の表面密度が既
知で異なる2種類の標準試験体の前記計数値の比が誤差
の伝播に基づく範囲内にあることの確認により検量線と
の関係を明確にして中性子線源を含む測定系の正当性を
検証する請求項1又は2のいずれかに記載の中性子吸収
物質の含有率測定方法。
3. The relationship with the calibration curve is clarified by confirming that the ratio of the count values of two types of standard specimens having known and different surface densities of the contained neutron absorbing substances is within a range based on propagation of an error. 3. The method for measuring the content of a neutron absorbing substance according to claim 1, wherein the validity of the measurement system including the neutron source is verified.
【請求項4】 含まれる中性子吸収物質の表面密度が既
知で異なる2種類の標準試験体のそれぞれについて、前
記基準測定時から前記本測定時に至るまでの経時による
減衰を考慮して前記本測定時での理論計数値をそれぞれ
求め、前記2種類の標準試験体のそれぞれについての前
記本測定時における実際の測定計数値が前記理論計数値
の標準偏差を3倍した値の範囲内であることの確認によ
り中性子線源を含む測定系の正当性を検証する請求項1
〜3のいずれかに記載の中性子吸収物質の含有率測定方
法。
4. The method according to claim 1, wherein each of two types of standard test specimens having different known surface densities of the neutron-absorbing substances contained therein takes into account decay with time from the reference measurement to the main measurement. In each of the two types of standard specimens, the actual measurement count value at the time of the main measurement is within a range of three times the standard deviation of the theoretical count value. 2. The method according to claim 1, wherein the confirmation verifies the validity of the measurement system including the neutron source.
4. The method for measuring the content of a neutron absorbing substance according to any one of items 1 to 3.
【請求項5】 前記測定試験体(S)がステンレス鋼で
あり、前記中性子吸収物質がボロンであり、前記反射材
(18)がポリエチレンであり、前記中性子測定素子
(17)が三ふっ化硼素計数管である請求項1〜4のい
ずれかに記載の中性子吸収物質の含有率測定方法。
5. The test specimen (S) is stainless steel, the neutron absorbing substance is boron, the reflector (18) is polyethylene, and the neutron measuring element (17) is boron trifluoride. The method for measuring the content of a neutron absorbing substance according to any one of claims 1 to 4, which is a counter tube.
【請求項6】 請求項1〜4のいずれかに記載の中性子
吸収物質の含有率測定方法に用いる中性子照射器であっ
て、中性子の減速材で形成された基礎部14と、第一,
第二コリメーター11,12と、前記基礎部14に形成
した前記第一,第二コリメーター11,12用孔の側面
及び底部並びに前記基礎部14の外面を覆う中性子の遮
蔽材13と、前記第一コリメーター11の底部に配置し
た中性子線源15と、前記第二コリメーター12の底部
に配置した中性子検出素子17とを備え、前記第一コリ
メーター11と前記第二コリメーター12とを近接させ
てある中性子照射器。
6. A neutron irradiator for use in the method for measuring a content rate of a neutron absorbing substance according to claim 1, wherein a base part 14 formed of a neutron moderator is provided.
A second neutron shielding material 13 for covering the side surfaces and bottom portions of the holes for the first and second collimators 11 and 12 formed in the base portion 14 and the outer surface of the base portion 14; A neutron source 15 disposed at the bottom of the first collimator 11; and a neutron detection element 17 disposed at the bottom of the second collimator 12. The first collimator 11 and the second collimator 12 A neutron irradiator in close proximity.
JP10372684A 1998-12-28 1998-12-28 Content rate measuring method of neutron absorbing material and neutron irradiator used for the same Pending JP2000193610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10372684A JP2000193610A (en) 1998-12-28 1998-12-28 Content rate measuring method of neutron absorbing material and neutron irradiator used for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10372684A JP2000193610A (en) 1998-12-28 1998-12-28 Content rate measuring method of neutron absorbing material and neutron irradiator used for the same

Publications (1)

Publication Number Publication Date
JP2000193610A true JP2000193610A (en) 2000-07-14

Family

ID=18500880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10372684A Pending JP2000193610A (en) 1998-12-28 1998-12-28 Content rate measuring method of neutron absorbing material and neutron irradiator used for the same

Country Status (1)

Country Link
JP (1) JP2000193610A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350369A (en) * 2001-05-30 2002-12-04 Central Res Inst Of Electric Power Ind Measuring method of boron concentration and measuring apparatus utilizing the same
WO2007043762A1 (en) * 2005-10-07 2007-04-19 Korea Atomic Energy Research Institute A neutron coincidence counter for non-destructive accounting for nuclear material and the handling method thereof
CN107561104A (en) * 2017-09-08 2018-01-09 中国原子能科学研究院 A kind of equipment for nuclear power plant's boron aluminum alloy materials neutron-absorbing performance detection
JP2018036285A (en) * 2015-03-10 2018-03-08 一般財団法人電力中央研究所 Method, device, and program for quantitative analysis of elements in powder or granulated material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350369A (en) * 2001-05-30 2002-12-04 Central Res Inst Of Electric Power Ind Measuring method of boron concentration and measuring apparatus utilizing the same
WO2007043762A1 (en) * 2005-10-07 2007-04-19 Korea Atomic Energy Research Institute A neutron coincidence counter for non-destructive accounting for nuclear material and the handling method thereof
JP2018036285A (en) * 2015-03-10 2018-03-08 一般財団法人電力中央研究所 Method, device, and program for quantitative analysis of elements in powder or granulated material
CN107561104A (en) * 2017-09-08 2018-01-09 中国原子能科学研究院 A kind of equipment for nuclear power plant's boron aluminum alloy materials neutron-absorbing performance detection

Similar Documents

Publication Publication Date Title
El Abd et al. A simple method for determining the effective removal cross section for fast neutrons
US6603122B2 (en) Probe for contamination detection in recyclable materials
JP4854116B2 (en) Radioactive substance analysis process and analysis equipment
Angelone et al. Absolute experimental and numerical calibration of the 14 MeV neutron source at the Frascati neutron generator
Tochilin et al. Neutron beam characteristics from the University of California 60 in. cyclotron
Bathow et al. Measurements on 6.3 GeV electromagnetic cascades and cascade-produced neutrons
JP2020125944A (en) Method for suppressing activation and method for managing wall body
US6452992B1 (en) Method and device for measuring the relative proportions of plutonium and uranium in a body
Krinninger et al. Pulsed neutron method for non-destructive and simultaneous determination of the 235U and 239Pu contents of irradiated and non-irradiated reactor fuel elements
US5028789A (en) System and apparatus for neutron radiography
JP5022886B2 (en) Moisture detection method, moisture detection device and pipe inspection device
Tzika et al. Large sample neutron activation analysis: correction for neutron and gamma attenuation
JP2000193610A (en) Content rate measuring method of neutron absorbing material and neutron irradiator used for the same
Haruyama et al. Improvement of detection limit in 14MeV neutron direct interrogation method by decreasing background
CN113703029A (en) On-line monitoring method and system for obtaining gadolinium concentration by measuring gamma rays
Lee et al. Developing Delayed Gamma-ray Spectroscopy for reprocessing plant nuclear safeguards: neutron detection system development
JPH01244345A (en) Neutron measuring apparatus
JP2736955B2 (en) Method and apparatus for measuring hydrogen content in metal materials
Thiele NEUTRON AND GAMMA RAY ATTENUATION IN SODIUM SHIELDS.
Yamamoto et al. Measurements and calculations of angular flux spectra emitted from lithium and graphite slabs with DT neutron source
JP2013130418A (en) Nuclear material detection device and nuclear material detection method
US3735126A (en) Method and apparatus for testing rock coal dust
Kruger Low-level Neutron Dosimetry with Sensitive Foil Methods
Iwasaki et al. Measurement and analysis of capture reaction rate of 237Np in various thermal neutron fields by critical assembly and heavy water thermal neutron facility of Kyoto University
Bukshpan et al. Detection of imperfections by means of narrow beam gamma scattering