JP2000192846A - Combustion controller for internal combustion engine - Google Patents

Combustion controller for internal combustion engine

Info

Publication number
JP2000192846A
JP2000192846A JP10369870A JP36987098A JP2000192846A JP 2000192846 A JP2000192846 A JP 2000192846A JP 10369870 A JP10369870 A JP 10369870A JP 36987098 A JP36987098 A JP 36987098A JP 2000192846 A JP2000192846 A JP 2000192846A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
pressure
cylinder
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10369870A
Other languages
Japanese (ja)
Inventor
幸大 ▲吉▼沢
Yukihiro Yoshizawa
Takayuki Arai
孝之 荒井
Akihiro Iiyama
明裕 飯山
Takeshi Taniyama
剛 谷山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP10369870A priority Critical patent/JP2000192846A/en
Publication of JP2000192846A publication Critical patent/JP2000192846A/en
Pending legal-status Critical Current

Links

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize stable self-ignition combustion by optimally controlling a pressure and a temperature in a cylinder which are parameters for combustion control under the conditions enabling self-ignition combustion. SOLUTION: This controller predicts a scope of self-ignition formation from a demand torque T, calculates a target intake pressure Pin from the demand torque T under the conditions enabling self-ignition combustion, and controls supercharged pressure (S27). It calculates temperatures in a cylinder P2, T2 at a compression top dead center based on the intake pressure Pin and an intake temperature Tin (S28 to S29) and calculates knocking limit air-fuel ratio AFR and stability limit air-fuel ratio AFL based on these values (S30). It calculates target air-fuel ratio AF based on these values and controls combustion (S31).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特定の運転条件に
おいて、圧縮自己着火燃焼運転を行う内燃機関(特に4
サイクルエンジン)の燃焼制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal combustion engine (particularly, 4
Cycle engine).

【0002】[0002]

【従来の技術】ガソリンエンジンの熱効率を改善するた
めに、混合気をリーン化することでポンプ損失を低減す
ると共に、作動ガスの比熱比を大きくして理論熱効率を
向上する手法が知られている。しかしながら、従来の火
花点火エンジンでは空燃比をリーンにすると燃焼期間が
長期化して、燃焼安定度が悪化する。このため、空燃比
のリーン化には限界がある。
2. Description of the Related Art In order to improve the thermal efficiency of a gasoline engine, there is known a method of reducing the pump loss by making the air-fuel mixture lean and increasing the specific heat ratio of the working gas to improve the theoretical thermal efficiency. . However, in the conventional spark ignition engine, when the air-fuel ratio is made lean, the combustion period becomes longer, and the combustion stability deteriorates. For this reason, there is a limit to lean air-fuel ratio.

【0003】上記問題を解決する手段として、特開平7
−71279号に示されるように、予混合圧縮自己着火
燃焼を起こさせる手段が提示されている。これは、2サ
イクルエンジンにおいて、排気ポート近傍に該排気ポー
トの開度を制御可能な排気制御弁を設け、この排気制御
弁を制御することにより、筒内圧力を制御して自己着火
燃焼を起こしている。
As means for solving the above problem, Japanese Patent Laid-Open No.
As shown in US Pat. No. 71279, a means for causing homogeneous charge compression auto-ignition combustion is provided. This is because in a two-cycle engine, an exhaust control valve capable of controlling the opening degree of the exhaust port is provided near the exhaust port, and by controlling the exhaust control valve, the in-cylinder pressure is controlled to cause self-ignition combustion. ing.

【0004】予混合圧縮自己着火では複数の位置から燃
焼反応が起こるため、空燃比がリーン化した場合におい
ても火花点火に比べると燃焼期間が長期化せずに、より
リーンな空燃比での燃焼が可能となる。また、空燃比が
リーンのため、燃焼温度が低下し、NOxも大幅に低減
できる。
In the homogeneous charge compression self-ignition, a combustion reaction occurs from a plurality of positions. Therefore, even when the air-fuel ratio becomes lean, the combustion period is not prolonged as compared with spark ignition, and combustion at a leaner air-fuel ratio is performed. Becomes possible. Further, since the air-fuel ratio is lean, the combustion temperature is reduced, and the NOx can be significantly reduced.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、自己着
火燃焼は空燃比の影響を強く受け、リッチ側ではノッキ
ングを生じ、リーン側では失火を生じることから、運転
可能な空燃比範囲が制限される。
However, self-ignition combustion is strongly affected by the air-fuel ratio, and knocking occurs on the rich side and misfires occur on the lean side, so that the operable air-fuel ratio range is limited.

【0006】図2に自己着火燃焼範囲を示す。図からわ
かるように、エンジン回転数と負荷で考えた領域におい
て、主に低負荷側で自己着火燃焼を行い、その他の領域
では火花点火燃焼を行っている。
FIG. 2 shows a self-ignition combustion range. As can be seen from the figure, self-ignition combustion is performed mainly on the low load side in a region considered in terms of engine speed and load, and spark ignition combustion is performed in other regions.

【0007】図3に特定の運転条件で考えた場合の空燃
比に対する安定度とノッキングの関係を示す。図からわ
かるように空燃比をリーンにすると安定度が悪化する。
従って、運転性を考えた場合に、安定度限界となる空燃
比がリーン限界となる。また逆に空燃比をリッチにする
とノッキングが発生する。従って、音振の問題を考えた
場合に、ノッキング限界となる空燃比がリッチ限界とな
る。このように、安定度限界とノッキング限界の間の空
燃比範囲が自己着火成立範囲となる。
FIG. 3 shows the relationship between the stability and the knocking with respect to the air-fuel ratio under specific operating conditions. As can be seen from the figure, when the air-fuel ratio is made lean, the stability deteriorates.
Therefore, when the drivability is considered, the air-fuel ratio that becomes the stability limit becomes the lean limit. Conversely, when the air-fuel ratio is made rich, knocking occurs. Therefore, when the problem of sound vibration is considered, the air-fuel ratio serving as the knocking limit becomes the rich limit. Thus, the air-fuel ratio range between the stability limit and the knocking limit is the auto-ignition establishment range.

【0008】ここでノッキング限界の空燃比に影響を与
える因子としては、前記公報に示されるように筒内圧力
がある。しかしながら、筒内圧力に加えて、筒内温度も
ノッキング限界の空燃比に与える影響も大きい。
Here, as a factor affecting the air-fuel ratio at the knocking limit, there is a cylinder pressure as described in the above-mentioned publication. However, in addition to the in-cylinder pressure, the in-cylinder temperature has a large effect on the air-fuel ratio at the knocking limit.

【0009】図4に筒内圧力と筒内温度がノッキング限
界空燃比に与える影響を示す。ノッキング限界空燃比は
筒内圧力が高いほど、筒内温度が高いほどリーンとな
る。安定度限界となるリーン限界の空燃比も同様の傾向
となっている。従って、筒内圧力のみでは安定して自己
着火燃焼を起こすことは困難である。
FIG. 4 shows the effect of cylinder pressure and cylinder temperature on the knocking limit air-fuel ratio. The knocking limit air-fuel ratio becomes leaner as the cylinder pressure is higher and the cylinder temperature is higher. The air-fuel ratio at the lean limit, which is the stability limit, has a similar tendency. Therefore, it is difficult to stably cause self-ignition combustion only by the in-cylinder pressure.

【0010】図5に筒内温度に影響を与える吸気温が変
化した時の自己着火燃焼の成立範囲を示す。特定の運転
条件について見ると、ある筒内圧力の条件に対して、燃
料噴射量を決定する空燃比は安定度限界とノッキング限
界の間の自己着火成立範囲に設定されている。しかしな
がら、吸気温が低下すると、安定度限界はリッチ側に移
動するため、設定の空燃比では安定度が悪化する。また
逆に吸気温が高くなると、ノッキング限界の空燃比はリ
ーン側に移動する。従って設定されている空燃比ではノ
ッキングが発生してしまう。
FIG. 5 shows a range in which self-ignition combustion is effected when the intake air temperature affecting the in-cylinder temperature changes. Looking at specific operating conditions, for a certain in-cylinder pressure condition, the air-fuel ratio that determines the fuel injection amount is set in a self-ignition establishment range between the stability limit and the knocking limit. However, when the intake air temperature decreases, the stability limit moves to the rich side, and the stability deteriorates at the set air-fuel ratio. Conversely, when the intake air temperature increases, the air-fuel ratio at the knocking limit moves to the lean side. Therefore, knocking occurs at the set air-fuel ratio.

【0011】このように、前記公報では、2ストローク
エンジンの排気制御弁を制御することによって、筒内圧
力を制御して自己着火燃焼を起こしているが、自己着火
燃焼の成立範囲は筒内圧力と筒内温度の両方の影響を強
く受けており、排気制御弁の制御だけでは、圧力と温度
の独立した制御を行うことができない。
As described above, in the above publication, the self-ignition combustion is caused by controlling the in-cylinder pressure by controlling the exhaust control valve of the two-stroke engine. And the in-cylinder temperature, the pressure and temperature cannot be controlled independently only by controlling the exhaust control valve.

【0012】このため、運転条件によっては、ノッキン
グあるいは失火が発生して運転性が著しく悪化する可能
性がある。また加えて、空燃比の制御においては、圧縮
上死点の温度と圧力に応じて自己着火成立範囲を予測し
ていないため、熱効率が最良となる運転条件で自己着火
燃焼を行うことができず燃費が悪化していた。
For this reason, knocking or misfire may occur depending on the operating conditions, and the operability may be significantly deteriorated. In addition, in the control of the air-fuel ratio, since the self-ignition establishment range is not predicted according to the temperature and the pressure at the compression top dead center, the self-ignition combustion cannot be performed under the operating condition in which the thermal efficiency is the best. Fuel economy had deteriorated.

【0013】本発明は、かかる問題に鑑みてなされたも
ので、要求トルクから自己着火成立範囲を予測して、自
己着火燃焼が可能な条件においては、燃焼制御のパラメ
ータである筒内圧力、筒内温度を最適に制御し、安定し
た自己着火燃焼を実現し、これにより、熱効率が高く、
燃費が良い、クリーンな内燃機関を提供することを目的
とする。
The present invention has been made in view of such a problem, and predicts a range in which self-ignition is established from a required torque. Under conditions in which self-ignition combustion is possible, in-cylinder pressure and cylinder pressure, which are parameters of combustion control, are set. The internal temperature is controlled optimally, and stable self-ignition combustion is realized.
It is an object to provide a clean internal combustion engine with good fuel efficiency.

【0014】[0014]

【課題を解決するための手段】このため、請求項1に係
る発明では、図1に示すように、要求トルクに対して、
該要求トルクを発生する圧縮自己着火燃焼可能な目標筒
内圧力および目標筒内温度を算出する手段と、算出され
た目標筒内圧力および目標筒内温度を得るように燃焼パ
ラメータを制御する手段と、を含んで、内燃機関の燃焼
制御装置を構成する。
According to the first aspect of the present invention, as shown in FIG.
Means for calculating a target in-cylinder pressure and a target in-cylinder temperature capable of performing the compression self-ignition combustion for generating the required torque, and means for controlling a combustion parameter so as to obtain the calculated target in-cylinder pressure and target in-cylinder temperature. To form a combustion control device for an internal combustion engine.

【0015】請求項2に係る発明では、請求項1に係る
発明において、前記燃焼パラメータ制御手段は、目標筒
内圧力および目標筒内温度を得るように筒内圧力および
筒内温度の少なくとも一方を変更する手段と、目標筒内
圧力および目標筒内温度に対する目標空燃比を算出して
該目標空燃比に空燃比を制御する手段と、を含んで構成
されることを特徴とする(図1参照)。
In the invention according to claim 2, in the invention according to claim 1, the combustion parameter control means controls at least one of the in-cylinder pressure and the in-cylinder temperature so as to obtain the target in-cylinder pressure and the target in-cylinder temperature. And means for calculating a target air-fuel ratio with respect to the target in-cylinder pressure and the target in-cylinder temperature and controlling the air-fuel ratio to the target air-fuel ratio (see FIG. 1). ).

【0016】請求項3に係る発明では、請求項2に係る
発明において、前記筒内圧力の変更手段としては、過給
圧変更手段を用い、目標筒内圧力は圧縮自己着火燃焼が
成立するリッチ限界圧力とリーン限界圧力との略中間に
設定することを特徴とする。
According to a third aspect of the present invention, in the second aspect of the present invention, a supercharging pressure changing unit is used as the in-cylinder pressure changing unit, and the target in-cylinder pressure is set at a rich level where compression self-ignition combustion is established. It is characterized in that it is set approximately at the middle between the limit pressure and the lean limit pressure.

【0017】請求項4に係る発明では、請求項2に係る
発明において、前記筒内圧力の変更手段としては、過給
圧変更手段を用い、目標筒内圧力は圧縮自己着火燃焼が
成立するリーン限界圧力付近に設定することを特徴とす
る。
According to a fourth aspect of the present invention, in the second aspect of the invention, as the means for changing the in-cylinder pressure, a supercharging pressure changing means is used, and the target in-cylinder pressure is controlled so as to achieve lean lean combustion in which compression self-ignition combustion is established. It is characterized in that it is set near the limit pressure.

【0018】請求項5に係る発明では、請求項2に係る
発明において、前記筒内温度の変更手段としては、吸気
温変更手段を用い、目標筒内温度は圧縮自己着火燃焼が
成立するリッチ限界温度付近に設定することを特徴とす
る。
According to a fifth aspect of the present invention, in the second aspect of the present invention, the in-cylinder temperature changing means uses an intake air temperature changing means, and the target in-cylinder temperature is set to a rich limit at which compression self-ignition combustion is established. It is characterized in that it is set near the temperature.

【0019】請求項6に係る発明では、請求項2に係る
発明において、前記筒内圧力および筒内温度の変更手段
としては、圧縮比可変手段を用い、目標筒内圧力および
目標筒内温度は圧縮自己着火燃焼が成立するリーン限界
圧力付近およびリーン限界温度付近に設定することを特
徴とする。
In the invention according to claim 6, in the invention according to claim 2, as the means for changing the in-cylinder pressure and the in-cylinder temperature, a compression ratio variable means is used, and the target in-cylinder pressure and the target in-cylinder temperature are adjusted. It is set near the lean limit pressure and near the lean limit temperature at which the compression self-ignition combustion is established.

【0020】請求項7に係る発明では、請求項2〜請求
項6に係る発明において、前記目標空燃比の算出は、圧
縮上死点の筒内圧力および筒内温度から算出することを
特徴とする。
According to a seventh aspect of the present invention, in the second aspect of the invention, the target air-fuel ratio is calculated from a cylinder pressure and a cylinder temperature at a compression top dead center. I do.

【0021】請求項8に係る発明では、請求項2〜請求
項6に係る発明において、前記目標空燃比の算出は、圧
縮上死点の筒内圧力および筒内温度の一次式から算出す
ることを特徴とする。
In the invention according to claim 8, in the invention according to claims 2 to 6, the calculation of the target air-fuel ratio is calculated from a linear expression of a cylinder pressure and a cylinder temperature at the compression top dead center. It is characterized by.

【0022】請求項9に係る発明では、請求項2〜請求
項6に係る発明において、燃料のオクタン価を検出する
手段を有し、前記目標空燃比の算出は、圧縮上死点の筒
内圧力、筒内温度およびオクタン価の一次式から算出す
ることを特徴とする。
According to a ninth aspect of the present invention, in the invention of the second to sixth aspects, there is provided means for detecting an octane number of the fuel, and the calculation of the target air-fuel ratio is based on the in-cylinder pressure at the compression top dead center. , And an in-cylinder temperature and an octane number.

【0023】[0023]

【発明の効果】請求項1に係る発明によれば、要求トル
クに対して、筒内圧力および筒内温度を安定して圧縮自
己着火が成立する条件に設定する。これにより、自己着
火燃焼が成立し、燃費と排気を大幅に改善できる。
According to the first aspect of the present invention, the in-cylinder pressure and the in-cylinder temperature are set to a condition for stably achieving the compression self-ignition with respect to the required torque. As a result, self-ignition combustion is established, and fuel efficiency and exhaust gas can be significantly improved.

【0024】請求項2に係る発明によれば、要求トルク
に対して、まず始めに筒内圧力および筒内温度を安定し
て圧縮自己着火が成立する条件に設定し、次に設定した
筒内圧力および筒内温度から、最適な目標空燃比を算出
して、空燃比を制御する。このため、圧縮自己着火燃焼
を行う各運転条件においても、ノッキングや失火の発生
により運転性を損なうことなく、安定して圧縮自己着火
燃焼を行うことができ、燃費と排気を大幅に改善でき
る。
According to the second aspect of the present invention, for the required torque, first, the in-cylinder pressure and the in-cylinder temperature are set to conditions for stabilizing the compression self-ignition, and then the set in-cylinder pressure is set. An optimum target air-fuel ratio is calculated from the pressure and the in-cylinder temperature to control the air-fuel ratio. For this reason, even under each operating condition in which the compression self-ignition combustion is performed, the compression self-ignition combustion can be stably performed without impairing the operability due to the occurrence of knocking or misfire, and the fuel efficiency and the exhaust gas can be greatly improved.

【0025】請求項3に係る発明によれば、筒内圧力の
変更手段として過給圧変更手段を用いて、要求トルクに
対して、筒内圧力を圧縮自己着火燃焼が成立するリッチ
限界圧力とリーン限界圧力との略中間に設定している。
このため、部品バラツキ等が発生した場合においても、
ノッキングや失火の発生により運転性を損なうことな
く、安定して圧縮自己着火燃焼を行うことができ、燃費
と排気を大幅に改善できる。
According to the third aspect of the present invention, the boost pressure changing means is used as the in-cylinder pressure changing means, and the in-cylinder pressure is reduced with respect to the required torque by a rich limit pressure at which autoignition combustion is established. It is set approximately halfway between the lean limit pressure.
For this reason, even when parts variation occurs,
Compression self-ignition combustion can be stably performed without impairing drivability due to occurrence of knocking or misfire, and fuel efficiency and exhaust can be greatly improved.

【0026】請求項4に係る発明によれば、筒内圧力の
変更手段として過給圧変更手段を用いて、要求トルクに
対して、筒内圧力を圧縮自己着火燃焼が成立する略リー
ン限界圧力に設定している。このため、過給圧が低い条
件で自己着火燃焼による運転が可能となるため、過給に
よる損失を低減することができる。その結果、熱効率が
最良の条件で圧縮自己着火燃焼が実現でき、燃費と排気
を大幅に改善できる。
According to the fourth aspect of the present invention, the supercharging pressure changing means is used as the means for changing the in-cylinder pressure, and the in-cylinder pressure is reduced with respect to the required torque. Is set to For this reason, the operation by the self-ignition combustion becomes possible under the condition of a low supercharging pressure, so that the loss due to the supercharging can be reduced. As a result, compression auto-ignition combustion can be realized under the condition of the best thermal efficiency, and the fuel efficiency and exhaust can be greatly improved.

【0027】請求項5に係る発明によれば、筒内温度の
変更手段として吸気温変更手段を用いて、要求トルクに
対して、筒内温度を圧縮自己着火燃焼が成立する略リッ
チ限界温度に設定している。このため、ノッキングや失
火の発生により運転性を損なうことなく、効率良い、圧
縮自己着火燃焼を行うことができ、燃費と排気を大幅に
改善できる。
According to the fifth aspect of the present invention, the intake air temperature changing means is used as the means for changing the in-cylinder temperature, and the in-cylinder temperature is set to the substantially rich limit temperature at which the compression self-ignition combustion is established with respect to the required torque. You have set. Therefore, efficient compression self-ignition combustion can be performed without impairing drivability due to occurrence of knocking or misfire, and fuel efficiency and exhaust gas can be significantly improved.

【0028】請求項6に係る発明によれば、筒内圧力お
よび筒内温度の変更手段として圧縮比可変手段を用い、
要求トルクに対して、筒内圧力および筒内温度を圧縮自
己着火燃焼が成立するリーン限界圧力およびリーン限界
温度に設定している。このため、より圧縮比が高い状態
で自己着火燃焼が可能となり、熱効率を改善できる。そ
の結果、効率が良い圧縮自己着火燃焼を行うことがで
き、燃費と排気を大幅に改善できる。
According to the invention of claim 6, the compression ratio variable means is used as the means for changing the in-cylinder pressure and the in-cylinder temperature,
For the required torque, the in-cylinder pressure and the in-cylinder temperature are set to a lean limit pressure and a lean limit temperature at which compression self-ignition combustion is established. Therefore, self-ignition combustion can be performed in a state where the compression ratio is higher, and the thermal efficiency can be improved. As a result, efficient compression self-ignition combustion can be performed, and fuel efficiency and exhaust can be significantly improved.

【0029】請求項7に係る発明によれば、目標空燃比
の算出は圧縮上死点の筒内圧力および筒内圧力から算出
している。これにより、圧縮自己着火が成立する空燃比
範囲を精度良く予測できる。その結果、ノッキングや失
火の発生により運転性を損なうことなく、安定して圧縮
自己着火燃焼を行うことができ、燃費と排気を大幅に改
善できる。
According to the present invention, the target air-fuel ratio is calculated from the in-cylinder pressure at the compression top dead center and the in-cylinder pressure. Thereby, the air-fuel ratio range in which the compression self-ignition is established can be accurately predicted. As a result, compression self-ignition combustion can be stably performed without impairing drivability due to occurrence of knocking or misfire, and fuel efficiency and exhaust can be significantly improved.

【0030】請求項8に係る発明によれば、目標空燃比
の算出は圧縮上死点の筒内圧力および筒内圧力の一次式
から算出している。これにより、圧縮自己着火が成立す
る空燃比範囲を精度良く予測できる。その結果、ノッキ
ングや失火の発生により運転性を損なうことなく、安定
して圧縮自己着火燃焼を行うことができ、燃費と排気を
大幅に改善できる。
According to the eighth aspect of the invention, the target air-fuel ratio is calculated from the in-cylinder pressure at the compression top dead center and the linear expression of the in-cylinder pressure. Thereby, the air-fuel ratio range in which the compression self-ignition is established can be accurately predicted. As a result, compression self-ignition combustion can be stably performed without impairing drivability due to occurrence of knocking or misfire, and fuel efficiency and exhaust can be significantly improved.

【0031】請求項9に係る発明によれば、オクタン価
を検出する手段を有し、目標空燃比の算出は圧縮上死点
の筒内圧力、筒内温度およびオクタン価の一次式から算
出している。これにより、燃料性状が変化した場合にお
いても、圧縮自己着火が成立する空燃比範囲を精度良く
予測できる。その結果、ノッキングや失火の発生により
運転性を損なうことなく、安定して圧縮自己着火燃焼を
行うことができ、燃費と排気を大幅に改善できる。
According to the ninth aspect of the present invention, there is provided means for detecting an octane number, and the target air-fuel ratio is calculated from a linear expression of a cylinder pressure at the compression top dead center, a cylinder temperature, and an octane number. . Thereby, even when the fuel property changes, the air-fuel ratio range in which the compression self-ignition is established can be accurately predicted. As a result, compression self-ignition combustion can be stably performed without impairing drivability due to occurrence of knocking or misfire, and fuel efficiency and exhaust can be significantly improved.

【0032】[0032]

【発明の実施の形態】以下、図面に基づいて本発明の実
施の形態について説明する。図6は本発明の第1実施形
態の構成図である。図中の10のエンジンは、吸気バル
ブ11、排気バルブ12、ピストン13を含んで構成さ
れ、吸気系には吸気圧検出手段(吸気圧センサ)14、
吸気温検出手段(吸気温センサ)15を有する。エンジ
ンコントロールユニット(ECU)16は、吸気圧、吸
気温の信号を考慮して、燃料噴射量、点火時期を算出
し、算出結果に基づき、燃料噴射装置17、点火プラグ
18に信号を送る。また、吸気系には、筒内圧力の変更
手段をなす過給圧変更手段として、過給装置19が接続
され、吸気圧(過給圧)を制御する。尚、燃料噴射装置
17は筒内に直接燃料を噴射可能な位置に設置してもよ
い。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 6 is a configuration diagram of the first embodiment of the present invention. The engine 10 in the figure includes an intake valve 11, an exhaust valve 12, and a piston 13. The intake system includes an intake pressure detecting means (intake pressure sensor) 14,
An intake temperature detecting means (intake temperature sensor) 15 is provided. The engine control unit (ECU) 16 calculates the fuel injection amount and the ignition timing in consideration of the signals of the intake pressure and the intake temperature, and sends signals to the fuel injection device 17 and the ignition plug 18 based on the calculation results. Further, a supercharging device 19 is connected to the intake system as a supercharging pressure changing unit that functions as a changing unit of the in-cylinder pressure, and controls an intake pressure (supercharging pressure). The fuel injection device 17 may be installed at a position where fuel can be directly injected into the cylinder.

【0033】このような構成のもと、本発明では、図2
に示すような特定の運転条件において圧縮自己着火燃焼
を行う。次に、作用について説明する。
Under such a configuration, in the present invention, FIG.
Compression self-ignition combustion is performed under specific operating conditions as shown in FIG. Next, the operation will be described.

【0034】先ず、過給圧を変更した場合の自己着火燃
焼が成立する空燃比範囲を図7に示す。先ほど説明した
ように特定の過給圧に対して空燃比の影響を見ると、空
燃比をリーンにしていくと、安定度が悪化していく。こ
れにより安定度限界がリーン限界となる。一方、空燃比
をリッチにしていくと、ノッキングが発生する。これに
よりノッキング限界がリッチ限界となる。従って、安定
度限界とノッキング限界で囲まれる空燃比が自己着火成
立範囲となる。
First, FIG. 7 shows an air-fuel ratio range in which self-ignition combustion is established when the supercharging pressure is changed. Looking at the influence of the air-fuel ratio on the specific supercharging pressure as described above, the stability becomes worse as the air-fuel ratio becomes leaner. As a result, the stability limit becomes the lean limit. On the other hand, when the air-fuel ratio is made rich, knocking occurs. As a result, the knocking limit becomes the rich limit. Therefore, the air-fuel ratio surrounded by the stability limit and the knocking limit is the self-ignition establishment range.

【0035】ここで、過給圧を変化させた場合には、安
定度限界空燃比、ノッキング限界空燃比もリーン化して
いく。しかしながら、安定度限界空燃比とノッキング限
界空燃比の変化の傾向が異なるため、過給圧を上げる
と、自己着火成立範囲は広くなる。
Here, when the supercharging pressure is changed, the stability limit air-fuel ratio and the knocking limit air-fuel ratio also become lean. However, since the tendency of the change in the stability limit air-fuel ratio and the change in the knocking limit air-fuel ratio are different, when the boost pressure is increased, the range in which the self-ignition is established becomes wide.

【0036】次に、過給圧を変更した場合の自己着火燃
焼が成立するトルク範囲を図8に示す。空燃比範囲と同
じように、安定度限界(リーン限界)とノッキング限界
(リッチ限界)で挟まれる範囲が自己着火成立範囲とな
る。ここで、ノッキング限界では過給圧の増加により空
気量は増加するものの空燃比がリーン化するために発生
トルクはほぼ一定となる。また、安定度限界では空気量
の増加に対して空燃比のリーン化の影響が強くなるため
に発生トルクは低下する。従って、過給圧の増加に伴い
発生トルク範囲は広くなる。よって、要求トルクに対し
て、自己着火が成立する過給圧は複数存在することにな
る。
Next, FIG. 8 shows a torque range in which self-ignition combustion is achieved when the supercharging pressure is changed. As in the case of the air-fuel ratio range, the range between the stability limit (lean limit) and the knocking limit (rich limit) is the auto-ignition establishment range. Here, at the knocking limit, although the air amount increases due to an increase in the supercharging pressure, the generated torque becomes substantially constant because the air-fuel ratio becomes lean. Further, at the stability limit, the generated torque decreases because the effect of the lean air-fuel ratio on the increase in the air amount becomes strong. Accordingly, the range of generated torque becomes wider as the boost pressure increases. Therefore, there are a plurality of supercharging pressures at which self-ignition is established for the required torque.

【0037】ここで自己着火燃焼においては、要求トル
クに対して変更する燃焼パラメータとしては、筒内圧力
すなわち過給圧を制御すればよいことになる。その結
果、得られた最適な過給圧に対して、必要な空燃比を算
出することになる。尚、この燃焼パラメータとしては、
筒内圧力あるいは筒内温度を変更する燃焼パラメータで
あればよく、他の実施形態で説明するが、例えば吸気
温、圧縮比等でもよい。
Here, in the self-ignition combustion, as the combustion parameter to be changed with respect to the required torque, it is sufficient to control the in-cylinder pressure, that is, the supercharging pressure. As a result, a necessary air-fuel ratio is calculated for the obtained optimal boost pressure. In addition, as this combustion parameter,
Any combustion parameter that changes the in-cylinder pressure or in-cylinder temperature may be used. As will be described in other embodiments, for example, an intake air temperature and a compression ratio may be used.

【0038】燃焼制御の方法の概略について説明する。
本実施形態ではノッキング限界と安定度限界の略中央の
自己着火成立範囲に燃焼パラメータすなわち過給圧、空
燃比を制御する。これにより部品バラツキ等が発生した
場合においても、燃焼パラメータを確実に自己着火成立
範囲に制御することができる。
The outline of the combustion control method will be described.
In the present embodiment, the combustion parameters, that is, the supercharging pressure and the air-fuel ratio are controlled in the self-ignition establishment range substantially at the center between the knocking limit and the stability limit. As a result, even in the case where a component variation or the like occurs, it is possible to reliably control the combustion parameter within the range in which the self-ignition is established.

【0039】先ず、要求トルクに対して自己着火燃焼が
成立するか判断する。次に、自己着火燃焼が成立する場
合には、要求トルクに対して、ノッキング限界と安定度
限界の中間の目標過給圧を設定する。次に、目標過給圧
に対して、ノッキング限界空燃比と安定度限界空燃比を
算出する。
First, it is determined whether self-ignition combustion is established for the required torque. Next, when self-ignition combustion is established, a target boost pressure intermediate between the knocking limit and the stability limit is set for the required torque. Next, a knocking limit air-fuel ratio and a stability limit air-fuel ratio are calculated for the target boost pressure.

【0040】ノッキング限界空燃比と安定度限界空燃比
の算出方法について説明する。ノッキング限界空燃比
は、圧縮上死点の筒内圧力と筒内温度と相関があり、例
えば特定の運転条件においては以下に示すような一次式
の関係で表すことができる。
A method of calculating the knocking limit air-fuel ratio and the stability limit air-fuel ratio will be described. The knocking limit air-fuel ratio has a correlation between the in-cylinder pressure at the compression top dead center and the in-cylinder temperature, and can be represented by, for example, the following linear relationship under specific operating conditions.

【0041】 ノッキング限界空燃比=a×上死点筒内圧力+b×上死点筒内温度+c …式(1) 式(1)で予測したノッキング限界空燃比と実測したノ
ッキング限界空燃比には良好な相関がある(相関係数:
0.99)。従って、精度良くノッキング限界空燃比を
予測できる。このノッキング限界空燃比の関係式につい
ては一次式よりも更に複雑な関係式で表すことによって
予測精度を上げることができる。
Knocking limit air-fuel ratio = a × top dead center cylinder pressure + b × top dead center cylinder temperature + c Equation (1) The knocking limit air-fuel ratio predicted by Equation (1) and the actually measured knocking limit air-fuel ratio are: Good correlation (correlation coefficient:
0.99). Therefore, the knocking limit air-fuel ratio can be accurately predicted. Prediction accuracy can be increased by expressing the relational expression of the knocking limit air-fuel ratio with a more complicated relational expression than the linear expression.

【0042】次に、安定度限界空燃比についても同様な
関係が成り立つ。すなわち、安定度限界空燃比も圧縮上
死点の筒内圧力と筒内温度と相関があり、例えば以下に
示すような一次式の関係で表すことができる。
Next, a similar relationship holds for the stability limit air-fuel ratio. That is, the stability limit air-fuel ratio also has a correlation between the in-cylinder pressure at the compression top dead center and the in-cylinder temperature, and can be expressed by, for example, the following linear relationship.

【0043】 安定度限界空燃比=a’×上死点筒内圧力+b’×上死点筒内温度+c’ …式(2) 式(2)で予測した安定度限界空燃比と実測した安定度
限界空燃比にも先ほど同様に良好な相関がある(相関係
数:0.98)。従って、精度良く安定度限界空燃比を
予測できる。この安定度限界空燃比の関係式については
一次式よりも更に複雑な関係式で表すことによって予測
精度を上げることができる。
Stability limit air-fuel ratio = a ′ × top dead center cylinder pressure + b ′ × top dead center cylinder temperature + c ′ Equation (2) The stability limit air-fuel ratio predicted by equation (2) and the actually measured stability There is a similarly good correlation with the temperature limit air-fuel ratio just before (correlation coefficient: 0.98). Therefore, the stability limit air-fuel ratio can be accurately predicted. Prediction accuracy can be improved by expressing the relational expression of the stability limit air-fuel ratio with a more complicated relational expression than the linear expression.

【0044】このように、圧縮上死点の筒内温度と筒内
圧力がわかれば、ノッキング限界空燃比と安定度限界空
燃比が予測でき、圧縮自己着火の成立範囲が予測でき
る。ここで、内燃機関の幾何学的な形状およびバルブタ
イミングから圧縮比が分かっているとすれば、ポリトロ
ープ変化に基づいて圧縮開始の筒内圧力、筒内温度から
圧縮上死点の筒内圧力、筒内温度が予測できる。よっ
て、圧縮開始の筒内圧力、筒内温度を吸気圧、吸気温か
らそれぞれ予測すると、吸気圧、吸気温から圧縮上死点
の筒内圧力、筒内温度が予測できる。
In this manner, if the in-cylinder temperature and the in-cylinder pressure at the compression top dead center are known, the knocking limit air-fuel ratio and the stability limit air-fuel ratio can be predicted, and the range in which the compression self-ignition is established can be predicted. Here, if the compression ratio is known from the geometric shape and valve timing of the internal combustion engine, the in-cylinder pressure at the start of compression based on the polytrope change, the in-cylinder pressure at the compression top dead center from the in-cylinder temperature, In-cylinder temperature can be predicted. Therefore, when the in-cylinder pressure and the in-cylinder temperature at the start of compression are respectively predicted from the intake pressure and the intake temperature, the in-cylinder pressure and the in-cylinder temperature at the compression top dead center can be predicted from the intake pressure and the intake temperature.

【0045】これまで説明してきた手法を用いると、吸
気圧(過給圧)と吸気温から、安定度限界空燃比、ノッ
キング限界空燃比を予測でき、安定度限界空燃比とノッ
キング限界空燃比の略中間的な空燃比を算出することが
できる。その結果、あるエンジン回転においては、図
8、図7に示すような過給圧制御ライン、空燃比制御ラ
インに、過給圧、空燃比を制御でき、安定した自己着火
燃焼運転が実現できる。
Using the method described so far, the stability limit air-fuel ratio and the knocking limit air-fuel ratio can be predicted from the intake pressure (supercharging pressure) and the intake air temperature, and the stability limit air-fuel ratio and the knocking limit air-fuel ratio can be estimated. A substantially intermediate air-fuel ratio can be calculated. As a result, at a certain engine speed, the supercharging pressure and the air-fuel ratio can be controlled in the supercharging pressure control line and the air-fuel ratio control line as shown in FIGS. 8 and 7, and a stable self-ignition combustion operation can be realized.

【0046】制御の流れを、図9のフローチャートによ
り説明する。先ずS20で吸気温Tinを検出する。次
にS21で吸気温Tinから圧縮開始筒内温度T1を算
出する。例えば以下の式で算出する。
The control flow will be described with reference to the flowchart of FIG. First, at S20, the intake air temperature Tin is detected. Next, in S21, a compression start in-cylinder temperature T1 is calculated from the intake air temperature Tin. For example, it is calculated by the following equation.

【0047】T1=Tin+α αは定数で、例えばα=30とするが、負荷に応じて与
えてもよい。次にS22で要求エンジン回転数N、要求
トルクTを検出する。S23でエンジン回転数N、圧縮
開始筒内温度T1毎に設けられている吸気圧(過給圧)
PinとトルクTのマップ(図8)を参照する。
T1 = Tin + α α is a constant, for example α = 30, but may be given according to the load. Next, in S22, the required engine speed N and the required torque T are detected. In S23, the intake pressure (supercharging pressure) provided for each of the engine speed N and the compression start cylinder temperature T1.
Reference is made to a map of Pin and torque T (FIG. 8).

【0048】S24で図8のマップから自己着火燃焼が
可能かを判断する。自己着火燃焼が不可能な場合はS2
5で火花点火燃焼の制御を開始する。自己着火燃焼が可
能と判断された場合は、S26で自己着火燃焼の制御を
開始する。
At S24, it is determined from the map shown in FIG. 8 whether self-ignition combustion is possible. S2 if self-ignition combustion is not possible
In step 5, control of spark ignition combustion is started. If it is determined that self-ignition combustion is possible, control of self-ignition combustion is started in S26.

【0049】すなわち、S27で要求トルクTから図8
の吸気圧(過給圧)PinとトルクTのマップを参照し
て目標吸気圧(過給圧)Pinを算出し、制御する。本
実施形態では、ノッキング限界と安定度限界の略中間の
吸気圧Pinを選定する。
That is, in S27, the required torque T is calculated as shown in FIG.
The target intake pressure (supercharging pressure) Pin is calculated with reference to the map of the intake pressure (supercharging pressure) Pin and the torque T, and is controlled. In the present embodiment, an intake pressure Pin approximately intermediate between the knocking limit and the stability limit is selected.

【0050】尚、ここで算出する目標吸気圧(過給圧)
Pinは目標筒内圧力に対応するものであり、従ってこ
の部分が目標筒内圧力の算出手段に相当する。また、目
標筒内温度について現在値をそのまま用いる。
The target intake pressure (supercharging pressure) calculated here
Pin corresponds to the target in-cylinder pressure, and thus this portion corresponds to a target in-cylinder pressure calculating means. Further, the current value of the target in-cylinder temperature is used as it is.

【0051】次にS28で吸気圧Pinから圧縮開始筒
内圧力P1を算出する。P1は例えば以下の式で算出す
る。 P1=Pin×β βは定数で、例えばβ=0.9とする。
Next, in S28, the compression start cylinder pressure P1 is calculated from the intake pressure Pin. P1 is calculated by the following equation, for example. P1 = Pin × β β is a constant, for example, β = 0.9.

【0052】次にS29で圧縮開始筒内圧力P1、圧縮
開始筒内温度T1から圧縮上死点筒内圧力P2、圧縮上
死点筒内温度T2を算出する。P2とT2は例えば以下
の式で算出する。
Next, in S29, a compression top dead center cylinder pressure P2 and a compression top dead center cylinder temperature T2 are calculated from the compression start cylinder pressure P1 and the compression start cylinder temperature T1. P2 and T2 are calculated by the following formula, for example.

【0053】P2=P1×εn T2=T1×ε(n-1) εは圧縮比である。nはポリトロープ指数で、例えばn
=1.33とするが、要求トルクに応じて与えてもよ
い。
P2 = P1 × ε n T2 = T1 × ε (n-1) ε is a compression ratio. n is a polytropic exponent, for example, n
= 1.33, but may be given according to the required torque.

【0054】次にS30で圧縮上死点筒内圧力P2、圧
縮上死点筒内温度T2からノッキング限界空燃比(リッ
チ限界空燃比)AFR、安定度限界空燃比(リーン限界
空燃比)AFLを算出する。ここで、AFRとAFLの
算出は、式(1)、式(2)を利用する。
Next, at S30, the knocking limit air-fuel ratio (rich limit air-fuel ratio) AFR and the stability limit air-fuel ratio (lean limit air-fuel ratio) AFL are calculated from the compression top dead center cylinder pressure P2 and the compression top dead center cylinder temperature T2. calculate. Here, the calculation of the AFR and the AFL uses the equations (1) and (2).

【0055】最後にS31で目標空燃比AFを算出し、
制御する。AFは本実施形態ではノッキング限界空燃比
AFRと安定度限界空燃比AFLの略中間の値とし、例
えば以下の式で算出する。
Finally, at step S31, the target air-fuel ratio AF is calculated.
Control. In the present embodiment, AF is set to a substantially intermediate value between the knocking limit air-fuel ratio AFR and the stability limit air-fuel ratio AFL, and is calculated by the following formula, for example.

【0056】AF=(AFR+AFL)/2 この部分が目標空燃比算出制御手段に相当する。このよ
うな燃焼制御を行うことによって、要求エンジン回転
数、要求トルクに対して、安定した条件で自己着火燃焼
を実現することができる。
AF = (AFR + AFL) / 2 This portion corresponds to target air-fuel ratio calculation control means. By performing such combustion control, self-ignition combustion can be realized under stable conditions with respect to the required engine speed and the required torque.

【0057】続いて、本発明の第2実施形態について説
明する。第2実施形態の構成は第1実施形態(図6)と
同じである。本実施形態では、要求トルクTに対する目
標吸気圧(過給圧)Pinを安定度限界(リーン限界)
付近から算出する。
Next, a second embodiment of the present invention will be described. The configuration of the second embodiment is the same as that of the first embodiment (FIG. 6). In the present embodiment, the target intake pressure (supercharging pressure) Pin for the required torque T is set to a stability limit (lean limit).
Calculate from the vicinity.

【0058】図10に過給圧に対する過給仕事の関係を
示す。過給圧が大きくなるほど過給仕事が増加する。従
って、なるべく低い過給圧の条件で自己着火燃焼を行う
方が効率が良い。そこで、部品バラツキ等を低減でき、
自己着火領域の予測精度が向上できる場合は安定度限界
(リーン限界)付近で燃焼パラメータを制御する方が良
い。よって、本実施形態では、図11に示すように安定
度限界付近で過給圧を制御する。
FIG. 10 shows the relationship between the supercharging pressure and the supercharging work. The supercharging work increases as the supercharging pressure increases. Therefore, it is more efficient to perform the self-ignition combustion under the condition of the supercharging pressure as low as possible. Therefore, component variations can be reduced,
If the prediction accuracy of the self-ignition region can be improved, it is better to control the combustion parameters near the stability limit (lean limit). Therefore, in the present embodiment, the boost pressure is controlled near the stability limit as shown in FIG.

【0059】制御の流れについては、第1実施形態(図
9)と同様であるので、図9を用いて説明する。図9に
おいて、S27とS31が異なる。S27では要求トル
クTからマップを参照して目標吸気圧(過給圧)Pin
を算出し、制御するが、本実施形態では、要求トルクT
から算出する目標吸気圧(過給圧)Pinを図11の安
定度限界(リーン限界)付近の過給圧ライン(Pin)
とする。
The flow of the control is the same as in the first embodiment (FIG. 9), and will be described with reference to FIG. In FIG. 9, S27 and S31 are different. In S27, the target intake pressure (supercharging pressure) Pin is referred to from the required torque T with reference to a map.
Is calculated and controlled. In the present embodiment, the required torque T
The target intake pressure (supercharging pressure) Pin calculated from the supercharging pressure line (Pin) near the stability limit (lean limit) in FIG.
And

【0060】S31では目標空燃比AFを算出し、制御
するが、本実施形態では、目標空燃比AFを安定度限界
(リーン限界)付近の空燃比とするように、以下の式で
求める。
In S31, the target air-fuel ratio AF is calculated and controlled. In the present embodiment, the target air-fuel ratio AF is obtained by the following equation so as to be an air-fuel ratio near the stability limit (lean limit).

【0061】AF=AFL×γ γは定数で、例えばγ=0.9とする。このように、燃
焼パラメータを制御することによって、自己着火燃焼の
効率を向上でき、燃費を改善できる。
AF = AFL × γ γ is a constant, for example, γ = 0.9. As described above, by controlling the combustion parameters, the efficiency of the self-ignition combustion can be improved, and the fuel efficiency can be improved.

【0062】続いて、本発明の第3実施形態について説
明する。第3実施形態の構成を図12に示す。本実施形
態では、燃焼制御のパラメータとして吸気温を使用す
る。このため、吸気系に、第1実施形態の過給装置19
に代えて、筒内温度の変更手段をなす吸気温変更手段と
して、ヒータ等の吸気温制御装置20を接続する。ま
た、図13に示すように、吸気温変更手段として、排気
系から吸気系へのEGRガス量を制御するEGR制御装
置21を用いてもよい。また、バルブタイミングの変更
により内部EGRを増加させて温度を上げてもよい。
Next, a third embodiment of the present invention will be described. FIG. 12 shows the configuration of the third embodiment. In the present embodiment, the intake air temperature is used as a parameter of the combustion control. For this reason, the supercharging device 19 of the first embodiment is provided in the intake system.
Instead, an intake air temperature control device 20 such as a heater is connected as an intake air temperature changing device serving as a changing device for the in-cylinder temperature. As shown in FIG. 13, an EGR control device 21 that controls the amount of EGR gas from the exhaust system to the intake system may be used as the intake air temperature changing means. Further, the temperature may be raised by increasing the internal EGR by changing the valve timing.

【0063】吸気温に対する自己着火燃焼が成立する空
燃比範囲を図14に示す。過給圧の場合(図7)と同様
に、吸気温が高くなると安定度限界空燃比、ノッキング
限界空燃比ともにリーンとなる。しかしながら、傾きが
異なるため、吸気温が高くなるほど、自己着火燃焼が成
立する空燃比範囲は広くなる。
FIG. 14 shows an air-fuel ratio range in which self-ignition combustion is established with respect to the intake air temperature. As in the case of the supercharging pressure (FIG. 7), when the intake air temperature increases, both the stability limit air-fuel ratio and the knocking limit air-fuel ratio become lean. However, since the inclination is different, the higher the intake air temperature, the wider the air-fuel ratio range in which the self-ignition combustion is established.

【0064】また、吸気温に対する自己着火燃焼が成立
するトルク範囲を図15に示す。吸気温度の増加と共に
空気量が減少するため発生するトルクは小さくなる。吸
気温を制御した場合には、要求トルクに対する吸気温は
ノッキング限界付近の値とする。このように制御するこ
とによって、要求トルクに対してより燃焼温度が高い燃
焼となるため、効率良い自己着火燃焼が実現できる。
FIG. 15 shows a torque range in which self-ignition combustion with respect to the intake air temperature is established. Since the amount of air decreases as the intake air temperature increases, the generated torque decreases. When the intake air temperature is controlled, the intake air temperature for the required torque is set to a value near the knocking limit. By performing such control, the combustion temperature becomes higher than the required torque, so that efficient self-ignition combustion can be realized.

【0065】制御の流れは第1実施形態(図9)と同様
である。燃焼制御のパラメータが過給圧から吸気温にな
っているところが異なる。制御の流れを図16に示す。
先ずS40で吸気圧Pinを検出する。次にS41で吸
気圧Pinから圧縮開始筒内圧力P1を算出する。
The control flow is the same as in the first embodiment (FIG. 9). The difference is that the combustion control parameter changes from the boost pressure to the intake air temperature. FIG. 16 shows the control flow.
First, at S40, the intake pressure Pin is detected. Next, at S41, a compression start in-cylinder pressure P1 is calculated from the intake pressure Pin.

【0066】次にS42で要求エンジン回転数N、要求
トルクTを検出する。S43でエンジン回転数N、圧縮
開始筒内圧力P1毎に設けられている吸気温Tinとト
ルクTのマップ(図15)を参照する。
Next, at S42, the required engine speed N and the required torque T are detected. In S43, a map (FIG. 15) of the intake air temperature Tin and the torque T provided for each of the engine rotational speed N and the compression start in-cylinder pressure P1 is referred to.

【0067】S44で図15のマップから自己着火燃焼
が可能かを判断する。自己着火燃焼が不可能な場合はS
45で火花点火燃焼の制御を開始する。自己着火燃焼が
可能と判断された場合は、S46で自己着火燃焼の制御
を開始する。
In S44, it is determined from the map of FIG. 15 whether self-ignition combustion is possible. S if self-ignition combustion is not possible
At 45, control of spark ignition combustion is started. If it is determined that self-ignition combustion is possible, control of self-ignition combustion is started in S46.

【0068】すなわち、S47で要求トルクTから図1
5の吸気温TinとトルクTのマップを参照して目標吸
気温Tinを算出し、制御する。本実施形態では、ノッ
キング限界(リッチ限界)付近の吸気温Tinを選定す
る。
That is, in S47, the required torque T is
The target intake temperature Tin is calculated with reference to the map of the intake temperature Tin and the torque T of No. 5 and controlled. In the present embodiment, the intake air temperature Tin near the knocking limit (rich limit) is selected.

【0069】尚、ここで算出する目標吸気温Tinは目
標筒内温度に対応するものであり、従ってこの部分が目
標筒内温度の算出手段に相当する。また、目標筒内圧力
については現在値をそのまま用いる。
The target intake air temperature Tin calculated here corresponds to the target in-cylinder temperature. Therefore, this portion corresponds to a target in-cylinder temperature calculating means. As for the target in-cylinder pressure, the current value is used as it is.

【0070】次にS48で吸気温Tinから圧縮開始筒
内温度T1を算出する。次にS49で圧縮開始筒内圧力
P1、圧縮開始筒内温度T1から圧縮上死点筒内圧力P
2、圧縮上死点筒内温度T2を算出する。
Next, at S48, a compression start in-cylinder temperature T1 is calculated from the intake air temperature Tin. Next, in S49, the compression top dead center cylinder pressure P is calculated from the compression start cylinder pressure P1 and the compression start cylinder temperature T1.
2. Calculate the compression top dead center in-cylinder temperature T2.

【0071】次にS50で圧縮上死点筒内圧力P2、圧
縮上死点筒内温度T2からノッキング限界空燃比(リッ
チ限界空燃比)AFR、安定度限界空燃比(リーン限界
空燃比)AFLを算出する。
Next, at S50, the knocking limit air-fuel ratio (rich limit air-fuel ratio) AFR and the stability limit air-fuel ratio (lean limit air-fuel ratio) AFL are calculated from the compression top dead center cylinder pressure P2 and the compression top dead center cylinder temperature T2. calculate.

【0072】最後にS51で目標空燃比AFを算出し、
制御する。AFは本実施形態ではノッキング限界空燃比
(リッチ限界空燃比)AFR付近の空燃比とし、例えば
以下の式で算出する。この部分が目標空燃比算出制御手
段に相当する。
Finally, in S51, a target air-fuel ratio AF is calculated.
Control. In this embodiment, AF is an air-fuel ratio near the knocking limit air-fuel ratio (rich limit air-fuel ratio) AFR, and is calculated by the following equation, for example. This part corresponds to target air-fuel ratio calculation control means.

【0073】AF=AFR×τ τは定数で、例えばτ=1.1とする。このような燃焼
制御を行うことによって、要求エンジン回転数、要求ト
ルクに対して、安定した条件で自己着火燃焼を実現する
ことができる。
AF = AFR × τ τ is a constant, for example, τ = 1.1. By performing such combustion control, self-ignition combustion can be realized under stable conditions with respect to the required engine speed and the required torque.

【0074】続いて、本発明の第4実施形態について説
明する。第4実施形態の構成を図17に示す。本実施形
態では、燃焼制御のパラメータとして圧縮比を使用す
る。このため、筒内圧力および筒内温度の変更手段をな
す圧縮比可変手段として、吸排気バルブ11,12に電
磁駆動装置等の可変バルブタイミング機構22を有す
る。尚、圧縮比可変手段として、ピストンあるいはコン
ロッド等に可変圧縮比機構を取付けてもよい。
Next, a fourth embodiment of the present invention will be described. FIG. 17 shows the configuration of the fourth embodiment. In the present embodiment, a compression ratio is used as a parameter for combustion control. For this reason, the intake / exhaust valves 11 and 12 have a variable valve timing mechanism 22 such as an electromagnetic drive device as a compression ratio variable means for changing the in-cylinder pressure and the in-cylinder temperature. Incidentally, as the compression ratio variable means, a variable compression ratio mechanism may be attached to a piston, a connecting rod, or the like.

【0075】圧縮比を変更した時の安定度限界空燃比、
ノッキング限界空燃比の傾向を図18に示す。圧縮比が
大きくなるほど、安定度限界空燃比、ノッキング限界空
燃比ともにリーンとなる。本実施形態では、要求トルク
に対する圧縮比を安定度限界(リーン限界)付近から算
出する。自己着火燃焼の効率は、圧縮比が大きくなるほ
ど高くなる。従って、なるべく高い圧縮比の条件で自己
着火燃焼を行う方が効率が良い。そこで、図19に示す
ように、要求トルクに対して、圧縮比が高くなるリーン
限界付近で燃焼パラメータを制御する方が良い。
The stability limit air-fuel ratio when the compression ratio is changed,
FIG. 18 shows the tendency of the knocking limit air-fuel ratio. As the compression ratio increases, both the stability limit air-fuel ratio and the knocking limit air-fuel ratio become leaner. In the present embodiment, the compression ratio for the required torque is calculated from around the stability limit (lean limit). The efficiency of self-ignition combustion increases as the compression ratio increases. Therefore, it is more efficient to perform the self-ignition combustion under the condition of the compression ratio as high as possible. Therefore, as shown in FIG. 19, it is better to control the combustion parameters near the lean limit where the compression ratio becomes higher than the required torque.

【0076】制御の流れは第1実施形態(図9)と同様
である。燃焼制御のパラメータが過給圧から圧縮比にな
っているところが異なる。制御の流れを図20に示す。
先ずS60で吸気圧Pin、吸気温Tinを検出する。
次にS61で吸気圧Pin、吸気温Tinから圧縮開始
筒内圧力P1、圧縮開始筒内温度T1を算出する。
The control flow is the same as in the first embodiment (FIG. 9). The difference is that the combustion control parameter is changed from the boost pressure to the compression ratio. FIG. 20 shows the control flow.
First, at S60, the intake pressure Pin and the intake air temperature Tin are detected.
Next, in S61, a compression start in-cylinder pressure P1 and a compression start in-cylinder temperature T1 are calculated from the intake pressure Pin and the intake temperature Tin.

【0077】次にS62で要求エンジン回転数N、要求
トルクTを検出する。S63でエンジン回転数N、圧縮
開始筒内圧力P1、圧縮開始筒内温度T2毎に設けられ
ている圧縮比εとトルクTのマップ(図19)を参照す
る。
Next, at S62, the required engine speed N and the required torque T are detected. In S63, a map (FIG. 19) of the compression ratio ε and the torque T provided for each of the engine speed N, the compression start cylinder pressure P1, and the compression start cylinder temperature T2 is referred to.

【0078】S64で図19のマップから自己着火燃焼
が可能かを判断する。自己着火燃焼が不可能な場合はS
65で火花点火燃焼の制御を開始する。自己着火燃焼が
可能と判断された場合は、S66で自己着火燃焼の制御
を開始する。
At S64, it is determined from the map of FIG. 19 whether auto-ignition combustion is possible. S if self-ignition combustion is not possible
At 65, the control of spark ignition combustion is started. If it is determined that self-ignition combustion is possible, control of self-ignition combustion is started in S66.

【0079】すなわち、S67で要求トルクTから図1
9の圧縮比εとトルクTのマップを参照して目標圧縮比
εを算出し、制御する。本実施形態では、安定度限界
(リーン限界)付近の圧縮比εを選定する。
That is, at S67, the required torque T is
The target compression ratio ε is calculated with reference to the map of the compression ratio ε and the torque T of No. 9 and controlled. In the present embodiment, a compression ratio ε near the stability limit (lean limit) is selected.

【0080】尚、ここで算出する圧縮比εは目標筒内圧
力および目標筒内温度に対応するものであり、従ってこ
の部分が目標筒内圧力および目標筒内温度の算出手段に
相当する。
The compression ratio ε calculated here corresponds to the target in-cylinder pressure and the target in-cylinder temperature. Therefore, this portion corresponds to a means for calculating the target in-cylinder pressure and the target in-cylinder temperature.

【0081】次にS68で圧縮開始筒内圧力P1、圧縮
開始筒内温度T1および圧縮比εから圧縮上死点筒内圧
力P2、圧縮上死点筒内温度T2を算出する。次にS6
9で圧縮上死点筒内圧力P2、圧縮上死点筒内温度T2
からノッキング限界空燃比AFR、安定度限界空燃比A
FLを算出する。
Next, in S68, the compression top dead center cylinder pressure P2 and the compression top dead center cylinder temperature T2 are calculated from the compression start cylinder pressure P1, the compression start cylinder temperature T1 and the compression ratio ε. Next, S6
9, the compression top dead center cylinder pressure P2 and the compression top dead center cylinder temperature T2
Knocking limit air-fuel ratio AFR, stability limit air-fuel ratio A
Calculate FL.

【0082】最後にS70で目標空燃比AFを算出し、
制御する。AFは本実施形態では安定度限界空燃比(リ
ーン限界空燃比)AFL付近の空燃比とし、例えば以下
の式で算出する。この部分が目標空燃比算出制御手段に
相当する。
Finally, in S70, the target air-fuel ratio AF is calculated.
Control. In this embodiment, AF is an air-fuel ratio near the stability limit air-fuel ratio (lean limit air-fuel ratio) AFL, and is calculated by the following equation, for example. This part corresponds to target air-fuel ratio calculation control means.

【0083】AF=AFL×δ δは定数で、例えばδ=0.9とする。このような燃焼
制御を行うことによって、要求エンジン回転数、要求ト
ルクに対して、安定した条件で自己着火燃焼を実現する
ことができる。
AF = AFL × δ δ is a constant, for example, δ = 0.9. By performing such combustion control, self-ignition combustion can be realized under stable conditions with respect to the required engine speed and the required torque.

【0084】続いて、本発明の第5実施形態について説
明する。第5実施形態の構成を図21に示す。本実施形
態は、第1実施形態の構成(図6)に対して、オクタン
価検出手段(燃料性状センサ)23を迫加したものであ
る。これにより、燃料のオクタン価を考慮して、筒内圧
力、筒内温度を制御できるため、燃料性状が変化した場
合においても、安定した自己着火燃焼を実現できる。
Next, a fifth embodiment of the present invention will be described. FIG. 21 shows the configuration of the fifth embodiment. In the present embodiment, an octane number detecting means (fuel property sensor) 23 is added to the configuration of the first embodiment (FIG. 6). As a result, the in-cylinder pressure and the in-cylinder temperature can be controlled in consideration of the octane number of the fuel, so that stable self-ignition combustion can be realized even when the fuel properties change.

【0085】図22にオクタン価が変化した場合の過給
圧に対する自己着火燃焼が成立する空燃比範囲を示す。
図からわかるように、オクタン価が大きくなるにつれ
て、自己着火燃焼が成立する空燃比範囲がリッチにな
る。
FIG. 22 shows an air-fuel ratio range in which self-ignition combustion with respect to the supercharging pressure is established when the octane number changes.
As can be seen, as the octane number increases, the air-fuel ratio range in which self-ignition combustion is established becomes rich.

【0086】図23にオクタン価が変化した場合の過給
圧に対する自己着火燃焼が成立するトルク範囲を示す。
図からわかるように、オクタン価が大きくなるにつれて
自己着火燃焼が成立するトルク範囲が高負荷側に移動す
る。このようにオクタン価によって自己着火成立範囲が
変化するため、燃焼パラメータの制御はオクタン価を考
慮して行う。
FIG. 23 shows a torque range in which the self-ignition combustion with respect to the supercharging pressure is established when the octane number changes.
As can be seen from the figure, as the octane number increases, the torque range in which self-ignition combustion is established shifts to the higher load side. Since the range in which self-ignition is established changes depending on the octane number, control of the combustion parameters is performed in consideration of the octane number.

【0087】制御の流れは第1実施形態(図9)とほぼ
同じである。図9において、S20とS23とS27と
S30が異なる。制御の流れを図24に示す。S20で
は吸気温Tinとオクタン価Oを検出する。
The control flow is almost the same as in the first embodiment (FIG. 9). In FIG. 9, S20, S23, S27, and S30 are different. FIG. 24 shows the control flow. In S20, the intake air temperature Tin and the octane number O are detected.

【0088】S23ではエンジン回転数N、圧縮開始筒
内温度T1、オクタン価O毎に設けられている吸気圧
(過給圧)PinとトルクTのマップ(図23)を参照
する。S27では要求トルクTから図23の吸気圧(過
給圧)PinとトルクTのマップを参照して目標吸気圧
(過給圧)Pinを算出し、制御する。従って、過給圧
Pinの選定もオクタン価別に行う。
In S23, a map of intake pressure (supercharging pressure) Pin and torque T provided for each engine speed N, compression start cylinder temperature T1, and octane number O (FIG. 23) is referred to. In S27, a target intake pressure (supercharging pressure) Pin is calculated from the required torque T with reference to a map of the intake pressure (supercharging pressure) Pin and the torque T in FIG. Therefore, the selection of the supercharging pressure Pin is also performed for each octane number.

【0089】S30では圧縮上死点筒内圧力P2、圧縮
上死点筒内温度T2、オクタン価Oからノッキング限界
空燃比(リッチ限界空燃比)AFR、安定度限界空燃比
(リーン限界空燃比)AFLを算出する。ここで、AF
RとAFLの算出は、式(1)、式(2)に対して、オ
クタン価を考慮した以下の式(3)、式(4)を利用す
る。
In step S30, the knocking limit air-fuel ratio (rich limit air-fuel ratio) AFR and the stability limit air-fuel ratio (lean limit air-fuel ratio) AFL are obtained from the compression top dead center cylinder pressure P2, the compression top dead center cylinder temperature T2, and the octane number O. Is calculated. Where AF
For calculation of R and AFL, the following equations (3) and (4) taking into account the octane number are used for equations (1) and (2).

【0090】 AFR=a×P2+b×T2+c×オクタン価+d …式(3) AFL=a’×P2+b’×T2+c’×オクタン価+d …式(4) このように燃焼パラメータの制御を行うことによって、
燃料性状が変化した場合においても、安定して自己着火
燃焼を行うことができる。
AFR = a × P2 + b × T2 + c × octane number + d Equation (3) AFL = a ′ × P2 + b ′ × T2 + c ′ × octane number + d Equation (4) By controlling the combustion parameters as described above,
Even when the fuel property changes, the self-ignition combustion can be stably performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の構成を示す機能ブロック図FIG. 1 is a functional block diagram showing a configuration of the present invention.

【図2】 運転領域に対する燃焼形態を説明する図FIG. 2 is a diagram illustrating a combustion mode with respect to an operation region.

【図3】 自己着火燃焼成立範囲の説明図FIG. 3 is an explanatory diagram of a self-ignition combustion establishment range.

【図4】 ノッキング限界空燃比の特性図FIG. 4 is a characteristic diagram of a knocking limit air-fuel ratio.

【図5】 従来例の問題点を説明する図FIG. 5 is a diagram illustrating a problem of a conventional example.

【図6】 第1実施形態の構成図FIG. 6 is a configuration diagram of the first embodiment.

【図7】 過給圧に対する自己着火が成立する空燃比範
囲を説明する図
FIG. 7 is a diagram for explaining an air-fuel ratio range in which self-ignition with respect to a boost pressure is established;

【図8】 過給圧に対する自己着火が成立するトルク範
囲を説明する図
FIG. 8 is a diagram for explaining a torque range in which self-ignition with respect to a supercharging pressure is established;

【図9】 第1実施形態の制御フロー図FIG. 9 is a control flowchart of the first embodiment.

【図10】過給圧と過給仕事の関係を説明する図FIG. 10 is a diagram illustrating the relationship between supercharging pressure and supercharging work.

【図11】第2実施形態の過給圧制御方法を説明する図FIG. 11 is a diagram illustrating a supercharging pressure control method according to a second embodiment.

【図12】第3実施形態の構成図FIG. 12 is a configuration diagram of a third embodiment.

【図13】第3実施形態の変形例の構成図FIG. 13 is a configuration diagram of a modified example of the third embodiment.

【図14】吸気温に対する自己着火が成立する空燃比範
囲を説明する図
FIG. 14 is a view for explaining an air-fuel ratio range in which self-ignition with respect to intake air temperature is established;

【図15】吸気温に対する自己着火が成立するトルク範
囲を説明する図
FIG. 15 is a diagram for explaining a torque range in which self-ignition is established with respect to intake air temperature;

【図16】第3実施形態の制御フロー図FIG. 16 is a control flowchart of the third embodiment.

【図17】第4実施形態の構成図FIG. 17 is a configuration diagram of a fourth embodiment.

【図18】圧縮比に対する自己着火が成立する空燃比範
囲を説明する図
FIG. 18 is a diagram illustrating an air-fuel ratio range in which self-ignition is established with respect to a compression ratio.

【図19】圧縮比に対する自己着火が成立するトルク範
囲を説明する図
FIG. 19 is a diagram illustrating a torque range in which self-ignition is established with respect to a compression ratio.

【図20】第4実施形態の制御フロー図FIG. 20 is a control flowchart of the fourth embodiment.

【図21】第5実施形態の構成図FIG. 21 is a configuration diagram of a fifth embodiment.

【図22】オクタン価違いによる過給圧に対する自己着
火が成立する空燃比範囲を説明する図
FIG. 22 is a diagram for explaining an air-fuel ratio range in which self-ignition with respect to a supercharging pressure due to a difference in octane value is established;

【図23】オクタン価違いによる過給圧に対する自己着
火が成立するトルク範囲を説明する図
FIG. 23 is a diagram for explaining a torque range in which self-ignition is established with respect to a supercharging pressure due to a difference in octane number.

【図24】第5実施形態の制御フロー図FIG. 24 is a control flowchart of the fifth embodiment.

【符号の説明】[Explanation of symbols]

10 エンジン 11 吸気バルブ 12 排気バルブ 13 ピストン 14 吸気圧検出手段 15 吸気温検出手段 16 ECU 17 燃料噴射装置 18 点火プラグ 19 過給装置 20 吸気温制御装置 21 EGR制御装置 22 可変バルブタイミング機構 23 オクタン価検出手段 DESCRIPTION OF SYMBOLS 10 Engine 11 Intake valve 12 Exhaust valve 13 Piston 14 Intake pressure detection means 15 Intake temperature detection means 16 ECU 17 Fuel injection device 18 Spark plug 19 Supercharger 20 Intake temperature control device 21 EGR control device 22 Variable valve timing mechanism 23 Octane number detection means

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 43/00 301 F02D 43/00 301E 301S F02M 25/07 570 F02M 25/07 570Z (72)発明者 飯山 明裕 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 谷山 剛 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 3G023 AA01 AA02 AA06 AB06 AC02 AC04 AG02 AG03 AG05 3G062 AA05 AA06 AA10 BA02 BA09 CA07 CA08 GA02 GA06 GA12 GA14 3G084 AA00 AA04 BA07 BA09 BA20 BA22 CA03 CA04 DA02 DA38 FA02 FA11 FA16 FA21 FA22 FA33 3G092 AA01 AA06 AA09 AA11 AA12 AA17 AA18 AB02 BA04 DA03 DB02 DC08 EA05 EA07 FA15 FA16 GA05 GA06 HA04Z HA05X HA05Z HA13Z HA16Z HB07Z HC01X HC01Z HC03X HC03Z HE01Z HE06Z 3G301 HA00 HA01 HA04 HA11 HA13 HA15 HA19 JA02 JA22 JA23 KA08 KA09 LA00 MA01 NE13 NE15 PA07Z PA10Z PB02Z PC01Z PC05Z PE01Z PE06ZContinuation of the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) F02D 43/00 301 F02D 43/00 301E 301S F02M 25/07 570 F02M 25/07 570Z (72) Inventor Akihiro Iiyama Kanagawa Prefecture Nissan Motor Co., Ltd., 2 Takaracho, Kanagawa-ku, Yokohama-shi (72) Inventor Tsuyoshi Taniyama 2nd Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan Motor Co., Ltd. F-term (reference) 3G023 AA01 AA02 AA06 AB06 AC02 AC04 AG02 AG03 AG05 3G062 AA05 AA06 AA10 BA02 BA09 CA07 CA08 GA02 GA06 GA12 GA14 3G084 AA00 AA04 BA07 BA09 BA20 BA22 CA03 CA04 DA02 DA38 FA02 FA11 FA16 FA21 FA22 FA33 3G092 AA01 AA06 AA09 AA11 AA12 AA17 AA18 AB02 BA04 GA03 FA05 GA05 FA05 FA05 HA16Z HB07Z HC01X HC01Z HC03X HC03Z HE01Z HE06Z 3G301 HA00 HA01 HA04 HA11 HA13 HA15 HA19 JA02 JA22 JA23 KA08 KA09 LA00 MA01 NE13 NE15 PA07Z PA10Z PB02Z PC01Z PC05Z PE01Z PE06Z

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】要求トルクに対して、該要求トルクを発生
する圧縮自己着火燃焼可能な目標筒内圧力および目標筒
内温度を算出する手段と、算出された目標筒内圧力およ
び目標筒内温度を得るように燃焼パラメータを制御する
手段と、を含んで構成される内燃機関の燃焼制御装置。
1. A means for calculating a target in-cylinder pressure and a target in-cylinder temperature capable of performing a compression self-ignition combustion that generates the required torque, a calculated target in-cylinder pressure and a target in-cylinder temperature. Means for controlling a combustion parameter so as to obtain a combustion control apparatus.
【請求項2】前記燃焼パラメータ制御手段は、目標筒内
圧力および目標筒内温度を得るように筒内圧力および筒
内温度の少なくとも一方を変更する手段と、目標筒内圧
力および目標筒内温度に対する目標空燃比を算出して該
目標空燃比に空燃比を制御する手段と、を含んで構成さ
れることを特徴とする請求項1記載の内燃機関の燃焼制
御装置。
2. The combustion parameter control means includes means for changing at least one of an in-cylinder pressure and an in-cylinder temperature so as to obtain a target in-cylinder pressure and a target in-cylinder temperature. 2. A combustion control apparatus for an internal combustion engine according to claim 1, further comprising means for calculating a target air-fuel ratio for the target air-fuel ratio and controlling the air-fuel ratio to the target air-fuel ratio.
【請求項3】前記筒内圧力の変更手段としては、過給圧
変更手段を用い、目標筒内圧力は圧縮自己着火燃焼が成
立するリッチ限界圧力とリーン限界圧力との略中間に設
定することを特徴とする請求項2記載の内燃機関の燃焼
制御装置。
3. A means for changing the in-cylinder pressure, wherein a supercharging pressure changing means is used, and the target in-cylinder pressure is set at a substantially intermediate value between a rich limit pressure and a lean limit pressure at which compression self-ignition combustion is established. 3. The combustion control apparatus for an internal combustion engine according to claim 2, wherein:
【請求項4】前記筒内圧力の変更手段としては、過給圧
変更手段を用い、目標筒内圧力は圧縮自己着火燃焼が成
立するリーン限界圧力付近に設定することを特徴とする
請求項2記載の内燃機関の燃焼制御装置。
4. A method according to claim 2, wherein the means for changing the in-cylinder pressure is a boost pressure changing means, and the target in-cylinder pressure is set near a lean limit pressure at which compression self-ignition combustion is established. A combustion control device for an internal combustion engine according to the above.
【請求項5】前記筒内温度の変更手段としては、吸気温
変更手段を用い、目標筒内温度は圧縮自己着火燃焼が成
立するリッチ限界温度付近に設定することを特徴とする
請求項2記載の内燃機関の燃焼制御装置。
5. An in-cylinder temperature changing means using an intake air temperature changing means, and setting the target in-cylinder temperature near a rich limit temperature at which compression self-ignition combustion is established. Combustion control device for an internal combustion engine.
【請求項6】前記筒内圧力および筒内温度の変更手段と
しては、圧縮比可変手段を用い、目標筒内圧力および目
標筒内温度は圧縮自己着火燃焼が成立するリーン限界圧
力付近およびリーン限界温度付近に設定することを特徴
とする請求項2記載の内燃機関の燃焼制御装置。
6. A method for changing the in-cylinder pressure and the in-cylinder temperature, wherein a compression ratio variable means is used. 3. The combustion control device for an internal combustion engine according to claim 2, wherein the temperature is set near the temperature.
【請求項7】前記目標空燃比の算出は、圧縮上死点の筒
内圧力および筒内温度から算出することを特徴とする請
求項2〜請求項6のいずれか1つに記載の内燃機関の燃
焼制御装置。
7. The internal combustion engine according to claim 2, wherein the target air-fuel ratio is calculated from a cylinder pressure and a cylinder temperature at a compression top dead center. Combustion control device.
【請求項8】前記目標空燃比の算出は、圧縮上死点の筒
内圧力および筒内温度の一次式から算出することを特徴
とする請求項2〜請求項6のいずれか1つに記載の内燃
機関の燃焼制御装置。
8. The method according to claim 2, wherein the target air-fuel ratio is calculated from a linear expression of a cylinder pressure and a cylinder temperature at a compression top dead center. Combustion control device for an internal combustion engine.
【請求項9】燃料のオクタン価を検出する手段を有し、
前記目標空燃比の算出は、圧縮上死点の筒内圧力、筒内
温度およびオクタン価の一次式から算出することを特徴
とする請求項2〜請求項6のいずれか1つに記載の内燃
機関の燃焼制御装置。
9. Means for detecting an octane number of the fuel,
The internal combustion engine according to any one of claims 2 to 6, wherein the target air-fuel ratio is calculated from a linear expression of a cylinder pressure at a compression top dead center, a cylinder temperature, and an octane number. Combustion control device.
JP10369870A 1998-12-25 1998-12-25 Combustion controller for internal combustion engine Pending JP2000192846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10369870A JP2000192846A (en) 1998-12-25 1998-12-25 Combustion controller for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10369870A JP2000192846A (en) 1998-12-25 1998-12-25 Combustion controller for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2000192846A true JP2000192846A (en) 2000-07-11

Family

ID=18495523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10369870A Pending JP2000192846A (en) 1998-12-25 1998-12-25 Combustion controller for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2000192846A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005098186A (en) * 2003-09-24 2005-04-14 Honda Motor Co Ltd Operation area control device of internal combustion engine
US6978771B2 (en) 2004-04-27 2005-12-27 Kabushiki Kaisha Toyota Jidoshokki Homogeneous charge compression ignition engine and method for operating homogeneous charge compression ignition engine
JP2008045530A (en) * 2006-08-21 2008-02-28 Honda Motor Co Ltd Control method for internal combustion engine
DE102006053253A1 (en) * 2006-11-08 2008-05-15 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Method for operating an internal combustion engine
CN100447403C (en) * 2003-02-17 2008-12-31 日产自动车株式会社 Knocking index value calculation device and calculation method thereof
JP2010180715A (en) * 2009-02-03 2010-08-19 Mitsubishi Electric Corp Control device of internal combustion engine
JP2015094295A (en) * 2013-11-12 2015-05-18 トヨタ自動車株式会社 Control device of internal combustion engine
JP6002339B1 (en) * 2016-01-29 2016-10-05 川崎重工業株式会社 Gas engine drive system and gas engine control method
WO2019124431A1 (en) * 2017-12-19 2019-06-27 株式会社Ihi Compression-end pressure control device and engine system
WO2022209707A1 (en) * 2021-03-30 2022-10-06 株式会社デンソー Engine control device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100447403C (en) * 2003-02-17 2008-12-31 日产自动车株式会社 Knocking index value calculation device and calculation method thereof
JP2005098186A (en) * 2003-09-24 2005-04-14 Honda Motor Co Ltd Operation area control device of internal combustion engine
US6978771B2 (en) 2004-04-27 2005-12-27 Kabushiki Kaisha Toyota Jidoshokki Homogeneous charge compression ignition engine and method for operating homogeneous charge compression ignition engine
CN100385101C (en) * 2004-04-27 2008-04-30 株式会社丰田自动织机 Homogeneous charge compression ignition engine and method for operating homogeneous charge compression ignition engine
JP2008045530A (en) * 2006-08-21 2008-02-28 Honda Motor Co Ltd Control method for internal combustion engine
US7805237B2 (en) 2006-11-08 2010-09-28 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Method for operating an internal combustion engine
DE102006053253B4 (en) * 2006-11-08 2009-12-24 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Method for operating an internal combustion engine
DE102006053253A1 (en) * 2006-11-08 2008-05-15 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Method for operating an internal combustion engine
JP2010180715A (en) * 2009-02-03 2010-08-19 Mitsubishi Electric Corp Control device of internal combustion engine
JP2015094295A (en) * 2013-11-12 2015-05-18 トヨタ自動車株式会社 Control device of internal combustion engine
JP6002339B1 (en) * 2016-01-29 2016-10-05 川崎重工業株式会社 Gas engine drive system and gas engine control method
WO2017130502A1 (en) * 2016-01-29 2017-08-03 川崎重工業株式会社 Gas engine drive system and gas engine control method
WO2019124431A1 (en) * 2017-12-19 2019-06-27 株式会社Ihi Compression-end pressure control device and engine system
JP2019108869A (en) * 2017-12-19 2019-07-04 株式会社Ihi Compression end pressure control device and engine system
KR20200065080A (en) * 2017-12-19 2020-06-08 가부시키가이샤 아이에이치아이 Compressed stage pressure control and engine system
CN111465757A (en) * 2017-12-19 2020-07-28 株式会社 Ihi Compression end pressure control device and engine system
KR102371032B1 (en) * 2017-12-19 2022-03-07 가부시키가이샤 아이에이치아이 Compression stage pressure control unit and engine system
CN111465757B (en) * 2017-12-19 2022-08-12 株式会社 Ihi Compression end pressure control device and engine system
WO2022209707A1 (en) * 2021-03-30 2022-10-06 株式会社デンソー Engine control device

Similar Documents

Publication Publication Date Title
US6915784B2 (en) System and method for controlling spark-ignition internal combustion engine
US6354264B1 (en) Control system for self-ignition type gasoline engine
US5970947A (en) Control apparatus for a cylinder-injection spark-ignition internal combustion engine
JP3508481B2 (en) Control device for internal combustion engine
KR100284523B1 (en) Control device of internal injection type spark ignition internal combustion engine
US8050846B2 (en) Apparatus and method for controlling engine
US5979397A (en) Control apparatus for direct injection spark ignition type internal combustion engine
JP3815006B2 (en) Control device for internal combustion engine
JP4161529B2 (en) Fuel injection control device for diesel engine
US6178945B1 (en) Control system for internal combustion engine
US6990934B2 (en) Internal combustion engine having variable compression ratio mechanism and control method therefor
JPH1122505A (en) Control device for internal combustion engine
JP2002276404A (en) Compression ignition type internal combustion engine
US6145489A (en) Torque controller for internal combustion engine
US20040237910A1 (en) Internal combustion engine of compression ignition type
WO2005003538A1 (en) Device and method for controlling internal combustion engine
JP4054547B2 (en) Control device for internal combustion engine
JP2000192846A (en) Combustion controller for internal combustion engine
US20160348606A1 (en) Control apparatus for internal combustion engine
US8996282B2 (en) Fueling systems, methods and apparatus for an internal combustion engine
US5954023A (en) Apparatus and method for controlling combustion in internal combustion engines
EP0980973B1 (en) A fuel injection control device for an internal combustion engine
US10995681B2 (en) Combustion control device for engine
JP2000257467A (en) Combustion controller of internal combustion engine
JP3903832B2 (en) Control method for internal combustion engine