JP2000192211A - Galvanizing method and galvanized material - Google Patents

Galvanizing method and galvanized material

Info

Publication number
JP2000192211A
JP2000192211A JP10366548A JP36654898A JP2000192211A JP 2000192211 A JP2000192211 A JP 2000192211A JP 10366548 A JP10366548 A JP 10366548A JP 36654898 A JP36654898 A JP 36654898A JP 2000192211 A JP2000192211 A JP 2000192211A
Authority
JP
Japan
Prior art keywords
hot
zinc
dip galvanizing
alloy
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10366548A
Other languages
Japanese (ja)
Other versions
JP3024967B1 (en
Inventor
Toshio Narita
敏夫 成田
Junichi Tanaka
順一 田中
Yusaku Masuda
雄策 益田
Koji Soe
浩二 副
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Eneos Corp
Original Assignee
Nippon Mining and Metals Co Ltd
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd, Nippon Mining Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP10366548A priority Critical patent/JP3024967B1/en
Application granted granted Critical
Publication of JP3024967B1 publication Critical patent/JP3024967B1/en
Publication of JP2000192211A publication Critical patent/JP2000192211A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve corrosion resistance and the coating property of coating layer by making crystal grain in the coating layer fine and restraining the development of scaly partial peeling. SOLUTION: In a hot-dipping high purity zinc bath having >=99.7 wt.% purity, an iron or iron alloy material is dipped to execute the first-step galvanizing. Successively, this material is dipped into a hot-dipping zinc base alloy bath containing by wt.% 4.0-10.0% Al, 0.1-0.5% Cu, 0.1-1.0% Mg and 100-1000 ppm Si to execute the second-step galvanizing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルミニウムを含
有する亜鉛浴を用いた溶融亜鉛めっき方法とこれによっ
て得られる亜鉛めっき材料に係り、特に、めっき皮膜層
の凝固時に形成する組織を微細化してめっき層の耐食性
の強化とめっき表面の鱗片状の部分剥離を防止するとと
もに、塗装時には塗料と良好な密着性を確保する技術に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot dip galvanizing method using a zinc bath containing aluminum and a galvanized material obtained by the method. The present invention relates to a technique for enhancing the corrosion resistance of a plating layer, preventing flake-like partial peeling of a plating surface, and ensuring good adhesion to a paint during coating.

【0002】[0002]

【従来の技術】アルミニウムは耐食性が高いことから、
従来より、建材などの鉄鋼材料のめっきには、アルミニ
ウムを含む亜鉛浴が用いられている。本出願人の提案に
係る特公平4−19299号公報では、アルミニウムを
含む亜鉛浴ではめっきが良好に行われないという問題を
解決するために、一段目の溶融亜鉛めっきを高純度亜鉛
浴で行い、二段目の溶融亜鉛めっきをアルミニウムが4
〜8%添加された亜鉛浴で行う溶融亜鉛めっき方法を提
案している。
2. Description of the Related Art Aluminum has high corrosion resistance.
Conventionally, a zinc bath containing aluminum has been used for plating a steel material such as a building material. In Japanese Patent Publication No. Hei 4-19299 proposed by the present applicant, in order to solve the problem that plating is not performed well in a zinc bath containing aluminum, the first-stage hot-dip galvanizing is performed in a high-purity zinc bath. The second stage hot dip galvanizing
A hot-dip galvanizing method performed in a zinc bath containing 88% is proposed.

【0003】また、特開平7−207421号公報で
は、二段目の溶融亜鉛めっきをアルミニウムおよびマグ
ネシウムを含む亜鉛浴で行うことにより、金属間化合物
の成長を抑制するとともに均質なめっき層を得る技術が
開示されている。また、特開昭57−35672号公報
では、二段目の溶融亜鉛めっきを、アルミニウムと、
銅、チタン、マグネシウムおよびジルコニウムの少なく
とも1種以上を含む亜鉛浴で行うことにより、さらに耐
食性を高める技術が開示されている。
Japanese Patent Application Laid-Open No. 7-207421 discloses a technique in which the second-stage hot-dip galvanizing is performed in a zinc bath containing aluminum and magnesium to suppress the growth of intermetallic compounds and obtain a uniform plating layer. Is disclosed. Further, in Japanese Patent Application Laid-Open No. 57-35672, the second-stage hot-dip galvanizing is performed with aluminum,
There is disclosed a technique for further improving corrosion resistance by performing the treatment in a zinc bath containing at least one of copper, titanium, magnesium, and zirconium.

【0004】以上のような溶融亜鉛めっき方法では、め
っき皮膜層表面および合金層を含むめっき層全体に耐食
性の高い亜鉛−アルミニウム合金層が形成されるので、
塩水噴霧試験(Salt Shower Test、以下、SSTと称す
る)において赤錆発生までの時間が5000時間以上と
なり、鋼材の通常の溶融亜鉛めっきとは比較にならない
優れた耐食性を示すことが知られている。
In the hot-dip galvanizing method described above, a highly corrosion-resistant zinc-aluminum alloy layer is formed on the entire surface of the plating film layer and the plating layer including the alloy layer.
It is known that in a salt spray test (Salt Shower Test, hereinafter referred to as SST), the time until red rust generation is 5,000 hours or more, and that the steel exhibits excellent corrosion resistance that is incomparable with ordinary hot-dip galvanizing.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記溶
融亜鉛めっき方法では、SSTのような特殊な試験でも
赤錆は発生し難いものの、めっき層が部分的に鱗片状に
剥離する腐食減量が発生する場合がある。なお、この場
合でも赤錆は発生していない。このため、めっき製品に
塗装を施すと、剥離した部分が浮き出たり、それととも
に塗装が剥がれるという問題があった(図1(B)参
照)。本発明者等は、そのような現象が生じる理由を検
討した結果、図4(E)に示すように、従来のアルミニ
ウムを添加した亜鉛浴で行う溶融亜鉛めっき法では、め
っき皮膜層の結晶粒が粗大化しており、また凝固時に結
晶粒界に沿って発生した微細な収縮亀裂を伝わって腐食
が部分的にめっき層内部へ浸透することが判った。ま
た、めっき金属が凝固する際に、めっき層の表面からそ
の深さの方向にめっき層の厚さの50%以上に達する収
縮亀裂が発生していることが判った(図2参照)。
However, in the hot-dip galvanizing method, red rust hardly occurs even in a special test such as SST, but corrosion loss occurs in which the plating layer partially exfoliates in a scale-like manner. There is. In this case, no red rust was generated. For this reason, when a coating is applied to the plated product, there is a problem that the peeled portion comes out or the coating is peeled off with it (see FIG. 1B). As a result of studying the reason why such a phenomenon occurs, as shown in FIG. 4 (E), the present inventors found that in the conventional hot-dip galvanizing method performed in a zinc bath to which aluminum was added, the crystal grain of the plating film layer was formed. Was coarsened, and it was found that the corrosion partially penetrated into the plating layer through a fine shrinkage crack generated along the crystal grain boundary during solidification. In addition, it was found that when the plated metal solidified, shrinkage cracks reaching 50% or more of the thickness of the plating layer occurred in the direction of the depth from the surface of the plating layer (see FIG. 2).

【0006】また、上記のような二段の溶融亜鉛めっき
方法では、一段目のめっきで形成された鉄−亜鉛合金が
二段目のめっきで浴中に脱落し、ドロスと呼ばれる滞留
物が生じるという問題があった。このドロスは、めっき
浴を汚染するとともに製品に付着して外観を損なう原因
となるため、めっき浴からドロスを掻き取ったり、めっ
き製品の表面仕上といった作業が必要となり、製造コス
トが割高になっていた。
[0006] In the two-stage hot-dip galvanizing method as described above, the iron-zinc alloy formed in the first-stage plating falls off in the bath in the second-stage plating, and a residue called dross is generated. There was a problem. This dross contaminates the plating bath and causes it to adhere to the product and impair the appearance. Was.

【0007】よって、本発明は上記従来技術の問題点を
解決するためになされたもので、めっき皮膜層の結晶粒
組織を微細化することにより、上記したようなめっき層
に発生する孔等の深さを抑制し、めっき製品の耐食性ひ
いてはその塗装製品の寿命を延長するとともに、二段目
のめっき浴でのドロスの発生を抑制して製造コストを低
減することができる溶融亜鉛めっき方法および亜鉛めっ
き材料を提供することを目的としている。
Accordingly, the present invention has been made in order to solve the above-mentioned problems of the prior art, and by making the crystal grain structure of a plating film layer fine, it is possible to prevent holes and the like generated in the plating layer as described above. Hot-dip galvanizing method and zinc capable of suppressing the depth, extending the corrosion resistance of plated products, and thus extending the life of the coated products, and suppressing the production of dross in the second plating bath to reduce the production cost The purpose is to provide a plating material.

【0008】[0008]

【課題を解決するための手段】本発明の溶融亜鉛めっき
方法は、純度99.7重量%以上の高純度亜鉛浴に鉄ま
たは鉄合金材料を浸漬して一段目の溶融亜鉛めっきを行
い、次いで材料を、重量比でAl:4.0〜10.0
%、Cu:0.1〜0.5%、Mg:0.1〜1.0
%、Si:100〜1000ppm含有する亜鉛ベース
の合金浴に浸漬して二段目の溶融亜鉛めっきを行うこと
特徴としている。以下、上記数値限定の根拠を本発明の
作用とともに説明する。なお、以下の説明で「%」は
「重量%」を意味するものとする。
In the hot dip galvanizing method of the present invention, iron or iron alloy material is immersed in a high-purity zinc bath having a purity of 99.7% by weight or more to perform first-stage hot-dip galvanizing. The material is Al: 4.0 to 10.0 in weight ratio.
%, Cu: 0.1 to 0.5%, Mg: 0.1 to 1.0
%, Si: immersed in a zinc-based alloy bath containing 100 to 1000 ppm to perform second-stage hot-dip galvanizing. Hereinafter, the basis of the above numerical limitation will be described together with the operation of the present invention. In the following description, “%” means “% by weight”.

【0009】純度99.7%以上の高純度亜鉛として
は、蒸留亜鉛、電気亜鉛または最純亜鉛を用いることが
できる。また、一段目の亜鉛浴には、80ppm以下の
Alを含有させると良い。このような微量のAlの添加
により、亜鉛が材料の地肌に均一に付着するとともに、
二段目の溶融亜鉛めっきで生成される亜鉛−アルミニウ
ム合金への鉄の拡散が抑制される。
As high-purity zinc having a purity of 99.7% or more, distilled zinc, electric zinc or pure zinc can be used. Further, the first-stage zinc bath preferably contains 80 ppm or less of Al. By adding such a small amount of Al, zinc adheres uniformly to the surface of the material,
Diffusion of iron into the zinc-aluminum alloy generated by the second hot-dip galvanizing is suppressed.

【0010】Al:Alは亜鉛めっき層の耐食性を向上
させるために不可欠な元素であり、必要な耐食性を得る
ためには、亜鉛浴に4.0%以上含有させる必要があ
る。また、Alの含有量が10.0%を超えると、亜鉛
浴の溶融温度が高くなって製造コストの増大やドロスの
発生の増加等の好ましくない結果が生じる。よって、A
lの含有量は4.0〜10.0%とした。しかしなが
ら、Alを含有するだけでは、めっき皮膜層が凝固する
際に生じる深い収縮孔等の発生を防止することができな
い。そこで、本発明では、Alに加えてSi、Cuおよ
びMgを適量添加することで結晶粒の微細化を達成し
た。
Al: Al is an indispensable element for improving the corrosion resistance of the galvanized layer, and it is necessary that the zinc bath contains 4.0% or more in order to obtain the required corrosion resistance. On the other hand, if the Al content exceeds 10.0%, the melting temperature of the zinc bath is increased, and undesired results such as an increase in production cost and an increase in dross are produced. Therefore, A
The l content was 4.0 to 10.0%. However, the mere inclusion of Al cannot prevent the occurrence of deep shrinkage holes and the like that occur when the plating film layer solidifies. Therefore, in the present invention, refinement of crystal grains has been achieved by adding an appropriate amount of Si, Cu and Mg in addition to Al.

【0011】Si:本出願人は、特公昭62−1861
8号公報において、亜鉛浴中のAl濃度を均一にするた
めにSiを亜鉛浴に10〜100ppm含有させてい
る。本発明者等は、めっき皮膜層の結晶粒組織を微細化
するという異なる目的でSiに注目した。図3(A)に
本発明の溶融亜鉛めっき方法でめっきした材料のめっき
層の表面組織を示す。本発明では、Siを適量添加した
結果、めっき表面に微細な組織が均一に分布するように
なった。このため、図3(E)に示すような収縮亀裂の
発生を阻止し、耐食性と塗装性を大幅に向上させること
ができる。ここで、図3は以下の成分を含む二段目の亜
鉛浴中でめっきをした表面組織を示す図であって、
(A)は5.8%Al、0.57%Mg、0.19%C
u、0.04%Si、(B)は6.2%Al、0.47
%Mg、0.21%Cu、(C)は6.0%Al、0.
43%Mg、0.03%Si、(D)は6.0%Al、
0.47%Mg、(E)は7.0%Alである。
Si: The applicant of the present invention is Japanese Patent Publication No. 62-1861.
In the gazette of No. 8, 10 to 100 ppm of Si is contained in the zinc bath in order to make the Al concentration in the zinc bath uniform. The present inventors have paid attention to Si for the different purpose of refining the grain structure of the plating film layer. FIG. 3A shows a surface structure of a plating layer of a material plated by the hot-dip galvanizing method of the present invention. In the present invention, as a result of adding an appropriate amount of Si, a fine structure is uniformly distributed on the plating surface. Therefore, the occurrence of shrinkage cracks as shown in FIG. 3E can be prevented, and the corrosion resistance and paintability can be greatly improved. Here, FIG. 3 is a diagram showing a surface structure plated in a second-stage zinc bath containing the following components.
(A) is 5.8% Al, 0.57% Mg, 0.19% C
u, 0.04% Si, (B) is 6.2% Al, 0.47
% Mg, 0.21% Cu, (C) is 6.0% Al, 0.1%
43% Mg, 0.03% Si, (D) is 6.0% Al,
0.47% Mg, (E) is 7.0% Al.

【0012】なお、めっき浴中にSiを添加しない場合
(図3(B),(D))とCuを添加しない場合(図3
(C))では、いずれも材料表面は微細化するものの分
布が均一でないことから、組織の微細化と均一分布はS
iとCuの相乗効果によるものと考えられる。また、図
4に示すように、表面粗さ計で測定した結果からも、S
iとCuを共に添加した場合にのみ微細な凹凸が均一に
発生していることが判る。なお、図4は図3に示す各材
料表面を表面粗さ計で測定したときのチャートである。
Siの含有量は、100ppm未満では結晶粒微細化の
効果を得ることができない。また、Siの浴中の飽和溶
解度は1000ppm以下である。よって、Siの含有
量は100〜1000ppmとした。特に、Siの含有
量は430〜680ppmの範囲が好適である。
The case where Si is not added to the plating bath (FIGS. 3B and 3D) and the case where Cu is not added (FIG. 3B)
In (C)), the material surface is finer, but the distribution is not uniform.
It is thought to be due to the synergistic effect of i and Cu. Further, as shown in FIG. 4, S
It can be seen that fine irregularities are uniformly generated only when both i and Cu are added. FIG. 4 is a chart when the surface of each material shown in FIG. 3 is measured by a surface roughness meter.
If the Si content is less than 100 ppm, the effect of refining the crystal grains cannot be obtained. The saturated solubility of Si in the bath is 1000 ppm or less. Therefore, the content of Si is set to 100 to 1000 ppm. In particular, the content of Si is preferably in the range of 430 to 680 ppm.

【0013】Cu:Cuはα−Al等が発生した場合で
あっても局部電池の形成を均一化でき、この結果腐食防
止に寄与するが、本発明では、Siとの相乗効果により
めっき表面に微細な組織を均一に分布させる働きをす
る。Cuの含有量が0.1%未満では、そのような効果
を得ることができない。逆に0.5%を超えて含有して
もそれ以上の局部電池の形成を抑制する効果は期待でき
ない。よって、Cuの含有量は0.1〜0.5%とし
た。
[0013] Cu: Cu can uniformly form a local battery even when α-Al or the like is generated, thereby contributing to the prevention of corrosion. In the present invention, however, Cu has a synergistic effect with Si on the plating surface. It works to distribute fine structures uniformly. If the Cu content is less than 0.1%, such effects cannot be obtained. Conversely, if the content exceeds 0.5%, no further effect of suppressing the formation of the local battery can be expected. Therefore, the content of Cu is set to 0.1 to 0.5%.

【0014】Mg:Mgは粒間腐食を防止する元素であ
るが、本発明ではSiとともに等軸晶生成の核となって
結晶粒の微細化にも寄与するとともに、冷却過程の凝固
で生じる収縮孔の深さを抑制する。Mgの含有量が0.
1%未満では、そのような効果を得ることができない。
逆に1.0%を越えて含有しても組織の微細化には変化
は無くより以上の効果は期待できないばかりでなく、浴
内の酸化物の増大を招くとともに原料コスト上の無駄が
多くなる。よって、Mgの含有量は0.1〜1.0%と
した。なお、本方法によるめっきにおいては、一段目の
めっきの後直ちに二段目のめっきを行っても、亜鉛浴に
Alのみ添加した場合に比べドロスがあまり発生しな
い。これは、本方法のめっき浴中のSiがめっき界面近
傍に濃縮し、鋼材中のFeが外部へ拡散するのを防止す
るためと考えられる(図5参照)。また、SiやMg等
の軽金属がFe−Al化合物と結びつくことで、より比
重の軽い化合物形態をつくり、めっき浴表層に浮上しや
すくしていると考えられる。
Mg: Mg is an element that prevents intergranular corrosion. In the present invention, Mg acts as a nucleus for the formation of equiaxed crystals together with Si and contributes to the refinement of crystal grains, and shrinkage caused by solidification during the cooling process. Suppress hole depth. Mg content is 0.
If it is less than 1%, such an effect cannot be obtained.
Conversely, if the content exceeds 1.0%, there is no change in the refinement of the microstructure and no further effect can be expected. In addition, oxides in the bath increase and waste of raw material costs increases. Become. Therefore, the content of Mg is set to 0.1 to 1.0%. In the plating according to the present method, even if the second-stage plating is performed immediately after the first-stage plating, dross does not occur much as compared with the case where only Al is added to the zinc bath. This is considered to prevent Si in the plating bath of the present method from concentrating near the plating interface and preventing Fe in the steel material from diffusing to the outside (see FIG. 5). Further, it is considered that the light metal such as Si or Mg is combined with the Fe-Al compound to form a compound having a lighter specific gravity and to easily float on the surface layer of the plating bath.

【0015】二段目の溶融亜鉛めっきにおける亜鉛以外
の元素は、高純度亜鉛にAl鋳物合金を添加することに
より含有させることができる。Al鋳物合金としては、
重量比でCu:2.0〜4.0%、Mg:0.5〜1.
5%、Si:8.5〜10.5%、Ti:1〜20pp
m、残部:Alおよび不可避的不純物からなる組成のも
のを使用することができる。この場合、Tiを1〜20
ppm含有しているので、結晶粒の微細化にさらに好適
である。
Elements other than zinc in the second hot-dip galvanizing can be contained by adding an Al casting alloy to high-purity zinc. As an aluminum casting alloy,
Cu: 2.0-4.0%, Mg: 0.5-1.
5%, Si: 8.5 to 10.5%, Ti: 1 to 20 pp
m, the balance: a composition composed of Al and unavoidable impurities can be used. In this case, Ti is 1 to 20
Since it contains ppm, it is more suitable for refining crystal grains.

【0016】さらに、二段目の溶融亜鉛めっきの後に材
料を60〜90℃の温水で冷却することが望ましい。二
段目のめっき後に材料を温水中で冷却することにより、
めっき層の温度勾配が緩慢となり、材料温度とめっき表
面温度の落差が小さくなり、凝固時に形成する収縮孔や
凹凸さらには粒界割れ等を抑制できる。しかし、材料を
冷水で冷却すると、材料温度とめっき表面層とに温度落
差が生じ、急激な収縮による歪でめっき層内に割れ等が
発生する要因となる。なお、一段目の浴温度は、430
〜460℃、浸漬時間は0.5〜2分、材料の引き上げ
速度は5〜8m/分が望ましい。また、二段目の浴温度
は、420〜460℃、浸漬時間は0.5〜1分、材料
の引き上げ速度は0.5〜3.5m/分が望ましい。
Further, it is desirable to cool the material with hot water at 60 to 90 ° C. after the second step of galvanizing. By cooling the material in warm water after the second plating,
The temperature gradient of the plating layer becomes slow, the difference between the material temperature and the plating surface temperature becomes small, and shrinkage holes and irregularities formed during solidification, as well as grain boundary cracks, etc. can be suppressed. However, when the material is cooled with cold water, a temperature drop occurs between the material temperature and the plating surface layer, which causes a crack or the like to occur in the plating layer due to strain due to rapid shrinkage. The first stage bath temperature was 430
It is desirable that the immersion time is 0.5 to 2 minutes, and the material pulling speed is 5 to 8 m / min. Further, the bath temperature of the second stage is desirably 420 to 460 ° C, the immersion time is 0.5 to 1 minute, and the pulling speed of the material is desirably 0.5 to 3.5 m / min.

【0017】次に、本発明の亜鉛めっき材料は、鉄また
は鉄合金材料の表面に、亜鉛を主体とする合金めっき層
を被覆した亜鉛めっき材料において、材料の表面からめ
っき層側へ0〜20μmの範囲の合金元素の濃度が、重
量比でAl:20〜50%、Si:1〜5%、Cu:
0.1〜1.0%、Mg:0.1〜1.0%であること
を特徴としている。この亜鉛めっき材料は、上記した溶
融亜鉛めっき方法によって得ることができる。
Next, the galvanized material of the present invention is a galvanized material in which an alloy plating layer mainly composed of zinc is coated on the surface of an iron or iron alloy material. Of alloy elements in the range of Al: 20 to 50%, Si: 1 to 5%, and Cu:
0.1 to 1.0%, and Mg: 0.1 to 1.0%. This galvanized material can be obtained by the hot-dip galvanizing method described above.

【0018】[0018]

【実施例】次に、具体的な実施例に基づいて本発明を詳
細に説明する。 1.試料の作製A.実施例1 SS41鋼材試料を温度80℃のアルカリ浴に30分浸
漬して脱脂を行った後に湯洗し、次に、塩酸10%溶液
(常温)に30分浸漬することによって錆を除去した。
次いで、試料をZnCl−NHClの溶液に30秒
浸漬し、塩化物のコーティングを施すことで母材の酸化
防止を行い、Alを60ppm含有する450℃の最純
亜鉛浴に1分間浸漬した。次いで、試料を引き上げ、最
純亜鉛にAl鋳物合金を添加してAl濃度を5.7重量
%とした420℃の浴に1分間浸漬し、引上げ後の試料
を80℃の温水で冷却した。なお、Al鋳物合金の添加
により、二段目の浴中には、Cu:0.19〜0.20
重量%、Mg:0.51重量%、Si:0.04重量
%、Ti:0.002重量%が含まれている。
Next, the present invention will be described in detail with reference to specific examples. 1. Preparation of Sample A. Example 1 An SS41 steel sample was immersed in an alkaline bath at a temperature of 80 ° C. for 30 minutes to perform degreasing, washed with hot water, and then immersed in a 10% hydrochloric acid solution (normal temperature) for 30 minutes to remove rust.
Next, the sample is immersed in a solution of ZnCl 2 —NH 4 Cl for 30 seconds to prevent oxidation of the base material by coating with chloride, and immersed in a pure zinc bath at 450 ° C. containing 60 ppm of Al for 1 minute. did. Next, the sample was pulled up, immersed in a 420 ° C. bath having an Al concentration of 5.7% by weight by adding an Al casting alloy to the purest zinc for 1 minute, and the pulled up sample was cooled with warm water at 80 ° C. In addition, due to the addition of the Al casting alloy, Cu: 0.19 to 0.20
%, Mg: 0.51% by weight, Si: 0.04% by weight, and Ti: 0.002% by weight.

【0019】B.実施例2 二段目の浴の成分をAl:7.2重量%、Cu:0.2
6重量%、Mg:0.56重量%、Si:0.064重
量%、Ti:0.0025重量%とした以外は上記実施
例1と同様にして溶融亜鉛めっきを行った。
B. Example 2 The components of the second-stage bath were as follows: Al: 7.2% by weight, Cu: 0.2
Hot-dip galvanizing was performed in the same manner as in Example 1 except that 6 wt%, Mg: 0.56 wt%, Si: 0.064 wt%, and Ti: 0.0025 wt%.

【0020】比較例 比較のために、二段目の浴として最純亜鉛に5.7重量
%のAlを添加したものを用いたことと、めっき後に徐
冷した以外は上記実施例1と同様にして溶融亜鉛めっき
を行った。
COMPARATIVE EXAMPLE For comparison, the same as in Example 1 above, except that the bath in the second stage was prepared by adding 5.7% by weight of Al to pure zinc, and was gradually cooled after plating. And hot-dip galvanized.

【0021】2.評価 以上の溶融亜鉛めっきにおいて、実施例1,2ではドロ
スの発生は見られなかったが、比較例では発生した。ま
た、実施例1の試料のめっき断面をX線マイクロアナラ
イザで分析し、鋼材の地肌からめっき層側へ入った複数
箇所での元素含有量を定量分析した。その結果を表1に
示す。なお、表1における測定位置は、地肌からめっき
層側へ2μm間隔離間した箇所である。表1より、実施
例では地肌から深さ10μmの位置でSi濃度が4.6
重量%で最も高くなっており、その位置の周辺でもSi
濃度が高いことが判る。
2. Evaluation In the hot-dip galvanizing described above, no dross was found in Examples 1 and 2, but was found in the comparative example. Further, the plating cross section of the sample of Example 1 was analyzed by an X-ray microanalyzer, and the element content at a plurality of locations from the background of the steel material to the plating layer side was quantitatively analyzed. Table 1 shows the results. Note that the measurement positions in Table 1 are points separated by 2 μm from the background to the plating layer side. According to Table 1, in the example, the Si concentration was 4.6 at a position 10 μm deep from the ground.
Wt%, and Si around the position
It can be seen that the concentration is high.

【0022】[0022]

【表1】 [Table 1]

【0023】次に、実施例1と比較例の試料のめっき層
をレーザー顕微鏡で観察し、めっき層表面からの亀裂の
深さと個数を数えた。その結果を図2に示す。図2に示
すように、実施例1では、20μm以下の深さの亀裂が
殆どであり、Si等の合金元素による結晶の微細化の効
果が顕著に現れている。これに対して、比較例では、4
0〜60μmの深さの亀裂が殆どであり、腐食が内部へ
と進行し易いことが想定できる。
Next, the plating layers of the samples of Example 1 and Comparative Example were observed with a laser microscope, and the depth and the number of cracks from the plating layer surface were counted. The result is shown in FIG. As shown in FIG. 2, in Example 1, cracks having a depth of 20 μm or less were almost present, and the effect of crystal refinement by an alloy element such as Si was remarkably exhibited. On the other hand, in the comparative example, 4
Most of the cracks have a depth of 0 to 60 μm, and it can be assumed that corrosion easily proceeds to the inside.

【0024】3.耐食性試験 実施例1,2と比較例のパイプ形状の試料についてSS
Tを行ったところ、実施例1,2、比較例とも4600
時間では赤錆の発生は見られなかった。しかしながら、
各試料の表面状態を観察したところ、実施例1,2では
図1(A)に示すようにめっき層の表層部の剥離は生じ
なかった。一方、比較例では、図1(B)に示すように
表層部での鱗片状の剥離が所々発生していた。
3. Corrosion resistance test SS for pipe-shaped samples of Examples 1 and 2 and Comparative Example
When T was performed, Examples 1 and 2 and Comparative Example were 4600.
No red rust was observed at the time. However,
When the surface state of each sample was observed, in Examples 1 and 2, peeling of the surface portion of the plating layer did not occur as shown in FIG. On the other hand, in the comparative example, as shown in FIG. 1 (B), scale-like exfoliation occurred at the surface layer in some places.

【0025】なお、実施例2では、浴のAl濃度が7.
2重量%と比較的高いので、めっき浴からのAlの持ち
出しによる減少に対して安定した操業を行うことができ
るものと思われる。したがって、めっき操業中にAl合
金鋳物の補充が遅れても、品質への影響は少ないものと
考えられる。
In Example 2, the Al concentration in the bath was 7.
Since it is relatively high at 2% by weight, it is considered that stable operation can be performed with respect to the reduction due to the removal of Al from the plating bath. Therefore, even if the replenishment of the Al alloy casting is delayed during the plating operation, it is considered that the influence on the quality is small.

【0026】[0026]

【発明の効果】以上説明したように本発明においては、
二段目の亜鉛浴に適量のSi、CuおよびMgを含有さ
せているので、結晶粒が微細化して表層部における鱗片
状の部分剥離の発生を防止することができ、また、表面
に微細な組織が均一に分散するので、耐食性と塗装性を
大幅に向上させることができる。
As described above, in the present invention,
Since an appropriate amount of Si, Cu and Mg is contained in the second-stage zinc bath, crystal grains can be refined to prevent the occurrence of scale-like partial exfoliation in the surface layer portion, and the surface can be finely divided. Since the structure is uniformly dispersed, the corrosion resistance and the paintability can be significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 塩水噴霧試験を行った試料の状態を示す図で
あり、(A)は実施例、(B)は比較例を示す。
FIG. 1 is a view showing a state of a sample subjected to a salt spray test, wherein (A) shows an example and (B) shows a comparative example.

【図2】 亀裂のめっき層表面からの深さと亀裂の数と
の関係を示す線図である。
FIG. 2 is a diagram showing the relationship between the depth of a crack from the plating layer surface and the number of cracks.

【図3】 各種めっき層の表面組織を示す図である。FIG. 3 is a view showing the surface texture of various plating layers.

【図4】 各種めっき層の表面粗さを示す線図である。FIG. 4 is a diagram showing the surface roughness of various plating layers.

【図5】 Si添加によるFeの溶出防止効果を示す線
図である。
FIG. 5 is a diagram showing the effect of preventing the elution of Fe by the addition of Si.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年10月28日(1999.10.
28)
[Submission date] October 28, 1999 (1999.10.
28)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項2[Correction target item name] Claim 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項3[Correction target item name] Claim 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項4[Correction target item name] Claim 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項5[Correction target item name] Claim 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Correction target item name] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0015】二段目の溶融亜鉛めっきに用いる亜鉛ベー
スの合金浴においては、高純度亜鉛にAl鋳物合金を添
加することにより、当該合金浴に亜鉛以外の元素を含有
させることができる。Al鋳物合金としては、重量比で
Cu:2.0〜4.0%、Mg:0.5〜1.5%、S
i:8.5〜10.5%、Ti:1〜20ppm、残
部:Alおよび不可避的不純物からなる組成のものを使
用することができる。この場合、Tiを1〜20ppm
含有しているので、結晶粒の微細化にさらに好適であ
る。
[0015] A zinc base used for the second stage hot-dip galvanizing.
In an aluminum alloy bath, an aluminum casting alloy is added to high-purity zinc.
In addition, the alloy bath contains elements other than zinc.
Can be done. As an Al casting alloy, Cu: 2.0 to 4.0%, Mg: 0.5 to 1.5%, S
i: 8.5 to 10.5%, Ti: 1 to 20 ppm, balance: Al and an unavoidable impurity can be used. In this case, 1-20 ppm of Ti
Since it is contained, it is more suitable for refining crystal grains.

【手続補正6】[Procedure amendment 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0017】次に、本発明の亜鉛めっき材料は、鉄また
は鉄合金材料の表面に、亜鉛を主体とする合金めっき層
を被覆した亜鉛めっき材料において、合金めっき層にお
ける鉄または鉄合金材料の表面から20μmの範囲の合
金元素の濃度が、重量比でAl:20〜50%、Si:
1〜5%、Cu:0.1〜1.0%、Mg:0.1〜
1.0%、残部:Znおよび不可避的不純物であること
を特徴としている。この亜鉛めっき材料は、上記した溶
融亜鉛めっき方法によって得ることができる。
Next, the galvanized material of the present invention is a galvanized material in which an alloy plating layer mainly composed of zinc is coated on the surface of an iron or iron alloy material .
The concentration of alloying elements in the range of 20 μm from the surface of the iron or iron alloy material to be processed is : Al: 20 to 50% by weight, Si:
1 to 5%, Cu: 0.1 to 1.0%, Mg: 0.1 to
1.0% , balance: Zn and inevitable impurities . This galvanized material can be obtained by the hot-dip galvanizing method described above.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 成田 敏夫 北海道札幌市北区新琴似1条9丁目7番8 号 (72)発明者 田中 順一 北海道札幌市北区篠路9条4丁目2番15号 (72)発明者 益田 雄策 茨城県日立市白銀町1丁目1番2号 日鉱 金属株式会社日立工場技術開発センター内 (72)発明者 副 浩二 茨城県日立市白銀町1丁目1番2号 日鉱 金属株式会社日立工場技術開発センター内 Fターム(参考) 4K027 AA06 AA22 AB05 AB07 AB09 AB26 AB42 AB44 AC47 AC72 AE03 AE18 AE21  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Toshio Narita 1-9-9-8 Shinkotoni, Kita-ku, Sapporo, Hokkaido (72) Inventor Junichi Tanaka 9-2, 4-5-1 Shinoji, Shino, Kita-ku, Sapporo, Hokkaido ( 72) Inventor Yusaku Masuda 1-1-2, Shiroganecho, Hitachi City, Ibaraki Prefecture Nippon Mining & Metals Co., Ltd.Hitachi Plant Technology Development Center (72) Inventor Koji Vice 1-2-1, Shiroganecho, Hitachi City, Ibaraki Prefecture Nikko Metals Stock F-term (reference) in Hitachi Technology Development Center, Hitachi, Ltd. 4K027 AA06 AA22 AB05 AB07 AB09 AB26 AB42 AB44 AC47 AC72 AE03 AE18 AE21

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 純度99.7重量%以上の高純度亜鉛浴
に鉄または鉄合金材料を浸漬して一段目の溶融亜鉛めっ
きを行い、次いで上記材料を、重量比でAl:4.0〜
10.0%、Cu:0.1〜0.5%、Mg:0.1〜
1.0%、Si:100〜1000ppm含有する亜鉛
ベースの合金浴に浸漬して二段目の溶融亜鉛めっきを行
うことを特徴とする溶融亜鉛めっき方法。
An iron or iron alloy material is immersed in a high-purity zinc bath having a purity of 99.7% by weight or more to perform first-stage hot-dip galvanizing.
10.0%, Cu: 0.1 to 0.5%, Mg: 0.1 to
A hot-dip galvanizing method characterized by immersing in a zinc-based alloy bath containing 1.0% and Si: 100 to 1000 ppm to perform second-stage hot-dip galvanizing.
【請求項2】 前記亜鉛以外の元素は、高純度亜鉛にA
l鋳物合金を添加することにより前記亜鉛浴に含有され
ていることを特徴とする請求項1に記載の溶融亜鉛めっ
き方法。
2. The element other than zinc contains A in high purity zinc.
The hot dip galvanizing method according to claim 1, wherein the zinc bath is contained in the zinc bath by adding a casting alloy.
【請求項3】 前記Al鋳物合金は、重量比でCu:
2.0〜4.0%、Mg:0.5〜1.5%、Si:
8.5〜10.5%、Ti:1〜20ppm、残部:A
lおよび不可避的不純物からなることを特徴とする請求
項1または2に記載の溶融亜鉛めっき方法。
3. The Al casting alloy has a weight ratio of Cu:
2.0-4.0%, Mg: 0.5-1.5%, Si:
8.5 to 10.5%, Ti: 1 to 20 ppm, balance: A
The hot-dip galvanizing method according to claim 1, wherein the hot-dip galvanizing method comprises l and unavoidable impurities.
【請求項4】 前記二段目の溶融亜鉛めっきの後1分以
内に、前記材料を60〜90℃の温水で冷却することを
特徴とする請求項1〜3のいずれかに記載の溶融亜鉛め
っき方法。
4. The hot-dip galvanized steel according to claim 1, wherein the material is cooled with hot water at 60 to 90 ° C. within one minute after the second hot-dip galvanizing. Plating method.
【請求項5】 鉄または鉄合金材料の表面に、亜鉛を主
体とする合金めっき層を被覆した亜鉛めっき材料におい
て、 上記材料の表面から上記合金めっき層側へ0〜20μm
の範囲の合金元素の濃度が、重量比でAl:20〜50
%、Si:1〜5%、Cu:0.1〜1.0%、Mg:
0.1〜1.0%であることを特徴とする亜鉛めっき材
料。
5. A galvanized material in which a surface of an iron or iron alloy material is coated with an alloy plating layer mainly composed of zinc, wherein 0 to 20 μm from the surface of the material to the alloy plating layer side.
Of the alloy element in the range of Al: 20 to 50 by weight ratio.
%, Si: 1 to 5%, Cu: 0.1 to 1.0%, Mg:
A galvanized material having a content of 0.1 to 1.0%.
JP10366548A 1998-12-24 1998-12-24 Hot-dip galvanizing method and galvanized material Expired - Fee Related JP3024967B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10366548A JP3024967B1 (en) 1998-12-24 1998-12-24 Hot-dip galvanizing method and galvanized material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10366548A JP3024967B1 (en) 1998-12-24 1998-12-24 Hot-dip galvanizing method and galvanized material

Publications (2)

Publication Number Publication Date
JP3024967B1 JP3024967B1 (en) 2000-03-27
JP2000192211A true JP2000192211A (en) 2000-07-11

Family

ID=18487066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10366548A Expired - Fee Related JP3024967B1 (en) 1998-12-24 1998-12-24 Hot-dip galvanizing method and galvanized material

Country Status (1)

Country Link
JP (1) JP3024967B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010525171A (en) * 2007-04-27 2010-07-22 盛貽熱浸▲辛▼企業股▲分▼有限公司 Lead-free hot dip galvanizing method and finished product
JP2011214145A (en) * 2010-03-17 2011-10-27 Nippon Steel Corp Plated steel material and steel pipe having high corrosion resistance and excellent workability, and method for producing the same
WO2019124485A1 (en) * 2017-12-20 2019-06-27 日本製鉄株式会社 Hot-dip plated steel wire and manufacturing method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010525171A (en) * 2007-04-27 2010-07-22 盛貽熱浸▲辛▼企業股▲分▼有限公司 Lead-free hot dip galvanizing method and finished product
JP2011214145A (en) * 2010-03-17 2011-10-27 Nippon Steel Corp Plated steel material and steel pipe having high corrosion resistance and excellent workability, and method for producing the same
WO2019124485A1 (en) * 2017-12-20 2019-06-27 日本製鉄株式会社 Hot-dip plated steel wire and manufacturing method therefor
KR20200095537A (en) * 2017-12-20 2020-08-10 닛폰세이테츠 가부시키가이샤 Hot-dip galvanized steel wire and its manufacturing method
CN111566252A (en) * 2017-12-20 2020-08-21 日本制铁株式会社 Fusion plated steel wire and method for producing same
KR102385640B1 (en) 2017-12-20 2022-04-12 닛폰세이테츠 가부시키가이샤 Hot-dip galvanized steel wire and its manufacturing method
CN111566252B (en) * 2017-12-20 2022-06-07 日本制铁株式会社 Fusion plated steel wire and method for producing same

Also Published As

Publication number Publication date
JP3024967B1 (en) 2000-03-27

Similar Documents

Publication Publication Date Title
KR101368990B1 (en) HOT-DIP Zn-Al-Mg-Si-Cr ALLOY COATED STEEL MATERIAL WITH EXCELLENT CORROSION RESISTANCE
KR880000458B1 (en) Ferrous product having an alloy coating thereon of al-zn-mg-si alloy,and method
KR102516012B1 (en) plated steel
TWI431156B (en) Magnesium-based alloy plating steel
KR102384674B1 (en) Plated steel sheet having excellent corrosion resistance, galling resistance, workability and surface property and method for manufacturing the same
CN114787411B (en) Hot dip galvanized steel sheet excellent in bending workability and corrosion resistance and method for producing same
JP2004339530A (en) Mg-CONTAINING METAL COATED STEEL MATERIAL WITH EXCELLENT WORKABILITY, AND ITS MANUFACTURING METHOD
CN113728121B (en) Coated steel sheet
CA1303916C (en) Zn-al hot-dip galvanized steel sheet having improved resistance against secular peeling and method for producing the same
KR20120076111A (en) Hot-dip zinc plating bath providing excellent corrosion resistance, high formability and appearance, and steel plate plated with the same
KR20150073314A (en) HOT DIP Zn-BASED ALLOY COATING BATH COMPRISING CALCIUM OXIDE, HOT DIP Zn-BASED ALLOY COATED STEEL SHEET AND METHOD FOR PREPARING THE SAME
JP3024967B1 (en) Hot-dip galvanizing method and galvanized material
JP6870438B2 (en) Plated steel with excellent corrosion resistance
JPS6350421B2 (en)
JP4115572B2 (en) Zn-Al-Mg alloy for hot dipping with excellent corrosion resistance
JP2002371343A (en) Hot-dip plated steel cable superior in workability with high corrosion resistance
JP3009262B2 (en) Hot-dip zinc aluminum alloy plating coating with excellent fatigue properties
JP2627788B2 (en) High corrosion resistance hot-dip zinc-aluminum alloy coated steel sheet with excellent surface smoothness
KR101168730B1 (en) Mg-BASED ALLOY PLATED STEEL MATERIAL
JP2002371344A (en) HOT-DIP Al-Zn ALLOY PLATED STEEL SHEET COATED WITH LUBRICATING FILM SUPERIOR IN WORKABILITY AND CORROSION RESISTANCE
WO2004033745A1 (en) HOT-DIPPED Sn-Zn PLATING PROVIDED STEEL PLATE OR SHEET EXCELLING IN CORROSION RESISTANCE AND WORKABILITY
JP7290757B2 (en) Plated steel wire and its manufacturing method
JP2017066524A (en) Plating steel having excellent corrosion resistance
JPS648068B2 (en)
KR101568527B1 (en) HOT DIP Zn-BASED ALLOY COATING BATH AND HOT DIP Zn-BASED ALLOY COATED STEEL SHEET

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees