JP2000184882A - New amylase - Google Patents

New amylase

Info

Publication number
JP2000184882A
JP2000184882A JP10362487A JP36248798A JP2000184882A JP 2000184882 A JP2000184882 A JP 2000184882A JP 10362487 A JP10362487 A JP 10362487A JP 36248798 A JP36248798 A JP 36248798A JP 2000184882 A JP2000184882 A JP 2000184882A
Authority
JP
Japan
Prior art keywords
asp
gly
asn
ala
val
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10362487A
Other languages
Japanese (ja)
Other versions
JP4077095B2 (en
Inventor
Hiroshi Hagiwara
萩原  浩
Kaori Kitayama
香織 北山
Yasuhiro Hayashi
康弘 林
Kazuaki Igarashi
一暁 五十嵐
Keiji Endo
圭二 遠藤
Katsuya Ozaki
克也 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP36248798A priority Critical patent/JP4077095B2/en
Priority to US09/465,519 priority patent/US6403355B1/en
Priority to DE69936760T priority patent/DE69936760T2/en
Priority to EP99125399A priority patent/EP1022334B1/en
Priority to DK99125399T priority patent/DK1022334T3/en
Priority to CNA2004100592918A priority patent/CN1552852A/en
Priority to CN99126451.7A priority patent/CN1218039C/en
Publication of JP2000184882A publication Critical patent/JP2000184882A/en
Priority to US10/136,272 priority patent/US6916645B2/en
Application granted granted Critical
Publication of JP4077095B2 publication Critical patent/JP4077095B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Detergent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a new alkali liquefying type amylase having high residual activity after treating at a specific pH, temperature and time in the presence of EDTA or EGTA and a resistance to a chelating agent and useful for a detergent mixing component, etc., for increasing detergency, etc. SOLUTION: This new alkali liquefying type amylase has >=70% residual activity after treating at pH 10, at 45 deg.C for 30 m in the presence of 1-100 mM EDTA or EGTA and has a high resistance to a chelating agent degrading α-1,4 glucoside bonding of starch, amylose, amylopectin and their partially degraded material without affecting to pullulan and useful as a detergent formulation component, etc. The new amylase is obtained by culturing a microorganism Bacillus sp. KSM-K36 strain (FERM P-16816) belonging to genus Bacillus, adding ammonium sulfate so as the supernatant to have 80% saturated concentration, recovering the resultant precipitate, separating and purifying with an anion exchange column chromatography or a gel filtration column chromatography.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高度なキレート剤
耐性能を有し、洗浄剤配合成分として有用なアルカリ液
化型アミラーゼに関する。
TECHNICAL FIELD The present invention relates to an alkali liquefied amylase having a high chelating agent resistance and useful as a detergent component.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】α−ア
ミラーゼは澱粉産業、醸造産業、繊維産業、医薬品産業
及び食品産業等幅広い産業分野で利用されている他、洗
浄剤への配合の適性が知られており、洗浄力増強成分と
して自動食器洗浄機用洗剤や衣料用洗剤などへも配合が
行われている(Enzymes in Detergency, P203. Marcel
Dekker Inc., New York(1995))。
2. Description of the Related Art α-amylase is used in a wide variety of industrial fields such as starch, brewing, textile, pharmaceutical and food industries, and its suitability for use in detergents is high. It is known and is also used as a detergent-enhancing ingredient in detergents for automatic dishwashers and clothing (Enzymes in Detergency, P203. Marcel
Dekker Inc., New York (1995)).

【0003】洗浄剤用として有用なアルカリ側に最適作
用を有している液化型α−アミラーゼとしては、本発明
者らが以前に見出したバチルス エスピー(Bacillus s
p.)KSM−1378(FERM BP−3048)株
由来のものが知られていた(WO94/26881)。
また、最近、至適pHを8〜8.5付近に有するα−アミ
ラーゼが開示された(WO95/2639)が、これは
KSM−1378株のアミラーゼとその性質及び構造が
酷似しているものであった。
[0003] As the liquefying α- amylase having the optimum acting Useful alkaline side as detergent, the present inventors have found previously Bacillus sp (Bacillus s
p.) A strain derived from the KSM-1378 (FERM BP-3048) strain was known (WO94 / 26881).
Recently, an α-amylase having an optimum pH in the vicinity of 8-8.5 has been disclosed (WO95 / 2639), which is very similar in properties and structure to the amylase of the KSM-1378 strain. there were.

【0004】一方、洗剤には、洗浄妨害イオンであるカ
ルシウム等を洗浄液中から除く為にリン酸、クエン酸あ
るいはゼオライト等のキレート剤が配合されており、液
化型α−アミラーゼはEDTAにより失活することが知
られていた〔HANDOBOOK OF AMYLASES AND RELATED ENZY
MES, P43. The Amylase Research Society of Japan(19
88)〕。前述のバチルス エスピー KSM−1378
(FERM BP−3048)株由来のアルカリ液化型
α−アミラーゼに関してもキレート剤による酵素活性の
阻害が認められ、自動食器洗浄機用洗剤及び衣料用洗剤
に配合すると必ずしもその効果は十分とはいえなかっ
た。また、最適作用pHは中酸性であるがアルカリ性でも
活性を示し、現在、自動食器洗浄機用洗剤及び衣料用洗
剤の配合成分として最もよく用いられているバチルス
リケニフォルミス由来の液化型α−アミラーゼ(ターマ
ミル及びデュラミル、いずれもノボ社製)に関しても、
そのキレート剤耐性能は十分とはいえなかった。これま
でに知られている液化型アミラーゼのうち、キレート剤
に対して影響されないものとしては、パイロコッカス
Pyrococcus)属の株由来の液化型α−アミラーゼ(W
O90/11352)及び澱粉の液化工程に有効なスル
ホロブス(Sulfolobus)属の株由来のα−アミラーゼ
(WO96/02633)が挙げられるが、これら酵素
の最適作用pHはそれぞれ、pH4〜6及びpH2.5〜4.
5にあり、アルカリ性では作用しないため、洗浄剤の配
合成分としては適していなかった。
On the other hand, the detergent contains a chelating agent such as phosphoric acid, citric acid or zeolite in order to remove calcium or the like, which is a washing disturbing ion, from the washing solution, and liquefied α-amylase is inactivated by EDTA. HANDOBOOK OF AMYLASES AND RELATED ENZY
MES, P43. The Amylase Research Society of Japan (19
88)]. The aforementioned Bacillus sp. KSM-1378
Inhibition of enzyme activity by a chelating agent was also observed for alkaline liquefied α-amylase derived from (FERM BP-3048) strain, and its effect was not necessarily sufficient when it was added to detergents for automatic dishwashers and clothing. Was. The optimum action pH is moderately acidic, but it is active even when alkaline, and Bacillus, which is currently most commonly used as a component in detergents for automatic dishwashers and clothes, is used.
Regarding liquefied α-amylase derived from licheniformis (Termamyl and Duramil, both manufactured by Novo),
The chelating agent resistance performance was not sufficient. Among the liquefied amylases known so far, those which are not affected by the chelating agent include liquefied α-amylase (W) derived from a strain of the genus Pyrococcus.
O90 / 11352) and α-amylase (WO96 / 02633) derived from a strain of the genus Sulfolobus which are effective in the liquefaction process of starch. The optimum action pH of these enzymes is pH 4-6 and pH 2.5, respectively. ~ 4.
5, which did not work under alkaline conditions and was not suitable as a component of a detergent.

【0005】従って、本発明は、従来の洗剤用アミラー
ゼに比べて高度なキレート剤耐性能を有し、洗浄剤配合
成分として有用なアルカリ液化型アミラーゼ、及びこれ
を配合した洗浄剤組成物を提供することを目的とする。
Accordingly, the present invention provides an alkali liquefied amylase which has a higher chelating agent resistance than conventional detergent amylase and is useful as a detergent component, and a detergent composition containing the same. The purpose is to do.

【0006】[0006]

【課題を解決するための手段】本発明は、1〜100mM
のEDTAあるいはEGTA存在下、pH10、45℃、
30分間処理後の残存活性が70%以上であるアルカリ
液化型アミラーゼを提供するものである。
According to the present invention, there is provided a method for manufacturing a medium comprising 1 to 100 mM.
PH10, 45 ° C in the presence of EDTA or EGTA
An alkaline liquefied amylase having a residual activity of 70% or more after treatment for 30 minutes is provided.

【0007】また、本発明は当該アルカリ液化型アミラ
ーゼをコードするDNA断片を提供するものである。更
にまた、本発明は当該アルカリ液化型アミラーゼを含有
する洗浄剤組成物を提供するものである。
The present invention also provides a DNA fragment encoding the alkaline liquefied amylase. Furthermore, the present invention provides a detergent composition containing the alkaline liquefied amylase.

【0008】[0008]

【発明の実施の形態】本発明において、アルカリα−ア
ミラーゼとは、至適pHがアルカリ領域にあるものをい
う。また、中性とはpH6〜8の範囲をいい、アルカリ性
とはそれ以上の範囲をいう。更に、HANDBOOK OF AMYLAS
ES AND RELATED ENZYMES〔P40〜41.The Amylase
Research Society of Japan(1988)〕に記載されている
ように、液化型とは澱粉及び澱粉系多糖類を高ランダム
に分解するものをいう。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, an alkaline α-amylase refers to an enzyme having an optimum pH in an alkaline region. Neutral refers to a pH range of 6 to 8, and alkaline refers to a higher range. Furthermore, HANDBOOK OF AMYLAS
ES AND RELATED ENZYMES [P40-41. The Amylase
As described in Research Society of Japan (1988)], the liquefied form refers to a substance that degrades starch and starch-based polysaccharides at high random.

【0009】本発明酵素は1〜100mMのEDTAある
いはEGTA存在下、pH10、45℃、30分間処理後
の残存活性が70%以上であるアルカリ液化型アミラー
ゼであり、当該残存活性は、80%以上が好ましく、9
0%以上がより好ましい。
The enzyme of the present invention is an alkaline liquefied amylase having a residual activity of 70% or more after treatment at pH 10, 45 ° C. for 30 minutes in the presence of 1 to 100 mM EDTA or EGTA, and the residual activity is 80% or more. Is preferred, and 9
0% or more is more preferable.

【0010】本発明酵素は上記のキレート剤耐性を有す
ればよいが、更に下記1)及び2)の性質を有するも
の、特に1)〜5)の性質を有するものが好ましい。 1)最適作用pH 最適作用pHが8.0を超える(可溶性澱粉を基質、50
℃、15分間反応)。 2)作用 澱粉、アミロース、アミロペクチン及びそれらの部分分
解物のα−1,4グルコシド結合を分解し、アミロース
からはグルコース(G1)、マルトース(G2)、マル
トトリオース(G3)、マルトテトラオース(G4)、
マルトペンタオース(G5)、マルトヘキサオース(G
6)及びマルトヘプタオース(G7)を生成する。ただ
しプルランには作用しない。 3)pH安定性(ブリットン−ロビンソン緩衝液) 40℃、30分間処理条件下で、pH6.5〜11.0の
範囲で70%以上の残存活性を示す。 4)作用温度範囲及び最適作用温度 20〜80℃の広範囲で作用し、最適作用温度は50〜
60℃である。 5)温度安定性 50mMグリシン水酸化ナトリウム緩衝液(pH10)中、
30分間処理で、40℃で80%以上の残存活性を示
し、45℃でも約60%の残存活性を示す。
The enzyme of the present invention may have the above-mentioned chelating agent resistance, but preferably has the following properties 1) and 2), particularly preferably has the properties 1) to 5). 1) Optimum action pH Optimum action pH exceeds 8.0 (soluble starch as substrate, 50
C. for 15 minutes). 2) Action The α-1,4 glucoside bond of starch, amylose, amylopectin and their partially decomposed products is degraded, and glucose (G1), maltose (G2), maltotriose (G3), maltotetraose ( G4),
Maltopentaose (G5), maltohexaose (G
6) and maltoheptaose (G7). However, it does not act on pullulan. 3) pH stability (Britton-Robinson buffer) Shows a residual activity of 70% or more in the pH range of 6.5 to 11.0 under treatment conditions at 40 ° C. for 30 minutes. 4) Working temperature range and optimum working temperature It works over a wide range of 20 to 80 ° C, and the optimum working temperature is 50 to 80 ° C.
60 ° C. 5) Temperature stability in 50 mM glycine sodium hydroxide buffer (pH 10)
It shows a residual activity of 80% or more at 40 ° C and a residual activity of about 60% even at 45 ° C after treatment for 30 minutes.

【0011】また本発明酵素の例としては、配列番号1
又は2に記載のアミノ酸配列、又はこれらのアミノ酸の
1もしくは2以上が置換、欠失もしくは付加したアミノ
酸配列を有するものが挙げられる。当該置換、欠失又は
付加の範囲は、相同性80%以上が好ましく、90%以
上が特に好ましい。なお、相同性はLipman-Pearson法(S
cience, 227, 1435(1985))により計算される。
[0011] Examples of the enzyme of the present invention include SEQ ID NO: 1
Or those having the amino acid sequence described in 2, or an amino acid sequence in which one or more of these amino acids have been substituted, deleted or added. The range of the substitution, deletion or addition is preferably 80% or more of homology, particularly preferably 90% or more. The homology was determined by the Lipman-Pearson method (S
cience, 227, 1435 (1985)).

【0012】本発明の酵素は、例えばバチルス属に属す
るその生産菌を培養した後培養物から採取することによ
り製造される。かかる生産菌としては、例えば下記の菌
学的性質を有するKSM−K36株及びKSM−K38
株が挙げられる。
[0012] The enzyme of the present invention is produced, for example, by culturing a bacterium belonging to the genus Bacillus and collecting the bacterium from the culture. Examples of such producing bacteria include KSM-K36 strain and KSM-K38 having the following mycological properties.
Strains.

【0013】[0013]

【表1】 [Table 1]

【0014】以上の菌学的性質に関する検討に基づき、
バージーズ・マニュアル・オブ・システマティック・バ
クテリオロジー〔Bergey's Mannual of Systematic Bac
teriology, Williams & Wilkins, United States of Am
erica(1986)〕及びジーナス・バチルス〔The Genus Ba
cillus, Agricultural Research Service, Washington,
D. C.(1973)〕を参照し、比較検討した結果、両菌株は
有胞子桿菌であるバチルス(Bacillus)属の一種である
と認められる。しかし、両菌株は中性領域では生育でき
ず、専ら高アルカリ領域で良好な生育を示すことから、
いわゆる好アルカリ性(Alkaliphilic)微生物に属し、
従来の中性で生育するバチルス属細菌とは区別される。
更に、菌学的及び生理学的性質を公知の好アルカリ性バ
チルスと比較した〔Microbiol., 141, 1745(1995)〕結
果、KSM−K36株及びKSM−K38株は公知の好
アルカリ性バチルスのいずれとも一致しないので、これ
らを新規菌株と判断して、KSM−K36株及びKSM
−K38株をそれぞれ、第16816号(FERM P
−16816)及び第16817号(FERM P−1
6817)として通産省工業技術院生命工学工業技術研
究所に寄託した。
Based on the above studies on mycological properties,
Bergey's Manual of Systematic Bac
teriology, Williams & Wilkins, United States of Am
erica (1986)] and Genus Bacillus [The Genus Ba
cillus , Agricultural Research Service, Washington,
As a result of a comparative study with reference to DC (1973)], both strains are recognized to be a member of the genus Bacillus , which is a spore bacillus. However, since both strains cannot grow in the neutral region and show good growth exclusively in the high alkaline region,
Belongs to the so-called Alkaliphilic microorganism,
It is distinguished from conventional neutral-grown Bacillus bacteria.
Furthermore, microbiological and physiological properties were compared with those of known alkalophilic Bacillus [Microbiol., 141, 1745 (1995)]. As a result, KSM-K36 strain and KSM-K38 strain were consistent with any of known alkalophilic Bacillus. Therefore, these strains were determined to be new strains, and KSM-K36 strain and KSM
-K38 strains, respectively, No. 16816 (FERM P
No. 16816) and No. 16817 (FERM P-1)
6817).

【0015】上記の微生物を用いて本発明のアルカリ液
化型アミラーゼを得るには、培地に微生物を接種し、常
法に従って培養すればよく、好アルカリ性菌である為
に、培地のpHがアルカリ性であることが望ましい。斯く
して得られた培養物中から目的のアルカリ液化型アミラ
ーゼを採取することができる。この培養上清液は、その
まま使用することができるが、必要に応じて、塩析法、
沈殿法、限外濾過法の分離手段により粗酵素を得、更に
公知の方法により精製結晶化することにより精製酵素と
して使用することも可能である。
In order to obtain the alkaline liquefied amylase of the present invention using the above-mentioned microorganism, the medium may be inoculated with the microorganism and cultured according to a conventional method. Since it is an alkalophilic bacterium, the pH of the medium is alkaline. Desirably. The desired alkali liquefied amylase can be collected from the culture thus obtained. This culture supernatant can be used as it is, but if necessary, salting-out method,
A crude enzyme can be obtained by a separation method such as a precipitation method or an ultrafiltration method, and further purified and crystallized by a known method to be used as a purified enzyme.

【0016】以下、本発明のアルカリ液化型アミラーゼ
の精製法の一例を挙げる。培養上清液について、(1)
硫安沈殿、(2)DEAE−トヨパール(トーソー社
製)カラムクロマトグラフィー、(3)ゲル濾過をする
ことにより、ポリアクリルアミドゲル電気泳動(ゲル濃
度10%)及びソディウムドデシル硫酸(SDS)電気
泳動で単一のバンドを与える精製酵素を得ることができ
る。
The following is an example of the method for purifying the alkaline liquefied amylase of the present invention. About the culture supernatant, (1)
By ammonium sulfate precipitation, (2) DEAE-Toyopearl (manufactured by Tosoh Corporation) column chromatography, and (3) gel filtration, polyacrylamide gel electrophoresis (gel concentration 10%) and sodium dodecyl sulfate (SDS) electrophoresis were performed. A purified enzyme giving one band can be obtained.

【0017】更に、本発明のアルカリ液化型アミラーゼ
は、例えば、本発明アルカリ液化型アミラーゼをコード
する遺伝子及びこれを含有するベクタープラスミドを取
得し、次いで該プラスミドを用いて、適当な微生物、好
ましくはバチルス属細菌を形質転換し、これを培養する
ことにより得ることもできる。本発明のアルカリ液化型
アミラーゼをコードする遺伝子の例としては、配列番号
3及び4に記載した塩基配列を有するものが挙げられ
る。
Furthermore, the alkaline liquefied amylase of the present invention can be obtained, for example, by obtaining a gene encoding the alkaline liquefied amylase of the present invention and a vector plasmid containing the same, and then using the plasmid to obtain a suitable microorganism, preferably It can also be obtained by transforming a Bacillus bacterium and culturing it. Examples of the gene encoding the alkaline liquefied amylase of the present invention include those having the nucleotide sequences shown in SEQ ID NOS: 3 and 4.

【0018】前記の如く本発明のアルカリ液化型アミラ
ーゼはアルカリ側に最適作用pHを有し、かつ高いキレー
ト剤耐性能を有するので、洗浄剤配合用酵素として特に
有用である。また、KSM−K36株及びKSM−K3
8株由来のアミラーゼは、更に強力な酸化剤耐性も有す
るので、漂白剤等の酸化剤を配合する洗浄剤にも配合可
能である。本発明酵素の洗浄剤への配合量は、0.00
1〜5重量%が好ましい。
As described above, the alkali liquefied amylase of the present invention has an optimum action pH on the alkali side and has a high chelating agent resistance, and is particularly useful as an enzyme for blending detergents. In addition, KSM-K36 strain and KSM-K3
Amylases derived from eight strains also have stronger oxidizing agent resistance, and thus can be added to a detergent containing an oxidizing agent such as a bleaching agent. The amount of the enzyme of the present invention in the detergent is 0.00
1-5% by weight is preferred.

【0019】本発明洗浄剤組成物には、前記アルカリ液
化型アミラーゼのほかに、公知の洗浄剤成分を配合する
ことができ、当該公知の洗浄成分としては、WO94/
26881の第5頁、右上欄、第14行〜右下欄、第2
9行記載のもの、例えば界面活性剤、キレート剤、アル
カリ剤及び無機塩、漂白剤、蛍光剤等を使用することが
できる。
The detergent composition of the present invention may contain a known detergent component in addition to the above-mentioned alkaline liquefied amylase.
26881, page 5, upper right column, line 14 to lower right column, second
Those described in line 9, for example, surfactants, chelating agents, alkali agents and inorganic salts, bleaching agents, fluorescent agents and the like can be used.

【0020】界面活性剤は、洗浄剤組成物中0.5〜6
0重量%(以下単に%で示す)配合され、特に粉体状洗
浄剤組成物については10〜45%、液体洗浄剤組成物
については20〜50%配合することが好ましい。ま
た、本発明洗浄剤組成物が漂白洗浄剤又は自動食器洗浄
機用洗剤である場合、界面活性剤は一般に1〜10%、
好ましくは1〜5%配合される。二価金属イオン捕捉剤
は0.01〜50%、好ましくは5〜40%配合され
る。アルカリ剤及び無機塩は0.01〜80%、好まし
くは1〜40%配合される。再汚染防止剤は0.001
〜10%、好ましくは1〜5%配合される。本発明のア
ミラーゼ以外にプロテアーゼ、セルラーゼ、プロトペク
チナーゼ、ペクチナーゼ、リパーゼ、ヘミセルラーゼ、
β−グリコシダーゼ、グルコースオキシダーゼ、コレス
テロールオキシダーゼ等を使用することができる。これ
らの酵素は0.001〜5%、好ましくは0.1〜3%
配合される。漂白剤(例えば過酸化水素、過炭酸塩等)
は1〜10%配合するのが好ましい。漂白剤を使用する
とき漂白活性化剤(アクチベーター)を0.01〜10
%配合することができる。蛍光剤はビフェニル型蛍光剤
(例えばチノパールCBS−X)やスチルベン型蛍光剤
(例えばDM型蛍光染)等が挙げられる。蛍光剤は0.
001〜2%配合するのが好ましい。
The surfactant is contained in the detergent composition in an amount of 0.5 to 6%.
0% by weight (hereinafter simply referred to as%), particularly preferably 10 to 45% for a powdery detergent composition and 20 to 50% for a liquid detergent composition. When the detergent composition of the present invention is a bleach detergent or a detergent for automatic dishwashers, the surfactant is generally 1 to 10%,
Preferably 1-5% is blended. The divalent metal ion scavenger is incorporated in an amount of 0.01 to 50%, preferably 5 to 40%. The alkali agent and the inorganic salt are blended in an amount of 0.01 to 80%, preferably 1 to 40%. 0.001 for anti-recontamination agent
-10%, preferably 1-5%. In addition to the amylase of the present invention, protease, cellulase, protopectinase, pectinase, lipase, hemicellulase,
β-glycosidase, glucose oxidase, cholesterol oxidase and the like can be used. These enzymes are 0.001-5%, preferably 0.1-3%
Be blended. Bleaching agents (eg hydrogen peroxide, percarbonate, etc.)
Is preferably 1 to 10%. When using a bleaching agent, a bleaching activator (activator) is used in an amount of 0.01 to 10%.
%. Examples of the fluorescent agent include a biphenyl type fluorescent agent (for example, Tinopearl CBS-X) and a stilbene type fluorescent agent (for example, DM type fluorescent dye). The fluorescent agent is 0.
It is preferable to add 001 to 2%.

【0021】上記の洗浄剤組成物の形態は、例えば液
体、粉末、顆粒等とすることができる。また、この洗浄
剤組成物は、衣料用洗剤、自動食器洗浄機用洗剤、排水
管洗浄剤、義歯洗浄剤、漂白剤等として使用することが
できる。
The form of the above-mentioned detergent composition can be, for example, a liquid, a powder, a granule or the like. This detergent composition can be used as a detergent for clothes, a detergent for automatic dishwashers, a drainpipe detergent, a denture detergent, a bleaching agent and the like.

【0022】[0022]

【実施例】酵素活性の測定には次の緩衝液を用い、以下
の方法に従って行った。 pH4.5〜6.0 酢酸緩衝液 pH6.0〜8.0 リン酸カリウム緩衝液 pH9.0〜10.5 グリシン水酸化ナトリウム緩衝液 pH10.0〜12.0 炭酸緩衝液 pH4.0〜12.0 ブリットン−ロビンソン緩衝液
EXAMPLES The enzyme activity was measured according to the following method using the following buffers. pH 4.5 to 6.0 Acetate buffer pH 6.0 to 8.0 Potassium phosphate buffer pH 9.0 to 10.5 Glycine sodium hydroxide buffer pH 10.0 to 12.0 Carbonate buffer pH 4.0 to 12 2.0 Britton-Robinson buffer

【0023】〔アミラーゼ活性測定方法〕 1.試薬の調製法 (1%可溶性澱粉水溶液の調製法)可溶性澱粉(ポテト
由来、シグマ社製)5gをイオン交換水400mLに懸濁
した後、沸騰水中で攪拌しながら約10分間加熱溶解
し、イオン交換水にて500mLに定容する。 (250mMグリシン水酸化ナトリウム緩衝液(pH10)
の調製法)グリシン(和光純薬社製特級)9.38gを
イオン交換水約300mLに溶解した後、pHメーターを用
い、約5Nの水酸化ナトリウム水溶液にてpHを10に調
整する。更にイオン交換水にて500mLに定容する。 (DNS試薬の調製法)水酸化ナトリウム(和光純薬社
製特級)8gをイオン交換水300mLに溶解する。これ
に3,5−ジニトロサリチル酸(DNS、和光純薬社製
特級)2.5gを徐々に添加しながら溶解する。DNS
を完全に溶解させた後、酒石酸ナトリウムカリウム(和
光純薬社製特級)を150g加える。完全に溶解させた
後、イオン交換水にて500mLに定容する。 (検量線作成用ブドウ糖溶液の調製法)ブドウ糖標準液
(光電用、和光純薬社製)とイオン交換水を用い、0、
1、2、3、4、5(μmol/0.1mL)のブドウ糖溶
液を調製する。 2.アミラーゼ活性の測定法 (酵素溶液の希釈)精製酵素を、δ吸光度〔=(サンプ
ルの吸光度)−(ブランクの吸光度)〕が0.6以下に
なるように10mMグリシン水酸化ナトリウム緩衝液(pH
10)で希釈する。 (サンプルの測定)試験管に1%可溶性澱粉水溶液0.
5mL、250mMグリシン水酸化ナトリウム緩衝液(pH1
0)0.2mL、イオン交換水0.2mLを加え(以下、基
質溶液と略す)、これを50℃の水浴中で約5分間予熱
する。予熱後、適当に希釈した酵素溶液0.1mLを加
え、50℃で、15分間反応させる。反応終了後、DN
S試薬1.0mLを加え、沸騰水中で5分間加熱発色さ
せ、直ちに氷水中に入れ冷却する。冷却後、イオン交換
水4.0mLを加え、混合し、535nmにおける吸光度を
測定する。 (ブランクの測定)試験管に基質溶液0.9mLを入れ、
これにDNS試薬1.0mLを加える。更に酵素溶液0.
1mLを加え、沸騰水中で5分間加熱発色させ、直ちに氷
水中に入れ冷却する。冷却後、イオン交換水4.0mLを
加え、混合し、535nmにおける吸光度を測定する。 (検量線の作成)試験管に基質溶液0.9mLを入れ、こ
れにDNS試薬1.0mLを加える。更に各濃度の検量線
作成用ブドウ糖溶液0.1mLを加え、沸騰水中で5分間
加熱発色させ、直ちに氷水中に入れ冷却する。冷却後、
イオン交換水4.0mLを加え、混合し、535nmにおけ
る吸光度を測定する。横軸にブドウ糖溶液の濃度(μmo
l/0.1mL)、縦軸に吸光度をとり、最小二乗法によ
り傾きを求め、換算係数(F)を次式に従って算出す
る。 換算係数(F)=〔1/傾き〕×〔1/15〕×〔10
00/0.1〕 尚、検量線は活性測定毎に作成するものとする。 (活性の算出)酵素の力価は、1分間に1μmolのブド
ウ糖に相当する還元糖を生成する酵素量を1単位(U)
とし、次式に従って算出する。 アミラーゼ活性(U/L)=〔δ吸光度〕×〔換算係数
(F)〕×〔酵素希釈倍率〕
[Method for Measuring Amylase Activity] Reagent Preparation Method (Preparation Method of 1% Soluble Starch Aqueous Solution) 5 g of soluble starch (derived from potato, manufactured by Sigma) was suspended in 400 mL of ion-exchanged water, and heated and dissolved in boiling water for about 10 minutes while stirring. Make up to 500 mL with exchanged water. (250 mM glycine sodium hydroxide buffer (pH 10)
Preparation method) 9.38 g of glycine (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in about 300 mL of ion-exchanged water, and the pH is adjusted to 10 with a 5N aqueous sodium hydroxide solution using a pH meter. Further, the volume is adjusted to 500 mL with ion-exchanged water. (Preparation method of DNS reagent) 8 g of sodium hydroxide (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in 300 mL of ion-exchanged water. 2.5 g of 3,5-dinitrosalicylic acid (DNS, special grade manufactured by Wako Pure Chemical Industries, Ltd.) is gradually added and dissolved therein. DNS
Is completely dissolved, and 150 g of sodium potassium tartrate (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) is added. After complete dissolution, the volume is adjusted to 500 mL with ion-exchanged water. (Preparation method of glucose solution for preparing calibration curve) Using glucose standard solution (for photoelectric, manufactured by Wako Pure Chemical Industries, Ltd.) and ion-exchanged water,
Prepare glucose solutions of 1, 2, 3, 4, 5 (μmol / 0.1 mL). 2. Assay for Amylase Activity (Dilution of Enzyme Solution) The purified enzyme was subjected to a 10 mM sodium glycine hydroxide buffer (pH) so that δ absorbance [= (absorbance of sample) − (absorbance of blank)] was 0.6 or less.
Dilute in 10). (Measurement of sample) A 1% aqueous solution of soluble starch was placed in a test tube.
5 mL, 250 mM glycine sodium hydroxide buffer (pH 1
0) 0.2 mL of ion-exchanged water and 0.2 mL of ion-exchanged water are added (hereinafter abbreviated as a substrate solution), and this is preheated in a 50 ° C water bath for about 5 minutes. After preheating, 0.1 mL of an appropriately diluted enzyme solution is added and reacted at 50 ° C. for 15 minutes. After completion of the reaction, DN
Add 1.0 mL of S reagent, heat and color in boiling water for 5 minutes, immediately put in ice water and cool. After cooling, 4.0 mL of ion-exchanged water is added, mixed, and the absorbance at 535 nm is measured. (Measurement of blank) Put 0.9 mL of the substrate solution into a test tube,
To this is added 1.0 mL of DNS reagent. In addition, the enzyme solution 0.
Add 1 mL, heat and color in boiling water for 5 minutes, immediately put in ice water and cool. After cooling, 4.0 mL of ion-exchanged water is added, mixed, and the absorbance at 535 nm is measured. (Preparation of calibration curve) 0.9 mL of the substrate solution is placed in a test tube, and 1.0 mL of the DNS reagent is added thereto. Further, 0.1 mL of a glucose solution for preparing a calibration curve of each concentration is added, and the mixture is heated and colored in boiling water for 5 minutes, immediately put into ice water and cooled. After cooling,
4.0 mL of ion-exchanged water is added, mixed, and the absorbance at 535 nm is measured. The concentration of glucose solution (μmo
l / 0.1 mL), the absorbance is taken on the vertical axis, the slope is determined by the least squares method, and the conversion coefficient (F) is calculated according to the following equation. Conversion coefficient (F) = [1 / slope] × [1/15] × [10
00 / 0.1] A calibration curve is created for each activity measurement. (Calculation of activity) The titer of the enzyme refers to the amount of the enzyme that produces reducing sugars equivalent to 1 μmol of glucose per minute as 1 unit (U).
And is calculated according to the following equation. Amylase activity (U / L) = [δ absorbance] × [conversion coefficient (F)] × [enzyme dilution ratio]

【0024】〔キレート剤耐性能試験方法〕 (EDTA溶液の調製)EDTA(シグマ社製)9.3
gをイオン交換水約80mLに溶解した後、pHメーターを
用い、約5Nの水酸化ナトリウム水溶液にてpHを8に調
整する。更にイオン交換水にて100mLに定容すること
によって250mM EDTA溶液を調製する。次にこれ
をイオン交換水で希釈して10〜100mMのEDTAを
調製する。EGTA(シグマ社製)9.5gをイオン交
換水約80mLに溶解した後、pHメーターを用い、約5N
の水酸化ナトリウム水溶液にてpHを8に調整する。更に
イオン交換水にて100mLに定容することによって25
0mM EGTA溶液を調製する。次にこれをイオン交換
水で希釈して、10〜100mMのEGTA溶液を調製す
る。 (キレート剤耐性能の試験法)1mM EDTA、40℃、30分間処理の場合 試験管に10mM EDTA溶液0.1mL、250mMグリ
シン水酸化ナトリウム緩衝液(pH10)0.2mL、イオ
ン交換水0.1mLを加え、45℃の水浴中で約5分間予
熱する。予熱後、10mMグリシン水酸化ナトリウム緩衝
液(pH10)で適当に希釈した酵素溶液0.1mLを加
え、45℃で、30分間保温する。30分後、予め50
℃の水浴中で予熱した基質溶液0.9mLに処理溶液0.
1mLを加え、アミラーゼ活性測定方法に準じて残存酵素
活性を測定する。
[Chelating Agent Performance Test Method] (Preparation of EDTA Solution) EDTA (manufactured by Sigma) 9.3
g was dissolved in about 80 mL of ion-exchanged water, and the pH was adjusted to 8 with about 5 N aqueous sodium hydroxide using a pH meter. Further, a 250 mM EDTA solution is prepared by adjusting the volume to 100 mL with ion-exchanged water. Next, this is diluted with ion-exchanged water to prepare 10 to 100 mM EDTA. After dissolving 9.5 g of EGTA (manufactured by Sigma) in about 80 mL of ion-exchanged water, use a pH meter to obtain about 5 N
The pH is adjusted to 8 with an aqueous solution of sodium hydroxide. Further, the volume is adjusted to 100 mL with ion-exchanged water to 25
Prepare a 0 mM EGTA solution. Next, this is diluted with ion-exchanged water to prepare a 10 to 100 mM EGTA solution. (Test method for chelating agent resistance performance) In the case of treatment with 1 mM EDTA, 40 ° C., 30 minutes, 0.1 mL of 10 mM EDTA solution, 0.2 mL of 250 mM sodium glycine hydroxide buffer (pH 10), 0.1 mL of ion-exchanged water And preheat in a 45 ° C. water bath for about 5 minutes. After preheating, 0.1 mL of an enzyme solution appropriately diluted with 10 mM glycine sodium hydroxide buffer (pH 10) is added, and the mixture is kept at 45 ° C. for 30 minutes. 30 minutes later, 50
The treatment solution was added to 0.9 mL of the substrate solution preheated in a water bath at 0 ° C.
Add 1 mL, and measure the remaining enzyme activity according to the amylase activity measurement method.

【0025】〔酸化剤耐性能試験方法〕試験管に過酸化
水素(30% 過酸化水素水、和光純薬社製)0.06
7mL、250mMグリシン水酸化ナトリウム緩衝液(pH1
0)0.2mL、イオン交換水0.633mLを加え、30
℃の水浴中で約5分間予熱する。予熱後、10mMグリシ
ン水酸化ナトリウム緩衝液(pH10)で適当に希釈した
酵素溶液0.1mLを加え、30℃で、60分間保温す
る。60分後、予め氷水中に準備したカタラーゼ(牛肝
臓由来、ベーリンガーマンハイム社製)1μL添加試験
管に処理溶液0.2mLを加え、過酸化水素を失活させ反
応を停止する。その後、予め50℃の水浴中で予熱した
基質溶液0.9mLにこの反応停止処理溶液0.1mLを加
え、アミラーゼ活性測定方法に準じて残存酵素活性を測
定する。 〔タンパク質定量法〕タンパク質は、バイオラッド社製
のプロテインアッセイキットII(カタログ番号500−
0002)を用い、標準アッセイ法に従って、キットに
添付されたウシ血清アルブミンを標準タンパク質として
定量した。
[Oxidizing agent resistance test method] Hydrogen peroxide (30% aqueous hydrogen peroxide, manufactured by Wako Pure Chemical Industries) 0.06
7 mL, 250 mM sodium glycine hydroxide buffer (pH 1
0) 0.2 mL and 0.633 mL of ion-exchanged water were added, and 30
Preheat in a water bath at about 5 minutes. After preheating, 0.1 mL of an enzyme solution appropriately diluted with 10 mM glycine sodium hydroxide buffer (pH 10) is added, and the mixture is incubated at 30 ° C. for 60 minutes. After 60 minutes, 0.2 mL of the treatment solution is added to a test tube containing 1 μL of catalase (derived from bovine liver, manufactured by Boehringer Mannheim) previously prepared in ice water to inactivate hydrogen peroxide and stop the reaction. Thereafter, 0.1 mL of this reaction termination treatment solution is added to 0.9 mL of the substrate solution preheated in a 50 ° C. water bath, and the remaining enzyme activity is measured according to the amylase activity measurement method. [Protein quantification method] The protein was obtained from Bio-Rad Protein Assay Kit II (catalog number 500-
0002), the bovine serum albumin attached to the kit was quantified as a standard protein according to a standard assay method.

【0026】実施例1 キレート剤耐性能を有するアル
カリ液化型アミラーゼのスクリーニング 土壌約0.5gを滅菌水に懸濁し、80℃で15分間加
熱処理した。この熱処理液の上清を適当に滅菌水で希釈
して、分離用寒天培地(培地A)に塗布した。次いで、
これを30℃で2日間培養し、集落を形成させた。集落
の周に澱粉溶解に基づく透明帯を形成するものを選出
し、これをアミラーゼ生産菌として分離した。更に、分
離菌を培地Bに接種し、30℃で2日間好気的に振盪培
養した。培養後、遠心分離した上清液について、キレー
ト剤(EDTA)耐性能を測定し、更に最適作用pHを測
定して、本発明のアルカリ液化型アミラーゼ生産菌をス
クリーニングした。
Example 1 Screening of Alkaline Liquefied Amylase Having Chelating Agent-Resistant Performance About 0.5 g of soil was suspended in sterilized water and heated at 80 ° C. for 15 minutes. The supernatant of this heat treatment solution was appropriately diluted with sterile water, and applied to an agar medium for separation (medium A). Then
This was cultured at 30 ° C. for 2 days to form a colony. Those that formed a transparent zone based on starch dissolution around the settlement were selected and isolated as amylase-producing bacteria. Further, the isolated bacteria were inoculated on the medium B, and aerobically shake-cultured at 30 ° C. for 2 days. After the cultivation, the supernatant of the centrifuged suspension was measured for chelating agent (EDTA) resistance and, further, the optimum pH was measured to screen the alkaline liquefied amylase-producing bacteria of the present invention.

【0027】上述の方法により、バチルス エスピー
Bacillus sp.)KSM−K36株及びバチルス エス
ピー(Bacillus sp.) KSM−K38株を取得すること
ができた。
By the above-mentioned method, Bacillus sp. Strain KSM-K36 and Bacillus sp. Strain KSM-K38 were obtained.

【0028】 [0028]

【0030】実施例2 KSM−K36株及びKSM−
K38株の培養 実施例1の液体培地Bに、KSM−K36株あるいはK
SM−K38株を接種し、30℃で2日間好気的に振盪
培養した。遠心分離上清についてアミラーゼ活性(pH
8.5)を測定した結果、培養液1L当たり、それぞれ
1177U及び557Uの活性を有していた。
Example 2 KSM-K36 strain and KSM-
Cultivation of K38 Strain KSM-K36 strain or K
The SM-K38 strain was inoculated and aerobically shake-cultured at 30 ° C for 2 days. Amylase activity (pH
As a result of measuring 8.5), 1177 U and 557 U of activity were found per 1 L of the culture solution, respectively.

【0031】実施例3 本発明のアルカリ液化型アミラ
ーゼの精製 実施例2で得られたバチルス エスピー KSM−K3
6株の培養上清液に80%飽和濃度になるように硫酸ア
ンモニウムを加えて攪拌後、生成した沈殿を回収し、2
mM CaCl2 を含む10mMトリス塩酸緩衝液(pH7.
5)に溶解し、同緩衝液に対して一晩透析した。得られ
た透析内液を同緩衝液で平衡化したDEAE−トヨパー
ル650Mカラムに添着し、同緩衝液を用いてO−1M
の食塩の濃度勾配によりタンパクを溶出した。活性画分
を同緩衝液にて透析後、ゲル濾過カラムクロマトグラフ
ィーにより得た活性画分を上記緩衝液にて透析すること
によってポリアクリルアミドゲル電気泳動(ゲル濃度1
0%)及びソディウムドデシル硫酸(SDS)電気泳動
で単一のバンドを与える精製酵素を得ることができた。
尚、バチルス エスピー KSM−K38株の培養上清
液からも同様の方法で精製酵素を得ることができた。
Example 3 Purification of Liquefied Alkaline Amylase of the Present Invention Bacillus sp. KSM-K3 obtained in Example 2
Ammonium sulfate was added to the culture supernatants of the six strains so that the concentration became 80% saturated, and the mixture was stirred.
10 mM Tris-HCl buffer containing 7 mM CaCl 2 (pH 7.
5) and dialyzed against the same buffer overnight. The obtained dialysis solution was applied to a DEAE-Toyopearl 650M column equilibrated with the same buffer, and O-1M was prepared using the same buffer.
The protein was eluted with a concentration gradient of sodium chloride. The active fraction is dialyzed against the same buffer, and the active fraction obtained by gel filtration column chromatography is dialyzed against the above buffer to obtain polyacrylamide gel electrophoresis (gel concentration 1).
0%) and sodium dodecyl sulfate (SDS) electrophoresis, yielding a purified enzyme giving a single band.
In addition, a purified enzyme was obtained from the culture supernatant of the Bacillus sp. KSM-K38 strain in the same manner.

【0032】実施例4 本発明アルカリ液化型アミラー
ゼのキレート剤耐性能 実施例3でKSM−K36株及びKSM−K38株の培
養上清液から得た本発明のアルカリ液化型アミラーゼ精
製品(以下、それぞれK36及びK38と略す)を用
い、各種キレート剤に対する耐性能を測定した。
Example 4 Performance of the alkaline liquefied amylase of the present invention in chelating agent resistance The purified product of the alkaline liquefied amylase of the present invention (hereinafter referred to as the purified product) obtained from the culture supernatant of the KSM-K36 strain and the KSM-K38 strain in Example 3 (K36 and K38, respectively)), the resistance to various chelating agents was measured.

【0033】1)EDTA及びEGTA耐性能 終濃度0〜100mMのEDTA(シグマ社製)あるいは
EGTA(シグマ社製)を含む50mMグリシン水酸化ナ
トリウム緩衝液(pH10)中に、10mMグリシン水酸化
ナトリウム緩衝液(pH10)で適当に希釈した精製酵素
を添加し、所定の温度(30℃、40℃及び45℃)で
30分間処理を行った後、アミラーゼ活性測定法〔50
mMグリシン水酸化ナトリウム緩衝液(pH10)使用〕に
準じて残存酵素活性を測定した。尚、対照として、バチ
ルス リケニフォルミス由来のアミラーゼである、ター
マミル及びデュラミル(いずれもノボ社製の造粒物より
精製したもの)を使用した。その結果、図1及び2に示
したように、K36及びK38とも高濃度のEDTA及
びEGTAによっても全く影響を受けず、ターマミル及
びデュラミルと比べて、高度な耐性能を有することが明
らかになった。
1) Resistance to EDTA and EGTA 10 mM sodium glycine hydroxide buffer in 50 mM sodium glycine hydroxide buffer (pH 10) containing EDTA (Sigma) or EGTA (Sigma) having a final concentration of 0 to 100 mM. A purified enzyme appropriately diluted with a liquid (pH 10) is added, the mixture is treated at a predetermined temperature (30 ° C., 40 ° C., and 45 ° C.) for 30 minutes, and then the amylase activity measurement method [50]
Using mM mM glycine sodium hydroxide buffer (pH 10)]. As controls, termamyl and duramil, which are amylase derived from Bacillus licheniformis (both purified from granules manufactured by Novo) were used. As a result, as shown in FIGS. 1 and 2, both K36 and K38 were not affected by the high concentrations of EDTA and EGTA at all, indicating that they had a high level of performance in comparison with Termamill and Duramill. .

【0034】2)クエン酸及びゼオライト耐性能 終濃度0〜0.5%のクエン酸三ナトリウム二水和物
(和光純薬社製特級)あるいは合成ゼオライトA−3
(和光純薬社製)を含む50mMグリシン水酸化ナトリウ
ム緩衝液(pH10)中に、10mMグリシン水酸化ナトリ
ウム緩衝液(pH10)で適当に希釈した精製酵素を添加
し、所定の温度(40℃及び45℃)で30分間処理を
行った後、アミラーゼ活性測定法〔50mMグリシン水酸
化ナトリウム緩衝液(pH10)使用〕に準じて残存酵素
活性を測定した。
2) Resistance to citric acid and zeolite Trisodium citrate dihydrate having a final concentration of 0 to 0.5% (special grade manufactured by Wako Pure Chemical Industries) or synthetic zeolite A-3
A purified enzyme appropriately diluted with 10 mM sodium glycine hydroxide buffer (pH 10) was added to 50 mM sodium glycine hydroxide buffer (pH 10) containing (manufactured by Wako Pure Chemical Industries, Ltd.). (45 ° C.) for 30 minutes, and then the residual enzyme activity was measured according to the amylase activity measurement method [using 50 mM glycine sodium hydroxide buffer (pH 10)].

【0035】その結果、K36及びK38ともクエン酸
及びゼオライトにより全く影響を受けないことが示され
た(図3〜6)。
The results showed that both K36 and K38 were not affected at all by citric acid and zeolite (FIGS. 3 to 6).

【0036】実施例5 本発明アルカリ液化型アミラー
ゼの作用pH及び最適作用pH 終濃度50mMの各種緩衝液〔酢酸緩衝液(pH4.5〜
6.0)、リン酸カリウム緩衝液(pH6.0〜8.
0)、グリシン水酸化ナトリウム緩衝液(pH9.0〜1
0.5)及び炭酸緩衝液(pH10.0〜12.0)〕を
用い、アミラーゼ活性測定法に準じてK36及びK38
を測定し、それぞれ最大の活性を100%として、相対
活性で示した。この結果(図7及び8)、いずれも、pH
6.0〜10.0の範囲で作用し、最適作用pHは8.0
〜9.0であることが明らかになった。尚、pHは反応液
の実測値を測定して示した。
Example 5 Working pH and Optimum Working pH of the Alkaline Liquefied Amylase of the Present Invention Various buffers having a final concentration of 50 mM [acetate buffer (pH 4.5 to 4.5)
6.0), potassium phosphate buffer (pH 6.0-8.0).
0), glycine sodium hydroxide buffer (pH 9.0-1)
0.5) and carbonate buffer (pH 10.0 to 12.0)] and K36 and K38 according to the amylase activity measurement method.
Was measured, and the maximum activity was defined as 100%, and the relative activity was shown. The results (FIGS. 7 and 8) show that both pH
It works in the range of 6.0 to 10.0, and the optimum working pH is 8.0.
99.0. The pH was shown by measuring the measured value of the reaction solution.

【0037】実施例6 本発明アルカリ液化型アミラー
ゼの酸化剤耐性能及び酵素比活性 終濃度2%(580mM)のH22を含む50mMグリシン
水酸化ナトリウム緩衝液(pH10)中に、10mMグリシ
ン水酸化ナトリウム緩衝液(pH10)で適当に希釈した
酵素(K36、K38、ターマミル及びデュラミル)を
添加し、30℃で60分間処理を行い、経時的にアミラ
ーゼ活性測定法〔50mMグリシン水酸化ナトリウム緩衝
液(pH10)使用〕に準じて残存活性を測定した。酸化
剤耐性能はそれぞれ、未処理での活性を100%とし
て、残存活性で示した。
Example 6 Oxidant resistance and enzyme specific activity of the alkaline liquefied amylase of the present invention 10 mM glycine in 50 mM glycine sodium hydroxide buffer (pH 10) containing 2% (580 mM) final concentration of H 2 O 2. Enzymes (K36, K38, Termamyl and Duramil) appropriately diluted with a sodium hydroxide buffer (pH 10) are added, the mixture is treated at 30 ° C. for 60 minutes, and an amylase activity measurement method [50 mM glycine sodium hydroxide buffer Using a liquid (pH 10)]. The oxidant resistance performance was indicated by residual activity, where the activity before treatment was 100%.

【0038】その結果(図9)、K36及びK38はい
ずれも、2%H22存在下、pH10、30℃、60分間
処理後でも70%以上、特に94%以上の残存活性を維
持しており、充分な酸化剤耐性能を有することが認めら
れた。また、pH10、50℃、15分間反応(可溶性澱
粉を基質)での酵素活性値と、プロテインアッセイキッ
ト(バイオラド社製)により測定したタンパク質量より
算出したK36及びK38の酵素比活性は、それぞれ、
4300U/mg及び3600U/mgとなり(表2)、両
酵素はいずれも3000U/mg以上の比活性を有してお
り、タンパク工学によって構築された酸化剤耐性酵素
(LAMY・M202T(WO98/44126)及び
デュラミル)と比較して、極めて高い酵素比活性を有す
ることが明らかになった。従って、本発明のアルカリ液
化型アミラーゼは、洗剤への配合量などの面や工業的発
酵生産の面に於いて優位である。
As a result (FIG. 9), both K36 and K38 maintain a residual activity of 70% or more, particularly 94% or more, even after treatment at pH 10, 30 ° C. for 60 minutes in the presence of 2% H 2 O 2. It was confirmed that the composition had sufficient oxidant resistance performance. In addition, the enzyme activity values in a reaction at pH 10, 50 ° C. for 15 minutes (using soluble starch as a substrate) and the specific enzyme activities of K36 and K38 calculated from the amount of protein measured with a protein assay kit (manufactured by Bio-Rad),
4300 U / mg and 3600 U / mg (Table 2). Both enzymes have a specific activity of 3000 U / mg or more, and are oxidant resistant enzymes constructed by protein engineering (LAMY M202T (WO98 / 44126)). And Duramil). Therefore, the alkali liquefied amylase of the present invention is superior in terms of the amount of the compound in detergents and in industrial fermentation production.

【0039】[0039]

【表2】 [Table 2]

【0040】実施例7 本発明アルカリ液化型アミラー
ゼ(K36及びK38)のその他の酵素学的性質 両精製酵素の解析を行った結果、以下の特性が明らかに
なった。
Example 7 Other Enzymatic Properties of the Alkaline Liquefied Amylases (K36 and K38) of the Present Invention Analysis of both purified enzymes revealed the following characteristics.

【0041】(1)作用 いずれも、澱粉、アミロース、アミロペクチン及びそれ
らの部分分解物のα−1,4グルコシド結合を分解し、
アミロースからはグルコース(G1)、マルトース(G
2)、マルトトリオース(G3)、マルトテトラオース
(G4)、マルトペンタオース(G5)、マルトヘキサ
オース(G6)及びマルトヘプタオース(G7)を生成
する。ただしプルランには作用しない。 (2)pH安定性(ブリットン−ロビンソン緩衝液) いずれも、40℃、30分間処理条件下で、pH6.5〜
11.0の範囲で70%以上の残存活性を示す。 (3)作用温度範囲及び最適作用温度 いずれも、20〜80℃の広範囲で作用し、最適作用温
度は50〜60℃である。 (4)温度安定性 50mMグリシン水酸化ナトリウム緩衝液(pH10)中に
て温度を変化させ、各温度で30分間処理することによ
り失活の条件を調べると、いずれも40℃で80%以上
の残存活性を示し、45℃でも約60%の残存活性を示
した。 (5)分子量 いずれも、ソディウムドデシル硫酸ポリアクリルアミド
ゲル電気泳動法により測定した分子量は55,000±
5,000である。 (6)等電点 いずれも、等電点電気泳動法により測定した等電点は
4.2付近である。 (7)界面活性剤の影響 直鎖アルキルベンゼンスルホン酸ナトリウム、アルキル
硫酸エステルナトリウム塩、ポリオキシエチレンアルキ
ル硫酸エステルナトリウム塩、α−オレフィンスルホン
酸ナトリウム、α−スルホン化脂肪酸エステルナトリウ
ム、アルキルスルホン酸ナトリウム、SDS、石鹸及び
ソフタノール等の各種界面活性剤0.1%溶液中で、pH
10、30℃で30分間処理しても、いずれも殆ど活性
阻害を受けない(活性残存率90%以上)。 (8)金属塩の影響 各種金属塩と共存させて、pH10、30℃で30分間処
理してその影響を調べた。K36は、1mMのMn2+によ
り阻害され(阻害率約95%)、1mMのHg2+、Be2+
及びCd2+により若干阻害される(阻害率30〜40
%)。K38は、1mMのMn2+により阻害され(阻害率
約75%)、1mMのSr2+及びCd2+により若干阻害さ
れる(阻害率約30%)。 (9)N末端アミノ酸配列 両アミラーゼのN末端アミノ酸配列をエンドマン分解法
〔Edman, P., Acta Chem. Scand., 4, 283,(1948)〕に
よりプロテイン−ケンサー(ABI社製)477Aを用
いて測定した結果、いずれも、Asp-Gly-Leu-Asn-Gly-Th
r-Met-Met-Gln-Tyr-Tyr-Glu-Trp-His-Leu の配列を有す
ることが判った。
(1) Action In each case, they decompose α-1,4 glucosidic bonds of starch, amylose, amylopectin and their partially decomposed products,
Glucose (G1) and maltose (G
2) produce maltotriose (G3), maltotetraose (G4), maltopentaose (G5), maltohexaose (G6) and maltoheptaose (G7). However, it does not act on pullulan. (2) pH stability (Britton-Robinson buffer)
It shows a residual activity of 70% or more in the range of 11.0. (3) Working temperature range and optimum working temperature Both work in a wide range of 20 to 80 ° C, and the optimum working temperature is 50 to 60 ° C. (4) Temperature stability The temperature was changed in a 50 mM glycine sodium hydroxide buffer solution (pH 10), and the conditions of deactivation were examined by treating at each temperature for 30 minutes. It showed residual activity, and showed about 60% residual activity even at 45 ° C. (5) Molecular weight In each case, the molecular weight measured by sodium dodecyl sulfate polyacrylamide gel electrophoresis was 55,000 ±.
5,000. (6) Isoelectric point In each case, the isoelectric point measured by the isoelectric focusing method is around 4.2. (7) Influence of surfactant Sodium linear alkylbenzene sulfonate, sodium alkyl sulfate, sodium polyoxyethylene alkyl sulfate, sodium α-olefin sulfonate, sodium α-sulfonated fatty acid ester, sodium alkyl sulfonate, In a 0.1% solution of various surfactants such as SDS, soap and sophthanol, pH
Even when treated at 10, 30 ° C. for 30 minutes, almost no activity is inhibited (the residual activity rate is 90% or more). (8) Influence of Metal Salts In the presence of various metal salts, treatment was performed at pH 10 and 30 ° C. for 30 minutes to examine the effects. K36 is inhibited by 1 mM Mn 2+ (inhibition rate about 95%), 1 mM Hg 2+ , Be 2+
And Cd 2+ (inhibition rate 30-40)
%). K38 is inhibited by 1 mM Mn 2+ (inhibition rate about 75%) and slightly inhibited by 1 mM Sr 2+ and Cd 2+ (inhibition rate about 30%). (9) N-terminal amino acid sequence The N-terminal amino acid sequence of both amylase was converted to a protein-kenser (ABI) 477A by the Endman degradation method [Edman, P., Acta Chem. Scand., 4, 283, (1948)]. As a result of using Asp-Gly-Leu-Asn-Gly-Th
It was found to have the sequence of r-Met-Met-Gln-Tyr-Tyr-Glu-Trp-His-Leu.

【0042】実施例8 本発明アルカリ液化型アミラー
ゼの自動食器洗浄機用洗剤洗浄力評価 本発明のアルカリ液化型アミラーゼ(K36及びK3
8)の自動食器洗浄機用洗剤での洗浄評価を下記条件で
行った。別に対照として本発明酵素を含有しない洗剤を
用いた。 1)汚染皿の調製 沸騰水道水で煮沸した後、水道水を加えて溶液状にした
オートミール(クエーカー社製)1mLを磁性皿に塗布
し、室温で約3時間乾燥させた後、使用直前まで5℃
(半密閉状態)にて保存した。1回の洗浄には3枚供し
た。 2)洗浄条件 ・使用機種;松下電器(株)製全自動食器洗い機NP−
810 ・洗浄温度;水温から約55℃まで徐々に昇温する。 ・洗浄用水;水道水 ・洗浄剤濃度;0.2重量% ・洗浄時間;洗浄約20分→すすぎ約20分(標準コー
ス) ・洗浄時の循環水量;3.5L 3)洗剤組成(%は重量%を示す) プルロニックL−61 2.2%、炭酸ナトリウム2
4.7%、炭酸水素ナトリウム24.7%、過炭酸ナト
リウム10.0%、1号珪酸ナトリウム12.0%及び
クエン酸3ナトリウム20.0%、ポリプロピレングリ
コール30002.2%、シリコーンKST−04(東
芝シリコーン社製)0.2%、ソカランCP−45(B
ASF社製)4.0%。 4)添加酵素量 緩衝液としてグリシン−水酸化ナトリウム緩衝液(pH1
0)を用い、上述のアミラーゼ活性測定法により実施例
3で得られた精製酵素の活性値を測定し、洗浄当たり1
50U添加した。 5)洗浄力評価方法 洗浄後の皿にヨウ素溶液を塗布し、ヨウ素−澱粉反応に
よる色を目視で判定した。
Example 8 Evaluation of Detergent Detergency of the Alkaline Liquefied Amylase of the Present Invention for an Automatic Dishwasher The alkaline liquefied amylase of the present invention (K36 and K3
The cleaning evaluation of 8) with the automatic dishwashing detergent was performed under the following conditions. Separately, a detergent containing no enzyme of the present invention was used as a control. 1) Preparation of a contaminated dish After boiling in boiling tap water, apply 1 mL of oatmeal (manufactured by Quaker) in a solution form by adding tap water to a magnetic dish, dry at room temperature for about 3 hours, and until immediately before use. 5 ℃
(Semi-closed state). Three washes were used for one washing. 2) Washing conditions-Model used: Matsushita Electric Co., Ltd. fully automatic dishwasher NP-
810 ・ Washing temperature: The temperature is gradually raised from the water temperature to about 55 ° C.・ Washing water; tap water ・ Detergent concentration: 0.2% by weight ・ Washing time: about 20 minutes for washing → about 20 minutes for rinsing (standard course) ・ Amount of circulating water during washing: 3.5 L 3) Detergent composition (% Weight%) 2.2% Pluronic L-61, sodium carbonate 2
4.7%, sodium bicarbonate 24.7%, sodium percarbonate 10.0%, No. 1 sodium silicate 12.0% and trisodium citrate 20.0%, polypropylene glycol 3002.2%, silicone KST-04 (Manufactured by Toshiba Silicone Co., Ltd.) 0.2%, Sokaran CP-45 (B
(ASF) 4.0%. 4) Amount of enzyme to be added Glycine-sodium hydroxide buffer (pH 1)
0), the activity value of the purified enzyme obtained in Example 3 was measured by the above-mentioned amylase activity measurement method, and 1
50 U was added. 5) Detergency Evaluation Method An iodine solution was applied to the washed dishes, and the color due to the iodine-starch reaction was visually determined.

【0043】その結果、本発明酵素含有洗剤を用いた場
合汚れを完全に除去でき、本発明酵素を含有しない場合
と比べ極めて優れた洗浄性能を有していた。
As a result, when the detergent containing the enzyme of the present invention was used, dirt could be completely removed, and the cleaning performance was extremely excellent as compared with the case where the detergent containing the enzyme of the present invention was not used.

【0044】実施例9 SaitoとMiuraの方法〔Biochim. Biophys. Acta, 72, 61
9(1961)〕によって抽出したKSM−K36株及びKS
M−K38株の染色体DNAを鋳型とし、既知のバチル
ス属細菌由来の液化型アミラーゼに於いて保存性が高い
Met-Gln-Tyr-Phe-Glu-Trp配列、及びTrp-Phe-Lys-Pro-L
eu-Tyr配列を基にしてデザインした2種類のオリゴヌク
レオチドプライマーを用いて、常法に従ってPCRを行
った結果、いずれの場合も約1.0kbの増幅DNA断
片が得られた。両DNA断片の塩基配列を解析し、次い
で、両断片の上流側、下流側のDNA断片を逆PCR法
〔T. Trigliaら, Nucleic Acids Res., 16, 81(1988)〕
及びPCRインビトロクローニングキット(ベーリンガ
ーマンハイム社製)を用いて取得し、その塩基配列の解
析を行った。この結果、両株ともに約1.7kbの遺伝
子領域中に配列番号1及び2に示した501アミノ酸残
基をコードする唯一のオープン リーディング フレー
ム(Open reading frame, ORF)が見出され、アミノ末端
領域の配列(アミノ酸番号Asp1〜Leu15)が、KSM−K
36株及びKSM−K38株の培養液から精製されたア
ミラーゼK36及びK38のアミノ末端配列(15アミ
ノ酸残基)と完全に一致することが明らかになった。決
定されたK36及びK38アミラーゼ遺伝子は、それぞ
れ、配列番号3及び4に示した塩基配列を有していた。
Example 9 Saito and Miura [Biochim. Biophys. Acta, 72, 61
9 (1961)] and the KS-K36 strain and KS
Using chromosomal DNA of M-K38 strain as a template, it is highly conserved in liquefied amylase derived from known Bacillus bacteria.
Met-Gln-Tyr-Phe-Glu-Trp sequence, and Trp-Phe-Lys-Pro-L
As a result of performing PCR using two kinds of oligonucleotide primers designed based on the eu-Tyr sequence according to a conventional method, an amplified DNA fragment of about 1.0 kb was obtained in each case. The nucleotide sequences of both DNA fragments were analyzed, and then the upstream and downstream DNA fragments of both fragments were subjected to reverse PCR (T. Triglia et al., Nucleic Acids Res., 16, 81 (1988)).
And a PCR in vitro cloning kit (manufactured by Boehringer Mannheim), and its nucleotide sequence was analyzed. As a result, in both strains, the only open reading frame (ORF) encoding the 501 amino acid residues shown in SEQ ID NOS: 1 and 2 was found in the gene region of about 1.7 kb, and the amino-terminal region was found. (Amino acid numbers Asp1 to Leu15) are represented by KSM-K
It was revealed that the amino acid sequences completely corresponded to the amino terminal sequences (15 amino acid residues) of amylase K36 and K38 purified from cultures of the 36 strain and the KSM-K38 strain. The determined K36 and K38 amylase genes had the nucleotide sequences shown in SEQ ID NOs: 3 and 4, respectively.

【0045】実施例10 両株の染色体DNAを鋳型としたPCR法によって、開
始コドンの0.7kb上流から終始コドンの0.1kb
下流までの1.7kbのDNA断片を増幅し、シャトル
ベクターpHY300PLK(ヤクルト本社製)を用い
て、枯草菌ISW1214株に導入した。得られた組換
え体枯草菌株は、いずれも液体培養に於いて培養液中に
アミラーゼを生産した。実施例3に示した方法によって
培養上清からアミラーゼを精製し、その特性を解析した
ところ、KSM−K36株及びKSM−K38株の培養
液から精製されたアミラーゼの特性と良く一致し、いず
れも作用至適pHはpH8〜9に認められ、pH10に於いて
約4000U/mgの比活性を有し、更に、キレート剤及
び酸化剤に対して高い耐性を有していることが明らかに
なった。
Example 10 By PCR using the chromosomal DNA of both strains as a template, from the start codon 0.7 kb upstream to the stop codon 0.1 kb.
The 1.7 kb DNA fragment to the downstream was amplified and introduced into Bacillus subtilis ISW1214 strain using shuttle vector pHY300PLK (manufactured by Yakult Honsha). All of the obtained recombinant B. subtilis strains produced amylase in the culture solution in liquid culture. Amylase was purified from the culture supernatant by the method described in Example 3 and its characteristics were analyzed. The characteristics were well consistent with those of the amylase purified from the culture solutions of the KSM-K36 strain and the KSM-K38 strain. The optimum pH for action was observed at pH 8-9, and at pH 10, it was found to have a specific activity of about 4000 U / mg and to have high resistance to chelating agents and oxidizing agents. .

【0046】[0046]

【発明の効果】本発明のアルカリ液化型アミラーゼは、
今までに知られている洗剤用アミラーゼに比べて、高度
なキレート剤耐性能を有する。また最適作用pHは8を超
える。従って、本発明のアルカリ液化型アミラーゼはア
ルカリ領域で澱粉を加工する工程など極めて広範囲の産
業分野で使用され得る。特に、キレート剤を含有する自
動食器洗浄機用洗剤、衣料用洗剤及び漂白剤等に配合す
ることにより有利に使用することができるものであり、
工業的に極めて大きな意義を有するものである。
The alkaline liquefied amylase of the present invention comprises:
Compared with the detergent amylase known so far, it has higher chelating agent resistance. Also, the optimum working pH is above 8. Therefore, the alkaline liquefied amylase of the present invention can be used in an extremely wide range of industrial fields such as a process for processing starch in an alkaline region. In particular, it can be used advantageously by blending it with a detergent for automatic dishwashers containing a chelating agent, a detergent for clothing, a bleaching agent, and the like,
It is of great industrial significance.

【0047】[0047]

【配列表】 SEQUENCE LISTING <110> KAO CORPORATION <120> Novel Amylase <130> P05631012 <160> 4 <210> 1 <211> 501 <212> PRT <213> Bacillus sp. <400> 1 Met Lys Arg Trp Val Val Ala Met Leu Ala Val Leu Phe Leu Phe Pro 5 10 15 Ser Val Val Val Ala Asp Gly Leu Asn Gly Thr Met Met Gln Tyr Tyr 20 25 30 Glu Trp His Leu Glu Asn Asp Gly Gln His Trp Asn Arg Leu His Asp 35 40 45 Asp Ala Glu Ala Leu Ser Asn Ala Gly Ile Thr Ala Ile Trp Ile Pro 50 55 60 Pro Ala Tyr Lys Gly Asn Ser Gln Ala Asp Val Gly Tyr Gly Ala Tyr 65 70 75 80 Asp Leu Tyr Asp Leu Gly Glu Phe Asn Gln Lys Gly Thr Val Arg Thr 85 90 95 Lys Tyr Gly Thr Lys Ala Gln Leu Glu Arg Ala Ile Gly Ser Leu Lys 100 105 110 Ser Asn Asp Ile Asn Val Tyr Gly Asp Val Val Met Asn His Lys Leu 115 120 125 Gly Ala Asp Phe Thr Glu Ala Val Gln Ala Val Gln Val Asn Pro Ser 130 135 140 Asn Arg Trp Gln Asp Ile Ser Gly Val Tyr Thr Ile Asp Ala Trp Thr 145 150 155 160 Gly Phe Asp Phe Pro Gly Arg Asn Asn Ala Tyr Ser Asp Phe Lys Trp 165 170 175 Arg Trp Phe His Phe Asn Gly Val Asp Trp Asp Gln Arg Tyr Gln Glu 180 185 190 Asn His Leu Phe Arg Phe Ala Asn Thr Asn Trp Asn Trp Arg Val Asp 195 200 205 Glu Glu Asn Gly Asn Tyr Asp Tyr Leu Leu Gly Ser Asn Ile Asp Phe 210 215 220 Ser His Pro Glu Val Gln Glu Glu Leu Lys Asp Trp Gly Ser Trp Phe 225 230 235 240 Thr Asp Glu Leu Asp Leu Asp Gly Tyr Arg Leu Asp Ala Ile Lys His 245 250 255 Ile Pro Phe Trp Tyr Thr Ser Asp Trp Val Arg His Gln Arg Ser Glu 260 265 270 Ala Asp Gln Asp Leu Phe Val Val Gly Glu Tyr Trp Lys Asp Asp Val 275 280 285 Gly Ala Leu Glu Phe Tyr Leu Asp Glu Met Asn Trp Glu Met Ser Leu 290 295 300 Phe Asp Val Pro Leu Asn Tyr Asn Phe Tyr Arg Ala Ser Lys Gln Gly 305 310 315 320 Gly Ser Tyr Asp Met Arg Asn Ile Leu Arg Gly Ser Leu Val Glu Ala 325 330 335 His Pro Ile His Ala Val Thr Phe Val Asp Asn His Asp Thr Gln Pro 340 345 350 Gly Glu Ser Leu Glu Ser Trp Val Ala Asp Trp Phe Lys Pro Leu Ala 355 360 365 Tyr Ala Thr Ile Leu Thr Arg Glu Gly Gly Tyr Pro Asn Val Phe Tyr 370 375 380 Gly Asp Tyr Tyr Gly Ile Pro Asn Asp Asn Ile Ser Ala Lys Lys Asp 385 390 395 400 Met Ile Asp Glu Leu Leu Asp Ala Arg Gln Asn Tyr Ala Tyr Gly Thr 405 410 415 Gln His Asp Tyr Phe Asp His Trp Asp Ile Val Gly Trp Thr Arg Glu 420 425 430 Gly Thr Ser Ser Arg Pro Asn Ser Gly Leu Ala Thr Ile Met Ser Asn 435 440 445 Gly Pro Gly Gly Ser Lys Trp Met Tyr Val Gly Gln Gln His Ala Gly 450 455 460 Gln Thr Trp Thr Asp Leu Thr Gly Asn His Ala Ala Ser Val Thr Ile 465 470 475 480 Asn Gly Asp Gly Trp Gly Glu Phe Phe Thr Asn Gly Gly Ser Val Ser 485 490 495 Val Tyr Val Asn Gln 500 [Sequence List] SEQUENCE LISTING <110> KAO CORPORATION <120> Novel Amylase <130> P05631012 <160> 4 <210> 1 <211> 501 <212> PRT <213> Bacillus sp. <400> 1 Met Lys Arg Trp Val Val Ala Met Leu Ala Val Leu Phe Leu Phe Pro 5 10 15 Ser Val Val Val Ala Asp Gly Leu Asn Gly Thr Met Met Gln Tyr Tyr 20 25 30 Glu Trp His Leu Glu Asn Asp Gly Gln His Trp Asn Arg Leu His Asp 35 40 45 Asp Ala Glu Ala Leu Ser Asn Ala Gly Ile Thr Ala Ile Trp Ile Pro 50 55 60 Pro Ala Tyr Lys Gly Asn Ser Gln Ala Asp Val Gly Tyr Gly Ala Tyr 65 70 75 80 Asp Leu Tyr Asp Leu Gly Glu Phe Asn Gln Lys Gly Thr Val Arg Thr 85 90 95 Lys Tyr Gly Thr Lys Ala Gln Leu Glu Arg Ala Ile Gly Ser Leu Lys 100 105 110 Ser Asn Asp Ile Asn Val Tyr Gly Asp Val Val Met Asn His Lys Leu 115 120 125 Gly Ala Asp Phe Thr Glu Ala Val Gln Ala Val Gln Val Asn Pro Ser 130 135 140 Asn Arg Trp Gln Asp Ile Ser Gly Val Tyr Thr Ile Asp Ala Trp Thr 145 150 155 160 Gly Phe Asp Phe Pro Gly Arg Asn Asn Ala Tyr Ser Asp Phe Lys Trp 165 170 175 Arg Trp Phe His Phe As n Gly Val Asp Trp Asp Gln Arg Tyr Gln Glu 180 185 190 Asn His Leu Phe Arg Phe Ala Asn Thr Asn Trp Asn Trp Arg Val Asp 195 200 205 Glu Glu Asn Gly Asn Tyr Asp Tyr Leu Leu Gly Ser Asn Ile Asp Phe 210 215 220 Ser His Pro Glu Val Gln Glu Glu Leu Lys Asp Trp Gly Ser Trp Phe 225 230 235 240 Thr Asp Glu Leu Asp Leu Asp Gly Tyr Arg Leu Asp Ala Ile Lys His 245 250 255 Ile Pro Phe Trp Tyr Thr Ser Asp Trp Val Arg His Gln Arg Ser Glu 260 265 270 Ala Asp Gln Asp Leu Phe Val Val Gly Glu Tyr Trp Lys Asp Asp Val 275 280 285 Gly Ala Leu Glu Phe Tyr Leu Asp Glu Met Asn Trp Glu Met Ser Leu 290 295 300 Phe Asp Val Pro Leu Asn Tyr Asn Phe Tyr Arg Ala Ser Lys Gln Gly 305 310 315 320 Gly Ser Tyr Asp Met Arg Asn Ile Leu Arg Gly Ser Leu Val Glu Ala 325 330 335 His Pro Ile His Ala Val Thr Phe Val Asp Asn His Asp Thr Gln Pro 340 345 350 Gly Glu Glu Ser Leu Glu Ser Trp Val Ala Asp Trp Phe Lys Pro Leu Ala 355 360 365 Tyr Ala Thr Ile Leu Thr Arg Glu Gly Gly Tyr Pro Asn Val Phe Tyr 370 375 380 Gly Asp Tyr Tyr Gly Ile Pr o Asn Asp Asn Ile Ser Ala Lys Lys Asp 385 390 395 400 Met Ile Asp Glu Leu Leu Asp Ala Arg Gln Asn Tyr Ala Tyr Gly Thr 405 410 415 Gln His Asp Tyr Phe Asp His Trp Asp Ile Val Gly Trp Thr Arg Glu 420 425 430 Gly Thr Ser Ser Arg Pro Asn Ser Gly Leu Ala Thr Ile Met Ser Asn 435 440 445 Gly Pro Gly Gly Ser Lys Trp Met Tyr Val Gly Gln Gln His Ala Gly 450 455 460 Gln Thr Trp Thr Asp Leu Thr Gly Asn His Ala Ala Ser Val Thr Ile 465 470 475 480 Asn Gly Asp Gly Trp Gly Glu Phe Phe Thr Asn Gly Gly Ser Val Ser 485 490 495 Val Tyr Val Asn Gln 500

【0048】 <210> 2 <211> 501 <212> PRT <213> Bacillus sp. <400> 2 Met Arg Arg Trp Val Val Ala Met Leu Ala Val Leu Phe Leu Phe Pro 5 10 15 Ser Val Val Val Ala Asp Gly Leu Asn Gly Thr Met Met Gln Tyr Tyr 20 25 30 Glu Trp His Leu Glu Asn Asp Gly Gln His Trp Asn Arg Leu His Asp 35 40 45 Asp Ala Ala Ala Leu Ser Asp Ala Gly Ile Thr Ala Ile Trp Ile Pro 50 55 60 Pro Ala Tyr Lys Gly Asn Ser Gln Ala Asp Val Gly Tyr Gly Ala Tyr 65 70 75 80 Asp Leu Tyr Asp Leu Gly Glu Phe Asn Gln Lys Gly Thr Val Arg Thr 85 90 95 Lys Tyr Gly Thr Lys Ala Gln Leu Glu Arg Ala Ile Gly Ser Leu Lys 100 105 110 Ser Asn Asp Ile Asn Val Tyr Gly Asp Val Val Met Asn His Lys Met 115 120 125 Gly Ala Asp Phe Thr Glu Ala Val Gln Ala Val Gln Val Asn Pro Thr 130 135 140 Asn Arg Trp Gln Asp Ile Ser Gly Ala Tyr Thr Ile Asp Ala Trp Thr 145 150 155 160 Gly Phe Asp Phe Ser Gly Arg Asn Asn Ala Tyr Ser Asp Phe Lys Trp 165 170 175 Arg Trp Phe His Phe Asn Gly Val Asp Trp Asp Gln Arg Tyr Gln Glu 180 185 190 Asn His Ile Phe Arg Phe Ala Asn Thr Asn Trp Asn Trp Arg Val Asp 195 200 205 Glu Glu Asn Gly Asn Tyr Asp Tyr Leu Leu Gly Ser Asn Ile Asp Phe 210 215 220 Ser His Pro Glu Val Gln Asp Glu Leu Lys Asp Trp Gly Ser Trp Phe 225 230 235 240 Thr Asp Glu Leu Asp Leu Asp Gly Tyr Arg Leu Asp Ala Ile Lys His 245 250 255 Ile Pro Phe Trp Tyr Thr Ser Asp Trp Val Arg His Gln Arg Asn Glu 260 265 270 Ala Asp Gln Asp Leu Phe Val Val Gly Glu Tyr Trp Lys Asp Asp Val 275 280 285 Gly Ala Leu Glu Phe Tyr Leu Asp Glu Met Asn Trp Glu Met Ser Leu 290 295 300 Phe Asp Val Pro Leu Asn Tyr Asn Phe Tyr Arg Ala Ser Gln Gln Gly 305 310 315 320 Gly Ser Tyr Asp Met Arg Asn Ile Leu Arg Gly Ser Leu Val Glu Ala 325 330 335 His Pro Met His Ala Val Thr Phe Val Asp Asn His Asp Thr Gln Pro 340 345 350 Gly Glu Ser Leu Glu Ser Trp Val Ala Asp Trp Phe Lys Pro Leu Ala 355 360 365 Tyr Ala Thr Ile Leu Thr Arg Glu Gly Gly Tyr Pro Asn Val Phe Tyr 370 375 380 Gly Asp Tyr Tyr Gly Ile Pro Asn Asp Asn Ile Ser Ala Lys Lys Asp 385 390 395 400 Met Ile Asp Glu Leu Leu Asp Ala Arg Gln Asn Tyr Ala Tyr Gly Thr 405 410 415 Gln His Asp Tyr Phe Asp His Trp Asp Val Val Gly Trp Thr Arg Glu 420 425 430 Gly Ser Ser Ser Arg Pro Asn Ser Gly Leu Ala Thr Ile Met Ser Asn 435 440 445 Gly Pro Gly Gly Ser Lys Trp Met Tyr Val Gly Arg Gln Asn Ala Gly 450 455 460 Gln Thr Trp Thr Asp Leu Thr Gly Asn Asn Gly Ala Ser Val Thr Ile 465 470 475 480 Asn Gly Asp Gly Trp Gly Glu Phe Phe Thr Asn Gly Gly Ser Val Ser 485 490 495 Val Tyr Val Asn Gln 500 <210> 2 <211> 501 <212> PRT <213> Bacillus sp. <400> 2 Met Arg Arg Trp Val Val Ala Met Leu Ala Val Leu Phe Leu Phe Pro 5 10 15 Ser Val Val Val Ala Asp Gly Leu Asn Gly Thr Met Met Gln Tyr Tyr 20 25 30 Glu Trp His Leu Glu Asn Asp Gly Gln His Trp Asn Arg Leu His Asp 35 40 45 Asp Ala Ala Ala Leu Ser Asp Ala Gly Ile Thr Ala Ile Trp Ile Pro 50 55 60 Pro Ala Tyr Lys Gly Asn Ser Gln Ala Asp Val Gly Tyr Gly Ala Tyr 65 70 75 80 Asp Leu Tyr Asp Leu Gly Glu Phe Asn Gln Lys Gly Thr Val Arg Thr 85 90 95 Lys Tyr Gly Thr Lys Ala Gln Leu Glu Arg Ala Ile Gly Ser Leu Lys 100 105 110 Ser Asn Asp Ile Asn Val Tyr Gly Asp Val Val Met Asn His Lys Met 115 120 125 Gly Ala Asp Phe Thr Glu Ala Val Gln Ala Val Gln Val Asn Pro Thr 130 135 140 Asn Arg Trp Gln Asp Ile Ser Gly Ala Tyr Thr Ile Asp Ala Trp Thr 145 150 155 160 Gly Phe Asp Phe Ser Gly Arg Asn Asn Ala Tyr Ser Asp Phe Lys Trp 165 170 175 Arg Trp Phe His Phe Asn Gly Val Asp Trp Asp Gln Arg Tyr Gln Glu 180 185 190 Asn His Ile Phe Arg Phe Al a Asn Thr Asn Trp Asn Trp Arg Val Asp 195 200 205 Glu Glu Asn Gly Asn Tyr Asp Tyr Leu Leu Gly Ser Asn Ile Asp Phe 210 215 220 Ser His Pro Glu Val Gln Asp Glu Leu Lys Asp Trp Gly Ser Trp Phe 225 230 235 240 Thr Asp Glu Leu Asp Leu Asp Gly Tyr Arg Leu Asp Ala Ile Lys His 245 250 255 Ile Pro Phe Trp Tyr Thr Ser Asp Trp Val Arg His Gln Arg Asn Glu 260 265 270 Ala Asp Gln Asp Leu Phe Val Val Gly Glu Tyr Trp Lys Asp Asp Val 275 280 285 Gly Ala Leu Glu Phe Tyr Leu Asp Glu Met Asn Trp Glu Met Ser Leu 290 295 300 Phe Asp Val Pro Leu Asn Tyr Asn Phe Tyr Arg Ala Ser Gln Gln Gly 305 310 315 320 Gly Ser Tyr Asp Met Arg Asn Ile Leu Arg Gly Ser Leu Val Glu Ala 325 330 335 His Pro Met His Ala Val Thr Phe Val Asp Asn His Asp Thr Gln Pro 340 345 350 Gly Glu Ser Leu Glu Ser Trp Val Ala Asp Trp Phe Lys Pro Leu Ala 355 360 365 Tyr Ala Thr Ile Leu Thr Arg Glu Gly Gly Tyr Pro Asn Val Phe Tyr 370 375 380 Gly Asp Tyr Tyr Gly Ile Pro Asn Asp Asn Ile Ser Ala Lys Lys Asp 385 390 390 395 400 Met Ile Asp Glu Leu Leu Leu As p Ala Arg Gln Asn Tyr Ala Tyr Gly Thr 405 410 415 Gln His Asp Tyr Phe Asp His Trp Asp Val Val Gly Trp Thr Arg Glu 420 425 430 Gly Ser Ser Ser Arg Pro Asn Ser Gly Leu Ala Thr Ile Met Ser Asn 435 440 445 Gly Pro Gly Gly Ser Lys Trp Met Tyr Val Gly Arg Gln Asn Ala Gly 450 455 460 Gln Thr Trp Thr Asp Leu Thr Gly Asn Asn Gly Ala Ser Val Thr Ile 465 470 475 480 Asn Gly Asp Gly Trp Gly Glu Phe Phe Thr Asn Gly Gly Ser Val Ser 485 490 495 Val Tyr Val Asn Gln 500

【0049】 <210> 3 <211> 1650 <212> DNA <213> Bacillus sp. <400> 3 cttgaatcat tatttaaagc tggttatgat atatgtaagc gttatcatta aaaggaggta 60 tttg atg aaa aga tgg gta gta gca atg ctg gca gtg tta ttt tta ttt 109 Met Lys Arg Trp Val Val Ala Met Leu Ala Val Leu Phe Leu Phe 5 10 15 cct tcg gta gta gtt gca gat ggc ttg aat gga acg atg atg cag tat 157 Pro Ser Val Val Val Ala Asp Gly Leu Asn Gly Thr Met Met Gln Tyr 20 25 30 tat gag tgg cat cta gag aat gat ggg caa cac tgg aat cgg ttg cat 205 Tyr Glu Trp His Leu Glu Asn Asp Gly Gln His Trp Asn Arg Leu His 35 40 45 gat gat gcc gaa gct tta agt aat gcg ggt att aca gct att tgg ata 253 Asp Asp Ala Glu Ala Leu Ser Asn Ala Gly Ile Thr Ala Ile Trp Ile 50 55 60 ccc cca gcc tac aaa gga aat agt cag gct gat gtt ggg tat ggt gca 301 Pro Pro Ala Tyr Lys Gly Asn Ser Gln Ala Asp Val Gly Tyr Gly Ala 65 70 75 tac gac ctt tat gat tta ggg gag ttt aat caa aaa ggt acc gtt cga 349 Tyr Asp Leu Tyr Asp Leu Gly Glu Phe Asn Gln Lys Gly Thr Val Arg 80 85 90 95 acg aaa tac ggg aca aag gct cag ctt gag cga gct ata ggg tcc cta 397 Thr Lys Tyr Gly Thr Lys Ala Gln Leu Glu Arg Ala Ile Gly Ser Leu 100 105 110 aag tcg aat gat atc aat gtt tat ggg gat gtc gta atg aat cat aaa 445 Lys Ser Asn Asp Ile Asn Val Tyr Gly Asp Val Val Met Asn His Lys 115 120 125 tta gga gct gat ttc acg gag gca gtg caa gct gtt caa gta aat cct 493 Leu Gly Ala Asp Phe Thr Glu Ala Val Gln Ala Val Gln Val Asn Pro 130 135 140 tcg aac cgt tgg cag gat att tca ggt gtc tac acg att gat gca tgg 541 Ser Asn Arg Trp Gln Asp Ile Ser Gly Val Tyr Thr Ile Asp Ala Trp 145 150 155 acg gga ttt gac ttt cca ggg cgc aac aat gcc tat tcc gat ttt aaa 589 Thr Gly Phe Asp Phe Pro Gly Arg Asn Asn Ala Tyr Ser Asp Phe Lys 160 165 170 175 tgg aga tgg ttc cat ttt aat ggc gtt gac tgg gat caa cgc tat caa 637 Trp Arg Trp Phe His Phe Asn Gly Val Asp Trp Asp Gln Arg Tyr Gln 180 185 190 gaa aac cat ctt ttt cgc ttt gca aat acg aac tgg aac tgg cga gtg 685 Glu Asn His Leu Phe Arg Phe Ala Asn Thr Asn Trp Asn Trp Arg Val 195 200 205 gat gaa gag aat ggt aat tat gac tat tta tta gga tcg aac att gac 733 Asp Glu Glu Asn Gly Asn Tyr Asp Tyr Leu Leu Gly Ser Asn Ile Asp 210 215 220 ttt agc cac cca gag gtt caa gag gaa tta aag gat tgg ggg agc tgg 781 Phe Ser His Pro Glu Val Gln Glu Glu Leu Lys Asp Trp Gly Ser Trp 225 230 235 ttt acg gat gag cta gat tta gat ggg tat cga ttg gat gct att aag 829 Phe Thr Asp Glu Leu Asp Leu Asp Gly Tyr Arg Leu Asp Ala Ile Lys 240 245 250 255 cat att cca ttc tgg tat acg tca gat tgg gtt agg cat cag cga agt 877 His Ile Pro Phe Trp Tyr Thr Ser Asp Trp Val Arg His Gln Arg Ser 260 265 270 gaa gca gac caa gat tta ttt gtc gta ggg gag tat tgg aag gat gac 925 Glu Ala Asp Gln Asp Leu Phe Val Val Gly Glu Tyr Trp Lys Asp Asp 275 280 285 gta ggt gct ctc gaa ttt tat tta gat gaa atg aat tgg gag atg tct 973 Val Gly Ala Leu Glu Phe Tyr Leu Asp Glu Met Asn Trp Glu Met Ser 290 295 300 cta ttc gat gtt ccg ctc aat tat aat ttt tac cgg gct tca aag caa 1021 Leu Phe Asp Val Pro Leu Asn Tyr Asn Phe Tyr Arg Ala Ser Lys Gln 305 310 315 ggc gga agc tat gat atg cgt aat att tta cga gga tct tta gta gaa 1069 Gly Gly Ser Tyr Asp Met Arg Asn Ile Leu Arg Gly Ser Leu Val Glu 320 325 330 335 gca cat ccg att cat gca gtt acg ttt gtt gat aat cat gat act cag 1117 Ala His Pro Ile His Ala Val Thr Phe Val Asp Asn His Asp Thr Gln 340 345 350 cca gga gag tca tta gaa tca tgg gtc gct gat tgg ttt aag cca ctt 1165 Pro Gly Glu Ser Leu Glu Ser Trp Val Ala Asp Trp Phe Lys Pro Leu 355 360 365 gct tat gcg aca atc ttg acg cgt gaa ggt ggt tat cca aat gta ttt 1213 Ala Tyr Ala Thr Ile Leu Thr Arg Glu Gly Gly Tyr Pro Asn Val Phe 370 375 380 tac ggt gac tac tat ggg att cct aac gat aac att tca gct aag aag 1261 Tyr Gly Asp Tyr Tyr Gly Ile Pro Asn Asp Asn Ile Ser Ala Lys Lys 385 390 395 gat atg att gat gag ttg ctt gat gca cgt caa aat tac gca tat ggc 1309 Asp Met Ile Asp Glu Leu Leu Asp Ala Arg Gln Asn Tyr Ala Tyr Gly 400 405 410 415 aca caa cat gac tat ttt gat cat tgg gat atc gtt gga tgg aca aga 1357 Thr Gln His Asp Tyr Phe Asp His Trp Asp Ile Val Gly Trp Thr Arg 420 425 430 gaa ggt aca tcc tca cgt cct aat tcg ggt ctt gct act att atg tcc 1405 Glu Gly Thr Ser Ser Arg Pro Asn Ser Gly Leu Ala Thr Ile Met Ser 435 440 445 aat ggt cct gga gga tca aaa tgg atg tac gta gga cag caa cat gca 1453 Asn Gly Pro Gly Gly Ser Lys Trp Met Tyr Val Gly Gln Gln His Ala 450 455 460 gga caa acg tgg aca gat tta act ggc aat cac gcg gcg tcg gtt acg 1501 Gly Gln Thr Trp Thr Asp Leu Thr Gly Asn His Ala Ala Ser Val Thr 465 470 475 att aat ggt gat ggc tgg ggc gaa ttc ttt aca aat gga gga tct gta 1549 Ile Asn Gly Asp Gly Trp Gly Glu Phe Phe Thr Asn Gly Gly Ser Val 480 485 490 495 tcc gtg tat gtg aac caa taataaaaag ccttgagaag ggattcctcc ctaactca 1605 Ser Val Tyr Val Asn Gln 500 aggctttctt tatgtcgttt agctcaacgc ttctacgaag cttta 1650<210> 3 <211> 1650 <212> DNA <213> Bacillus sp. <400> 3 cttgaatcat tatttaaagc tggttatgat atatgtaagc gttatcatta aaaggaggta 60 tttg atg aaa aga tgg gta gta gca atg ctg gca gtg tt tttttt Lys Arg Trp Val Val Ala Met Leu Ala Val Leu Phe Leu Phe 5 10 15 cct tcg gta gta gtt gca gat ggc ttg aat gga acg atg atg cag tat 157 Pro Ser Val Val Val Ala Asp Gly Leu Asn Gly Thr Met Met Gln Tyr 20 25 30 tat gag tgg cat cta gag aat gat ggg caa cac tgg aat cgg ttg cat 205 Tyr Glu Trp His Leu Glu Asn Asp Gly Gln His Trp Asn Arg Leu His 35 40 45 gat gat gcc gaa gct tta agt aat gcg ggt att aca gct att tgg ata 253 Asp Asp Ala Glu Ala Leu Ser Asn Ala Gly Ile Thr Ala Ile Trp Ile 50 55 60 ccc cca gcc tac aaa gga aat agt cag gct gat gtt ggg tat ggt gca 301 Pro Pro Ala Tyr Lys Gly Asn Ser Gln Ala Asp Val Gly Tyr Gly Ala 65 70 75 tac gac ctt tat gat tta ggg gag ttt aat caa aaa ggt acc gtt cga 349 Tyr Asp Leu Tyr Asp Leu Gly Glu Phe Asn Gln Lys Gly Thr Val Arg 80 85 90 95 acg aaa tac ggg aca aag gct cag ctt gag cga gct ata ggg tcc cta 397 Thr Lys Tyr Gly Thr Lys Ala Gln Leu Glu Arg Ala Ile Gly Ser Leu 100 105 110 aag tcg aat gat atc aat gtt tat ggg gat gtc gta atg aat cat aaa 445 Lys Ser Asn Asp Ile Asn Val Tyr Gly Asp Val Val Met Asn His Lys 115 120 125 tta gga gct gat ttc acg gag gca gtg caa gct gtt caa gta aat cct 493 Leu Gly Ala Asp Phe Thr Glu Ala Val Gln Ala Val Gln Val Asn Pro 130 135 140 tcg aac cgt tgg cag gat att tca ggt gtc tac acg att gat gca tgg 541 Ser Asn Arg Trp Gln Asp Ile Ser Gly Val Tyr Thr Ile Asp Ala Trp 145 150 155 acg gga ttt gac ttt cca ggg cgc aac aat gcc tat tcc gat ttt aaa 589 Thr Gly Phe Asp Phe Pro Gly Arg Asn Asn Ala Tyr Ser Asp Phe Lys 160 165 170 175 tgg aga tgg ttc cat ttt aat ggc gtt gac tgg gat caa cgc tat caa 637 Trp Arg Trp Phe His Phe Asn Gly Val Asp Trp Asp Gln Arg Tyr Gln 180 185 190 gaa aac cat ctt ttt cgc ttt gca aat acg aac tgg aac tgg cga gtg 685 Glu Asn His Leu Phe Arg Phe Ala Asn Thr Asn Trp Asn Trp Arg Val 195 200 205 gat gaa gag aat ggt aat tat gac tat tta tta gga tcg aac att gac 733 Asp Glu Glu Asn Gly Asn Tyr Asp Tyr Leu Leu Gly Ser Asn Ile Asp 210 215 220 ttt agc cac cca gag gtt caa gag gaa tta agg gat tag agc tgg 781 Phe Ser His Pro Glu Val Gln Glu Glu Leu Lys Asp Trp Gly Ser Trp 225 230 235 ttt acg gat gag cta gat tta gat ggg tat cga ttg gat gct att aag 829 Phe Thr Asp Glu Leu Asp Leu Asp Gly Tyr Arg Leu Asp Ala Ile Lys 240 245 250 255 cat att cca ttc tgg tat acg tca gat tgg gtt agg cat cag cga agt 877 His Ile Pro Phe Trp Tyr Thr Ser Ser Asp Trp Val Arg His Gln Arg Ser 260 265 270 270 gaa gca gac caa gat tta ttt gtc gta ggg gag tat tgg aag gat gac 925 Glu Ala Asp Gln Asp Leu Phe Val Val Gly Glu Tyr Trp Lys Asp Asp 275 280 285 gta ggt gct ctc gaa ttt tat tta gat gaa atg aat tgg gag atg tct 97 Ala Leu Glu Phe Tyr Leu Asp Glu Met Asn Trp Glu Met Ser 290 295 300 cta ttc gat gtt ccg ctc aat tat aat ttt tac cgg gct tca aag caa 1021 Leu Phe Asp Val Pro Leu Asn Tyr Asn Phe Tyr Arg Ala Ser Lys G n 305 310 315 ggc gga agc tat gat atg cgt aat att tta cga gga tct tta gta gaa 1069 Gly Gly Ser Tyr Asp Met Arg Asn Ile Leu Arg Gly Ser Leu Val Glu 320 325 330 335 gca cat ccg att cat gca gtt acg ttt gtt gat aat cat gat act cag 1117 Ala His Pro Ile His Ala Val Thr Phe Val Asp Asn His Asp Thr Gln 340 345 350 cca gga gag tca tta gaa tca tgg gtc gct gat tgg ttt aag cca ctt 1165 Pro Gly Glu Glu Ser Leu Glu Ser Trp Val Ala Asp Trp Phe Lys Pro Leu 355 360 365 gct tat gcg aca atc ttg acg cgt gaa ggt ggt tat cca aat gta ttt 1213 Ala Tyr Ala Thr Ile Leu Thr Arg Glu Gly Gly Tyr Pro Asn Val Phe 370 375 380 tac ggt gac tac tat ggg att cct aac gat aac att tca gct aag aag 1261 Tyr Gly Asp Tyr Tyr Gly Ile Pro Asn Asp Asn Ile Ser Ala Lys Lys 385 390 395 gat atg att gat gag ttg ctt gat gca cgt caa aat tac gca ggc 1309 Asp Met Ile Asp Glu Leu Leu Asp Ala Arg Gln Asn Tyr Ala Tyr Gly 400 405 410 415 aca caa cat gac tat ttt gat cat tgg gat atc gtt gga tgg aca aga 1357 Thr Gln His Asp Tyr Phe Asp His Trp Asp Ile Val Gly Trp Thr Arg 420 425 430 gaa ggt aca tcc tca cgt cct aat tcg ggt ctt gct act att atg tcc 1405 Glu Gly Thr Ser Ser Arg Pro Asn Ser Gly Leu Ala Thr Ile Met Ser 435 440 445 aat ggt cct gga gga tca aaa tgg atg tac gta gga cag caa cat gca 1453 Asn Gly Pro Gly Gly Ser Lys Trp Met Tyr Val Gly Gln Gln His Ala 450 455 460 gga caa acg tgg aca gat tta act ggc aat cac gcg gcg tcg gtt acg 1501 Gly Thr Trp Thr Asp Leu Thr Gly Asn His Ala Ala Ser Val Thr 465 470 475 att aat ggt gat ggc tgg ggc gaa ttc ttt aca aat gga gga tct gta 1549 Ile Asn Gly Asp Gly Trp Gly Glu Phe Phe Thr Asn Gly Gly Ser Val 480 485 490 495 tcc gtg tat gtg aac caa taataaaaag ccttgagaag ggattcctcc ctaactca 1605 Ser Val Tyr Val Asn Gln 500 aggctttctt tatgtcgttt agctcaacgc ttctacgaag cttta 1650

【0050】 <210> 4 <211> 1745 <212> DNA <213> Bacillus sp. <400> 4 aactaagtaa catcgattca ggataaaagt atgcgaaacg atgcgcaaaa ctgcgcaact 60 actagcactc ttcagggact aaaccacctt ttttccaaaa atgacatcat ataaacaaat 120 ttgtctacca atcactattt aaagctgttt atgatatatg taagcgttat cattaaaagg 180 aggtatttg atg aga aga tgg gta gta gca atg ttg gca gtg tta ttt tta 231 Met Arg Arg Trp Val Val Ala Met Leu Ala Val Leu Phe Leu 5 10 ttt cct tcg gta gta gtt gca gat gga ttg aac ggt acg atg atg cag 279 Phe Pro Ser Val Val Val Ala Asp Gly Leu Asn Gly Thr Met Met Gln 15 20 25 30 tat tat gag tgg cat ttg gaa aac gac ggg cag cat tgg aat cgg ttg 327 Tyr Tyr Glu Trp His Leu Glu Asn Asp Gly Gln His Trp Asn Arg Leu 35 40 45 cac gat gat gcc gca gct ttg agt gat gct ggt att aca gct att tgg 375 His Asp Asp Ala Ala Ala Leu Ser Asp Ala Gly Ile Thr Ala Ile Trp 50 55 60 att ccg cca gcc tac aaa ggt aat agt cag gcg gat gtt ggg tac ggt 423 Ile Pro Pro Ala Tyr Lys Gly Asn Ser Gln Ala Asp Val Gly Tyr Gly 65 70 75 gca tac gat ctt tat gat tta gga gag ttc aat caa aag ggt act gtt 471 Ala Tyr Asp Leu Tyr Asp Leu Gly Glu Phe Asn Gln Lys Gly Thr Val 80 85 90 cga acg aaa tac gga act aag gca cag ctt gaa cga gct att ggg tcc 519 Arg Thr Lys Tyr Gly Thr Lys Ala Gln Leu Glu Arg Ala Ile Gly Ser 95 100 105 110 ctt aaa tct aat gat atc aat gta tac gga gat gtc gtg atg aat cat 567 Leu Lys Ser Asn Asp Ile Asn Val Tyr Gly Asp Val Val Met Asn His 115 120 125 aaa atg gga gct gat ttt acg gag gca gtg caa gct gtt caa gta aat 615 Lys Met Gly Ala Asp Phe Thr Glu Ala Val Gln Ala Val Gln Val Asn 130 135 140 cca acg aat cgt tgg cag gat att tca ggt gcc tac acg att gat gcg 663 Pro Thr Asn Arg Trp Gln Asp Ile Ser Gly Ala Tyr Thr Ile Asp Ala 145 150 155 tgg acg ggt ttc gac ttt tca ggg cgt aac aac gcc tat tca gat ttt 711 Trp Thr Gly Phe Asp Phe Ser Gly Arg Asn Asn Ala Tyr Ser Asp Phe 160 165 170 aag tgg aga tgg ttc cat ttt aat ggt gtt gac tgg gat cag cgc tat 759 Lys Trp Arg Trp Phe His Phe Asn Gly Val Asp Trp Asp Gln Arg Tyr 175 180 185 190 caa gaa aat cat att ttc cgc ttt gca aat acg aac tgg aac tgg cga 807 Gln Glu Asn His Ile Phe Arg Phe Ala Asn Thr Asn Trp Asn Trp Arg 195 200 205 gtg gat gaa gag aac ggt aat tat gat tac ctg tta gga tcg aat atc 855 Val Asp Glu Glu Asn Gly Asn Tyr Asp Tyr Leu Leu Gly Ser Asn Ile 210 215 220 gac ttt agt cat cca gaa gta caa gat gag ttg aag gat tgg ggt agc 903 Asp Phe Ser His Pro Glu Val Gln Asp Glu Leu Lys Asp Trp Gly Ser 225 230 235 tgg ttt acc gat gag tta gat ttg gat ggt tat cgt tta gat gct att 951 Trp Phe Thr Asp Glu Leu Asp Leu Asp Gly Tyr Arg Leu Asp Ala Ile 240 245 250 aaa cat att cca ttc tgg tat aca tct gat tgg gtt cgg cat cag cgc 999 Lys His Ile Pro Phe Trp Tyr Thr Ser Asp Trp Val Arg His Gln Arg 255 260 265 270 aac gaa gca gat caa gat tta ttt gtc gta ggg gaa tat tgg aag gat 1047 Asn Glu Ala Asp Gln Asp Leu Phe Val Val Gly Glu Tyr Trp Lys Asp 275 280 285 gac gta ggt gct ctc gaa ttt tat tta gat gaa atg aat tgg gag atg 1095 Asp Val Gly Ala Leu Glu Phe Tyr Leu Asp Glu Met Asn Trp Glu Met 290 295 300 tct cta ttc gat gtt cca ctt aat tat aat ttt tac cgg gct tca caa 1143 Ser Leu Phe Asp Val Pro Leu Asn Tyr Asn Phe Tyr Arg Ala Ser Gln 305 310 315 caa ggt gga agc tat gat atg cgt aat att tta cga gga tct tta gta 1191 Gln Gly Gly Ser Tyr Asp Met Arg Asn Ile Leu Arg Gly Ser Leu Val 320 325 330 gaa gcg cat ccg atg cat gca gtt acg ttt gtt gat aat cat gat act 1239 Glu Ala His Pro Met His Ala Val Thr Phe Val Asp Asn His Asp Thr 335 340 345 350 cag cca ggg gag tca tta gag tca tgg gtt gct gat tgg ttt aag cca 1287 Gln Pro Gly Glu Ser Leu Glu Ser Trp Val Ala Asp Trp Phe Lys Pro 355 360 365 ctt gct tat gcg aca att ttg acg cgt gaa ggt ggt tat cca aat gta 1335 Leu Ala Tyr Ala Thr Ile Leu Thr Arg Glu Gly Gly Tyr Pro Asn Val 370 375 380 ttt tac ggt gat tac tat ggg att cct aac gat aac att tca gct aaa 1383 Phe Tyr Gly Asp Tyr Tyr Gly Ile Pro Asn Asp Asn Ile Ser Ala Lys 385 390 395 aaa gat atg att gat gag ctg ctt gat gca cgt caa aat tac gca tat 1431 Lys Asp Met Ile Asp Glu Leu Leu Asp Ala Arg Gln Asn Tyr Ala Tyr 400 405 410 ggc acg cag cat gac tat ttt gat cat tgg gat gtt gta gga tgg act 1479 Gly Thr Gln His Asp Tyr Phe Asp His Trp Asp Val Val Gly Trp Thr 415 420 425 430 agg gaa gga tct tcc tcc aga cct aat tca ggc ctt gcg act att atg 1527 Arg Glu Gly Ser Ser Ser Arg Pro Asn Ser Gly Leu Ala Thr Ile Met 435 440 445 tcg aat gga cct ggt ggt tcc aag tgg atg tat gta gga cgt cag aat 1575 Ser Asn Gly Pro Gly Gly Ser Lys Trp Met Tyr Val Gly Arg Gln Asn 450 455 460 gca gga caa aca tgg aca gat tta act ggt aat aac gga gcg tcc gtt 1623 Ala Gly Gln Thr Trp Thr Asp Leu Thr Gly Asn Asn Gly Ala Ser Val 465 470 475 aca att aat ggc gat gga tgg ggc gaa ttc ttt acg aat gga gga tct 1671 Thr Ile Asn Gly Asp Gly Trp Gly Glu Phe Phe Thr Asn Gly Gly Ser 480 485 490 gta tcc gtg tac gtg aac caa taacaaaaag ccttgagaag ggattcctcc ctaa 1726 Val Ser Val Tyr Val Asn Gln 495 500 ctcaaggctt tctttatgt 1745<210> 4 <211> 1745 <212> DNA <213> Bacillus sp. <400> 4 aactaagtaa catcgattca ggataaaagt atgcgaaacg atgcgg gaaaaaa ctgcgcaact 60 actagcactc ttcagatt catattacctatt ttttccaaaa atgacatgattactaaaccacctt ttttccaaaa atgacatgattactattg tgg gta gta gca atg ttg gca gtg tta ttt tta 231 Met Arg Arg Trp Val Val Ala Met Leu Ala Val Leu Phe Leu 5 10 ttt cct tcg gta gta gtt gca gat gga ttg aac ggt acg atg atg cag 279 Phe Pro Ser Val Val Ala Asp Gly Leu Asn Gly Thr Met Met Gln 15 20 25 30 tat tat gag tgg cat ttg gaa aac gac ggg cag cat tgg aat cgg ttg 327 Tyr Tyr Gyr Trp His Leu Glu Asn Asp Gly Gln His Trp Asn Arg Leu 35 40 45 cac gat gat gcc gca gct ttg agt gat gct ggt att aca gct att tgg 375 His Asp Asp Ala Ala Ala Leu Ser Asp Ala Gly Ile Thr Ala Ile Trp 50 55 60 att ccg cca gcc tac aaa ggt aat agt cag gcg gat gtt ggg tac ggt 423 Ile Pro Pro Ala Tyr Lys Gly Asn Ser Gln Ala Asp Val Gly Tyr Gly 65 70 75 gca tac gat ctt ta t gat tta gga gag ttc aat caa aag ggt act gtt 471 Ala Tyr Asp Leu Tyr Asp Leu Gly Glu Phe Asn Gln Lys Gly Thr Val 80 85 90 cga acg aaa tac gga act aag gca cag ctt gaa cga gct att ggg tcc 519 Arg Thr Lys Tyr Gly Thr Lys Ala Gln Leu Glu Arg Ala Ile Gly Ser 95 100 105 110 ctt aaa tct aat gat atc aat gta tac gga gat gtc gtg atg aat cat 567 Leu Lys Ser Asn Asp Ile Asn Val Tyr Gly Asp Val Val Met Asn His 115 120 125 aaa atg gga gct gat ttt acg gag gca gtg caa gct gtt caa gta aat 615 Lys Met Gly Ala Asp Phe Thr Glu Ala Val Gln Ala Val Gln Val Asn 130 135 140 cca acg aat cgt tgg cag gat att tca ggt gcc tac acg att gat gcg 663 Pro Thr Asn Arg Trp Gln Asp Ile Ser Gly Ala Tyr Thr Ile Asp Ala 145 150 155 tgg acg ggt ttc gac ttt tca ggg cgt aac aac gcc tat tca gat ttt 711 Trp Thr Gly Phe Asp Phe Ser Gly Arg Asn Asn Ala Tyr Ser Asp Phe 160 165 170 aag tgg aga tgg ttc cat ttt aat ggt gtt gac tgg gat cag cgc tat 759 Lys Trp Arg Trp Phe His Phe Asn Gly Val Asp Trp Asp Gln Arg Tyr 175 180 185 190 caa ga a aat cat att ttc cgc ttt gca aat acg aac tgg aac tgg cga 807 Gln Glu Asn His Ile Phe Arg Phe Ala Asn Thr Asn Trp Asn Trp Arg 195 200 205 gtg gat gaa gag aac ggt aat tat gat tac ctg tta ggatc atc 855 Val Asp Glu Glu Asn Gly Asn Tyr Asp Tyr Leu Leu Gly Ser Asn Ile 210 215 220 gac ttt agt cat cca gaa gta caa gat gag ttg aag gat tgg ggt agc 903 Asp Phe Ser His Pro Glu Val Gln Asp Glu Leu Lys Asp Trp Gly Ser 225 230 235 tgg ttt acc gat gag tta gat ttg gat ggt tat cgt tta gat gct att 951 Trp Phe Thr Asp Glu Leu Asp Leu Asp Gly Tyr Arg Leu Asp Ala Ile 240 245 250 aaa cat att cca ttc tgg tat aca tct gat tgg gtt cgg cat cag cgc 999 Lys His Ile Pro Phe Trp Tyr Thr Ser Asp Trp Val Arg His Gln Arg 255 260 265 270 aac gaa gca gat caa gat tta ttt gtc gta ggg gaa tat tgg aag gat 1047 Asn Glu Ala Asp Gln Asp Leu Phe Val Val Gly Glu Tyr Trp Lys Asp 275 280 285 gac gta ggt gct ctc gaa ttt tat tta gat gaa atg aat tgg gag atg 1095 Asp Val Gly Ala Leu Glu Phe Tyr Leu Asp Glu Met Asn Trp Glu Mlu 295 300 tct cta ttc gat gtt cca ctt aat tat aat ttt tac cgg gct tca caa 1143 Ser Leu Phe Asp Val Pro Leu Asn Tyr Asn Phe Tyr Arg Ala Ser Gln 305 310 315 caa ggt gga agc tat gat atg cgt aat att tta cga gga tct tta gta 1191 Gln Gly Gly Ser Tyr Asp Met Arg Asn Ile Leu Arg Gly Ser Leu Val 320 325 330 gaa gcg cat ccg atg cat gca gtt acg ttt gtt gat aat cat gat act 1239 Glu Ala His Pro Met His Ala Val Thr Phe Val Asp Asn His Asp Thr 335 340 345 350 350 cag cca ggg gag tca tta gag tca tgg gtt gct gat tgg ttt aag cca 1287 Gln Pro Gly Glu Ser Leu Glu Ser Trp Val Ala Asp Trp Phe Lys Pro 355 360 365 ctt gct tat gcg aca att ttg acg cgt gaa ggt ggt tat cca aat gta 1335 Leu Ala Tyr Ala Thr Ile Leu Thr Arg Glu Gly Gly Tyr Pro Asn Val 370 375 380 ttt tac ggt gat tac tat ggg att cct aac gat aac att tca gct aaa Phe Tyr Gly Asp Tyr Tyr Gly Ile Pro Asn Asp Asn Ile Ser Ala Lys 385 390 395 aaa gat atg att gat gag ctg ctt gat gca cgt caa aat tac gca tat 1431 Lys Asp Met Ile Asp Glu Leu Leu Asp Ala Arg Gln A sn Tyr Ala Tyr 400 405 410 ggc acg cag cat gac tat ttt gat cat tgg gat gtt gta gga tgg act 1479 Gly Thr Gln His Asp Tyr Phe Asp His Trp Asp Val Val Gly Trp Thr 415 420 425 430 agg gaa gga tct tcc tcc aga cct aat tca ggc ctt gcg act att atg 1527 Arg Glu Gly Ser Ser Ser Arg Pro Asn Ser Gly Leu Ala Thr Ile Met 435 440 445 tcg aat gga cct ggt ggt tcc aag tgg atg tat gta gga cgt cag aat 1575 Ser Asn Gly Pro Gly Gly Ser Lys Trp Met Tyr Val Gly Arg Gln Asn 450 455 460 gca gga caa aca tgg aca gat tta act ggt aat aac gga gcg tcc gtt 1623 Ala Gly Gln Thr Trp Thr Asp Leu Thr Gly Asn Asn Gly Ala Ser Val 465 470 475 aca att aat ggc gat gga tgg ggc gaa ttc ttt acg aat gga gga tct 1671 Thr Ile Asn Gly Asp Gly Trp Gly Glu Phe Phe Thr Asn Gly Gly Ser 480 485 490 gta tcc gtg tac gtg aac caaccagacaag cc Val Ser Val Tyr Val Asn Gln 495 500 ctcaaggctt tctttatgt 1745

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のアルカリ液化型アミラーゼ(K36及
びK38)と既知の洗剤用アミラーゼのEDTA処理濃
度と残存活性との関係を示す図面である。
FIG. 1 is a drawing showing the relationship between the EDTA treatment concentration and the residual activity of alkaline liquefied amylase (K36 and K38) of the present invention and known detergent amylase.

【図2】本発明のアルカリ液化型アミラーゼ(K36及
びK38)と既知の洗剤用アミラーゼのEGTA処理濃
度と残存活性との関係を示す図面である。
FIG. 2 is a graph showing the relationship between the EGTA treatment concentration and the residual activity of alkaline liquefied amylase (K36 and K38) of the present invention and known detergent amylase.

【図3】本発明のアルカリ液化型アミラーゼK36のゼ
オライト処理濃度と残存活性との関係を示す図面であ
る。
FIG. 3 is a drawing showing the relationship between the concentration of zeolite treated alkaline liquefied amylase K36 of the present invention and residual activity.

【図4】本発明のアルカリ液化型アミラーゼK36のク
エン酸処理濃度と残存活性との関係を示す図面である。
FIG. 4 is a drawing showing the relationship between the concentration of citric acid treated alkaline liquefied amylase K36 of the present invention and the residual activity.

【図5】本発明のアルカリ液化型アミラーゼK38のゼ
オライト処理濃度と残存活性との関係を示す図面であ
る。
FIG. 5 is a graph showing the relationship between the concentration of zeolite treated alkaline liquefied amylase K38 of the present invention and residual activity.

【図6】本発明のアルカリ液化型アミラーゼK38のク
エン酸処理濃度と残存活性との関係を示す図面である。
FIG. 6 is a drawing showing the relationship between the concentration of citric acid treatment of alkaline liquefied amylase K38 of the present invention and residual activity.

【図7】本発明のアルカリ液化型アミラーゼK36の反
応pHと相対活性との関係を示す図面である。
FIG. 7 is a drawing showing the relationship between the reaction pH and the relative activity of the alkaline liquefied amylase K36 of the present invention.

【図8】本発明のアルカリ液化型アミラーゼK38の反
応pHと相対活性との関係を示す図面である。
FIG. 8 is a drawing showing the relationship between the reaction pH and the relative activity of the alkaline liquefied amylase K38 of the present invention.

【図9】本発明のアルカリ液化型アミラーゼ(K36及
びK38)と既知の洗剤用アミラーゼのH22処理時間
と残存活性との関係を示す図面である。
FIG. 9 is a drawing showing the relationship between the H 2 O 2 treatment time and the residual activity of the alkaline liquefied amylase (K36 and K38) of the present invention and the known detergent amylase.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C12R 1:07) (72)発明者 林 康弘 栃木県芳賀郡市貝町赤羽2606 花王株式会 社研究所内 (72)発明者 五十嵐 一暁 栃木県芳賀郡市貝町赤羽2606 花王株式会 社研究所内 (72)発明者 遠藤 圭二 栃木県芳賀郡市貝町赤羽2606 花王株式会 社研究所内 (72)発明者 尾崎 克也 栃木県芳賀郡市貝町赤羽2606 花王株式会 社研究所内 Fターム(参考) 4B024 AA03 AA05 BA13 CA01 CA20 DA07 EA04 FA15 GA11 GA19 HA03 4B050 CC01 CC03 DD02 EE01 FF03E FF04E FF05E FF11E FF12E FF13E KK02 KK06 KK14 LL04 4H003 EC01 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) C12R 1:07) (72) Inventor Yasuhiro Hayashi 2606 Kabane-cho, Akaba, Kaga-cho, Haga-gun, Tochigi Prefecture Kao Corporation Research Laboratory (72) Invention Kazuaki Igarashi 2606, Kabane-cho, Akaga-cho, Haga-gun, Tochigi Pref. In Kao Co., Ltd. (72) Inventor Keiji Endo 2606, Kabane-cho, Akabane-cho, Haga-gun, Tochigi pref. In Kao Co., Ltd. (72) Inventor Katsuya Ozaki, Haga-gun, Tochigi pref. 2606 Akabane, Ichigai-cho F-term in Kao Corporation Research Laboratory (Reference) 4B024 AA03 AA05 BA13 CA01 CA20 DA07 EA04 FA15 GA11 GA19 HA03 4B050 CC01 CC03 DD02 EE01 FF03E FF04E FF05E FF11E FF12E FF13E KK02 KK04 KK14 EC04

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 1〜100mMのEDTAあるいはEGT
A存在下、pH10、45℃、30分間処理後の残存活性
が70%以上であるアルカリ液化型アミラーゼ。
1. EDTA or EGT of 1 to 100 mM
An alkaline liquefied amylase having a residual activity of 70% or more after treatment at pH 10, 45 ° C. for 30 minutes in the presence of A.
【請求項2】 更に次の酵素学的性質を有するものであ
る請求項1記載のアルカリ液化型アミラーゼ。 1)最適作用pH 最適作用pHが8.0を超える(可溶性澱粉を基質、50
℃、15分間反応)。 2)作用 澱粉、アミロース、アミロペクチン及びそれらの部分分
解物のα−1,4グルコシド結合を分解し、アミロース
からはグルコース(G1)、マルトース(G2)、マル
トトリオース(G3)、マルトテトラオース(G4)、
マルトペンタオース(G5)、マルトヘキサオース(G
6)及びマルトヘプタオース(G7)を生成する。ただ
しプルランには作用しない。 3)pH安定性(ブリットン−ロビンソン緩衝液) 40℃、30分間処理条件下で、pH6.5〜11.0の
範囲で70%以上の残存活性を示す。 4)作用温度範囲及び最適作用温度 20〜80℃の広範囲で作用し、最適作用温度は50〜
60℃である。 5)温度安定性 50mMグリシン水酸化ナトリウム緩衝液(pH10)中、
30分間処理で、40℃で80%以上の残存活性を示
し、45℃でも約60%の残存活性を示す。
2. The liquefied alkaline amylase according to claim 1, which further has the following enzymatic properties. 1) Optimum action pH Optimum action pH exceeds 8.0 (soluble starch as substrate, 50
C. for 15 minutes). 2) Action The α-1,4 glucoside bond of starch, amylose, amylopectin and their partially decomposed products is degraded, and glucose (G1), maltose (G2), maltotriose (G3), maltotetraose ( G4),
Maltopentaose (G5), maltohexaose (G
6) and maltoheptaose (G7). However, it does not act on pullulan. 3) pH stability (Britton-Robinson buffer) Shows a residual activity of 70% or more in the pH range of 6.5 to 11.0 under treatment conditions at 40 ° C. for 30 minutes. 4) Working temperature range and optimum working temperature It works over a wide range of 20 to 80 ° C, and the optimum working temperature is 50 to 80 ° C.
60 ° C. 5) Temperature stability in 50 mM glycine sodium hydroxide buffer (pH 10)
It shows a residual activity of 80% or more at 40 ° C and a residual activity of about 60% even at 45 ° C after treatment for 30 minutes.
【請求項3】 配列番号1又は2に記載のアミノ酸配列
と80%以上の相同性を有するアミノ酸配列を有するも
のである請求項1又は2記載のアルカリ液化型アミラー
ゼ。
3. The alkaline liquefied amylase according to claim 1, which has an amino acid sequence having 80% or more homology with the amino acid sequence represented by SEQ ID NO: 1 or 2.
【請求項4】 請求項1〜3のいずれか1項記載のアル
カリ液化型アミラーゼをコードするDNA断片。
4. A DNA fragment encoding the alkaline liquefied amylase according to any one of claims 1 to 3.
【請求項5】 請求項1〜3のいずれか1項記載のアル
カリ液化型アミラーゼを含有する洗浄剤組成物。
5. A detergent composition comprising the alkaline liquefied amylase according to claim 1.
JP36248798A 1998-12-21 1998-12-21 New amylase Expired - Fee Related JP4077095B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP36248798A JP4077095B2 (en) 1998-12-21 1998-12-21 New amylase
US09/465,519 US6403355B1 (en) 1998-12-21 1999-12-16 Amylases
EP99125399A EP1022334B1 (en) 1998-12-21 1999-12-20 Novel amylases
DK99125399T DK1022334T3 (en) 1998-12-21 1999-12-20 Hitherto unknown amylases
DE69936760T DE69936760T2 (en) 1998-12-21 1999-12-20 New amylases
CNA2004100592918A CN1552852A (en) 1998-12-21 1999-12-21 Amylases
CN99126451.7A CN1218039C (en) 1998-12-21 1999-12-21 Amylase
US10/136,272 US6916645B2 (en) 1998-12-21 2002-05-02 Amylases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36248798A JP4077095B2 (en) 1998-12-21 1998-12-21 New amylase

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007287227A Division JP4153553B2 (en) 2007-11-05 2007-11-05 New amylase

Publications (2)

Publication Number Publication Date
JP2000184882A true JP2000184882A (en) 2000-07-04
JP4077095B2 JP4077095B2 (en) 2008-04-16

Family

ID=18476977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36248798A Expired - Fee Related JP4077095B2 (en) 1998-12-21 1998-12-21 New amylase

Country Status (1)

Country Link
JP (1) JP4077095B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004508815A (en) * 2000-08-01 2004-03-25 ノボザイムス アクティーゼルスカブ Alpha-amylase mutants with altered properties
US6743616B2 (en) 2000-10-11 2004-06-01 Kao Corporation Highly productive alpha-amylases
WO2005085437A1 (en) * 2004-03-05 2005-09-15 Kao Corporation Mutant bacterium belonging to the genus bacillus
WO2008102421A1 (en) 2007-02-22 2008-08-28 Kao Corporation Recombinant microorganism
EP2206788A1 (en) 2003-11-07 2010-07-14 Kao Corporation Recombinant microorganism
JP2010187588A (en) * 2009-02-17 2010-09-02 Kao Corp METHOD FOR PRODUCING alpha-AMYLASE

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004508815A (en) * 2000-08-01 2004-03-25 ノボザイムス アクティーゼルスカブ Alpha-amylase mutants with altered properties
JP2011224015A (en) * 2000-08-01 2011-11-10 Novozyme As α-AMYLASE MUTANT WITH ALTERED PROPERTY
JP4855632B2 (en) * 2000-08-01 2012-01-18 ノボザイムス アクティーゼルスカブ Α-Amylase mutants with altered properties
US6743616B2 (en) 2000-10-11 2004-06-01 Kao Corporation Highly productive alpha-amylases
US7297527B2 (en) 2000-10-11 2007-11-20 Kao Corporation Highly productive α-amylases
EP2206788A1 (en) 2003-11-07 2010-07-14 Kao Corporation Recombinant microorganism
WO2005085437A1 (en) * 2004-03-05 2005-09-15 Kao Corporation Mutant bacterium belonging to the genus bacillus
US7855065B2 (en) 2004-03-05 2010-12-21 Kao Corporation Mutant bacterium belonging to the genus Bacillus
WO2008102421A1 (en) 2007-02-22 2008-08-28 Kao Corporation Recombinant microorganism
JP2008200004A (en) * 2007-02-22 2008-09-04 Kao Corp Recombinant microorganism
US8293516B2 (en) 2007-02-22 2012-10-23 Kao Corporation Recombinant microorganism
JP2010187588A (en) * 2009-02-17 2010-09-02 Kao Corp METHOD FOR PRODUCING alpha-AMYLASE

Also Published As

Publication number Publication date
JP4077095B2 (en) 2008-04-16

Similar Documents

Publication Publication Date Title
EP1022334B1 (en) Novel amylases
AU718509B2 (en) An improved laundry detergent composition comprising amylase
JP3025627B2 (en) Liquefied alkaline α-amylase gene
US20080026976A1 (en) Highly productive alpha-amylases
US20090226961A1 (en) Mutant alpha-amylases
JP2001526038A (en) Bacillus licheniformis mutant α-amylase
JP2001506496A (en) Proteins with improved stability
WO1994026881A1 (en) LIQUEFYING ALKALINE α-AMYLASE, PROCESS FOR PRODUCING THE SAME, AND DETERGENT COMPOSITION CONTAINING THE SAME
JP4077095B2 (en) New amylase
JP4220611B2 (en) Mutant α-amylase
JP2000184883A (en) New amylase
JPH03108482A (en) New alkali pullulanase y with alpha-amylase activity, microorganism capable of producing same and production of new alkali pullulanase y
JP4417532B2 (en) Mutant α-amylase
JP4153553B2 (en) New amylase
JP4495789B2 (en) Mutant pullulanase
JP2893486B2 (en) Liquefied alkaline α-amylase, method for producing the same, and detergent composition containing the same
JP2000023667A (en) Alkali-resistant amylase
JP3403255B2 (en) Detergent composition
JPH0699714B2 (en) Detergent composition for automatic dishwasher
JP2000023666A (en) Alkali amylase
JPH0856662A (en) Amylase, its production and microbe capable of producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041020

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080131

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees