JP2000183815A - Optical transmission system - Google Patents

Optical transmission system

Info

Publication number
JP2000183815A
JP2000183815A JP10352835A JP35283598A JP2000183815A JP 2000183815 A JP2000183815 A JP 2000183815A JP 10352835 A JP10352835 A JP 10352835A JP 35283598 A JP35283598 A JP 35283598A JP 2000183815 A JP2000183815 A JP 2000183815A
Authority
JP
Japan
Prior art keywords
dispersion
channel
signal light
chromatic dispersion
transmission system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10352835A
Other languages
Japanese (ja)
Inventor
Kunihiko Mori
邦彦 森
Ippei Shake
一平 社家
Yoshiaki Yamabayashi
由明 山林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10352835A priority Critical patent/JP2000183815A/en
Publication of JP2000183815A publication Critical patent/JP2000183815A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively use the band for wavelength-division multiplex transmission by effectively suppressing crosstalk from an adjacent channel and shortening wavelength intervals. SOLUTION: The optical transmission system multiplexes and transmits by a transmission part signal lights of N channels generated by modulating lights of wavelengths λ1 to λN (N: integer larger than 1, λ1<λ2<...<λN) with signals of channels 1 to N to an optical fiber transmission line, demultiplexes the signal lights of the N channels after wavelength-multiplex transmission through the optical fiber transmission line, and detects the signal lights of the respective channels; and the transmission part 10 is equipped with dispersion imparting parts 12-1 to 12-n which impart mutually different wavelength dispersion to the signal lines of at least adjacent channels (wavelengths) and a reception part 20 is equipped with dispersion compensators 22-1 to 22-n which compensate the wavelength dispersion imparted to the signal lights of the respective channels and the wavelength dispersion of the optical fiber transmission line.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、波長分割多重を用
いた光伝送システムに関する。
[0001] The present invention relates to an optical transmission system using wavelength division multiplexing.

【0002】[0002]

【従来の技術】図9,図10,図11は、波長分割多重
を用いた従来の光伝送システムの構成例を示す。各図に
おいて、送信部50と受信部60が光ファイバ伝送路1
を介して接続される。
2. Description of the Related Art FIGS. 9, 10 and 11 show examples of the configuration of a conventional optical transmission system using wavelength division multiplexing. In each figure, the transmission unit 50 and the reception unit 60 are connected to the optical fiber transmission line 1.
Connected via

【0003】図9,10に示す送信部50では、光変調
器51−1〜51−Nに入力される波長λ1 〜λN の光
をチャネル1〜Nの信号でそれぞれ変調し、光合波器5
2で合波して光ファイバ伝送路1に送出する。図9に示
す受信部60では、光ファイバ伝送路1を介して伝送さ
れた波長多重信号光を分散補償器61に入力し、光ファ
イバ伝送路1の波長分散を補償して光分波器62に入力
する。光分波器62で分波された各波長の信号光は、そ
れぞれ対応する光受信器63−1〜63−Nで検波され
る。図10に示す受信部60は、光分波器62の後段に
分散補償器61−1〜61−Nを配置し、各チャネルご
とに光ファイバ伝送路1の波長分散を補償する構成であ
る。
In a transmitting section 50 shown in FIGS. 9 and 10, light having wavelengths λ 1 to λ N input to optical modulators 51-1 to 51- N is modulated by signals of channels 1 to N, respectively, and optical multiplexing is performed. Vessel 5
The signal is multiplexed at 2 and transmitted to the optical fiber transmission line 1. 9, the wavelength division multiplexed signal light transmitted through the optical fiber transmission line 1 is input to a dispersion compensator 61, and the chromatic dispersion of the optical fiber transmission line 1 is compensated for by an optical demultiplexer 62. To enter. The signal light of each wavelength demultiplexed by the optical demultiplexer 62 is detected by the corresponding one of the optical receivers 63-1 to 63-N. The receiving unit 60 shown in FIG. 10 has a configuration in which dispersion compensators 61-1 to 61-N are arranged at the subsequent stage of the optical demultiplexer 62 to compensate for the chromatic dispersion of the optical fiber transmission line 1 for each channel.

【0004】図11に示す光伝送システムは、図9,1
0のように受信部60側で波長分散を補償する構成では
なく、送信部50に、光ファイバ伝送路1の波長分散と
逆符号の波長分散を与える分散付与部53を備える構成
である。光合波器52で合波された波長多重信号光に予
め波長分散を付与することにより、受信部60に波長分
散補償された波長多重信号光が受信される。
[0004] The optical transmission system shown in FIG.
Instead of the configuration that compensates for the chromatic dispersion on the receiving unit 60 side as in the case of 0, the transmitting unit 50 is provided with a dispersion imparting unit 53 that provides the chromatic dispersion of the opposite sign to the chromatic dispersion of the optical fiber transmission line 1. The wavelength multiplexed signal light having been subjected to the chromatic dispersion compensation is received by the receiving unit 60 by giving wavelength dispersion to the wavelength multiplexed signal light multiplexed by the optical multiplexer 52 in advance.

【0005】なお、送信部50に備える分散付与部53
と、受信部60に備える分散補償器61とを併用する構
成をとる場合もある。
[0005] The dispersion imparting unit 53 provided in the transmitting unit 50
And a dispersion compensator 61 provided in the receiving unit 60 in some cases.

【0006】[0006]

【発明が解決しようとする課題】従来の波長分散補償を
行う構成では、各チャネルの波長間隔が近接すると漏話
が発生する問題がある。すなわち、第nチャネル(2≦
n≦N−1)の信号光が分散補償される条件は、隣接す
る第n−1チャネルおよび第n+1チャネルの信号光が
分散補償される条件とほぼ等しい。そのため、図12,
13に示すように、チャネルnの分散補償器(チャネル
nの信号光に対する分散補償)では、隣接するチャネル
n−1およびチャネルn+1からの漏れ光に対しても、
チャネルnの信号光と同時に分散補償を行うことにな
り、漏れ光レベルが大きくなる。したがって、チャネル
nの信号光は大きなアイ開口を得ることができず、受信
特性を劣化させる要因となっていた。
In the conventional configuration for performing chromatic dispersion compensation, there is a problem that crosstalk occurs when the wavelength intervals of the respective channels are close to each other. That is, the n-th channel (2 ≦
The condition under which the signal light of (n ≦ N−1) is dispersion-compensated is substantially equal to the condition under which the signal light of the adjacent (n−1) th channel and the (n + 1) th channel is dispersion-compensated. Therefore, FIG.
As shown in FIG. 13, in the dispersion compensator of channel n (dispersion compensation for signal light of channel n), even for leakage light from adjacent channels n−1 and n + 1,
Dispersion compensation is performed at the same time as the signal light of the channel n, and the leakage light level increases. Therefore, the signal light of the channel n cannot obtain a large eye opening, which is a factor of deteriorating the reception characteristics.

【0007】本発明は、波長分割多重伝送において、隣
接チャネルからの漏話を効果的に抑圧し、波長間隔を近
接させて帯域の有効利用を図ることができる光伝送シス
テムを提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an optical transmission system capable of effectively suppressing crosstalk from an adjacent channel in wavelength division multiplexing transmission, making wavelength intervals close to each other, and effectively using a band. I do.

【0008】[0008]

【課題を解決するための手段】本発明の光伝送システム
は、送信部で波長λ1〜λN(Nは2以上の整数、λ1
λ2 <…<λN )の光をチャネル1〜Nの信号でそれぞ
れ変調したNチャネルの信号光を合波して光ファイバ伝
送路に送信し、この光ファイバ伝送路を介して波長多重
伝送されたNチャネルの信号光を分波し、各チャネルの
信号光をそれぞれ検波する光伝送システムにおいて、送
信部に、少なくとも隣接するチャネル(波長)の信号光
に互いに異なる波長分散を与える分散付与部を備え、受
信部に、送信部で各チャネルの信号光に与えた波長分散
および光ファイバ伝送路の波長分散を補償する分散補償
器を備える。
In the optical transmission system according to the present invention, the wavelengths λ 1 to λ N (N is an integer of 2 or more, λ 1 <
[lambda] 2 <... <[lambda] N ), the N-channel signal light obtained by modulating the light of each of channels 1 to N is multiplexed and transmitted to an optical fiber transmission line. In the optical transmission system for demultiplexing the N-channel signal light and detecting the signal light of each channel, a dispersion imparting unit that gives a transmitting unit at least different chromatic dispersion to at least signal light of an adjacent channel (wavelength). And a dispersion compensator for compensating chromatic dispersion given to signal light of each channel by the transmission unit and chromatic dispersion of the optical fiber transmission line.

【0009】図2は、本発明の光伝送システムにおける
隣接チャネルからの漏れ光の抑圧原理を示す。送信部の
分散付与部において、隣接するチャネルk−1,k,k
+1の信号光にそれぞれ波長分散Bk-1 ,Bk ,Bk+1
を与え、光ファイバ伝送路に送信する。光ファイバ伝送
路ではさらに波長分散Dが付与され、それぞれD+B
k-1 ,D+Bk ,D+Bk+1 の波長分散が与えられるこ
とになる。受信部のチャネルkの分散補償器には、波長
分散D+Bk が付与されたチャネルkの信号光と、波長
分散D+Bk-1 が付与されたチャネルk−1からの漏れ
光および波長分散D+Bk+ 1 が付与されたチャネルk+
1からの漏れ光が入力される。
FIG. 2 shows the principle of suppressing light leaked from an adjacent channel in the optical transmission system of the present invention. In the dispersion imparting unit of the transmitting unit, adjacent channels k-1, k, k
The chromatic dispersions B k−1 , B k , and B k + 1 are respectively added to the +1 signal light.
And transmit it to the optical fiber transmission line. In the optical fiber transmission line, chromatic dispersion D is further provided, and D + B
k−1 , D + B k , and D + B k + 1 are provided. The dispersion compensator of the channel k of the receiver, and the signal light of channels k of wavelength dispersion D + B k is applied, the leakage light and the wavelength dispersion from channel k-1 chromatic dispersion D + B k-1 is assigned D + B k + channel k, 1 has been granted +
Light leaked from 1 is input.

【0010】ここで、チャネルkの分散補償器の波長分
散値を−D−Bk とすると、チャネルkの信号光に付与
された波長分散は、 D+Bk−D−Bk =0 …(1) と補償される。一方、チャネルk−1およびチャネルk
+1の信号光に付与された波長分散は、それぞれ D+Bk-1−D−Bk =Bk-1−Bk …(2) D+Bk+1−D−Bk =Bk+1−Bk …(3) が残る。
[0010] Here, when the wavelength dispersion value of the dispersion compensator of the channel k and -D-B k, the chromatic dispersion imparted to the signal light of the channel k is, D + B k -D-B k = 0 ... (1 ). On the other hand, channel k-1 and channel k
Wavelength dispersion given to the optical signal of +1, respectively D + B k-1 -D- B k = B k-1 -B k ... (2) D + B k + 1 -D-B k = B k + 1 -B k ... (3) remains.

【0011】したがって、一般的に、隣接するチャネル
k,k+1の信号光に与える波長分散の値Bk [ps/nm]
,Bk+1 [ps/nm] は、ある非負の値Δ[ps/nm] に対し
て、 |Bk+1−Bk|>Δ …(4) となるように設定すれば、チャネルkの分散補償器にお
いてチャネルk−1およびチャネルk+1からの漏れ光
のピーク強度を大幅に低減することができる。なお、こ
こでは、隣接するチャネルの信号光が光ファイバ伝送路
から同量の波長分散Dを受けると仮定している。
Therefore, generally, the value of the chromatic dispersion B k [ps / nm] given to the signal light of the adjacent channels k and k + 1
, B k + 1 [ps / nm] are set such that for a certain non-negative value Δ [ps / nm], | B k + 1 −B k |> Δ (4) In the k dispersion compensators, the peak intensity of light leaked from channels k-1 and k + 1 can be significantly reduced. Here, it is assumed that the signal light of the adjacent channel receives the same amount of chromatic dispersion D from the optical fiber transmission line.

【0012】これにより、チャネルkの信号光に対して
隣接チャネルからの漏れ光を効果的に低減し、アイ開口
劣化を抑圧することができる。しかも、送信部から送信
する各チャネルの信号光にプリチャープを与えてピーク
強度を小さくしているので、光ファイバ伝送路中におけ
る非線形光学効果の影響を抑圧することができる。
Thus, it is possible to effectively reduce the leakage light from the adjacent channel with respect to the signal light of the channel k and suppress the eye opening deterioration. Moreover, since the signal intensity of each channel transmitted from the transmission unit is pre-chirped to reduce the peak intensity, it is possible to suppress the effect of the nonlinear optical effect in the optical fiber transmission line.

【0013】なお、ある非負の値Δ[ps/nm] は、光速を
C [nm/ps]、信号光のデューティ幅をT0 [ps]としたと
きに、 Δ>2πCT0 2/λk 2 で与えられる。これは、分散性媒質による信号光の歪み
の度合いを与える式 T1 =T0[1+(Dλ2/(2πCT0 2))2]1/2 において、Dλ2/(2πCT0 2) =1となる波長分散量
Dとして求まる。ここで、T0 ,T1 は分散性媒質への
入射信号光および出射信号光の時間幅、Dは分散性媒質
の総波長分散量を表す(参考文献:G.P.Agrawal 著、
「Nonlinear FiberOptics(第2版)」、65頁、式(3.2.
10)) 。
Note that a certain non-negative value Δ [ps / nm] is Δ> 2πCT 0 2 / λ k when the light speed is C [nm / ps] and the duty width of the signal light is T 0 [ps]. Given by 2 . This is because Dλ 2 / (2πCT 0 2 ) = 1 in the equation T 1 = T 0 [1+ (Dλ 2 / (2πCT 0 2 )) 2 ] 1/2 which gives the degree of signal light distortion due to the dispersive medium. Is obtained as the chromatic dispersion amount D. Here, T 0 and T 1 represent the time width of the incident signal light and the output signal light to the dispersive medium, and D represents the total amount of chromatic dispersion of the dispersive medium (reference: GPAgrawal,
“Nonlinear FiberOptics (2nd edition)”, p. 65, equation (3.2.
Ten)) .

【0014】[0014]

【発明の実施の形態】(第1の実施形態)図1は、本発
明の光伝送システムの第1の実施形態を示す。図におい
て、送信部10は、波長λ1 〜λN (λ1 <λ2 <…<
λN )の光をチャネル1〜Nの信号でそれぞれ変調する
光変調器11−1〜11−Nと、各チャネルの信号光に
波長分散を与える分散付与部12−1〜12−Nと、各
分散付与部を通過した信号光を合波して光ファイバ伝送
路1に送出する光合波器13により構成される。
(First Embodiment) FIG. 1 shows a first embodiment of the optical transmission system of the present invention. In the figure, the transmitting unit 10 has wavelengths λ 1 to λ N12 <... <
λ N ), optical modulators 11-1 to 11 -N for modulating light of channels 1 to N, respectively, dispersion providing units 12-1 to 12 -N for providing wavelength dispersion to signal light of each channel, It is composed of an optical multiplexer 13 that multiplexes the signal light that has passed through each dispersion imparting unit and sends the multiplexed signal light to the optical fiber transmission line 1.

【0015】受信部20は、光ファイバ伝送路1を介し
て伝送された波長多重信号光を各チャネルの信号光に分
波する光分波器21と、各チャネルの信号光の分散補償
を行う分散補償器22−1〜22−Nと、分散補償され
た各チャネルの信号光を検波する光受信器23−1〜2
3−Nにより構成される。
The receiving section 20 performs an optical demultiplexer 21 for demultiplexing the wavelength-division multiplexed signal light transmitted through the optical fiber transmission line 1 into signal light of each channel, and performs dispersion compensation of the signal light of each channel. Dispersion compensators 22-1 to 22-N and optical receivers 23-1 to 23-2 for detecting the signal light of each channel whose dispersion has been compensated.
3-N.

【0016】ここで、分散付与部12−1〜12−Nの
各波長分散値を+B1 〜+BN とし、光ファイバ伝送路
1の波長分散値を+Dとすると、分散補償器22−1〜
22−Nの波長分散値は−D−B1 〜−D−BN とな
る。なお、+B1 〜+BN はすべて異なった値である必
要はなく、少なくとも隣接するチャネルの信号光に与え
る波長分散値が互いに異なっていればよい。すなわち、
チャネルkの信号光およびチャネルk+1の信号光に与
える波長分散の値Bk [ps/nm] およびBk+1 [ps/nm]
は、ある非負の値Δ[ps/nm] に対して、 |Bk+1−Bk|>Δ の関係を満たせばよい。
Here, assuming that the chromatic dispersion values of the dispersion imparting units 12-1 to 12-N are + B 1 to + B N and the chromatic dispersion value of the optical fiber transmission line 1 is + D, the dispersion compensators 22-1 to 12-N.
Wavelength dispersion value of 22-N becomes -D-B 1 ~-D- B N. It is not necessary that all of + B 1 to + B N have different values, and it is sufficient that at least the chromatic dispersion values given to the signal lights of the adjacent channels are different from each other. That is,
Chromatic dispersion values B k [ps / nm] and B k + 1 [ps / nm] given to the signal light of channel k and the signal light of channel k + 1
Satisfies the relationship | B k + 1 −B k |> Δ for a certain non-negative value Δ [ps / nm].

【0017】例えば、送信部10の分散付与部12にお
いて、隣接するチャネルの信号光に与える波長分散の符
号が異なるように設定すると、図3に示すように、チャ
ネルkの信号光とチャネルk−1およびチャネルk+1
の信号光のチャーピングの傾きが反対になる。なお、図
3は、光ファイバ伝送路1の波長分散Dの符号と、チャ
ネルkの信号光に与えた波長分散Bk の符号が同じ場合
を示すが、両者の符号は異なっていてもよい。受信部2
0のチャネルkの分散補償器22−kにおいて、送信部
10で与えられた波長分散と光ファイバ伝送路1の波長
分散を補償すると、チャネルkの信号光のピーク強度は
送信時の状態になる。一方、チャネルkの分散補償器2
2−kは、チャネルk−1およびチャネルk+1からの
漏れ光に対して波長分散を与える方向に働き、漏れ光の
ピーク強度は大幅に低下する。
For example, if the dispersion imparting unit 12 of the transmitting unit 10 sets the sign of the chromatic dispersion given to the signal light of the adjacent channel to be different, as shown in FIG. 3, the signal light of the channel k and the channel k− 1 and channel k + 1
The chirping inclination of the signal light is reversed. Although FIG. 3 shows the case where the code of the chromatic dispersion D of the optical fiber transmission line 1 and the code of the chromatic dispersion B k given to the signal light of the channel k are the same, both codes may be different. Receiver 2
When the dispersion compensator 22-k of the channel k of 0 compensates for the chromatic dispersion given by the transmission unit 10 and the chromatic dispersion of the optical fiber transmission line 1, the peak intensity of the signal light of the channel k becomes the state at the time of transmission. . On the other hand, dispersion compensator 2 for channel k
2-k acts in the direction of giving chromatic dispersion to light leaked from the channels k-1 and k + 1, and the peak intensity of the light leaks greatly.

【0018】なお、隣接するチャネルの信号光に与える
波長分散の符号は、図3に示す例のように互いに異符号
である必要はない。例えば、図4に示すように、各チャ
ネルの信号光に波長分散値0と所定の波長分散値を交互
に与えるようにしてもよい。この場合には、受信部20
のチャネルkの分散補償器22−kにおいて、送信部1
0で与えられた波長分散と光ファイバ伝送路1の波長分
散を補償すると、チャネルkの信号光のピーク強度は高
くなるが、チャネルk−1およびチャネルk+1からの
漏れ光に対しては波長分散が0にならず、従来構成に比
べてピーク強度は大幅に低下する。
The signs of the chromatic dispersion given to the signal light of the adjacent channels need not be different from each other as in the example shown in FIG. For example, as shown in FIG. 4, a chromatic dispersion value of 0 and a predetermined chromatic dispersion value may be alternately given to the signal light of each channel. In this case, the receiving unit 20
In the dispersion compensator 22-k of the channel k of the
When the chromatic dispersion given by 0 and the chromatic dispersion of the optical fiber transmission line 1 are compensated, the peak intensity of the signal light of the channel k is increased, but the chromatic dispersion is reduced for the light leaked from the channels k-1 and k + 1. Does not become 0, and the peak intensity is greatly reduced as compared with the conventional configuration.

【0019】一般的には、第k−1、第kおよび第k+
1チャネルの信号光に与える波長分散の値Bk-1 [ps/n
m] 、Bk [ps/nm] およびBk+1 [ps/nm] は、ある非負
の値Δ[ps/nm] に対して、 Bk-1−Bk>Δ かつ Bk+1−Bk>Δ または、 Bk-1−Bk<Δ かつ Bk+1−Bk<Δ の関係を満たせばよい。
In general, the k−1, k and k +
The value of chromatic dispersion B k-1 [ps / n] given to the signal light of one channel
m], B k [ps / nm] and B k + 1 [ps / nm] are, for a given non-negative value Δ [ps / nm], B k−1 −B k > Δ and B k + 1 −B k > Δ or B k−1 −B k <Δ and B k + 1 −B k <Δ.

【0020】(第2の実施形態)図5は、本発明の光伝
送システムの第2の実施形態を示す。本実施形態の特徴
は、奇数チャネルの信号光に与える波長分散の値を+B
1 とし、偶数チャネルの信号光に与える波長分散の値を
+B2 (≠+B1 )とするところにある。これは、第1
の実施形態で説明したように、隣接するチャネルの信号
光に異なる波長分散値を交互に与える構成に対応する。
(Second Embodiment) FIG. 5 shows a second embodiment of the optical transmission system of the present invention. The feature of this embodiment is that the value of chromatic dispersion given to signal light of an odd channel is + B
1 and the value of the chromatic dispersion given to the signal light of the even-numbered channel is + B 2 (≠ + B 1 ). This is the first
As described in the embodiment, the present invention corresponds to a configuration in which different chromatic dispersion values are alternately applied to signal light of adjacent channels.

【0021】奇数チャネルの信号光は、光合波器13−
1で合波して分散付与部12−1に入力し、波長分散+
1 を与える。偶数チャネルの信号光は、光合波器13
−2で合波して分散付与部12−2に入力し、波長分散
+B2 を与える。各分散付与部を通過した信号光は光合
波器13−3で合波されて光ファイバ伝送路1に送出さ
れる。このような構成では、2種類の分散付与部によ
り、隣接するチャネルの信号光に互いに異なる波長分散
を与えることができる。受信部20側の構成は第1の実
施形態と同様である。
The signal light of the odd channels is supplied to the optical multiplexer 13-.
1 and input to the dispersion imparting unit 12-1 to obtain the chromatic dispersion +
Give the B 1. The signal light of the even-numbered channel is
Multiplexes -2 input to dispersion providing unit 12-2 gives the chromatic dispersion + B 2. The signal light that has passed through each dispersion imparting unit is multiplexed by the optical multiplexer 13-3 and transmitted to the optical fiber transmission line 1. In such a configuration, different kinds of wavelength dispersion can be given to the signal lights of the adjacent channels by the two kinds of dispersion giving sections. The configuration on the receiving unit 20 side is the same as in the first embodiment.

【0022】(第3の実施形態)図6は、本発明の光伝
送システムの第3の実施形態を示す。本実施形態の特徴
は、第2の実施形態の構成において、受信部20側でも
奇数チャネルの信号光と偶数チャネルの信号光をそれぞ
れ共通の分散補償器を用いて波長分散補償するところに
ある。送信部10の構成は第1の実施形態と同様であ
る。
(Third Embodiment) FIG. 6 shows a third embodiment of the optical transmission system of the present invention. The feature of the present embodiment is that, in the configuration of the second embodiment, the receiving unit 20 also performs chromatic dispersion compensation on the odd-numbered channel signal light and the even-numbered channel signal light using a common dispersion compensator. The configuration of the transmission unit 10 is the same as in the first embodiment.

【0023】光ファイバ伝送路1から受信部20に入力
された波長多重信号光は、光分波器21−1で奇数チャ
ネルの信号光と偶数チャネルの信号光に分波される。こ
のような光分波器は、分波特性に周期性を有する光フィ
ルタ、例えばマッハツェンダ型フィルタにより実現でき
る。光分波器21−1で分波された奇数チャネルの信号
光は、分散補償器22−1に入力されて波長分散−D−
1 を与える。このとき、偶数チャネルの信号光が漏れ
光として混入しても、その漏れ光に与える波長分散がB
2 −B1 (≠0)となって残り、ピーク強度は低減され
る。光分波器21−1で分波された偶数チャネルの信号
光は、分散補償器22−2に入力されて波長分散−D−
2 を与える。このとき、奇数チャネルの信号光が漏れ
光として混入しても、同様にそのピーク強度は低減され
る。
The wavelength-division multiplexed signal light input from the optical fiber transmission line 1 to the receiving unit 20 is split by an optical splitter 21-1 into signal light of odd channels and signal light of even channels. Such an optical demultiplexer can be realized by an optical filter having a periodic demultiplexing characteristic, for example, a Mach-Zehnder filter. The signal light of the odd channel demultiplexed by the optical demultiplexer 21-1 is input to the dispersion compensator 22-1 and is subjected to chromatic dispersion-D-.
Give the B 1. At this time, even if the signal light of the even-numbered channel is mixed as leakage light, the chromatic dispersion given to the leakage light is B
2- B 1 (≠ 0) remains, and the peak intensity is reduced. The signal light of the even-numbered channel demultiplexed by the optical demultiplexer 21-1 is input to the dispersion compensator 22-2 and is subjected to chromatic dispersion-D-.
Give the B 2. At this time, even if the signal light of the odd-numbered channel is mixed as leak light, the peak intensity is similarly reduced.

【0024】各分散補償器を通過した奇数チャネルおよ
び偶数チャネルの信号光は、それぞれ光分波器21−
2,21−3で各チャネルの信号光に分波され、光受信
器23−1〜23−Nに入力される。
The signal lights of the odd-numbered channels and the even-numbered channels that have passed through the respective dispersion compensators are respectively divided into optical demultiplexers 21-.
The signals are demultiplexed into the signal lights of the respective channels at 2 and 21-3 and input to the optical receivers 23-1 to 23-N.

【0025】第1の実施形態〜第3の実施形態では、光
ファイバ伝送路の波長分散は固定値Dとして説明した。
しかし、一般に、光ファイバ伝送路1の波長分散は波長
の関数となり、D(λ)として表される。この場合の第1
の実施形態および第3の実施形態に対応する構成例を第
4の実施形態および第5の実施形態として以下に説明す
る。なお、第2の実施形態に対応する例は省略するが、
同様に構成される。
In the first to third embodiments, the chromatic dispersion of the optical fiber transmission line has been described as the fixed value D.
However, in general, the chromatic dispersion of the optical fiber transmission line 1 is a function of the wavelength and is represented as D (λ). The first in this case
A configuration example corresponding to the third and third embodiments will be described below as a fourth embodiment and a fifth embodiment. Although an example corresponding to the second embodiment is omitted,
The configuration is the same.

【0026】(第4の実施形態)図7は、本発明の光伝
送システムの第4の実施形態を示す。本実施形態では、
第1の実施形態の構成における受信部20の分散補償器
22−1〜22−Nの分散補償値を−D(λ1)−B1
−D(λN)−BN に設定する。
(Fourth Embodiment) FIG. 7 shows a fourth embodiment of the optical transmission system of the present invention. In this embodiment,
In the configuration of the first embodiment, the dispersion compensation values of the dispersion compensators 22-1 to 22 -N of the receiving unit 20 are represented by −D (λ 1 ) −B 1 to
−D (λ N ) −B N

【0027】ここで、チャネルkの分散補償器22−k
の波長分散値を−D(λk)−Bkとすると、チャネルkの
信号光に付与された波長分散は、 D(λk)+Bk−D(λk)−Bk =0 …(1') と補償される。一方、チャネルk−1およびチャネルk
+1の信号光に付与された波長分散は、それぞれ D(λk-1)+Bk-1−D(λk)−Bk …(2') D(λk+1)+Bk+1−D(λk)−Bk …(3') が残る。
Here, the dispersion compensator 22-k of the channel k
If the chromatic dispersion value and -D (λ k) -B k, wavelength dispersion given to the optical signal of channel k is, D (λ k) + B k -D (λ k) -B k = 0 ... ( 1 '). On the other hand, channel k-1 and channel k
The chromatic dispersion given to the +1 signal light is D (λ k−1 ) + B k−1 −D (λ k ) −B k (2 ′) D (λ k + 1 ) + B k + 1 − D (λ k ) −B k (3 ′) remains.

【0028】したがって、一般的に、隣接するチャネル
k,k+1の信号光に与える波長分散の値Bk [ps/nm]
,Bk+1 [ps/nm] は、ある非負の値Δ[ps/nm] に対し
て、 |Bk+1−Bk+D(λk+1)−D(λk)|>Δ …(4') となるように設定すれば、チャネルkの分散補償器にお
いてチャネルk−1およびチャネルk+1からの漏れ光
のピーク強度を大幅に低減することができる。
Therefore, generally, the value of the chromatic dispersion B k [ps / nm] given to the signal light of the adjacent channels k and k + 1
, B k + 1 [ps / nm] are, for a non-negative value Δ [ps / nm], | B k + 1 −B k + D (λ k + 1 ) −D (λ k ) |> Δ .. (4 ′), the peak intensity of the light leaked from the channels k−1 and k + 1 can be significantly reduced in the dispersion compensator of the channel k.

【0029】あるいは、隣接する第k−1チャネル、第
kチャネルおよび第k+1チャネルの信号光に与える波
長分散の値Bk-1 [ps/nm] 、Bk [ps/nm] およびBk+1
[ps/nm] は、ある非負の値Δ[ps/nm] に対して、 Bk-1−Bk+D(λk-1)−D(λk)>Δ かつ Bk+1−Bk+D(λk+1)−D(λk)>Δ または、 Bk-1−Bk+D(λk-1)−D(λk)<Δ かつ Bk+1−Bk+D(λk+1)−D(λk)<Δ の関係を満たせばよい。この具体例を次の第5の実施形
態に示す。
Alternatively, the chromatic dispersion values B k-1 [ps / nm], B k [ps / nm], and B k + given to the signal light of the (k−1) th channel, the kth channel, and the (k + 1) th channel adjacent to each other. 1
[ps / nm] is B k−1 −B k + D (λ k−1 ) −D (λ k )> Δ and B k + 1 −B for a certain non-negative value Δ [ps / nm]. k + D (λ k + 1 ) -D (λ k)> Δ or, B k-1 -B k + D (λ k-1) -D (λ k) <Δ cutlet B k + 1 -B k + D ( λ k + 1 ) −D (λ k ) <Δ. This specific example is shown in the following fifth embodiment.

【0030】(第5の実施形態)図8は、本発明の光伝
送システムの第5の実施形態を示す。本実施形態では、
第3の実施形態の構成における受信部20の分散補償器
22−1,22−2の分散補償値を−B1 ,−B2 に設
定し、まず送信部10で奇数チャネルの信号光および偶
数チャネルの信号光にそれぞれ付与された波長分散を補
償する。次に、光分波器21−2,21−3で分波され
た各チャネルの信号光に対して、各波長ごとに光ファイ
バ伝送路1で付与された波長分散D(λ)を補償する。
(Fifth Embodiment) FIG. 8 shows a fifth embodiment of the optical transmission system of the present invention. In this embodiment,
In the configuration of the third embodiment, the dispersion compensation values of the dispersion compensators 22-1 and 22-2 of the receiving unit 20 are set to −B 1 and −B 2 , and the transmitting unit 10 first sets the odd-numbered signal light and the even-numbered signal. The chromatic dispersion given to the signal light of the channel is compensated. Next, the chromatic dispersion D (λ) given by the optical fiber transmission line 1 for each wavelength is compensated for the signal light of each channel demultiplexed by the optical demultiplexers 21-2 and 21-3. .

【0031】すなわち、光分波器21−2で分波された
チャネル1(波長λ1 )の信号光に対して、分散補償器
24−1で波長分散−D(λ1) を付与し、光ファイバ伝
送路1における波長λ1 に対する波長分散を補償する。
以下同様に、分散補償器24−2〜24−Nでそれぞれ
分波波長に対応する波長分散を補償する。
That is, to the signal light of channel 1 (wavelength λ 1 ) demultiplexed by the optical demultiplexer 21-2, chromatic dispersion −D (λ 1 ) is given by the dispersion compensator 24-1. compensating for the chromatic dispersion with respect to wavelength lambda 1 in the optical fiber transmission line 1.
Similarly, the dispersion compensators 24-2 to 24-N compensate for the chromatic dispersion corresponding to the demultiplexed wavelengths.

【0032】[0032]

【発明の効果】以上説明したように、本発明の光伝送シ
ステムは、送信部で隣接するチャネル(波長)の信号光
に互いに異なる波長分散を与えることにより、受信部で
チャネルkの信号光に対して分散補償を行ったときに、
隣接するチャネルk−1,k+1からの漏れ光に対して
は完全に分散補償されないようにできる。従来構成では
隣接チャネルからの漏れ光に対してもほぼ完全に分散補
償されるが、本発明の構成では隣接チャネルからの漏れ
光に対しては所定の波長分散が残るので、そのピーク強
度を従来構成に比べて大幅に低下させることができる。
As described above, according to the optical transmission system of the present invention, the signal light of the adjacent channel (wavelength) is given different chromatic dispersion to the signal light of the adjacent channel (wavelength) by the transmission unit, so that the signal light of channel k is added to the signal light of the reception unit. When dispersion compensation is performed for
It is possible to completely prevent dispersion compensation from leaked light from the adjacent channels k−1 and k + 1. In the conventional configuration, the dispersion is almost completely compensated for the light leaked from the adjacent channel. However, in the configuration of the present invention, the predetermined wavelength dispersion remains for the light leaked from the adjacent channel. It can be significantly reduced compared to the configuration.

【0033】特に、隣接するチャネル(波長)の信号光
に異なる波長分散を交互に与えることにより、送信部に
必要な分散付与部を減らし、構成を簡単にすることがで
きる。
In particular, by alternately giving different chromatic dispersions to signal light of adjacent channels (wavelengths), the number of dispersion imparting units required for the transmitting unit can be reduced and the configuration can be simplified.

【0034】このように、送信部で隣接するチャネル
(波長)の信号光に互いに異なる波長分散を与えること
により、受信部の分散補償器で隣接チャネルからの漏れ
光に対して分散補償を不完全な形で行うか、あるいは分
散付与する方向に機能させることができ、各チャネルの
信号光のアイ開口劣化を抑圧することができる。したが
って、波長間隔を近接させて帯域を効果的に利用するこ
とが可能となる。
As described above, by providing different wavelength dispersion to the signal light of the adjacent channel (wavelength) in the transmitting unit, the dispersion compensator of the receiving unit imperfectly compensates for the leakage light from the adjacent channel. This can be performed in such a manner as to be performed in a simple manner, or can be made to function in a direction in which dispersion is imparted, so that deterioration of the eye opening of the signal light of each channel can be suppressed. Therefore, it is possible to effectively use the band by making the wavelength intervals close to each other.

【0035】また、送信部から送信する各チャネルの信
号光にプリチャープを与えてピーク強度を小さくしてい
るので、光ファイバ伝送路中における非線形光学効果の
影響を抑圧することができる。
Further, since the signal light of each channel transmitted from the transmission section is pre-chirped to reduce the peak intensity, the influence of the nonlinear optical effect in the optical fiber transmission line can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光伝送システムの第1の実施形態を示
すブロック図。
FIG. 1 is a block diagram showing a first embodiment of an optical transmission system according to the present invention.

【図2】本発明の光伝送システムにおける隣接チャネル
からの漏れ光の抑圧原理を説明する図。
FIG. 2 is a diagram illustrating the principle of suppressing light leaked from an adjacent channel in the optical transmission system of the present invention.

【図3】隣接するチャネルの信号光に与える波長分散の
符号が異なるケースを示す図。
FIG. 3 is a diagram illustrating a case where signs of chromatic dispersion given to signal light of adjacent channels are different.

【図4】隣接するチャネルの信号光に与える波長分散の
値が異なるケースを示す図。
FIG. 4 is a diagram showing a case where values of chromatic dispersion given to signal light of adjacent channels are different.

【図5】本発明の光伝送システムの第2の実施形態を示
すブロック図。
FIG. 5 is a block diagram showing a second embodiment of the optical transmission system of the present invention.

【図6】本発明の光伝送システムの第3の実施形態を示
すブロック図。
FIG. 6 is a block diagram showing a third embodiment of the optical transmission system of the present invention.

【図7】本発明の光伝送システムの第4の実施形態を示
すブロック図。
FIG. 7 is a block diagram showing a fourth embodiment of the optical transmission system of the present invention.

【図8】本発明の光伝送システムの第5の実施形態を示
すブロック図。
FIG. 8 is a block diagram showing a fifth embodiment of the optical transmission system of the present invention.

【図9】波長分割多重を用いた従来の光伝送システムの
構成例を示すブロック図。
FIG. 9 is a block diagram showing a configuration example of a conventional optical transmission system using wavelength division multiplexing.

【図10】波長分割多重を用いた従来の光伝送システム
の構成例を示すブロック図。
FIG. 10 is a block diagram showing a configuration example of a conventional optical transmission system using wavelength division multiplexing.

【図11】波長分割多重を用いた従来の光伝送システム
の構成例を示すブロック図。
FIG. 11 is a block diagram showing a configuration example of a conventional optical transmission system using wavelength division multiplexing.

【図12】従来の光伝送システムにおける隣接チャネル
からの漏れ光を示す図。
FIG. 12 is a diagram showing light leakage from an adjacent channel in a conventional optical transmission system.

【図13】隣接チャネルからの漏れ光が分散補償される
様子を示す図。
FIG. 13 is a diagram showing a state in which leakage light from an adjacent channel is dispersion-compensated.

【符号の説明】[Explanation of symbols]

1 光ファイバ伝送路 10,50 送信部 11,51 光変調器 12 分散付与部 13,52 光合波器 20,60 受信部 21,62 光分波器 22,24,61 分散補償器 23,63 光受信器 53 分散付与部 DESCRIPTION OF SYMBOLS 1 Optical fiber transmission line 10, 50 Transmission part 11, 51 Optical modulator 12 Dispersion provision part 13, 52 Optical multiplexer 20, 60 Reception part 21, 62 Optical demultiplexer 22, 24, 61 Dispersion compensator 23, 63 Light Receiver 53 dispersion providing unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山林 由明 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 Fターム(参考) 5K002 CA01 DA02 FA01  ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshiaki Yamabayashi F-term (reference) in Japan Telegraph and Telephone Corporation 3-19-2 Nishishinjuku, Shinjuku-ku, Tokyo 5K002 CA01 DA02 FA01

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 送信部で波長λ1 〜λN (Nは2以上の
整数、λ1<λ2<…<λN )の光をチャネル1〜Nの信
号でそれぞれ変調したNチャネルの信号光を合波して光
ファイバ伝送路に送信し、この光ファイバ伝送路を介し
て波長多重伝送されたNチャネルの信号光を分波し、各
チャネルの信号光をそれぞれ検波する光伝送システムに
おいて、 前記送信部に、少なくとも隣接するチャネル(波長)の
信号光に互いに異なる波長分散を与える分散付与部を備
え、 前記受信部に、前記送信部で前記各チャネルの信号光に
与えた波長分散および前記光ファイバ伝送路の波長分散
を補償する分散補償器を備えたことを特徴とする光伝送
システム。
1. An N- channel signal obtained by modulating light of wavelengths λ 1 to λ N (N is an integer of 2 or more, λ 12 <... <Λ N ) with signals of channels 1 to N at a transmission unit. In an optical transmission system in which light is multiplexed and transmitted to an optical fiber transmission line, the N-channel signal light wavelength-division multiplexed and transmitted through the optical fiber transmission line is demultiplexed, and the signal light of each channel is detected individually. The transmitting unit includes a dispersion imparting unit that imparts different chromatic dispersion to at least signal light of an adjacent channel (wavelength); and the receiving unit includes a chromatic dispersion provided to the signal light of each channel by the transmitting unit. An optical transmission system comprising a dispersion compensator for compensating chromatic dispersion of the optical fiber transmission line.
【請求項2】 隣接する第kチャネルおよび第k+1チ
ャネルの信号光(kは1以上N−1以下の整数)に、そ
れぞれ対応する分散付与部で与えられる波長分散の値B
k [ps/nm] およびBk+1 [ps/nm] が、ある非負の値Δ[p
s/nm] に対して、 |Bk+1−Bk|>Δ の関係を満たすことを特徴とする請求項1に記載の光伝
送システム。
2. A chromatic dispersion value B given by a dispersion imparting unit corresponding to each of signal light (k is an integer of 1 or more and N-1 or less) of an adjacent k-th channel and k + 1-th channel.
k [ps / nm] and B k + 1 [ps / nm] are some non-negative values Δ [p
The optical transmission system according to claim 1, wherein the following relationship is satisfied with respect to [s / nm]: | B k + 1 −B k |> Δ.
【請求項3】 隣接する第k−1、第kおよび第k+1
チャネルの信号光(kは2以上N−1以下の整数)に、
それぞれ対応する分散付与部で与えられる波長分散の値
k-1 [ps/nm] 、Bk [ps/nm] およびBk+1 [ps/nm]
が、ある非負の値Δ[ps/nm] に対して、 Bk-1−Bk>Δ かつ Bk+1−Bk>Δ または、 Bk-1−Bk<Δ かつ Bk+1−Bk<Δ の関係を満たすことを特徴とする請求項1に記載の光伝
送システム。
3. The (k−1) -th, (k) -th and (k + 1) -th adjacent
Channel signal light (k is an integer of 2 or more and N-1 or less)
The chromatic dispersion values B k-1 [ps / nm], B k [ps / nm], and B k + 1 [ps / nm] given by the corresponding dispersion imparting units.
For a given non-negative value Δ [ps / nm], B k−1 −B k > Δ and B k + 1 −B k > Δ or B k−1 −B k <Δ and B k + The optical transmission system according to claim 1, wherein a relationship of 1− B k <Δ is satisfied.
【請求項4】 前記光ファイバ伝送路の波長分散値をD
(λ) [ps/nm]としたときに、隣接する第kチャネルの信
号光および第k+1チャネルの信号光(kは1以上N−
1以下の整数)に、それぞれ対応する分散付与部で与え
られる波長分散の値Bk [ps/nm] およびBk+1 [ps/nm]
が、ある非負の値Δ[ps/nm] に対して、 |Bk+1−Bk+D(λk+1)−D(λk)|>Δ の関係を満たすことを特徴とする請求項1に記載の光伝
送システム。
4. The chromatic dispersion value of the optical fiber transmission line is represented by D
(λ) [ps / nm], the signal light of the adjacent k-th channel and the signal light of the (k + 1) th channel (k is 1 or more and N−
(An integer of 1 or less), the chromatic dispersion values B k [ps / nm] and B k + 1 [ps / nm] given by the corresponding dispersion imparting units.
Satisfies the relationship of | B k + 1 −B k + D (λ k + 1 ) −D (λ k ) |> Δ for a certain non-negative value Δ [ps / nm]. Item 2. The optical transmission system according to item 1.
【請求項5】 前記光ファイバ伝送路の波長分散値をD
(λ) [ps/nm]としたときに、隣接する第k−1チャネ
ル、第kチャネルおよび第k+1チャネルの信号光(k
は2以上N−1以下の整数)に、それぞれ対応する分散
付与部で与えられる波長分散の値Bk-1 [ps/nm] 、Bk
[ps/nm] およびBk+1 [ps/nm] が、ある非負の値Δ[ps/
nm] に対して、 Bk-1−Bk+D(λk-1)−D(λk)>Δ かつ Bk+1−Bk+D(λk+1)−D(λk)>Δ または、 Bk-1−Bk+D(λk-1)−D(λk)<Δ かつ Bk+1−Bk+D(λk+1)−D(λk)<Δ の関係を満たすことを特徴とする請求項1に記載の光伝
送システム。
5. The chromatic dispersion value of the optical fiber transmission line is represented by D
(λ) [ps / nm], the signal light of the adjacent (k−1) th channel, kth channel and (k + 1) th channel (k
Is an integer of 2 or more and N-1 or less), and the chromatic dispersion values B k-1 [ps / nm] and B k given by the corresponding dispersion imparting units.
[ps / nm] and B k + 1 [ps / nm] are some non-negative values Δ [ps /
nm], B k−1 −B k + D (λ k−1 ) −D (λ k )> Δ and B k + 1 −B k + D (λ k + 1 ) −D (λ k )> Δ or B k−1 −B k + D (λ k−1 ) −D (λ k ) <Δ and B k + 1 −B k + D (λ k + 1 ) −D (λ k ) <Δ The optical transmission system according to claim 1, wherein
【請求項6】 光速をC [nm/ps]、信号光のデューティ
幅をT0 [ps]としたときに、前記非負の値Δ[ps/nm]
は、 Δ>2πCT0 2/λk 2 で与えられることを特徴とする請求項2〜5のいずれか
に記載の光伝送システム。
6. The non-negative value Δ [ps / nm] when the light speed is C [nm / ps] and the duty width of the signal light is T 0 [ps].
Is, Δ> 2πCT 0 optical transmission system according to any one of claims 2 to 5 be given to said at 2 / λ k 2.
【請求項7】 前記送信部は、奇数チャネルの信号光ま
たはその一部と、偶数チャネルの信号光またはその一部
に、それぞれ共通の分散付与部を用いて波長分散を与え
る構成であることを特徴とする請求項1に記載の光伝送
システム。
7. The transmission unit according to claim 1, wherein each of the odd-numbered channel signal light and its part and the even-numbered channel signal light and its part is provided with chromatic dispersion using a common dispersion imparting unit. The optical transmission system according to claim 1, wherein:
【請求項8】 前記受信部は、奇数チャネルの信号光ま
たはその一部と、偶数チャネルの信号光またはその一部
に対して、前記送信部の分散付与部で与えられた波長分
散をそれぞれ共通の分散補償器を用いて分散補償する構
成であることを特徴とする請求項7に記載の光伝送シス
テム。
8. The receiving section shares the chromatic dispersion given by the dispersion imparting section of the transmitting section with the odd-numbered channel signal light or a part thereof and the even-numbered channel signal light or a part thereof. The optical transmission system according to claim 7, wherein the dispersion compensator is configured to perform dispersion compensation using the dispersion compensator.
JP10352835A 1998-12-11 1998-12-11 Optical transmission system Pending JP2000183815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10352835A JP2000183815A (en) 1998-12-11 1998-12-11 Optical transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10352835A JP2000183815A (en) 1998-12-11 1998-12-11 Optical transmission system

Publications (1)

Publication Number Publication Date
JP2000183815A true JP2000183815A (en) 2000-06-30

Family

ID=18426770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10352835A Pending JP2000183815A (en) 1998-12-11 1998-12-11 Optical transmission system

Country Status (1)

Country Link
JP (1) JP2000183815A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005311721A (en) * 2004-04-21 2005-11-04 Fujitsu Ltd Dispersion compensated amount setting method, receiving terminal and wavelength multiplexed optical transmission system
US7236703B1 (en) 2000-07-31 2007-06-26 Mitsubishi Denki Kabushiki Kaisha Optical wavelength division multiplexing device
US7796897B2 (en) 2006-09-21 2010-09-14 Fujitsu Limited WDM optical transmission system and WDM optical transmission method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7236703B1 (en) 2000-07-31 2007-06-26 Mitsubishi Denki Kabushiki Kaisha Optical wavelength division multiplexing device
JP2005311721A (en) * 2004-04-21 2005-11-04 Fujitsu Ltd Dispersion compensated amount setting method, receiving terminal and wavelength multiplexed optical transmission system
US7394993B2 (en) 2004-04-21 2008-07-01 Fujitsu Limited Dispersion compensation quantity setting method, receiving terminal station, and wavelength-multiplexing optical transmission system
JP4491268B2 (en) * 2004-04-21 2010-06-30 富士通株式会社 Dispersion compensation setting method, receiving terminal station and wavelength division multiplexing optical transmission system
US7796897B2 (en) 2006-09-21 2010-09-14 Fujitsu Limited WDM optical transmission system and WDM optical transmission method

Similar Documents

Publication Publication Date Title
US7526204B2 (en) Optical communication apparatus, optical communication system and method for transmitting optical signal
US7437074B2 (en) Wavelength division multiplexing transmission system
US7221820B2 (en) High spectral efficiency, high performance optical MUX and DEMUX architecture
US6459515B1 (en) Method and apparatus for transmitting a WDM optical signal having states of polarization that are pairwise orthogonal
US6904240B1 (en) Optical multiplexing apparatus and optical multiplexing method
US7583895B2 (en) Polarization scrambler, optical add/drop multiplexer, optical route switching apparatus and wavelength division multiplexing optical transmission system
US20040197100A1 (en) Optical transmission system and optical coupler/branching filter
US6626591B1 (en) Method of reducing intensity distortion induced by cross phase modulation in a WDM optical fiber transmission system
US7480459B2 (en) Wavelength division multiplexing transmission system
US20070189775A1 (en) Optical network element for compensating dispersion-related propagation effects
GB2330026A (en) WDM optical signal dispersion compensation
JP2012220893A (en) Nonlinear optical effect suppressor and optical relay device
JP4102392B2 (en) Bidirectional optical add-drop multiplexer
CA2443409A1 (en) High spectral efficiency, high performance optical mux and demux architecture
JP2000183815A (en) Optical transmission system
US20050259988A1 (en) Bi-directional optical access network
JPH10242943A (en) Wavelength division multiplexing optical processor
JP4872319B2 (en) Optical signal transmission / reception system, optical wavelength division multiplexing transmission system, optical transmission / reception apparatus, and optical wavelength division multiplexing transmission method
AU2001272084B2 (en) Optical add drop and dispersion compensation apparatus
US20040161241A1 (en) Apparatus for compensating for dispersion and wavelength division multiplexing communications system using the apparatus
CA2396338C (en) An apparatus and method for multiplexing and/or demultiplexing optical signals having substantially equal dispersion
EP0880249A2 (en) FWM Light suppressing system
JPH09116493A (en) Wavelength multiplex transmission system
US8503881B1 (en) Systems for extending WDM transmission into the O-band
JP4358676B2 (en) Apparatus and method for managing dispersion in an optical add / drop module