JP2000183640A - Expansion type skeleton structure - Google Patents

Expansion type skeleton structure

Info

Publication number
JP2000183640A
JP2000183640A JP10351424A JP35142498A JP2000183640A JP 2000183640 A JP2000183640 A JP 2000183640A JP 10351424 A JP10351424 A JP 10351424A JP 35142498 A JP35142498 A JP 35142498A JP 2000183640 A JP2000183640 A JP 2000183640A
Authority
JP
Japan
Prior art keywords
deployment
deployable
polyhedron
skeleton structure
truncated pyramid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10351424A
Other languages
Japanese (ja)
Other versions
JP3717035B2 (en
Inventor
Hiroshi Izumida
啓 泉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP35142498A priority Critical patent/JP3717035B2/en
Publication of JP2000183640A publication Critical patent/JP2000183640A/en
Application granted granted Critical
Publication of JP3717035B2 publication Critical patent/JP3717035B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an expansion type skeleton structure with high precision and high stiffness, that is used for an expansion antenna with a large aperture and a spherical part of a structure in space or the like used for an artificial satellite. SOLUTION: This expansion type skeleton structure employs a truncated pyramid skeleton structure for a basic building block, which is formed by using an apex of a dual polyhedron of a quasi-regular polyhedron for an upper dace apex, using a cross point between a radiation line 4 passing from a center 3 of an inscribed sphere of the polyhedron to an upper dace apex 5 and a concentric spherical surface, having a radius larger than that of the inscribed sphere for a lower face apex 6 and using a part between the upper face apex and the lower face apex of the radiation line 4 for a ridge, and the side faces of the building blocks are used in common and a plurality of the blocks are connected. Furthermore, the outer shape of the building blocks kept to a truncated pyramid shape and the ridges are moved synchronously in parallel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、人工衛星に用い
る大口径の展開アンテナや宇宙構造物の球面状部分など
に用いられる、高い精度と剛性を有する展開式骨組構造
物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deployable frame structure having high accuracy and rigidity, which is used for a large-diameter deployable antenna used for an artificial satellite or a spherical portion of a space structure.

【0002】[0002]

【従来の技術】近年、軌道上に衛星を投入するロケット
の信頼性と経済性が向上し、衛星利用の利点が増大して
いる。また、通信需要が増大しているため、衛星通信業
務の質的及び量的な向上が望まれている。特に、大型の
展開アンテナは船舶、車両等の移動体の通信用として求
められており、そのための展開式骨組構造方式が盛んに
開発されてきた。また、低コストかつ高信頼性で、宇宙
基地などの大型衛星を構築するための基本構造として、
展開式骨組構造物(展開式トラス構造物)が重要な開発
課題となっており、この構造物として、例えば特開平1
−151630号公報、特開平6−224624号公報
に記載されている物など種々の形態のものが提案されて
いる。
2. Description of the Related Art In recent years, the reliability and economic efficiency of rockets that put satellites into orbit have been improved, and the advantages of using satellites have been increasing. In addition, since the demand for communication is increasing, it is desired to improve the quality and quantity of the satellite communication business. In particular, a large deployable antenna is required for communication of a moving object such as a ship or a vehicle, and a deployable frame structure for that purpose has been actively developed. In addition, as a basic structure for building large satellites such as space bases at low cost and high reliability,
An expandable frame structure (expandable truss structure) is an important development subject.
Various forms such as those described in JP-A-151630 and JP-A-6-224624 have been proposed.

【0003】[0003]

【発明が解決しようとする課題】従来の特開平1−15
1630号公報に記載の構造物は、結合子とスライドヒ
ンジを有する心棒と、パンタグラフ形状の斜め部材とか
らなる骨組構造を基本要素とし、これを複数結合するこ
とにより、大規模な構造物を容易且つ剛性を持たせて構
築可能にしたものであり、図7は展開状態にある骨組構
造物の構成図である。この構造物の作動を図7を参照し
て簡単に説明すると、この展開式骨組構造物では、格納
時においては、斜部材45a又は斜部材45bと心棒4
2の成す角θは零に近い状態まで折り畳まれており、外
部からの保持装置(図示せず)によってその状態が保持
されている。一方、展開時においては、上記保持装置を
開放すると、ピン結合部48、または結合子41のピン
軸、またはスライドヒンジ43上のピン軸等に内蔵され
た渦巻きバネ(図示せず)等の駆動力によって斜部材4
5a、45bが展開され、これにより上記角θが増大し
ていく。この時、スライドヒンジ43が所定の位置まで
移動すると、ストッパ44に当接して斜部材45a、4
5bの展開動作は停止する。また、斜部材45a、45
bはそれぞれ端部を結合子41又はスライドヒンジ43
にピン結合されているとともに、個々の中間部のピン結
合部48で2本の斜部材45a、45bがパンタグラフ
形状に相互にピン結合されていいるので、全ての斜部材
45a、45bにおける展開角である角θが等しくなり
同期展開が可能となっている。しかしながら、上記の展
開式骨組構造物では次ぎのような問題がある。即ち、全
ての斜部材における展開角である角θが等しくなって同
期展開が可能であるためには、斜部材が等脚台形または
長方形の対角線となり、六角形のモジュールに含まれる
等脚台形または長方形が全て合同でなければならない。
従って、基本モジュールの上面形状は正六角形となり、
斜部材が等脚台形の対角線のときには基本モジュールの
外形は正六角錐台、長方形のときには正六角柱となる。
正六角形は平面充填形なので、正六角錐台を隣接して並
べることはできない。
SUMMARY OF THE INVENTION Conventional Japanese Patent Laid-Open No. 1-15
The structure described in Japanese Patent No. 1630 has a frame structure composed of a mandrel having a connector and a slide hinge, and a pantograph-shaped oblique member as basic elements, and by combining a plurality of these, a large-scale structure can be easily manufactured. FIG. 7 is a configuration diagram of a framework structure in an unfolded state. The operation of this structure will be briefly described with reference to FIG. 7. In this deployable skeleton structure, the oblique member 45a or the oblique member 45b and the mandrel 4 are stored during storage.
2 is folded to a state close to zero, and the state is held by an external holding device (not shown). On the other hand, at the time of deployment, when the holding device is opened, the driving of a spiral spring (not shown) built in the pin coupling portion 48, the pin shaft of the connector 41, the pin shaft on the slide hinge 43, or the like. Oblique member 4 by force
5a and 45b are developed, whereby the angle θ increases. At this time, when the slide hinge 43 moves to a predetermined position, the slide hinge 43 comes in contact with the stopper 44 and the oblique members 45a, 4a.
The deployment operation of 5b stops. Also, the oblique members 45a, 45
b denotes a connector 41 or a slide hinge 43 at each end.
And the two oblique members 45a and 45b are pin-connected to each other in a pantograph shape at the pin joint portions 48 at the respective intermediate portions, so that the angle of development of all the oblique members 45a and 45b A certain angle θ becomes equal and synchronous development is possible. However, the above-mentioned deployable frame structure has the following problems. In other words, in order for the angle θ, which is the development angle in all the oblique members, to be equal and the synchronous deployment is possible, the oblique member becomes an isosceles trapezoid or a rectangular diagonal line, and isosceles trapezoid or All rectangles must be congruent.
Therefore, the top shape of the basic module is a regular hexagon,
The outer shape of the basic module is a regular hexagonal pyramid when the oblique member is a diagonal line of an equilateral trapezoidal shape, and a regular hexagonal prism when the oblique member is rectangular.
Since a regular hexagon is a plane-filled type, it is not possible to arrange regular hexagonal pyramids adjacent to each other.

【0004】結果として、正六角柱状の基本モジュール
を複数個結合することになり、それらが作る上面は平面
形をなす。三角形や四角形を基本形状とする場合にも、
同じ議論により基本モジュールの上面形状が正三角形や
正四角形となる。正三角錐台や正四角錐台状の基本モジ
ュールを複数個結合できる場合があるが、角錐台の稜線
の成す角は展開するにつれて変化するので、結合を維持
して展開することはできない。それ故、特開平1−15
1630号公報に示されている方法で実現できる展開式
骨組構造物の展開形状は平面となる。あるいは逆に、平
面を充填する多角形を基本要素とする骨組構造物を用い
て球面を構成しようとすると、機構内に必要十分なガタ
を導入しなければ、構造物全体を同期展開することは困
難である。これらは、ヒンジの填合のために必要となる
微小な間隙や、製造上発生する隙間とは異なり、展開動
作を実現するために新たに必要となるガタであり、展開
用ガタと呼ぶ。
[0004] As a result, a plurality of regular hexagonal columnar basic modules are connected, and the upper surface formed by them is planar. Even when using triangles and squares as basic shapes,
By the same discussion, the top surface shape of the basic module becomes a regular triangle or a regular square. In some cases, a plurality of basic modules having a truncated triangular pyramid shape or a truncated quadrangular pyramid shape can be combined. However, since the angle formed by the ridge line of the truncated pyramid changes as it is developed, it is not possible to maintain the connection and develop. Therefore, Japanese Patent Laid-Open No. 1-15
The deployed shape of the deployable frame structure that can be realized by the method disclosed in Japanese Patent No. 1630 is flat. Or conversely, if you try to construct a spherical surface using a framework structure that uses a polygon that fills a plane as a basic element, if you do not introduce the necessary and sufficient backlash into the mechanism, it is impossible to develop the entire structure synchronously Have difficulty. These are different from the minute gaps required for the fitting of the hinges and the gaps generated in manufacturing, and are new play required to realize the unfolding operation, and are referred to as unfolding play.

【0005】また、例えば、平面上に合同な複数の正六
角形をその辺を共有させて配置し、それを球面状に投影
して六角形の辺の長さを決め、展開式骨組構造物を実現
した場合には、平面充填形である正六角形を球面上に投
影するため、実現された骨組構造物の殆どの基本要素は
正六角形を歪ませた物となり、場所によって歪みが異な
る。そのため、この方法では、同一基本要素の繰り返し
によって骨組構造物全体を構成することはできない。ま
た、基本要素毎に異なる歪みに対応して展開機構を設計
する必要があるので、展開動作が要素毎に異なり、全体
を同期して展開させることは非常に困難なものとなる。
即ち、前述の理由により機構内に展開用のガタがなけれ
ば、複数の結合されたモジュールを同期して展開するこ
とはできない。しかしながら、これらのような機構内の
ガタは、骨組構造物の形状精度と剛性の低下をきたし、
想定した展開動作以外の運動が可能になり、想定外の運
動を生じて展開動作を失敗させる可能性が生じるなどの
問題を生じる。
Further, for example, a plurality of congruent regular hexagons are arranged on a plane so that their sides are shared, and are projected onto a spherical surface to determine the lengths of the hexagonal sides. In the case of realization, since a regular hexagon which is a plane-filled shape is projected on a spherical surface, most of the basic elements of the realized frame structure are obtained by distorting the regular hexagon, and the distortion differs depending on the place. Therefore, in this method, the entire skeleton structure cannot be formed by repeating the same basic element. In addition, since it is necessary to design a deployment mechanism corresponding to different distortions for each basic element, the deployment operation differs for each element, and it is extremely difficult to deploy the entire system synchronously.
That is, if there is no play in the mechanism for the above-mentioned reason, a plurality of coupled modules cannot be developed synchronously. However, the play in these mechanisms reduces the accuracy and rigidity of the frame structure,
Exercise other than the assumed expanding operation becomes possible, and there arises a problem that an unexpected movement is caused to cause the expanding operation to fail.

【0006】また、特開平6−224624号公報に記
載されているものは、展開アンテナにおいて、展開時に
生ずるスタンドオフの変形量を小さくしかつ展開に必要
な展開トルクを小さくできるパラボラ形状の展開アンテ
ナであるが、このような球形の展開式骨組構造物を、展
開用ガタを最小限に留めて同期展開させるためには、膨
大な設計過程が必要になる。また、正六角形を歪ませた
基本要素を用いるため、微妙に異なった部品が多く存在
し、コスト増大等を招き、製作上で好ましくない。これ
らの問題は、平面充填形を基本形状とする展開式骨組構
造物を実現しようとしたことに端を発している。そのた
め、これらの問題点を克服し、より簡便に球面を構成す
る展開式骨組構造物を設計するために、基本的設計原理
が求められる。
[0006] Japanese Patent Laid-Open Publication No. Hei 6-224624 discloses a parabolic deployable antenna that can reduce the amount of stand-off deformation that occurs during deployment and the deployment torque required for deployment. However, an enormous design process is required to synchronously deploy such a spherical deployable skeleton structure with minimal play in the deployment. In addition, since a basic element obtained by distorting a regular hexagon is used, there are many subtly different parts, which leads to an increase in cost and the like, which is not preferable in manufacturing. These problems originated in an attempt to realize a deployable skeleton structure having a plane-filled basic shape. Therefore, a basic design principle is required in order to overcome these problems and more easily design a deployable skeleton structure having a spherical surface.

【0007】本発明は、かかる問題点を解決するために
なされたもので、大口径アンテナ反射鏡面支持構造物な
どの大型の球面構造物を構築する際に、機構内のガタ
(展開ガタ)を必要とせず、高剛性と高精度を確保でき
る展開式骨組構造物を得ることを目的とする。
The present invention has been made in order to solve such a problem, and when a large spherical structure such as a large-diameter antenna reflecting mirror surface support structure is constructed, play (development play) in the mechanism is reduced. It is an object of the present invention to obtain a deployable frame structure that can secure high rigidity and high accuracy without requiring it.

【0008】この発明に係る展開式骨組構造は、球面状
の骨組構造を成すよう、準正多面体の双対多面体頂点位
置を上面頂点とし、同多面体の内接球中心から上面頂点
を通る放射線と同内接球より大きな半径を持つ同心球面
との交点を下面頂点とし、同放射線の上面頂点と下面頂
点の間を稜線とすることにより作られる角錐台状の骨組
構造を基本要素とし、基本要素の側面を共有させて複数
個結合した構造をなし、更に、基本要素の外形を角錐台
としたまま稜線を同期して平行移動させる機構を備えた
ものである。また、角錐台状の上記基本要素の稜線位置
に固定した骨組構造を持ち、隣り合う稜線位置の固定し
た骨組構造を互いに平行移動させる展開機構を側面に持
ち、稜線を共有する側面の平行移動を動期するための同
期機構を稜線位置の固定した骨組構造に持ち、それらの
展開機構を稜線位置の同期機構を通して連結した構造と
したものである。
In the deployable skeleton structure according to the present invention, the vertices of the dual polyhedron of the quasi-regular polyhedron are set as the top vertices so as to form a spherical skeleton structure, and the radiation passing through the top vertices from the center of the inscribed sphere of the polyhedron is used. The intersection of a concentric sphere with a radius larger than the inscribed sphere is the lower surface vertex, and the truncated pyramid-shaped frame structure created by making the ridge between the upper surface vertex and the lower surface vertex of the radiation is the basic element. It has a structure in which a plurality of side surfaces are shared and connected to each other, and further, a mechanism is provided for synchronously moving the ridge lines while keeping the outer shape of the basic element as a truncated pyramid. In addition, it has a frame structure fixed to the ridge line position of the truncated pyramid-shaped basic element, and has a deployment mechanism on the side surface for moving the fixed skeleton structures of adjacent ridge line positions in parallel with each other, and performs parallel movement of the side surface sharing the ridge line. A synchronous mechanism for the motive period is provided in a frame structure having a fixed ridgeline position, and the deployment mechanisms are connected through a synchronous mechanism at the ridgeline position.

【0009】更に、上記展開機構を、2次元平面内を運
動するパンタグラフ・リンク機構から構成したものであ
る。更にまた、上記角錐台状骨組構造の基本要素の上面
節点相互間及び下面節点相互間には、展開後のガタを無
くすことができる張力発生手段を備えるケーブルを張架
したものである。また、角錐台状の上記基本要素にある
リンク機構のヒンジに展開力を発生させる展開力付勢手
段を有するとともに、上記ヒンジを線分で結んだ図形
が、展開中に一直線状に至る手前においてヒンジの回転
を止めて展開を停止させるストッパを、ヒンジ位置近傍
等の適切な位置に配設したものである。更に、上記展開
力付勢手段を展開バネや展開アクチュエータにより構成
したものである。更にまた、上記展開機構を所定の形状
で固定する保持装置を更に備えるものである。
Further, the above-mentioned unfolding mechanism is constituted by a pantograph link mechanism which moves in a two-dimensional plane. Furthermore, a cable having tension generating means capable of eliminating play after deployment is stretched between upper surface nodes and lower surface nodes of the basic elements of the truncated pyramidal frame structure. In addition, while having a deployment force urging means for generating a deployment force on the hinge of the link mechanism in the truncated pyramid-shaped basic element, the figure obtained by connecting the hinges with a line segment, before being unfolded, becomes straight during deployment. A stopper for stopping rotation of the hinge and stopping deployment is provided at an appropriate position such as near the hinge position. Further, the deployment force urging means is constituted by a deployment spring or a deployment actuator. Still further, the apparatus further comprises a holding device for fixing the deployment mechanism in a predetermined shape.

【0010】この発明に係る展開式骨組構造は、準正多
面体の双対多面体を基本形状とし、角錐台状の基本要素
の側面を共有させて複数個結合した構造としているの
で、大口径の展開アンテナの支持構造物などの大型構造
物を構築する場合において、一種類の角錐台状の骨組構
造の繰り返しにより、全体が一様に高い剛性を持つよう
概略球面の一部のみならず概略球面全体をなす展開式骨
組構造物を容易に構築することができる。また、この発
明は全ての準正多面体の双対多面体を基本形状として実
行できるので、ある大きさと曲率半径をもつ球面に対し
て、複数の異なった骨組構造を同じ手順で作成でき、骨
組構造物に課せられた要求に応じて適切なものを選択で
きる。更にまた、この発明で用いる準正多面体の双対多
面体には、各面を構成する多角形の内心と接する内接球
が存在するため、最長でも上面頂点から内接球面までの
距離のスタンドオフを上面頂点位置に配置すれば、展開
式骨組構造と干渉することなく反射球面を展開式骨組構
造の上面に張架できる。実際には、さらに短いスタンド
オフでも干渉することはなく、反射球面の張架が容易な
展開式骨組構造を実現できる。また、各面の内心位置に
立てた垂線が一点で交わるため、基本要素上の上面に反
射平面を張架するだけで、高精度が求められない太陽光
集光装置などのリフレクタを構成できる。
[0010] The deployable skeleton structure according to the present invention has a structure in which a dual polyhedron of a quasi-regular polyhedron is used as a basic shape and a plurality of truncated pyramid-shaped basic elements are shared by sharing a plurality of side surfaces thereof. When constructing a large structure such as a support structure, by repeating one kind of truncated pyramidal frame structure, not only a part of the approximate spherical surface but also the entire approximate spherical surface so that the whole has uniform high rigidity The deployable skeleton structure to be formed can be easily constructed. Further, since the present invention can be implemented with a dual polyhedron of all quasi-regular polyhedrons as a basic shape, a plurality of different skeleton structures can be created by the same procedure for a sphere having a certain size and a radius of curvature, and a skeleton structure can be formed. Appropriate ones can be selected according to the demands imposed. Furthermore, in the dual polyhedron of the quasi-regular polyhedron used in the present invention, there is an inscribed sphere in contact with the inner center of the polygon constituting each surface. By arranging at the apex of the upper surface, the reflecting spherical surface can be stretched on the upper surface of the expandable skeleton structure without interfering with the expandable skeleton structure. Actually, even if the stand-off is shorter, no interference occurs, and it is possible to realize a deployable frame structure in which the reflecting spherical surface can be easily mounted. In addition, since the perpendiculars set at the center positions of the respective surfaces intersect at one point, a reflector such as a solar light concentrator which does not require high accuracy can be configured only by stretching a reflection plane on the upper surface of the basic element.

【0011】また、この発明に係る展開式骨組構造は、
基本要素に含まれる複数の稜線を同期して平行移動する
ことにより展開動作を行うため、パンタグラフ・リンク
機構のように、展開用ガタを用いないで稜線を平行移動
できる機構を用いることにより、展開用ガタを必要とし
ない概略球面あるいはその一部をなす展開式骨組構造物
を構築することができ、構造の精度と強度を高く保つこ
とができるとともに、安定な展開動作を実現できる。こ
の際、パンタグラフ・リンク機構に展開用ガタを追加す
ることなく、部材の太さを考慮してヒンジオフセットを
設けることができる。展開状態において張力をもって張
架されるケーブルの作用、又は、展開状態において内力
を残した状態で展開機構を固定することにより、ヒンジ
などに存在する微小なガタが消滅し、安定な形状を保持
して高い精度を有する展開式骨組構造となし得る。
[0011] Further, the deployable frame structure according to the present invention comprises:
The expansion operation is performed by synchronizing and translating the multiple ridge lines included in the basic element, and therefore, by using a mechanism that can translate the ridge lines without using the play for expansion, such as a pantograph link mechanism, the expansion is performed. It is possible to construct a deployable frame structure that forms a substantially spherical surface or a part thereof that does not require play, and can maintain high accuracy and strength of the structure, and realize a stable deploying operation. At this time, the hinge offset can be provided in consideration of the thickness of the member without adding a play to the pantograph link mechanism. By the action of the cable stretched with tension in the unfolded state, or by fixing the unfolding mechanism with the internal force remaining in the unfolded state, minute play present on hinges and the like disappears, maintaining a stable shape. Frame structure with high precision.

【0012】更に、この発明の展開式骨組構造によれ
ば、角錐台状の基本要素にある平行四辺形リンク機構の
ヒンジを線分で結んだ図形が平行四辺形から長方形に成
る前に展開が終了するよう、ヒンジ位置にヒンジの回転
を止めるストッパを有することにより、展開力を加えて
も展開が進展しなくなる特異的な機構形態を展開動作か
ら排除することができ、過大な展開力を発生することな
く安定に展開動作し、構造破損の可能性が低く、信頼性
の高い展開式骨組構造物を得ることができる。
Further, according to the expandable frame structure of the present invention, the unfolding of the parallelogram link mechanism hinge, which is a truncated pyramid-shaped basic element, from the parallelogram to the rectangle is performed before the hinge is connected to the hinge. By providing a stopper at the hinge position to stop the rotation of the hinge so that it ends, it is possible to eliminate from the unfolding operation a peculiar mechanism form in which the unfolding does not progress even if the unfolding force is applied, generating an excessive unfolding force. Therefore, it is possible to obtain a deployable skeleton structure which can be stably deployed without causing any damage, has a low possibility of structural damage, and has high reliability.

【0013】[0013]

【課題を解決するための手段】このため、本発明が採用
した解決手段は、準正多面体の双対多面体の頂点位置を
上面頂点とし、同多面体の内接球中心から上面頂点を通
る放射線と同内接球より大きな半径を持つ同心球面との
交点を下面頂点とし、同放射線の上面頂点と下面頂点の
間を稜線とすることにより作られる角錐台状の骨組構造
を基本要素とし、上記基本要素の側面を共有させて複数
個結合した構造をなし、更に、上記基本要素の外形を角
錐台としたまま稜線を同期して平行移動させることがで
きるようにしたことを特徴とする展開式骨組構造であ
り、前記角錐台状の上記基本要素は、同期機構と展開機
構を備え、前記同期機構は前記稜線位置で固定され、前
記展開機構は隣り合う稜線位置で固定された前記同期機
構の間で展開できる機構を備えてなることを特徴とする
展開式骨組構造物であり、前記展開機構は2次元平面内
を運動するパンタグラフ・リンク機構から構成されるこ
とを特徴とする展開式骨組構造物であり、前記角錐台状
の基本要素の上面節点相互間及び下面節点相互間には、
展開後のガタを無くすことができる張力発生手段を備え
てなることを特徴とする展開式骨組構造物であり、前記
同期機構は、展開機構に展開力を与える展開力付勢手段
を備えてなることを特徴とする展開式骨組構造物であ
り、前記展開力付勢手段は展開バネであることを特徴と
する展開式骨組構造物であり、前記展開力付勢手段は展
開アクチュエータであることを特徴とする展開式骨組構
造物であり、前記展開機構を固定する保持装置を備えて
いることを特徴とする展開式骨組構造物である。
For this reason, a solution adopted by the present invention is that a vertex position of a dual polyhedron of a quasi-regular polyhedron is defined as a top vertex, and the radiation passing through the top vertex from the center of the inscribed sphere of the polyhedron. The basic element is a truncated pyramid-shaped frame structure formed by defining the intersection of a concentric spherical surface having a radius larger than the inscribed sphere as the lower surface vertex and the ridge between the upper surface vertex and the lower surface vertex of the same radiation. A frame structure in which a plurality of the skeletons are shared by sharing the side surfaces of the base elements, and further, the ridge lines can be synchronously translated while the outer shape of the basic element is a truncated pyramid. Wherein the truncated pyramid-shaped basic element includes a synchronization mechanism and a deployment mechanism, wherein the synchronization mechanism is fixed at the ridgeline position, and the deployment mechanism is between the synchronization mechanisms fixed at adjacent ridgeline positions. Can be expanded An expandable skeleton structure, comprising: a pantograph / link mechanism that moves in a two-dimensional plane; Between the upper surface nodes and between the lower surface nodes of the truncated pyramidal basic element,
A deployable skeleton structure comprising tension generating means capable of eliminating play after deployment, wherein the synchronization mechanism includes deployment force urging means for applying a deployment force to the deployment mechanism. An expandable skeleton structure, wherein the deployment force urging means is a deployment spring, and the deployment force urging means is a deployment actuator. A deployment type frame structure characterized by comprising a holding device for fixing the deployment mechanism.

【0014】[0014]

【発明の実施の形態】以下、添付図面により本発明の実
施の形態について説明する。 第1実施形態 図1乃至図4はこの発明の第1実施形態を示す図であ
り、図1は、全ての面が菱形をなす準正多面体の双対多
面体の部分について本発明を実施した展開式骨組構造に
おける、展開途中と展開後の概略形状を示す斜視図、図
2は上記実施の形態による展開式骨組構造の展開後の部
分的な概略形状を示す斜視図、図3は図2の一つの基本
要素をなす骨組構造の展開途中と展開後の形状を示す斜
視図、図4は図3の番号11の稜線付近の同期機構部と
展開機構部の一部分を示す斜視図である。これらの図に
おいて、1は上面、2は下面、3は内接球中心、4は放
射線、5は上面頂点、6は下面頂点である。ここで、内
接球とはこの準正多面体の双対多面体に、各面を構成す
る多角形の内心位置で接する内接球である。また、放射
線とは内接球中心を通る直線である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. First Embodiment FIGS. 1 to 4 are views showing a first embodiment of the present invention. FIG. 1 is an exploded view in which the present invention is implemented for a quasi-regular polyhedral dual polyhedron in which all surfaces form a rhombus. FIG. 2 is a perspective view showing a schematic shape during and after deployment of the skeleton structure, FIG. 2 is a perspective view showing a partial schematic shape after deployment of the deployable skeleton structure according to the above embodiment, and FIG. FIG. 4 is a perspective view showing the shape of the framework structure as one of the basic elements during and after deployment, and FIG. 4 is a perspective view showing a part of the synchronization mechanism and the deployment mechanism near the ridge line 11 in FIG. In these figures, 1 is the upper surface, 2 is the lower surface, 3 is the center of the inscribed sphere, 4 is the radiation, 5 is the upper surface vertex, and 6 is the lower surface vertex. Here, the inscribed sphere is an inscribed sphere that comes into contact with the dual polyhedron of the quasi-regular polyhedron at an incenter position of a polygon constituting each surface. The radiation is a straight line passing through the center of the inscribed sphere.

【0015】図1の展開式骨組構造は、上面と下面が菱
形で上面頂点と下面頂点を結ぶ稜線が放射線上に乗る角
錐台状の骨組構造を基本要素とし、角錐台状の骨組構造
の側面を共有させて複数個結合した構造を持つ。基本要
素は、稜線が互いになす角度を一定に保ちつつ上面頂点
間又は下面頂点間距離を変化させ、基本要素の外形を角
錐台としたまま稜線を同期して平行移動させることがで
きる機構を備えた展開式骨組構造物である。但し、骨組
構造の具体的な構成では、角錐台の辺上に骨組構造の部
材が、頂点上に骨組構造の節点が具体的に存在するもの
に限定せず、包絡形状が上記角錐台に適合するものであ
ればさしつかえない。また、上記において、準正多面体
の双対多面体を構成する面のうち4面のみを取り出した
ものを示したが、面の数はこれに限定されるのではな
く、準正多面体の双対多面体を構成する連続する面のう
ち任意の個数のものを用いてさしつかえない。
The basic structure of the expandable frame structure shown in FIG. 1 is a truncated pyramid frame structure in which the upper surface and the lower surface are diamond-shaped and the ridge connecting the upper surface vertex and the lower surface vertex is on the radiation. Have a structure in which a plurality of are linked to each other. The basic element has a mechanism that changes the distance between the upper surface vertices or the lower surface vertex while keeping the angle between the ridge lines constant, and has a mechanism that can synchronously translate the ridge line while keeping the outer shape of the basic element as a truncated pyramid. This is a deployed frame structure. However, in the specific configuration of the frame structure, the members of the frame structure on the sides of the truncated pyramid are not limited to those in which the nodes of the frame structure are specifically present on the vertices, and the envelope shape conforms to the truncated pyramid. You can do it if it does. In the above description, only four surfaces out of the surfaces constituting the dual polyhedron of the quasi-regular polyhedron are shown, but the number of surfaces is not limited to this, and Any number of continuous surfaces may be used.

【0016】更に、これらの図において、7は共有上面
部材、8は共有下面部材、9は頂点縦部材、10は展開
機構部、11は同期機構部、12は張力発生手段として
のケーブルである。図3においては、煩雑さを避けるた
め全てのケーブルは省略されている。ケーブルは、展開
状態において所定の張力が発生するように、予めその長
さが調節されている。但し、図1から図4に描かれてい
る機構では、このケーブルは省略しても良い。また、展
開機構部10と同期機構部11は、角錐台状の骨組構造
の側面を形成し、この部分を側面骨組とも呼ぶ。隣り合
う二つの角錐台状の骨組構造は、側面骨組を共有して接
している。
Furthermore, in these figures, 7 is a common upper surface member, 8 is a common lower surface member, 9 is a vertex vertical member, 10 is a deployment mechanism, 11 is a synchronization mechanism, and 12 is a cable as tension generating means. . In FIG. 3, all cables are omitted to avoid complexity. The length of the cable is adjusted in advance so that a predetermined tension is generated in the deployed state. However, in the mechanism illustrated in FIGS. 1 to 4, this cable may be omitted. The deployment mechanism 10 and the synchronization mechanism 11 form a side surface of a truncated pyramid-shaped frame structure, and this portion is also referred to as a side frame. Two adjacent truncated pyramid-shaped frame structures are adjacent to each other while sharing a side frame.

【0017】図4において、13(a〜d)は展開機構
上面部材、14(a〜d)は展開機構下面部材、15
(a〜e)は展開機構縦部材であり、これらによって作
られる側面形状が平行四辺形になるよう、上面ピンヒン
ジ16(a〜e)と下面ピンヒンジ17(a〜e)で図
のように連結される。パンタグラフ部材18(a〜d)
の一端はスライドヒンジ19(a〜c)、他端は固定ピ
ン結合部20(a〜c)で展開機構縦部材15(a、
c、e)に結合され、パンタグラフ部材18(a〜d)
同士は自由ピン結合部21(a、b)でピン結合される
が、展開機構縦部材15(b、d)には結合されない。
なお、必要に応じて展開機構を構成するヒンジ位置とヒ
ンジ動作を制限するストッパを設定することにより、展
開力を加えても展開が進展しなくなる特異的な機構形態
を展開動作から排除することが可能である。
In FIG. 4, 13 (a-d) are upper members of the developing mechanism, 14 (ad) are lower members of the developing mechanism, and 15 (ad).
(A) to (e) are unfolding mechanism vertical members, which are connected by upper surface pin hinges 16 (a to e) and lower surface pin hinges 17 (a to e) as shown in FIG. Is done. Pantograph member 18 (ad)
Is one end of a slide hinge 19 (a to c), and the other end is a fixed pin connecting part 20 (a to c), and a deployment mechanism vertical member 15 (a, c).
c, e) coupled to the pantograph member 18 (ad)
The pins are connected to each other at the free pin connecting portions 21 (a, b), but are not connected to the deployment mechanism vertical member 15 (b, d).
In addition, by setting a hinge position and a stopper that restricts the hinge operation constituting the deployment mechanism as necessary, it is possible to eliminate from the deployment operation a specific mechanism form in which the deployment does not progress even when the deployment force is applied. It is possible.

【0018】同期機構縦部材22は頂点縦部材9の位置
にあり、その上を同期機構スライドヒンジ23が動く。
同期機構スライドヒンジ23の張出部材は、スライドヒ
ンジ19aに摺動ヒンジで結合され、展開力付勢手段と
しての展開バネ24の縮力により同期機構スライドヒン
ジ23を引き上げるとスライドヒンジ19aも引き上げ
られ、展開運動が生じる。但し、展開力付勢手段として
は、展開バネ24の代わりに展開力を発生する展開アク
チュエータ等を用いても良い。同期機構スライドヒンジ
23の張出部材は、その頂点縦部材に会する側面骨組の
数だけあり、全ての展開機構部と同様に接続することに
より異なった側面骨組の展開を同期させる。
The synchronization mechanism vertical member 22 is located at the vertex vertical member 9, and the synchronization mechanism slide hinge 23 moves thereon.
The projecting member of the synchronization mechanism slide hinge 23 is connected to the slide hinge 19a by a slide hinge. When the synchronization mechanism slide hinge 23 is pulled up by the contraction force of the deployment spring 24 as a deployment force urging means, the slide hinge 19a is also pulled up. , Deployment movement occurs. However, a deployment actuator or the like that generates a deployment force may be used instead of the deployment spring 24 as the deployment force urging means. The overhang members of the synchronization mechanism slide hinge 23 are the same as the number of the side frames that meet the apex vertical members, and the connection of the different side frames is synchronized by connecting in the same manner as all the deployment mechanisms.

【0019】上記図1以外の各面が菱形を成す準正多面
体の双対多面体に対してこの発明を実施する場合、上記
図1から図4と同様に実施できる。次に、この発明の第
1実施形態である上記図1から図4に示す展開式骨組構
造の動作について説明する。図1には、二つの骨組構造
の概略形状が描かれているが、上下の順に展開が進行し
ている。基本要素が角錐台を保ったまま稜線を平行移動
して上面及び下面の菱形を大きくすることにより、展開
が進行する。上面又は下面の菱形は常に相似なので、内
接球中心3を固定すると、多面体の頂点を通る放射線を
展開の進行状況によらず一致させることができる。すな
わち、展開の進行に連れて多面体の各頂点が同一の放射
線上を放射状に移動するので、この骨組構造は半径方向
に展開が進行する。
When the present invention is applied to a quasi-regular polyhedron dual polyhedron in which each surface other than FIG. 1 forms a rhombus, it can be carried out in the same manner as in FIGS. Next, the operation of the deployable skeleton structure shown in FIGS. 1 to 4 according to the first embodiment of the present invention will be described. FIG. 1 shows the schematic shapes of the two frame structures, but the development proceeds in the order of up and down. The basic element moves parallel to the ridge line while maintaining the truncated pyramid to enlarge the rhombus on the upper surface and the lower surface. Since the rhombus on the upper surface or the lower surface is always similar, if the center 3 of the inscribed sphere is fixed, the radiation passing through the vertices of the polyhedron can be matched regardless of the progress of the development. That is, as each vertex of the polyhedron moves radially on the same radiation as the deployment progresses, the framework structure is developed in the radial direction.

【0020】更に、上記展開式骨組構造の動作の詳細に
ついて、図2から図4を用いて説明する。この第1実施
形態では、格納時においては、図4に示す骨組上面部材
13(a〜f)同士が成す角θは零に近い状態まで折り
畳まれており、外部からの保持装置(図示しない)又は
同期機構スライドヒンジ23を同期機構縦部材22に固
定する保持装置(図示しない)によって、その状態が保
持されている。展開時においては、上記保持装置を開放
すると、展開バネ24が発生する同期機構スライドヒン
ジ23を上方に動かす駆動力により、スライドヒンジ1
9aを上方に動かす。スライドヒンジ19aへの駆動力
は、パンタグラフ部材18(a〜d)、スライドヒンジ
19(a〜c)、固定ピン結合部20(a〜c)、自由
ピン結合部21(a、b)で構成されるパンタグラフに
伝えられ、15a、15c、15eの間隔を広げ、上記
角θが増大することにより展開が進行する。全ての骨組
上面部材13(a〜f)と全ての骨組下面部材14(a
〜f)がそれぞれ直線になり、上記角θが180度にな
ると、前述のヒンジ構成により上面ピンヒンジ16(a
〜e)と下面ピンヒンジ17(a〜e)の運動が制限さ
れ、図2又は図3の状態で展開動作は停止する。この
時、ケーブル12は所定の張力を持って上面節点間と下
面節点間に張架されるように、予めその長さを調整され
ている。この張力は、隣り合う上面節点間又は下面節点
間の距離を小さくする方向に展開機構部を圧縮する内力
を生じるので、上面ピンヒンジ16(a〜e)、下面ピ
ンヒンジ17(a〜e)、スライドヒンジ19(a〜
c)、固定ピン結合部20(a〜c)、自由ピン結合部
21(a、b)に含まれるガタが無くなり、この発明に
よる展開式骨組構造は高精度の構造となる。
Further, details of the operation of the above-mentioned deployable frame structure will be described with reference to FIGS. In the first embodiment, at the time of storage, the angle θ formed by the skeleton upper surface members 13 (a to f) shown in FIG. 4 is folded to a state close to zero, and an external holding device (not shown) is used. Alternatively, the state is held by a holding device (not shown) that fixes the synchronization mechanism slide hinge 23 to the synchronization mechanism vertical member 22. At the time of unfolding, when the holding device is opened, the slide hinge 1 generated by the unfolding spring 24 is moved by the driving force to move the synchronizing mechanism slide hinge 23 upward.
Move 9a upward. The driving force to the slide hinge 19a is constituted by the pantograph members 18 (ad), the slide hinges 19 (ac), the fixed pin connecting portions 20 (ac), and the free pin connecting portions 21 (a, b). Is transmitted to the pantograph, and the distance between the points 15a, 15c, and 15e is increased, and the angle θ is increased, whereby the development proceeds. All frame upper surface members 13 (af) and all frame lower surface members 14 (a
To f) become straight lines and the angle θ becomes 180 degrees, the upper surface pin hinge 16 (a
To e) and the movement of the lower surface pin hinges 17 (ae) are restricted, and the deployment operation stops in the state of FIG. 2 or FIG. At this time, the length of the cable 12 is adjusted in advance so as to be stretched between the upper surface node and the lower surface node with a predetermined tension. This tension generates an internal force that compresses the unfolding mechanism in a direction to decrease the distance between adjacent upper surface nodes or lower surface nodes. Therefore, the upper surface pin hinges 16 (a to e), the lower surface pin hinges 17 (a to e), and the slide Hinge 19 (a-
c), the backlash included in the fixed pin connecting portions 20 (ac) and the free pin connecting portions 21 (a, b) is eliminated, and the deployable skeleton structure according to the present invention has a highly accurate structure.

【0021】尚、展開状態において展開バネ24が発生
する駆動力により、同期機構スライドヒンジ23が上方
に引きつけられた状態で骨組展開構造が保持されるが、
適切なラッチ機構などの保持装置(図示しない)によっ
て同期機構スライドヒンジ23を同期機構縦部材22に
固定すると、より強固に骨組展開構造が固定できる。
Incidentally, the frame deploying structure is held in a state where the synchronous mechanism slide hinge 23 is pulled upward by the driving force generated by the deploying spring 24 in the deployed state.
When the synchronization mechanism slide hinge 23 is fixed to the synchronization mechanism vertical member 22 by a holding device (not shown) such as an appropriate latch mechanism, the frame deployment structure can be more firmly fixed.

【0022】同期機構スライドヒンジ23の張出部材
は、その頂点縦部材9に会する側面骨組の数だけあり、
全ての展開機構部と同様に接続することにより、異なっ
た側面骨組の展開を同期させる。角錐台の隣接した側面
骨組にある展開機構部は、同期機構部を介してリンクさ
れる。結果として、角錐台の全ての展開機構部は同期し
て展開するので、角錐台の骨組構造の展開は図3のよう
になり、上面節点を順に線分で結んだ多角形が常に菱形
を保つ。その間、同一の側面骨組の縦部材15は互いに
平行が保たれるので、側面骨組の両端にある頂点縦部材
9(同期機構縦部材22)がなす角は一定である。
The overhang members of the synchronization mechanism slide hinge 23 are the same as the number of the side frames that meet the apex vertical members 9.
By connecting in the same way as all the deployment mechanisms, the deployment of the different lateral frames is synchronized. The deployment mechanisms on adjacent side frames of the truncated pyramid are linked via a synchronization mechanism. As a result, since all the deployment mechanisms of the truncated pyramid are deployed synchronously, the deployment of the framework structure of the truncated pyramid is as shown in FIG. 3, and the polygon connecting the top nodes in order with a line segment always maintains a rhombus. . Meanwhile, since the vertical members 15 of the same side skeleton are kept parallel to each other, the angle formed by the vertex vertical members 9 (synchronous mechanism vertical members 22) at both ends of the side skeleton is constant.

【0023】図1及び図2に示した通り、隣り合う角錐
台の骨組構造は側面骨組を共有して結合されているの
で、骨組構造全体でも同期して展開が行われる。また、
展開バネ24の代わりに展開アクチュエータを用いる
と、複数の同期機構部に配置されたアクチュエータを同
期させることにより、構造全体の展開を無理なく同期さ
せることができる。尚、上記図1以外の各面が菱形をな
す準正多面体の双対多面体に対して、この発明を実施す
る場合も、全く同様に展開が行われる。
As shown in FIGS. 1 and 2, the frame structures of the adjacent truncated pyramids are connected by sharing the side frames, so that the entire frame structure is also developed synchronously. Also,
When the deployment actuator is used instead of the deployment spring 24, the deployment of the entire structure can be easily synchronized by synchronizing the actuators arranged in the plurality of synchronization mechanisms. In addition, when the present invention is applied to a quasi-regular polyhedron dual polyhedron in which each surface other than FIG.

【0024】第2実施形態 図5乃至図6はこの発明に係わる第2実施形態の図であ
り、図5は、全ての面が5角形をなす準正多面体の双対
多面体の部分について本発明を実施した展開式骨組構造
における、展開途中と展開後の概略形状を示す斜視図、
図6は上記実施の形態による展開式骨組構造の展開機構
部の配置を示す斜視図である。これらの図において、3
1は上面、32は下面、33は内接球中心、34は放射
線、35は上面頂点、36は下面頂点、37は展開機構
部A、38は展開機構部Bである。この発明の第1実施
形態で示した各面が菱形を成すものを除くと、準正多面
体の双対多面体の各面は、図5のように、等辺多角形に
はならない。このように、各面が等辺多角形ではない準
正多面体の双対多面体に対して本発明を実施したものを
第2実施形態とする。
Second Embodiment FIGS. 5 and 6 are views showing a second embodiment according to the present invention. FIG. 5 shows the present invention for a dual polyhedron of a quasi-regular polyhedron in which all surfaces are pentagonal. A perspective view showing a schematic shape during deployment and after deployment in the deployed deployment frame structure,
FIG. 6 is a perspective view showing the arrangement of the deploying mechanism of the deployable frame structure according to the above embodiment. In these figures, 3
1 is the upper surface, 32 is the lower surface, 33 is the center of the inscribed sphere, 34 is the radiation, 35 is the vertex of the upper surface, 36 is the vertex of the lower surface, 37 is the deployment mechanism A, and 38 is the deployment mechanism B. Except that each surface shown in the first embodiment of the present invention forms a rhombus, each surface of the quasi-regular polyhedron dual polyhedron does not become an equilateral polygon as shown in FIG. As described above, a second embodiment is an embodiment in which the present invention is applied to a quasi-regular polyhedron dual polyhedron in which each surface is not an equilateral polygon.

【0025】図5の展開式骨組構造は、第1実施形態と
同様に、上面と下面が5角形で上面頂点と下面頂点を結
ぶ稜線が放射線上に乗る角錐台状の骨組構造を基本要素
とし、角錐台状の骨組構造の側面を共有させて複数個結
合した構造を持つ。基本要素は、稜線が互いになす角度
を一定に保ちつつ上面頂点間又は下面頂点間距離を変化
させ、基本要素の外形を角錐台としたまま稜線を同期し
て平行移動させることができる機構を備えた展開式骨組
構造である。但し、骨組構造の具体的な構成では、角錐
台の辺上に骨組構造の部材が、頂点上に骨組構造の節点
が具体的に存在するものに限定せず、包絡形状が上記角
錐台に適合するものであればさしつかえない。また、上
記において、準正多面体の双対多面体を構成する面のう
ち5面のみを取り出したものを示したが、面の数はこれ
に限定されるのではなく、準正多面体の双対多面体を構
成する面のうち連続する任意の個数のものを用いてさし
つかえない。
Similar to the first embodiment, the deployable frame structure shown in FIG. 5 has a truncated pyramid-shaped frame structure in which the upper surface and the lower surface are pentagonal and the ridge connecting the upper surface apex and the lower surface apex rides on the radiation. It has a structure in which a plurality of truncated pyramid-shaped frame structures are shared by sharing the sides. The basic element has a mechanism that changes the distance between the upper surface vertices or the lower surface vertex while keeping the angle between the ridge lines constant, and has a mechanism that can synchronously translate the ridge line while keeping the outer shape of the basic element as a truncated pyramid. It is a deployable frame structure. However, in the specific configuration of the frame structure, the members of the frame structure on the sides of the truncated pyramid are not limited to those in which the nodes of the frame structure are specifically present on the vertices, and the envelope shape conforms to the truncated pyramid. You can do it if it does. Also, in the above description, only five surfaces out of the surfaces constituting the dual polyhedron of the quasi-regular polyhedron are shown. However, the number of surfaces is not limited to this, and the quasi-regular polyhedron has a dual polyhedron. Any number of continuous surfaces may be used.

【0026】第2実施形態においても角錐台状の基本要
素の構成は図2、展開式骨組構造の動作は図3、展開機
構部と同期機構部の基本的な構成は図4と同様なので省
略する。図5及び図6に示した通り、隣接する角錐台状
の基本要素同士は側面骨組を共有して結合されているの
で、骨組構造全体でも展開が同期して進行する。第1実
施形態と異なり、第2実施形態においては多面体の各面
が等辺多角形にならないため、異なった長さの辺が会す
る頂点がある。このような頂点では、一つの頂点縦部材
に会する側面骨組の展開機構部すべてを、同期機構部を
介して機構的に連結できるわけではない。ただし、各展
開機構部は一つ以上の隣接する展開機構部と同期機構部
を介して機構的に連結される。図6に示した例では、展
開機構部Aと展開機構部Bとは、どの同期機構部を介し
ても機構的に連結されていないが、外周部の展開機構部
Aおよび内側の展開機構部Bの各々においては、隣接す
る展開機構部同士は同期機構部を介して機構的に連結さ
れている。更に、展開機構部Aと展開機構部Bは5ケ所
の稜線位置で結合されており、その拘束条件により全体
として同期して展開する。
Also in the second embodiment, the configuration of the truncated pyramid-shaped basic elements is shown in FIG. 2, the operation of the deployable frame structure is shown in FIG. 3, and the basic configurations of the deployment mechanism and the synchronization mechanism are the same as in FIG. I do. As shown in FIGS. 5 and 6, the adjacent truncated pyramid-shaped basic elements are connected to each other while sharing the side skeleton, so that the development proceeds in synchronization even in the entire skeleton structure. Unlike the first embodiment, in the second embodiment, since each surface of the polyhedron does not become an equilateral polygon, there are vertices where sides of different lengths meet. At such vertices, not all of the side frame deployment mechanisms that meet one vertex longitudinal member can be mechanically connected via a synchronization mechanism. However, each deployment mechanism is mechanically connected to one or more adjacent deployment mechanisms via a synchronization mechanism. In the example shown in FIG. 6, the unfolding mechanism A and the unfolding mechanism B are not mechanically connected via any synchronization mechanism, but the unfolding mechanism A and the inner unfolding mechanism are not connected. In each of B, the adjacent deployment mechanism units are mechanically connected via a synchronization mechanism unit. Further, the unfolding mechanism A and the unfolding mechanism B are connected at five ridge line positions, and unfold as a whole under the constraint conditions.

【0027】尚、上述したこの発明による展開式骨組構
造を、宇宙通信などに用いられる展開アンテナリフレク
タに用いる場合には、基本要素の多面体の上面頂点等の
適切な部位にスタンドオフ等の保持部材を配置し、上記
スタンドオフを介して金属メッシュや反射コーティング
を施した膜面等を反射面として張架するように構成すれ
ばよい。また、通信以外の目的に供せられるリフレク
タ、例えば太陽光集光装置等に用いる場合にも、同様に
して反射面を構成することが容易にできる。また、上記
第1、第2の各実施形態はあくまで本発明を適用した一
例であり、ケーブル等の張力発生手段、バネ等の展開力
付勢手段、ストッパ等の保持手段は、従来から存在する
同様の機能を達成できる構成に置き換えることができる
ことは当然である。また、本発明はその精神または主要
な特徴から逸脱することなく、他のいかなる形でも実施
できる。そのため、前述の実施形態はあらゆる点で単な
る例示にすぎず限定的に解釈してはならない。
When the deployable skeleton structure according to the present invention is used for a deployable antenna reflector used in space communication or the like, a holding member such as a stand-off is provided at an appropriate position such as the top surface apex of a basic element polyhedron. , And a metal mesh or a film surface coated with a reflective coating may be stretched as a reflective surface via the standoff. Also, when used in a reflector provided for a purpose other than communication, for example, a solar light concentrator, the reflection surface can be easily formed in the same manner. The first and second embodiments are merely examples to which the present invention is applied, and tension generating means such as a cable, deployment force urging means such as a spring, and holding means such as a stopper exist conventionally. Obviously, the configuration can be replaced with a configuration that can achieve the same function. Also, the present invention may be embodied in any other form without departing from its spirit or essential characteristics. Therefore, the above-described embodiment is merely an example in all aspects and should not be interpreted in a limited manner.

【0028】[0028]

【発明の効果】以上説明した通り、この発明によれば、
準正多面体の双対多面体を基本形状とし、角錐台状の基
本要素に含まれる複数の稜線を同期して平行移動するこ
とにより展開動作を行うため、展開用ガタを必要とせず
に概略球面の一部のみならず概略球面全体をなす展開式
骨組構造を構築することができる。また、この発明の展
開式骨組構造は、準正多面体の双対多面体を基本形状と
し、多角形を上面と下面にもつ角錐台状の骨組構造を基
本要素とし、その側面を共有させて結合した構造として
いるので、一種類の角錐台状の骨組構造の繰り返しによ
り、大口径の展開アンテナの支持構造物や宇宙構造物の
球面状部分などの大規模な概略球面の展開式骨組構造を
容易に構築することができる。更にまた、この発明で用
いる準正多面体の双対多面体には、各面を構成する多角
形の内心と接する内接球が存在するため、最長でも上面
頂点から内接球面までの距離のスタンドオフを上面頂点
位置に配置すれば、展開式骨組構造と干渉することなく
反射球面を展開式骨組構造の上面に張架できる。実際に
は、さらに短いスタンドオフでも干渉することはなく、
反射球面の張架が容易な展開式骨組構造を実現できる。
また、各面の内心位置に立てた垂線が一点で交わるた
め、基本要素上の上面に反射平面を張架するだけで、高
精度が求められない太陽光集光装置などのリフレクタを
構成できる。この発明は、全ての準正多面体の双対多面
体を基本形状として実行できるので、ある大きさと曲率
半径をもつ球面に対して、複数の異なった骨組構造案を
作成でき、ミッション要求に応じて適切なものを選択で
きる。例えば、菱形のみからなる準正多面体の双対多面
体、5角形のみからなる準正多面体の双対多面体などを
基本形状とする骨組構造を設計し、構造重量、部品数、
構造強度、構造精度などを比較検討し、最適なものを選
択できる。更に、この発明による展開式骨組構造では、
基本要素を構成する展開機構を、基本的に2次元平面内
を運動するパンタグラフ・リンク機構から構成すること
により、部材が有限の太さを持っている場合にも、展開
用ガタを導入することなしに部材の太さを考慮したヒン
ジオフセットを設けることができるため、ガタによる様
々な弊害を回避し、高い構造精度と剛性をもち、安定で
確実に展開動作する骨組構造を実現できる。更にまた、
展開状態において、張力をもって張架されるケーブルの
作用、又は、展開機構に内力を残した状態で展開機構を
固定することにより、ヒンジなどに存在する微小なガタ
が消滅し、安定な形状を保持して高い精度を有する展開
式骨組構造物となる。また、第1実施形態に係わるもの
では、頂点縦部材にある同期機構により、頂点縦部材を
共有する側面骨組構造の展開機構部が同期して展開さ
れ、また、各側面骨組構造は必ず他の側面骨組構造と頂
点縦部材を共有しているので、全ての展開機構部は連結
されており、この結果、全ての展開機構部が同期して展
開される。第2実施形態に係わるものでも、隣接する角
錐台状の基本要素同士は側面骨組を共有して結合されて
いるので、骨組構造全体でも展開が同期して進行する。
ただし、多面体の各面が等辺多角形にならないため、各
展開機構部は頂点縦部材で会する側面骨組の展開機構部
すべてと、機構的に連結されるわけではないが、必ず一
つ以上の隣接する展開機構部と同期機構部を介して機構
的に連結される。すなわち、何れの実施の形態でも、構
造全体の展開を無理なく同期させることができ、確実で
信頼性の高い展開式骨組構造物を得ることができる。更
に、この発明の展開式骨組構造物によれば、ヒンジ位置
とヒンジ動作を制限するストッパを設定することによ
り、展開力を加えても展開が進展しなくなる特異的な機
構形態を展開動作から排除することができ、機構の特異
性を補うための補助的な展開力発生位置などを追加する
ことなしに、数少ない展開力発生装置により、過大な展
開力を発生することなく安定に展開動作し、構造破損の
可能性が低く、信頼性の高い展開式骨組構造物を得るこ
とができる。更にまた、保持装置により上記展開機構を
固定することにより展開式骨組構造物を固定できるの
で、展開途中の任意の形態で展開動作を停止できる。更
に、展開力をアクチュエータで発生する場合には、展開
力を逆転することにより展開動作を逆転し収納動作も可
能になる、等の優れた効果を奏することができる。
As described above, according to the present invention,
Since the unfolding operation is performed by synchronizing and translating a plurality of ridge lines included in the truncated pyramid-shaped basic element with a quasi-regular polyhedron dual polyhedron as a basic shape, the unfolding operation is performed without the need for unfolding play. It is possible to construct a deployable frame structure that forms not only the part but also the entire spherical surface. Further, the deployable frame structure of the present invention has a basic shape of a quasi-regular polyhedral dual polyhedron, a truncated pyramid-shaped frame structure having a polygon on the upper surface and a lower surface as a basic element, and sharing the side surfaces thereof and connecting them. By repeating one kind of truncated pyramid-shaped frame structure, it is easy to construct a large-scale, roughly spherical deployable frame structure such as the support structure of a large-diameter deployable antenna or the spherical portion of a space structure. can do. Furthermore, in the dual polyhedron of the quasi-regular polyhedron used in the present invention, there is an inscribed sphere in contact with the inner center of the polygon constituting each surface. By arranging at the apex of the upper surface, the reflecting spherical surface can be stretched on the upper surface of the expandable skeleton structure without interfering with the expandable skeleton structure. In fact, even shorter standoffs do not interfere,
It is possible to realize a deployable frame structure in which the reflecting spherical surface can be easily stretched.
In addition, since the perpendiculars set at the center positions of the respective surfaces intersect at one point, a reflector such as a solar light concentrator which does not require high accuracy can be configured only by stretching a reflection plane on the upper surface of the basic element. The present invention can execute a dual polyhedron of all quasi-regular polyhedrons as a basic shape, so that a plurality of different frame structure plans can be created for a sphere having a certain size and a radius of curvature, and an appropriate You can choose one. For example, a skeleton structure having a basic shape of a quasi-regular polyhedron dual polyhedron consisting only of a rhombus and a pentagonal quasi regular polyhedron dual polyhedron is designed, and structural weight, number of parts,
By comparing and examining the structural strength, structural accuracy, etc., the optimum one can be selected. Further, in the deployable frame structure according to the present invention,
The deployment mechanism that constitutes the basic element is basically composed of a pantograph link mechanism that moves in a two-dimensional plane, so that even if the member has a finite thickness, the play for deployment is introduced. Since the hinge offset considering the thickness of the member can be provided without any problem, various adverse effects due to backlash can be avoided, and a frame structure that has high structural accuracy and rigidity, and can be stably and reliably deployed can be realized. Furthermore,
In the unfolded state, by the action of the cable stretched with tension or by fixing the unfolding mechanism while leaving the internal force in the unfolding mechanism, minute backlash existing in hinges etc. disappears and a stable shape is maintained As a result, a deployable frame structure having high accuracy is obtained. In the first embodiment, the deployment mechanism of the side frame structure sharing the vertex vertical member is synchronously deployed by the synchronization mechanism provided on the vertex vertical member. Since the side frame structure and the apex vertical member are shared, all the deployment mechanisms are connected, and as a result, all the deployment mechanisms are deployed in synchronization. Even in the second embodiment, since the adjacent truncated pyramid-shaped basic elements are connected to each other while sharing the side skeleton, the development proceeds in synchronization with the entire skeleton structure.
However, since each face of the polyhedron does not become an equilateral polygon, each deployment mechanism is not mechanically connected to all the deployment mechanisms of the side skeletons that meet at the vertex vertical members, but it is always one or more. It is mechanically connected to an adjacent deployment mechanism via a synchronization mechanism. That is, in any of the embodiments, the deployment of the entire structure can be easily synchronized, and a reliable and highly reliable deployment type frame structure can be obtained. Furthermore, according to the deployable frame structure of the present invention, by setting the hinge position and the stopper that limits the hinge operation, a specific mechanism form in which the deployment does not progress even when the deployment force is applied is eliminated from the deployment operation. Without additional auxiliary force generation position to supplement the specificity of the mechanism, by a small number of expander force generators, the expander operates stably without generating excessive expander force, A highly reliable deployable frame structure with low possibility of structural damage can be obtained. Furthermore, since the deployable frame structure can be fixed by fixing the deployment mechanism with the holding device, the deployment operation can be stopped in any form during deployment. Further, when the deployment force is generated by the actuator, excellent effects such as reversing the deployment force to reverse the deployment operation and enabling the storage operation can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明を各面が菱形をなす準正多面体の双
対多面体の部分について実施した展開式骨組構造におけ
る展開途中と展開後の概略形状を示す斜視図である。
FIG. 1 is a perspective view showing a schematic shape during and after deployment in a deployable skeleton structure in which the present invention is applied to a dual polyhedron portion of a quasi-regular polyhedron in which each surface forms a rhombus.

【図2】 図1の展開式骨組構造の展開後の部分的な概
略形状を示す斜視図である。
FIG. 2 is a perspective view showing a partial schematic shape after deployment of the deployable skeleton structure of FIG. 1;

【図3】 図2の一つの基本要素の骨組構造の展開途中
と展開後の形状を示す斜視図である。
3 is a perspective view showing the shape of the framework structure of one basic element in FIG. 2 during and after deployment.

【図4】 図2の同期機構部と展開機構部の一部分を示
す斜視図である。
FIG. 4 is a perspective view showing a part of a synchronization mechanism and a deployment mechanism of FIG. 2;

【図5】 本発明の第2実施形態による展開式骨組構造
の展開途中と展開後の概略形状を示す斜視図である。
FIG. 5 is a perspective view showing a schematic shape during and after deployment of a deployable frame structure according to a second embodiment of the present invention.

【図6】 図5の展開機構部の機構的な連結関係を示す
斜視図である。
FIG. 6 is a perspective view showing a mechanical connection relationship of a deployment mechanism unit of FIG. 5;

【図7】 従来例としての展開状態にある骨組構造物の
構成図である。
FIG. 7 is a configuration diagram of a skeleton structure in a deployed state as a conventional example.

【符号の説明】[Explanation of symbols]

1 上面 2 下面 3 内接球中心 4 放射線 5 上面頂点 6 下面頂点 7 共有上面部材 8 共有下面部材 9 頂点縦部材 10 展開機構部 11 同期機構部 12 ケーブル 13 展開機構上面部材 14 展開機構下面部材 15 展開機構縦部材 16 上面ピンヒンジ 17 下面ピンヒンジ 18 パンタグラフ部材 19 スライドヒンジ 20 固定ピン結合部 21 自由ピン結合部 22 同期機構縦部材 23 同期機構スライドヒンジ 24 展開バネ 31 上面 32 下面 33 内接球中心 34 放射線 35 上面頂点 36 下面頂点 37 展開機構部A 38 展開機構部B DESCRIPTION OF SYMBOLS 1 Upper surface 2 Lower surface 3 Center of inscribed sphere 4 Radiation 5 Upper surface vertex 6 Lower surface vertex 7 Shared upper surface member 8 Shared lower surface member 9 Vertex vertical member 10 Deployment mechanism 11 Synchronization mechanism 12 Cable 13 Deployment mechanism upper member 14 Deployment mechanism lower member 15 Deployment mechanism vertical member 16 Upper surface pin hinge 17 Lower surface pin hinge 18 Pantograph member 19 Slide hinge 20 Fixed pin connection part 21 Free pin connection part 22 Synchronization mechanism vertical member 23 Synchronization mechanism slide hinge 24 Deployment spring 31 Upper surface 32 Lower surface 33 Center of inscribed sphere 34 Radiation 35 top vertex 36 bottom vertex 37 deployment mechanism A 38 deployment mechanism B

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 準正多面体の双対多面体の頂点位置を上
面頂点とし、同多面体の内接球中心から上面頂点を通る
放射線と同内接球より大きな半径を持つ同心球面との交
点を下面頂点とし、同放射線の上面頂点と下面頂点の間
を稜線とすることにより作られる角錐台状の骨組構造を
基本要素とし、上記基本要素の側面を共有させて複数個
結合した構造をなし、更に、上記基本要素の外形を角錐
台としたまま稜線を同期して平行移動させることができ
るようにしたことを特徴とする展開式骨組構造。
1. A vertex position of a dual polyhedron of a quasi-regular polyhedron is defined as an upper surface vertex, and an intersection between a ray passing from the center of the inscribed sphere of the polyhedron to the upper surface apex and a concentric sphere having a radius larger than the inscribed sphere is defined as a lower surface apex. And, as a basic element, a truncated pyramid-shaped skeleton structure created by making a ridge between an upper surface vertex and a lower surface vertex of the radiation, a structure in which a plurality of side surfaces of the basic element are shared to form a combined structure, A deployable skeleton structure wherein the ridge lines can be moved in parallel in a synchronized manner while keeping the outer shape of the basic element as a truncated pyramid.
【請求項2】 前記角錐台状の基本要素は、同期機構と
展開機構を備え、前記同期機構は前記稜線位置で固定さ
れ、前記展開機構は隣り合う稜線位置で固定された前記
同期機構の間で展開できる機構を備えてなることを特徴
とする請求項1に記載の展開式骨組構造物。
2. The truncated pyramid-shaped basic element includes a synchronization mechanism and a deployment mechanism, wherein the synchronization mechanism is fixed at the ridge line position, and the deployment mechanism is between the synchronization mechanisms fixed at adjacent ridge line positions. The deployable skeleton structure according to claim 1, further comprising a mechanism that can be deployed by using (1).
【請求項3】 前記展開機構は2次元平面内を運動する
パンタグラフ・リンク機構から構成されることを特徴と
する展開式骨組構造物。
3. The deployable frame structure according to claim 3, wherein said deploying mechanism comprises a pantograph link mechanism moving in a two-dimensional plane.
【請求項4】 前記角錐台状の基本要素の上面節点相互
間及び下面節点相互間には、展開後のガタを無くすこと
ができる張力発生手段を備えてなることを特徴とする請
求項1〜請求項3のいずれか1項に記載の展開式骨組構
造物。
4. A tension generating means for eliminating backlash after development is provided between upper surface nodes and between lower surface nodes of the truncated pyramid-shaped basic element. The deployable frame structure according to claim 3.
【請求項5】 前記同期機構は、展開機構に展開力を与
える展開力付勢手段を備えてなることを特徴とする請求
項2〜請求項4のいずれか1項に記載の展開式骨組構造
物。
5. The deployable frame structure according to claim 2, wherein said synchronization mechanism includes a deployment force urging means for applying a deployment force to the deployment mechanism. object.
【請求項6】 前記展開力付勢手段は展開バネであるこ
とを特徴とする請求項5に記載の展開式骨組構造物。
6. The deployable skeleton structure according to claim 5, wherein said deploying force urging means is a deployable spring.
【請求項7】 前記展開力付勢手段は展開アクチュエー
タであることを特徴とする請求項5に記載の展開式骨組
構造物。
7. The deployable skeleton structure according to claim 5, wherein the deployment force urging means is a deployment actuator.
【請求項8】 前記展開機構を固定する保持装置を備え
ていることを特徴とする請求項2〜請求項7のいずれか
1項に記載の展開式骨組構造物。
8. The deployable skeleton structure according to claim 2, further comprising a holding device for fixing the deploying mechanism.
JP35142498A 1998-12-10 1998-12-10 Expandable frame structure Expired - Fee Related JP3717035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35142498A JP3717035B2 (en) 1998-12-10 1998-12-10 Expandable frame structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35142498A JP3717035B2 (en) 1998-12-10 1998-12-10 Expandable frame structure

Publications (2)

Publication Number Publication Date
JP2000183640A true JP2000183640A (en) 2000-06-30
JP3717035B2 JP3717035B2 (en) 2005-11-16

Family

ID=18417200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35142498A Expired - Fee Related JP3717035B2 (en) 1998-12-10 1998-12-10 Expandable frame structure

Country Status (1)

Country Link
JP (1) JP3717035B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005027186A2 (en) * 2003-09-10 2005-03-24 Nippon Telegraph & Telephone Expansion-type reflection mirror
EP2482378A1 (en) * 2011-01-31 2012-08-01 NEC TOSHIBA Space Systems, Ltd. Deployable antenna
EP2571285A2 (en) 2011-09-16 2013-03-20 Sony Corporation Sound-reproducing apparatus, lighting apparatus, and suspended opening and closing apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005027186A2 (en) * 2003-09-10 2005-03-24 Nippon Telegraph & Telephone Expansion-type reflection mirror
WO2005027186A3 (en) * 2003-09-10 2005-05-06 Nippon Telegraph & Telephone Expansion-type reflection mirror
US7216995B2 (en) 2003-09-10 2007-05-15 Nippon Telegraph And Telephone Corporation Deployable reflector
EP2482378A1 (en) * 2011-01-31 2012-08-01 NEC TOSHIBA Space Systems, Ltd. Deployable antenna
US8922456B2 (en) 2011-01-31 2014-12-30 Nec Toshiba Space Systems, Ltd. Deployable antenna
EP2571285A2 (en) 2011-09-16 2013-03-20 Sony Corporation Sound-reproducing apparatus, lighting apparatus, and suspended opening and closing apparatus
EP2571285A3 (en) * 2011-09-16 2015-02-18 Sony Corporation Sound-reproducing apparatus, lighting apparatus, and suspended opening and closing apparatus

Also Published As

Publication number Publication date
JP3717035B2 (en) 2005-11-16

Similar Documents

Publication Publication Date Title
US10734941B2 (en) Compact, self-deploying structures and methods for deploying foldable, structural origami arrays using a compression column
US4819399A (en) Deployable truss
EP2640643B1 (en) Low weight, compactly deployable support structure
US6313811B1 (en) Lightweight, compactly deployable support structure
US20020063660A1 (en) Lightweight, compactly deployable support structure with telescoping members
JP2000183640A (en) Expansion type skeleton structure
Liu et al. The design of coiling and uncoiling trusses using planar linkage modules
JPH11247290A (en) Expansion type frame structure
JP2011121416A (en) Deployment structure body
US20040085657A1 (en) Hinged substrate for large-aperture, lightweight, deformable mirrors
Hedgepeth et al. Design concepts for large reflector antenna structures
JP2000280997A (en) Two-dimensional unfolding structure
JP3422404B2 (en) Spherical approximation frame structure
JPH02283597A (en) Expanding truss structure and expansion synchronizer therefor
CN115548693A (en) Parabolic reflector framework extensible antenna mechanism based on asymmetric rectangular pyramid unit
JPH06104479B2 (en) Deployable truss structure and hinge mechanism having deploying force
JPH10236398A (en) Developed structure
Zhang et al. A novel single-DoF deployable antenna mechanism based on heterogeneous modules: Configuration design and performance analysis
Onoda et al. Two-dimensional deployable hexapod truss
JPH01151630A (en) Expansion type frame structure
JPH02127197A (en) Synchronous developing type truss structural module and construction thereof
JP2001108193A (en) Development structural body for space
Jang et al. Development and performance analysis of deployable reflector based on origami flasher pattern
JP2576696B2 (en) Deployment truss
JP3848057B2 (en) Deployable antenna reflector structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050825

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080909

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080909

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

LAPS Cancellation because of no payment of annual fees
R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350