JP2000182673A - Battery having controlled electrode surface, manufacture thereof and chemical process - Google Patents

Battery having controlled electrode surface, manufacture thereof and chemical process

Info

Publication number
JP2000182673A
JP2000182673A JP11351190A JP35119099A JP2000182673A JP 2000182673 A JP2000182673 A JP 2000182673A JP 11351190 A JP11351190 A JP 11351190A JP 35119099 A JP35119099 A JP 35119099A JP 2000182673 A JP2000182673 A JP 2000182673A
Authority
JP
Japan
Prior art keywords
additive
battery
current collector
electrolyte
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11351190A
Other languages
Japanese (ja)
Other versions
JP3977970B2 (en
Inventor
Denis G Fauteux
ジー フォトー デニス
Van Byuuren Martin
ヴァン ビューレン マーチン
Eric S Kolb
エス コルブ エリック
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/208,895 external-priority patent/US6168878B1/en
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Publication of JP2000182673A publication Critical patent/JP2000182673A/en
Application granted granted Critical
Publication of JP3977970B2 publication Critical patent/JP3977970B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress gas generation due to decomposition of a solvent used in an electrolyte and decomposition of an additive during charging/discharging cycles or storage by providing a passivating means including an additive or a reducing additive associated with the surface of a metallic collector, and a means for substantially preventing gas generation. SOLUTION: In this battery, after a battery 110 is manufactured, a passivation layer 124 is formed by initial charging. After the initial charging, an additive is reduced near the interface between a surface 126 of a metallic collector 122 of a first electrode 112 and an electrolyte 116. In this reduction, it is included that the chemical structure of the additive is changed to become insoluble or the additive associates with the surface 126 of the metallic collector 122. The passivation layer 124 substantially prevents a solvent 118 in the electrolyte 116 from coming into contact with the surface 126 of the metallic collector 122. Therefore, the decomposition of the solvent is prevented and the gas generation in the battery 110 is substantially suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、制御された電極表
面を有する電池に関し、詳しくは、所定位置にて還元さ
れる添加剤を使用して、電解質中で使用される溶剤の分
解に起因する電池内でのガス発生を実質的に防止すると
共に、電池の充放電サイクル及び貯蔵中における添加剤
自体の分解によるガス発生が実質的に抑制された金属集
電体を有するリチウム電池に関する。本発明は さら
に、その製造方法及び化学プロセスにも関する。
FIELD OF THE INVENTION The present invention relates to batteries having a controlled electrode surface, and more particularly to the use of additives that are reduced in place to result from the decomposition of the solvent used in the electrolyte. The present invention relates to a lithium battery having a metal current collector which substantially prevents gas generation in a battery and substantially suppresses gas generation due to decomposition of an additive itself during charge / discharge cycles and storage of the battery. The invention further relates to the manufacturing method and the chemical process.

【0002】[0002]

【従来の技術】リチウムイオン電池はここ数年来研究開
発が進められている。中でも、液状、ゲル状、ポリマー
又はプラスチック電解質を用いると共に金属集電体を使
用したリチウム電池の研究開発が進められている。かか
る電解質は容易に使用できる反面、電解質中で使用され
る市販溶剤に関しては、電池の充放電サイクル及び貯蔵
時において分解を起こすという問題が指摘されている。
特に、電池内に従来の添加剤を存在させず、不動態化層
が形成されていない場合、溶剤は、電極界面と反応し、
電池の充放電サイクル及び貯蔵中に部分的に分解する。
この分解によって、電池性能に影響を及ぼす多大な量の
ガスが発生し、電池の電気化学的特性、特にクーロン効
率に悪影響を及ぼす。
2. Description of the Related Art Research and development of lithium ion batteries have been progressing for several years. Above all, research and development of lithium batteries using a liquid, gel, polymer or plastic electrolyte and using a metal current collector have been promoted. Although such an electrolyte can be used easily, it has been pointed out that a commercially available solvent used in the electrolyte decomposes during a charge / discharge cycle and storage of a battery.
In particular, when no conventional additives are present in the battery and no passivation layer is formed, the solvent reacts with the electrode interface,
Partially decomposes during battery charge / discharge cycles and storage.
This decomposition produces a significant amount of gas that affects battery performance, adversely affecting the electrochemical properties of the battery, especially Coulombic efficiency.

【0003】従来の添加剤は、溶剤と電極との接触を実
質的に防止する不動態化層を形成するために使用される
が、依然としてこの従来の添加剤には問題がある。即
ち、従来の添加剤自体が電池の充放電サイクル及び貯蔵
中に分解され、この分解によって電池内に電池性能に影
響を及ぼす多大な量のガスが発生するという問題があ
る。
[0003] While conventional additives are used to form a passivation layer that substantially prevents contact between the solvent and the electrode, there are still problems with the conventional additives. That is, there is a problem that the conventional additive itself is decomposed during the charge / discharge cycle and storage of the battery, and this decomposition generates a large amount of gas in the battery that affects battery performance.

【0004】[0004]

【発明が解決しようとする課題】本発明の課題は、電解
質中で使用される溶剤の分解に起因する電池内でのガス
発生を実質的に防止すると共に、電池の充放電サイクル
及び貯蔵中における添加剤自体の分解によるガス発生が
実質的に抑制された、金属集電体を有するリチウム電池
を提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to substantially prevent gas generation in a battery due to the decomposition of a solvent used in an electrolyte, and to reduce the charge and discharge cycles of the battery and during storage. An object of the present invention is to provide a lithium battery having a metal current collector, in which gas generation due to decomposition of the additive itself is substantially suppressed.

【0005】[0005]

【課題を解決するための手段】本発明者らは上記目的を
達成すべく鋭意検討した結果、第1電極および第2電極
と、電解質と、特定の添加剤および/または還元添加剤
と、特定の不動態化手段と、特定のガス発生防止手段と
から成る電池によって上記課題が解決できることを見い
出し、本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies to achieve the above object, the present inventors have found that a first electrode and a second electrode, an electrolyte, a specific additive and / or a reducing additive, It has been found that the above problem can be solved by a battery comprising the passivating means and the specific gas generation preventing means, and the present invention has been completed.

【0006】本発明は上記の知見に基づき完成されたも
のであり、その第1の要旨は、少なくとも一方の電極
が、一表面を有する金属集電体を含有する第1電極およ
び第2電極と、少なくとも1つの溶剤を含有する電解質
と、上記少なくとも一つの金属集電体の表面と関連する
添加剤および/または還元添加剤と、添加剤又は還元添
加剤を含む不動態化手段と、ガス発生を実質的に防止す
る手段とから成る電池であって、上記不動態化手段は電
解質中の少なくとも1つの溶剤と上記少なくとも一つの
金属集電体の表面との接触を実質的に防止して、上記少
なくとも一つの金属集電体の表面との接触時に溶剤の分
解に起因して生じるガス発生を実質的に防止し、上記ガ
ス発生防止手段は添加剤または還元添加剤と関連し、電
池の充放電サイクル及び貯蔵中における上記少なくとも
一つの金属集電体の表面における還元添加剤の分解に起
因する電池内でのガス発生を実質的に防止する手段であ
ることを特徴とする制御された電極表面を有する電池に
存する。
The present invention has been completed based on the above findings, and a first gist of the present invention is that at least one of the electrodes includes a first electrode and a second electrode each containing a metal current collector having one surface. An electrolyte containing at least one solvent, an additive and / or a reducing additive associated with the surface of the at least one metal current collector, a passivating means containing the additive or the reducing additive, and gas generation. Wherein the passivation means substantially prevents contact between at least one solvent in the electrolyte and the surface of the at least one metal current collector, Substantially preventing gas generation due to the decomposition of the solvent upon contact with the surface of the at least one metal current collector, wherein the gas generation prevention means is associated with an additive or a reducing additive and is used to charge the battery. Discharge cycle A controlled electrode surface which is a means for substantially preventing gas generation in the battery due to decomposition of the reducing additive on the surface of the at least one metal current collector during storage and storage. Exists in batteries.

【0007】第1の要旨の好ましい態様として、前記添
加剤または還元添加剤が電池のクーロン効率を向上させ
る手段である。
In a preferred embodiment of the first aspect, the additive or the reducing additive is a means for improving the coulomb efficiency of the battery.

【0008】第1の要旨の他の好ましい態様として、第
1〜10サイクルを通じたクーロン効率が85%を超え
る。また、第1サイクルのクーロン効率が91%以上で
ある。
In another preferred embodiment of the first aspect, the Coulomb efficiency over the first to tenth cycles exceeds 85%. Further, the coulomb efficiency of the first cycle is 91% or more.

【0009】第1の要旨の他の好ましい態様として、更
に、金属集電体の前記表面付近で樹枝状突起が形成する
のを実質的に防止する手段を含む。
Another preferred embodiment of the first aspect further includes a means for substantially preventing the formation of dendrites near the surface of the metal current collector.

【0010】本発明の第2の要旨は、(a)少なくとも
一方の電極が一表面を有する金属集電体を含む第1電極
および第2電極を製造する工程と、(b)第1及び第2
電極に少なくとも1つの溶剤を含む少なくとも1つの電
解質を関連させる工程と、(c)少なくとも1つの電解
質または上記一表面を有する金属集電体を含む少なくと
も1つの電極に添加剤を関連させる工程とから成ること
を特徴とする電池の製造方法に存する。
A second gist of the present invention is that (a) a step of manufacturing a first electrode and a second electrode including a metal current collector in which at least one electrode has one surface; and (b) first and second electrodes. 2
Associating at least one electrolyte comprising at least one solvent with the electrode; and (c) associating an additive with at least one electrode comprising at least one electrolyte or the metal current collector having one surface. And a method for manufacturing a battery.

【0011】本発明の第3の要旨は、(a)少なくとも
一方の電極が一表面を有する金属集電体を含む第1電極
および第2電極を製造する工程と、(b)第1および第
2電極に少なくとも1つの溶剤を含む少なくとも1つの
電解質を関連させる工程と、(c)電解質または上記少
なくとも一つの金属集電体の表面に添加剤を関連させる
工程と、(d)上記少なくとも一つの金属集電体の表面
と電解質との間に不動態化層を形成する工程とから成る
電池の化学プロセスであって、上記不動態化層形成工程
が、更に、(1)電池を充電する工程と、(2)上記金
属集電体表面で添加剤を実質的に還元し、還元添加剤を
実質的に電解質に不溶とする工程と、(3)電解質中の
少なくとも1つの溶剤と上記少なくとも1つの金属集電
体の表面との化学的相互作用を実質的に防止する工程
と、(4)電池の充放電サイクル及び貯蔵中において、
還元添加剤の分解に起因する電池内でのガス発生を実質
的に防止する工程とから成ることを特徴とする上記電池
の化学プロセスに存する。
A third gist of the present invention is that (a) a step of manufacturing a first electrode and a second electrode including a metal current collector in which at least one electrode has one surface; and (b) first and second electrodes. Associating at least one electrolyte comprising at least one solvent with the two electrodes; (c) associating an additive with the surface of the electrolyte or the at least one metal current collector; and (d) associating an additive with the at least one metal current collector. Forming a passivation layer between the surface of the metal current collector and the electrolyte, wherein the passivation layer forming step further comprises: (1) charging the battery (2) a step of substantially reducing an additive on the surface of the metal current collector to make the reduced additive substantially insoluble in the electrolyte; and (3) at least one solvent in the electrolyte and the at least one solvent. With two metal current collector surfaces A step of substantially preventing interaction, (4) charge-discharge cycle and during storage of the battery,
Substantially preventing gas generation within the battery due to decomposition of the reducing additive.

【0012】[0012]

【発明の実施の態様】以下本発明を図面を使用して説明
する。本発明は様々な実施態様が可能であるため、本発
明は以下に図示された実施態様や説明に限定されない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. The present invention is not limited to the embodiments and descriptions illustrated below, as the invention is capable of various embodiments.

【0013】図1に初期充電前の従来の電池の模式図を
示す。図1に示すように、充電前の従来の電池10は、
通常、第1電極12、第2電極14及び電解質16から
成る。電解質16は、溶剤18と従来添加剤20とを含
む。
FIG. 1 is a schematic view of a conventional battery before initial charging. As shown in FIG. 1, a conventional battery 10 before charging is:
Usually, it is composed of the first electrode 12, the second electrode 14, and the electrolyte 16. The electrolyte 16 includes a solvent 18 and a conventional additive 20.

【0014】図2に初期充電後の従来の電池の模式図を
示す。図2に示すように、初期充電後の従来の電池10
は、通常、第1電極12、第2電極14、電解質16及
び不動態化層20’からなる。不動態化層20’は、電
解質中の溶剤と従来添加剤との相互作用以前に、従来添
加剤と電極とが関連することによって部分的に形成され
る。かかる不動態化層は、溶剤と電極との接触を実質的
に防止するが、添加剤は、電池の充放電サイクル及び貯
蔵中に分解を開始し、電池性能に影響を及ぼす多大な量
のガスを発生する。
FIG. 2 is a schematic diagram of a conventional battery after initial charging. As shown in FIG. 2, the conventional battery 10 after the initial charge
Consists of a first electrode 12, a second electrode 14, an electrolyte 16 and a passivation layer 20 '. The passivation layer 20 'is formed in part by the association of the conventional additive with the electrode prior to the interaction of the conventional additive with the solvent in the electrolyte. While such a passivation layer substantially prevents contact between the solvent and the electrode, the additive initiates decomposition during the charge and discharge cycle and storage of the battery, and a significant amount of gas that affects battery performance. Occurs.

【0015】図3に初期充電前の本発明に係わる電池の
模式図を示す。図3に示すように、初期充電前の本発明
の電池110は、通常、第1電極112、第2電極11
4及び電解質116から成る。電極112は金属集電体
122を含む。金属集電体としては、リチウムと合金又
は層間化合物を形成しない限り、多数の金属種又は金属
性種を使用でき、具体的には銅から成ることが好まし
い。その厚さは通常25μm以下、好ましくは1〜25
μmである。
FIG. 3 is a schematic diagram of the battery according to the present invention before the initial charging. As shown in FIG. 3, the battery 110 of the present invention before the initial charge generally has a first electrode 112 and a second electrode 11.
4 and the electrolyte 116. The electrode 112 includes a metal current collector 122. As the metal current collector, many metal species or metallic species can be used as long as they do not form an alloy or an interlayer compound with lithium, and specifically, it is preferably made of copper. Its thickness is usually 25 μm or less, preferably 1 to 25
μm.

【0016】電解質116は、溶剤118と添加剤12
0とを含む。図では、単なる例示として、添加剤120
が、初期に電解質116と関連している状態を示した
が、添加剤120は、第1電極112と関連していても
よい。添加剤120と電極との関連法としては、噴霧
(スプレー)、ロール掛け又は塗布等の従来法のいずれ
を用いてもよい。添加剤として、無水琥珀酸等の電解質
に実質的に可溶な物質を使用する場合、従来の混合法を
使用して、いずれの段階で添加剤を電解質と混合しても
よい。
The electrolyte 116 comprises a solvent 118 and an additive 12
0 is included. In the figure, the additive 120 is merely illustrative.
However, the additive 120 is initially associated with the electrolyte 116, but the additive 120 may be associated with the first electrode 112. As a related method between the additive 120 and the electrode, any of conventional methods such as spraying, rolling or coating may be used. If a substance that is substantially soluble in the electrolyte, such as succinic anhydride, is used as the additive, the additive may be mixed with the electrolyte at any stage using conventional mixing techniques.

【0017】更に、添加剤120としては、以下の実験
例で例示するように、ホスファイト類、カルボン酸塩
類、チオフェン類及び無水物類が挙げられるが、これら
に限定されるものではない。かかる添加剤の特性を以下
に示す。
Further, examples of the additives 120 include, but are not limited to, phosphites, carboxylate salts, thiophenes, and anhydrides, as exemplified in the following experimental examples. The properties of such additives are shown below.

【0018】1)還元以前に関連電解質に可溶又は不溶
のいずれであってもよく、還元後に関連電解質に実質的
に不溶となる。
1) It may be either soluble or insoluble in the related electrolyte before the reduction, and becomes substantially insoluble in the related electrolyte after the reduction.

【0019】2)実質的にガスの発生無く、還元状態に
改質できる。
2) It can be reformed to a reduced state substantially without generating gas.

【0020】3)金属集電体表面に不動態化層を形成
し、電解質中の溶剤と金属集電体表面との接触を実質的
に防止し、溶剤及び電極表面間の相互作用に起因した分
解と、非制御不動態化層の分解およびガス発生とを防止
する。
3) A passivation layer is formed on the surface of the metal current collector to substantially prevent contact between the solvent in the electrolyte and the surface of the metal current collector, resulting from the interaction between the solvent and the electrode surface. Prevents decomposition and decomposition and outgassing of the uncontrolled passivation layer.

【0021】4)添加剤未添加の電池に比して、第1サ
イクルクーロン効率が増大した電池を形成し得る。
4) A battery having an increased first cycle Coulomb efficiency can be formed as compared with a battery without an additive.

【0022】5)電池内での樹枝状突起の形成を実質的
に防止する。
5) The formation of dendrites in the battery is substantially prevented.

【0023】かかる特性を示す添加剤としては、以下の
化学構造式で表されるHTP(3−ヘキシルチオフェ
ン、化学式1)、TPP(トリフェニルホスファイト、
化学式2)、A−4(アルドリチオール、化学式3)、
SA(無水琥珀酸、化学式4)、DSA(2−ドデセン
−1−イル琥珀酸無水物、化学式5)、THPA(シス
−1,2,3,6−テトラヒドロフタル酸無水物、化学
式6)、PMD(2,2−ペンタメチレン−1,3−ジ
オキソラン、化学式7)、BEC(3,4−エポキシシ
クロヘキシルメチル3,4−エポキシシクロヘキサンカ
ルボキシレート、化学式8)及びEDTDA(エチレン
ジアミン四酢酸二無水物、化学式9)等が例示される
が、これらに限定するものではない。
The additives having such properties include HTP (3-hexylthiophene, chemical formula 1) represented by the following chemical structural formula, TPP (triphenyl phosphite,
Chemical formula 2), A-4 (aldrithiol, chemical formula 3),
SA (succinic anhydride, chemical formula 4), DSA (2-dodecene-1-yl succinic anhydride, chemical formula 5), THPA (cis-1,2,3,6-tetrahydrophthalic anhydride, chemical formula 6), PMD (2,2-pentamethylene-1,3-dioxolane, Chemical Formula 7), BEC (3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate, Chemical Formula 8) and EDTDA (ethylenediaminetetraacetic acid dianhydride, Examples include, but are not limited to, chemical formula 9).

【0024】[0024]

【化1】 Embedded image

【0025】[0025]

【化2】 Embedded image

【0026】[0026]

【化3】 Embedded image

【0027】[0027]

【化4】 Embedded image

【0028】[0028]

【化5】 Embedded image

【0029】[0029]

【化6】 Embedded image

【0030】[0030]

【化7】 Embedded image

【0031】[0031]

【化8】 Embedded image

【0032】[0032]

【化9】 Embedded image

【0033】また、溶剤118としては、市販または従
来使用されている溶剤または(液体(エーテル)、ポリ
マー、ゲル又はプラスチック等の)電気化学的物質が使
用でき、好ましくはプロピレンカーボネート(PC)又
はエチレンカーボネート(EC)等の有機炭酸塩溶剤で
ある。
As the solvent 118, commercially available or conventionally used solvents or electrochemical substances (such as liquids (ethers), polymers, gels or plastics) can be used. Preferably, propylene carbonate (PC) or ethylene is used. Organic carbonate solvents such as carbonate (EC).

【0034】図4に初期充電後の本発明に係わる電池の
模式図を示す。図4に示すように、初期充電後の電池1
10は金属集電体122の表面126に不動態化層12
4を有する。以下に詳述するように、不動態化層124
は、電解質116と金属集電体122の表面126との
界面付近に存在する添加剤の還元によって形成される。
上記のように、この不動態化層124は、溶剤118と
表面126との接触を実質的に防止し、溶剤の分解に起
因するガス発生を実質的に防止する。また上述のよう
に、添加剤自体が分解しても、電池の性能に影響を及ぼ
すような多大な量のガス発生には至らない。従って、実
質的にガス発生を防止するだけでなく、本発明の添加剤
を用いずに製造された電池に比して電池のクーロン効率
を、飛躍的に増加させることができる。このクーロン効
率に関しては、以下に詳述する。
FIG. 4 is a schematic view of the battery according to the present invention after the initial charge. As shown in FIG. 4, the battery 1 after the initial charge
10 is a passivation layer 12 on the surface 126 of the metal current collector 122.
4 As described in more detail below, passivation layer 124
Is formed by reduction of an additive existing near the interface between the electrolyte 116 and the surface 126 of the metal current collector 122.
As described above, this passivation layer 124 substantially prevents contact between the solvent 118 and the surface 126 and substantially prevents gassing resulting from decomposition of the solvent. Also, as described above, the decomposition of the additive itself does not lead to the generation of a large amount of gas that affects the performance of the battery. Therefore, not only can gas generation be substantially prevented, but also the coulomb efficiency of the battery can be drastically increased as compared to a battery manufactured without using the additive of the present invention. The coulomb efficiency will be described in detail below.

【0035】図5に本発明に係わる化学プロセスを示す
フローチャートを示す。図5に示すように、電池110
(図3及び図4参照)の製造方法、並びに初期充電時に
電池内で生起する実際の化学プロセスは以下の工程から
成る。
FIG. 5 is a flowchart showing a chemical process according to the present invention. As shown in FIG.
The manufacturing method (see FIGS. 3 and 4) and the actual chemical process that takes place in the battery during the initial charge consists of the following steps.

【0036】先ず、初期充電前の電池は、第1電極11
2、第2電極114及び電解質116を形成することに
より製造される。第1電極112としては、例えば、金
属集電体122を有するアノードが例示され、第2電極
114としては、カソードが例示される。二次電池の形
態においては、電池の充電又は放電状態に応じて、アノ
ード及びカソードは互換可能である。電極と同様に特定
の電解質は、従来技術を使用して製造することが出来
る。更に、溶剤118と添加剤120は、初期に、電解
質116と関連させてもよい。また、上述のように、添
加剤120は、第1電極112及び第2114の一方ま
たは両方と関連させることもできる。
First, the battery before the initial charging is connected to the first electrode 11.
2. It is manufactured by forming the second electrode 114 and the electrolyte 116. As the first electrode 112, for example, an anode having a metal current collector 122 is exemplified, and as the second electrode 114, a cathode is exemplified. In the form of a secondary battery, the anode and cathode are interchangeable depending on the state of charge or discharge of the battery. Certain electrolytes, as well as electrodes, can be manufactured using conventional techniques. Further, the solvent 118 and the additive 120 may be initially associated with the electrolyte 116. Also, as described above, the additive 120 can be associated with one or both of the first electrode 112 and the second electrode 114.

【0037】電池110の製造後、電池に初期充電を行
うことにより不動態化層124を少なくとも部分的に形
成する。初期充電後、添加剤120は、第1電極112
の金属集電体122の表面126と電解質116間の界
面付近で還元される。かかる還元には、添加剤の化学構
造が変化して、添加剤が電解質116に少なくとも実質
的に不溶となるか、又は添加剤が金属集電体表面と関連
することが含まれる。
After fabrication of the battery 110, the battery is initially charged to at least partially form the passivation layer 124. After the initial charge, the additive 120 is applied to the first electrode 112
Is reduced near the interface between the surface 126 of the metal current collector 122 and the electrolyte 116. Such reductions include a change in the chemical structure of the additive, such that the additive is at least substantially insoluble in the electrolyte 116, or the additive is associated with a metal current collector surface.

【0038】不動態化層は、電解質116中の溶剤11
8と金属集電体表面との接触を実質的に防止する。従っ
て、この接触防止によって、溶剤の分解、より詳しく
は、電池110内でのガス発生が実質的に防止される。
The passivation layer is composed of the solvent 11 in the electrolyte 116.
8 is substantially prevented from contacting the metal current collector surface. Accordingly, the prevention of the contact substantially prevents the decomposition of the solvent, more specifically, the generation of gas in the battery 110.

【0039】電極表面との接触時に起こる溶剤分解及び
従来添加剤の分解がクーロン効率の実質的ロスを起こす
が、本発明の添加剤の使用した電池は、この添加剤を用
いない電池に比して第1サイクル・クーロン効率、場合
によって第1〜10サイクル・クーロン効率が実質的に
向上することがわかる。
Although the decomposition of the solvent and the decomposition of the conventional additive that occur upon contact with the electrode surface cause a substantial loss in Coulomb efficiency, the battery using the additive of the present invention has a higher efficiency than the battery not using the additive. Thus, it can be seen that the first cycle coulomb efficiency, and in some cases, the first to tenth cycle coulomb efficiency are substantially improved.

【0040】[0040]

【実施例】電気化学的性能の向上を立証するため、以下
に記載する種々の添加剤を使用して電池を製造した。実
験法および実験結果を以下に要約する。
EXAMPLES To demonstrate the improvement in electrochemical performance, batteries were made using various additives as described below. The experimental methods and results are summarized below.

【0041】先ず、銅集電体(アノード)、金属リチウ
ム基準電極を有する金属リチウムカソード、及び1Mの
LiAsF6を含有するPC電解液中の添加剤(0.5
〜5.0重量%)からなる幾つかの電池を製造した。電
池製造後、サイクリックボルタンメトリー法を用いて、
電池内における添加剤から不動態化層への転換効率を測
定した。製造電池は、段階的に3.0V〜0.0Vまで
のサイクル工程に付した。上記ボルタンメトリーの結果
をクーロン効率に変換し、1〜10サイクルにおけるク
ーロン効率を下記表1に示した。クーロン効率は、10
0%に近い数値ほど好ましい。
First, a copper current collector (anode), a metal lithium cathode having a metal lithium reference electrode, and an additive (0.5%) in a PC electrolyte containing 1M LiAsF 6 were used.
~ 5.0 wt%). After battery production, using cyclic voltammetry,
The conversion efficiency from the additive to the passivation layer in the battery was measured. The manufactured battery was subjected to a cycle step from 3.0 V to 0.0 V stepwise. The results of the voltammetry were converted into Coulomb efficiencies, and the Coulomb efficiencies at 1 to 10 cycles are shown in Table 1 below. Coulomb efficiency is 10
A value closer to 0% is more preferable.

【0042】[0042]

【表1】 [Table 1]

【0043】表1からわかるように、上記添加剤を添加
した電池の多くが、添加剤未添加の電池に比して良好な
結果を示した。中でも、SA、HTP(1%)及びBE
Cを添加した電池が、第1〜10サイクルを通じて極め
て好ましいクーロン効率値を示した。更に、SAを添加
した電池は、91%の極めて高い第1サイクルクーロン
効率を示した。
As can be seen from Table 1, most of the batteries to which the above additives were added showed better results than the batteries to which no additives were added. Among them, SA, HTP (1%) and BE
The cells to which C was added exhibited extremely favorable Coulomb efficiency values throughout the first to tenth cycles. Furthermore, the cells with added SA exhibited a very high first cycle Coulomb efficiency of 91%.

【0044】上記の記載と図面は、単に発明の例示であ
り、本発明はその要旨を逸脱することなく、種々の修正
と変更を行なうことが可能である。
The above description and drawings are merely illustrative of the invention, and various modifications and changes can be made in the present invention without departing from the gist of the invention.

【0045】[0045]

【発明の効果】本発明の電池は、電解質中で使用される
溶剤の分解に起因する電池内でのガス発生を実質的に防
止すると共に、電池の充放電サイクル及び貯蔵中におけ
る添加剤自体の分解によるガス発生が実質的に抑制され
ており、サイクルクーロン効率が非常に高いため、本発
明の工業的価値は高い。
The battery of the present invention substantially prevents gas generation in the battery due to the decomposition of the solvent used in the electrolyte, and also suppresses the additive itself during the charge / discharge cycle and storage of the battery. Since the gas generation due to decomposition is substantially suppressed and the cycle coulomb efficiency is very high, the industrial value of the present invention is high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】初期充電前の従来の電池の模式図FIG. 1 is a schematic view of a conventional battery before initial charging.

【図2】初期充電後の従来の電池の模式図FIG. 2 is a schematic view of a conventional battery after initial charging.

【図3】初期充電前の本発明に係わる電池の模式図FIG. 3 is a schematic diagram of a battery according to the present invention before initial charging.

【図4】初期充電後の本発明に係わる電池の模式図FIG. 4 is a schematic diagram of a battery according to the present invention after initial charging.

【図5】本発明に係わる化学プロセスを示すフローチャ
ート
FIG. 5 is a flowchart showing a chemical process according to the present invention.

【符号の説明】[Explanation of symbols]

10:電池 12:第1電極 14:第2電極 16:電解質 18:溶剤 20:従来添加剤 20’:不動態化層 110:本発明の電池 112:第1電極 114:第2電極 116:電解質 118:溶剤 120:添加剤 122:金属集電体 124:不動態化層 126:金属集電体の表面 10: Battery 12: First electrode 14: Second electrode 16: Electrolyte 18: Solvent 20: Conventional additive 20 ': Passivation layer 110: Battery of the present invention 112: First electrode 114: Second electrode 116: Electrolyte 118: Solvent 120: Additive 122: Metal current collector 124: Passivation layer 126: Surface of metal current collector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 エリック エス コルブ アメリカ合衆国 マサチューセッツ州 01720 アクトン テンネイ シーアイア ール 6 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Eric S. Kolb, Massachusetts, USA 01720 Acton Tenney C.I.

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一方の電極が、一表面を有す
る金属集電体を含有する第1電極および第2電極と、少
なくとも1つの溶剤を含有する電解質と、上記少なくと
も一つの金属集電体の表面と関連する添加剤および/ま
たは還元添加剤と、添加剤又は還元添加剤を含む不動態
化手段と、ガス発生を実質的に防止する手段とから成る
電池であって、上記不動態化手段は電解質中の少なくと
も1つの溶剤と上記少なくとも一つの金属集電体の表面
との接触を実質的に防止して、上記少なくとも一つの金
属集電体の表面との接触時に溶剤の分解に起因して生じ
るガス発生を実質的に防止し、上記ガス発生防止手段は
添加剤または還元添加剤と関連し、電池の充放電サイク
ル及び貯蔵中における上記少なくとも一つの金属集電体
の表面における還元添加剤の分解に起因する電池内での
ガス発生を実質的に防止する手段であることを特徴とす
る制御された電極表面を有する電池。
1. A method according to claim 1, wherein at least one electrode includes a first electrode and a second electrode each containing a metal current collector having one surface, an electrolyte containing at least one solvent, and at least one metal current collector. A battery comprising: an additive and / or a reducing additive associated with a surface; a passivating means containing the additive or the reducing additive; and a means for substantially preventing gas generation. Substantially prevents contact of at least one solvent in the electrolyte with the surface of the at least one metal current collector, resulting in decomposition of the solvent upon contact with the surface of the at least one metal current collector. The gas generation preventing means is substantially associated with an additive or a reducing additive, and is provided on the surface of the at least one metal current collector during charge / discharge cycles and storage of the battery. A battery having a controlled electrode surface, which is a means for substantially preventing gas generation in the battery due to decomposition of the additive.
【請求項2】 前記添加剤または還元添加剤が、電池の
クーロン効率を向上させる手段である請求項1に記載の
電池。
2. The battery according to claim 1, wherein the additive or the reducing additive is means for improving the coulomb efficiency of the battery.
【請求項3】 第1〜10サイクルを通じたクーロン効
率が85%を超える請求項2に記載の電池。
3. The battery according to claim 2, wherein the Coulomb efficiency over the first to tenth cycles exceeds 85%.
【請求項4】 第1サイクルのクーロン効率が91%以
上である請求項2又は3に記載の電池。
4. The battery according to claim 2, wherein the coulomb efficiency in the first cycle is 91% or more.
【請求項5】 更に、前記少なくとも一つの金属集電体
の前記表面付近で樹枝状突起が形成するのを実質的に防
止する手段を含む請求項1〜4の何れかに記載の電池。
5. The battery according to claim 1, further comprising means for substantially preventing dendrite formation near the surface of the at least one metal current collector.
【請求項6】 前記樹枝状突起形成防止手段が添加剤お
よび/または還元添加剤から成る請求項5に記載の電
池。
6. The battery according to claim 5, wherein the dendrite formation preventing means comprises an additive and / or a reducing additive.
【請求項7】 還元添加剤が、還元前に電解質に可溶ま
たは不溶である請求項1〜6の何れかに記載の電池。
7. The battery according to claim 1, wherein the reduction additive is soluble or insoluble in the electrolyte before reduction.
【請求項8】 前記金属集電体が25μm未満の厚さを
有する金属箔から成る請求項1〜7の何れかに記載の電
池。
8. The battery according to claim 1, wherein the metal current collector comprises a metal foil having a thickness of less than 25 μm.
【請求項9】 (a)少なくとも一方の電極が一表面を
有する金属集電体を含む第1電極および第2電極を製造
する工程と、(b)第1及び第2電極に少なくとも1つ
の溶剤を含む少なくとも1つの電解質を関連させる工程
と、(c)少なくとも1つの電解質または上記一表面を
有する金属集電体を含む少なくとも1つの電極に添加剤
を関連させる工程とから成ることを特徴とする電池の製
造方法。
9. A step of (a) manufacturing a first electrode and a second electrode including a metal current collector in which at least one electrode has one surface; and (b) at least one solvent for the first and second electrodes. And (c) associating an additive with at least one electrolyte or at least one electrode comprising a metal current collector having one surface. Battery manufacturing method.
【請求項10】 添加剤が電解質に不溶である請求項9
に記載の方法。
10. The additive according to claim 9, wherein the additive is insoluble in the electrolyte.
The method described in.
【請求項11】 添加剤が前記少なくとも一つの金属集
電体の表面に直接塗着されている請求項9又は10に記
載の方法。
11. The method according to claim 9, wherein an additive is applied directly to a surface of the at least one metal current collector.
【請求項12】 (a)少なくとも一方の電極が一表面
を有する金属集電体を含む第1電極および第2電極を製
造する工程と、(b)第1および第2電極に少なくとも
1つの溶剤を含む少なくとも1つの電解質を関連させる
工程と、(c)電解質または上記少なくとも一つの金属
集電体の表面に添加剤を関連させる工程と、(d)上記
少なくとも一つの金属集電体の表面と電解質との間に不
動態化層を形成する工程とから成る電池の化学プロセス
であって、上記不動態化層形成工程が、更に、(1)電
池を充電する工程と、(2)上記金属集電体表面で添加
剤を実質的に還元し、還元添加剤を実質的に電解質に不
溶とする工程と、(3)電解質中の少なくとも1つの溶
剤と上記少なくとも1つの金属集電体の表面との化学的
相互作用を実質的に防止する工程と、(4)電池の充放
電サイクル及び貯蔵中において、還元添加剤の分解に起
因する電池内でのガス発生を実質的に防止する工程とか
ら成ることを特徴とする上記電池の化学プロセス。
12. A step of (a) manufacturing a first electrode and a second electrode including a metal current collector in which at least one electrode has one surface; and (b) at least one solvent for the first and second electrodes. Associating at least one electrolyte comprising: (c) associating an additive with an electrolyte or a surface of the at least one metal current collector; and (d) associating an additive with the surface of the at least one metal current collector. Forming a passivation layer between the electrolyte and an electrolyte, wherein the passivation layer forming step further comprises: (1) charging a battery; and (2) the metal. A step of substantially reducing the additive on the surface of the current collector to make the reducing additive substantially insoluble in the electrolyte; and (3) at least one solvent in the electrolyte and the surface of the at least one metal current collector. Substantially interacts with And (4) substantially preventing gas generation in the battery due to decomposition of the reducing additive during charge / discharge cycles and storage of the battery. Chemical process.
【請求項13】 前記電池が第1〜10サイクルを通じ
て85%を超えるクーロン効率を示す請求項12に記載
の化学プロセス。
13. The chemical process of claim 12, wherein said battery exhibits a Coulombic efficiency of greater than 85% during the first to tenth cycles.
【請求項14】 前記電池が91%以上の第1サイクル
クーロン効率を示す請求項12又は13に記載の化学プ
ロセス。
14. The chemical process according to claim 12, wherein the battery exhibits a first cycle Coulombic efficiency of 91% or more.
【請求項15】 添加剤が電解質に不溶である請求項1
2〜14の何れかにに記載の化学プロセス。
15. The method according to claim 1, wherein the additive is insoluble in the electrolyte.
15. The chemical process according to any one of 2 to 14.
【請求項16】 添加剤が、前記少なくとも1つの金属
集電体の表面に直接塗着されている請求項12〜15の
何れかに記載の化学プロセス。
16. The chemical process according to claim 12, wherein an additive is applied directly to a surface of the at least one metal current collector.
JP35119099A 1998-12-10 1999-12-10 Battery with controlled electrode surface Expired - Lifetime JP3977970B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/208,895 US6168878B1 (en) 1998-10-26 1998-12-10 Electrochemical cell having a controlled electrode surface and associated fabrication and chemical process
US09/208895 1998-12-10

Publications (2)

Publication Number Publication Date
JP2000182673A true JP2000182673A (en) 2000-06-30
JP3977970B2 JP3977970B2 (en) 2007-09-19

Family

ID=22776481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35119099A Expired - Lifetime JP3977970B2 (en) 1998-12-10 1999-12-10 Battery with controlled electrode surface

Country Status (1)

Country Link
JP (1) JP3977970B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101156251B1 (en) * 2004-06-19 2012-06-13 삼성에스디아이 주식회사 Lithium ion battery
WO2019088166A1 (en) * 2017-11-01 2019-05-09 日本電気株式会社 Lithium ion secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101156251B1 (en) * 2004-06-19 2012-06-13 삼성에스디아이 주식회사 Lithium ion battery
WO2019088166A1 (en) * 2017-11-01 2019-05-09 日本電気株式会社 Lithium ion secondary battery
JPWO2019088166A1 (en) * 2017-11-01 2020-11-12 日本電気株式会社 Lithium ion secondary battery
JP7024797B2 (en) 2017-11-01 2022-02-24 日本電気株式会社 Lithium ion secondary battery
US11777147B2 (en) 2017-11-01 2023-10-03 Nec Corporation Lithium ion secondary battery

Also Published As

Publication number Publication date
JP3977970B2 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
EP2645463B1 (en) Non-aqueous electrolyte secondary battery and anode for secondary battery
US20060292452A1 (en) Electrolyte solution for secondary battery and secondary battery using same
CN106159329B (en) A kind of lithium titanate battery electrolyte and lithium titanate battery
JP2009105069A (en) Electrolyte for lithium secondary battery, and lithium secondary battery containing same
CN105742703A (en) High-voltage functional electrolyte containing LiDFOB additive and preparation and application thereof
JP5012767B2 (en) Secondary battery
WO2003105268A1 (en) Electrolyte for secondary battery and secondary battery containing the same
CN107482247A (en) A kind of high-voltage lithium ion batteries
CN105449274B (en) lithium ion battery and electrolyte thereof
KR20040084858A (en) Positive Electrode, Non-Aqueous Electrolyte Secondary Battery, and Method of Manufacturing the Same
JP2006156315A (en) Secondary battery
CN112928328A (en) Lithium ion battery electrolyte containing silane sulfonamide compound and lithium ion secondary battery
US6168878B1 (en) Electrochemical cell having a controlled electrode surface and associated fabrication and chemical process
CN116802865A (en) Nonaqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery containing the same
CN1167165C (en) Non-aqueous electrolyte secondary battery and mfg. method thereof
CN111668542A (en) Non-aqueous electrolyte containing halogenated benzene sulfonamide and lithium secondary battery
JP2005190978A (en) Nonaqueous electrolyte secondary battery
US20210143479A1 (en) Non-aqueous electrolyte solution and lithium metal secondary battery and lithium ion secondary battery including the same
KR20010037101A (en) Lithium secondary battery cathode composition, lithium secondary battery cathode and lithium secondary battery employing the same, and method for preparing the same
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP3977970B2 (en) Battery with controlled electrode surface
JP2005026091A (en) Nonaqueous electrolyte battery
JP2011181204A (en) Manufacturing method of lithium ion secondary battery and lithium ion secondary battery
JP4355947B2 (en) Secondary battery
JP4207123B2 (en) Non-aqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070412

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3977970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term