JP2000182051A - Camera calibration method - Google Patents

Camera calibration method

Info

Publication number
JP2000182051A
JP2000182051A JP10353678A JP35367898A JP2000182051A JP 2000182051 A JP2000182051 A JP 2000182051A JP 10353678 A JP10353678 A JP 10353678A JP 35367898 A JP35367898 A JP 35367898A JP 2000182051 A JP2000182051 A JP 2000182051A
Authority
JP
Japan
Prior art keywords
camera
photographs
corresponding points
straight lines
correspondence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10353678A
Other languages
Japanese (ja)
Inventor
Yoichiro Matsumura
陽一郎 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP10353678A priority Critical patent/JP2000182051A/en
Publication of JP2000182051A publication Critical patent/JP2000182051A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce work time in the setting of information required for camera calibration by calculating the relative direction/position of a camera from the correspondence of two corresponding points and three vertical straight lines or from the correspondence of the corresponding points and two groups of two parallel straight lines in two photographs. SOLUTION: For creating the three-dimensional model of an object with the principle of stereo view from two photographs 1 and 2 where the object is taken by changing the position and the direction of a camera, the relative direction/position of the camera is calculated from the correspondence of the two corresponding points and three straight lines which are mutually perpendicular to each other on the two photographs 1 and 2 or the relative direction/ position of the camera is calculated form the correspondence of the two corresponding points and the two groups of two parallel straight lines in the two photographs 1 and 2 in a camera calibration method for obtaining information of the direction and the position of the camera from the corresponding points on the two photographs 1 and 2. Thus, calibration from the photograph with few corresponding points is realized and the positioning work of the corresponding points or the like is simplified.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、機器や設備を撮影
した複数枚の写真からステレオ視の原理を用いて3次元
モデルを作成するにおいて、各写真を撮影したカメラの
位置や向きの情報を得るためのカメラキャリブレーショ
ン方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of creating a three-dimensional model from a plurality of photographs of equipment and facilities by using the principle of stereoscopic vision. It relates to a camera calibration method for obtaining.

【0002】[0002]

【従来の技術】コンピュータのグラフィクス処理性能の
向上とともに、3次元コンピュータグラフィクス(3D
CG)を用いた各種3次元シミュレーションシステムが
産業界に応用されはじめている。特に、産業用で対象と
なるのは、現実の機器をモデル化し(3次元モデルを作
成し)、各種シミュレーション機能や状態表示機能等を
3次元アプリケーションで実現する。
2. Description of the Related Art With the improvement of computer graphics processing performance, three-dimensional computer graphics (3D
Various three-dimensional simulation systems using CG) have begun to be applied to industry. In particular, for industrial use, a real device is modeled (three-dimensional model is created), and various simulation functions and status display functions are realized by a three-dimensional application.

【0003】3次元モデルを作成する場合問題となるの
は、作成工数の多さである。例えば、機器モデルを作成
する場合、モデル化の対象となる機器を直方体・円柱等
のプリミティブ形状に分割することにより、自由曲面等
でモデル化するよりも簡単にモデルが作成可能ではある
が、それらプリミティブの空間情報(頂点座標)の取得
には手間がかかる。
A problem when creating a three-dimensional model is a large number of man-hours. For example, when creating a device model, by dividing the device to be modeled into primitive shapes such as a rectangular parallelepiped and a cylinder, it is possible to create a model more easily than by modeling with a free-form surface, etc. Acquiring the spatial information (vertex coordinates) of a primitive takes time.

【0004】このような、プリミティブの空間情報を簡
易に抽出する方式として、写真を利用したモデル作成手
法が提案されている。
As a method for easily extracting the spatial information of a primitive, a model creation method using a photograph has been proposed.

【0005】この手法は、機器や設備の対象物を複数方
向から撮影した写真上でプリミティブを当てはめていく
ことにより3次元モデルを作成する方法である。この方
法は、モデルに関する数値入力が不要であり、また、写
真を利用するためモデル作成者のイメージが沸きやす
く、モデル作成が簡単化される。写真をテクスチャーと
して使用することにより現実感のある3次元モデルを作
成できるという長所もある。空間情報は、複数の写真か
らステレオ視の原理を用いて取得する。この際、各々の
対象物を撮影したときのカメラの向き、位置の情報が必
要であり、これらの情報を求めることがカメラキャリブ
レーションと呼ばれる。
[0005] This method is a method of creating a three-dimensional model by applying primitives to photographs taken of objects of equipment and facilities from a plurality of directions. This method does not require numerical input of a model, and since a photograph is used, the image of the model creator is easily boiled, thereby simplifying the model creation. There is also an advantage that a realistic three-dimensional model can be created by using a photograph as a texture. Spatial information is acquired from a plurality of photographs using the principle of stereo vision. At this time, information on the orientation and position of the camera at the time of shooting each target object is required, and obtaining such information is called camera calibration.

【0006】カメラキャリブレーションを簡易に行う手
法として、複数写真上の対応点を利用する方法がある。
対象物を異なる方向から撮影した二枚の写真上の対応点
間には、エピポーラ関係と呼ばれる幾何的関係が成り立
つ。二枚の写真上で対応点が8点以上存在する場合、エ
ピポーラ関係を利用して相対的なカメラ向き、位置(二
枚のうちのどちらか一方の写真を撮影したカメラの座標
系を基準とした時の、もう一方の写真のカメラ向き、位
置)を推定するカメラキャリブレーションに関して、以
下の文献がある。
As a technique for easily performing camera calibration, there is a method of using corresponding points on a plurality of photographs.
A geometric relationship called an epipolar relationship is established between corresponding points on two photographs of the object taken from different directions. If there are eight or more corresponding points on two photographs, the relative camera orientation and position (based on the coordinate system of the camera that took one of the two photographs) using the epipolar relationship There are the following documents regarding camera calibration for estimating the camera orientation and position of the other photo when the above is performed.

【0007】文献1)Longuest−Higgin
s,H.C,”A Computer A1gorit
hm for Reconstructing a S
cene from Two Projection
s,” Nature,Vol.293,pp.133−135(1
981) 文献2)Tasi,R.Y.and Huang,T.
S.,”Uniqueness and estima
tion of 3−D motion parame
ters of rigid bodies with
curvedsurfaces,”IEEE Tra
ns Pattern Anal.Machine I
ntell. vol.PAMI−6,pp.13−27(198
4) 文献3)Weng,J.et al.,”Motion
and Structure from Two P
erspective Views:Algorith
ms,Error Analysis,and Err
or Estimation,”lEEE Trans
Pattern Anal.Machine Int
ell.,vol.11,no.5,pp.451−476(1989) 文献4)Kanatani,K.,”Renormal
ization for Motion Ana1ys
is:Statistically Optimal
Algorithm”,IEICE Trans.In
f.&Syst.,Vol.E77−D,no.11 pp.1
233−1239(1994) また、三枚以上の写真上の対応点の情報を利用したカメ
ラキャリブレーション手法を本願出願人は既に提案して
いる(特願平9−45389号公報)。
Reference 1) Longgest-Higgin
s, H .; C, "A Computer A1gorit
hm for Restructuring a S
Cene from Two Projection
s, "Nature, Vol. 293, pp. 133-135 (1
981) Reference 2) Tasi, R .; Y. and Huang, T .;
S. , "Uniqueness and estima
Tion of 3-D motion parame
ters of rigid bodies with
curvedsurfaces, "IEEE Tra
ns Pattern Anal. Machine I
nell. vol. PAMI-6, pp. 13-27 (198
4) Reference 3) Weng, J. et al. et al. , "Motion
and Structure from Two P
erotic Views: Algorith
ms, Error Analysis, and Err
or Estimation, "lEE Trans
Pattern Anal. Machine Int
ell., vol. 11, no. 5, pp. 451-476 (1989) Reference 4) Kanatani, K. et al. , "Renormal
Ization for Motion Ana1ys
is: Statistically Optimal
Algorithm ", IEICE Trans. In
f. & Syst., Vol. E77-D, no. 11 pp. 1
233-1239 (1994) The applicant of the present application has already proposed a camera calibration method using information on corresponding points on three or more photographs (Japanese Patent Application No. 9-45389).

【0008】[0008]

【発明が解決しようとする課題】上記の「従来の技術」
で述べた複数枚の写真上の対応点を利用したカメラキャ
リブレーション方式においては、多くの正確な対応点が
必要である。例えば、写真二枚間の相対的なカメラ関係
を線形に算出するには8点以上の対応点が必要とされ
る。従って、必要な数だけの対応点を得られない写真で
はカメラキャリブレーションは行えない。
The above "prior art"
In the camera calibration method using the corresponding points on a plurality of photographs described above, many accurate corresponding points are required. For example, in order to linearly calculate the relative camera relationship between two photographs, eight or more corresponding points are required. Therefore, camera calibration cannot be performed on a photograph for which the required number of corresponding points cannot be obtained.

【0009】また、対応点の正確な位置付け作業は人が
行う場合、かなりの時間を要する。この理由は、隣接し
た画像間ではコンピュータ処理で自動的に対応点付けを
実施することが可能であるが、隣接していない画像間で
は対応点付けの有効なアルゴリズムが存在しないことに
よる。
[0009] When a person manually performs the operation of accurately locating the corresponding point, a considerable amount of time is required. The reason for this is that although it is possible to automatically perform corresponding scoring by computer processing between adjacent images, there is no effective algorithm for corresponding scoring between non-adjacent images.

【0010】本発明の目的は、対応点の少ない写真から
のカメラキャリブレーションを可能にし、しかも対応点
の位置付け作業等を簡単にしたカメラキャリブレーショ
ン方法を提供することにある。
An object of the present invention is to provide a camera calibration method which enables camera calibration from a photograph having a small number of corresponding points and simplifies the work of locating the corresponding points.

【0011】[0011]

【課題を解決するための手段】本発明は、建築物、工業
製品などの人工物を3次元モデル作成の対象物とした場
合、写真からは平行な直線群、直方体の頂点、相互に垂
直な三直線等の情報が選られることを利用することによ
り、2枚の写真における、2対応点と相互に垂直な3直
線の対応から、または2対応点と2組の平行な2直線の
対応から相対的なカメラの向き、位置を算出する方法と
したもので、以下の方法を特徴とする。(第1の発明)
カメラの位置と向きを変えて対象物を撮影した2枚の写
真からステレオ視の原理を用いて対象物の3次元モデル
を作成するため、2枚の写真上の対応点からカメラの向
きと位置の情報を得るカメラキャリブレーション方法に
おいて、2枚の写真における2つの対応点と相互に垂直
な3直線の対応から相対的なカメラの向きと位置を算出
することを特徴とする。
According to the present invention, when an artificial object such as a building or an industrial product is used as an object for creating a three-dimensional model, a set of parallel straight lines, a vertex of a rectangular parallelepiped, By utilizing the fact that information such as three straight lines is selected, from the correspondence between two corresponding points and three straight lines mutually perpendicular in two photographs, or from the correspondence between two corresponding points and two sets of parallel two straight lines This is a method for calculating the relative camera direction and position, and is characterized by the following method. (First invention)
To create a three-dimensional model of an object using the principle of stereo vision from two photographs taken of the object while changing the position and orientation of the camera, the direction and position of the camera from the corresponding points on the two photographs Is characterized in that the relative camera direction and position are calculated from the correspondence between two corresponding points in two photographs and three straight lines perpendicular to each other.

【0012】(第2の発明)カメラの位置と向きを変え
て対象物を撮影した2枚の写真からステレオ視の原理を
用いて対象物の3次元モデルを作成するため、2枚の写
真上の対応点からカメラの向きと位置の情報を得るカメ
ラキャリブレーション方法において、2枚の写真におけ
る2つの対応点と2組の平行な2直線の対応から相対的
なカメラの向きと位置を算出することを特徴とする。
(Second Invention) Since a three-dimensional model of an object is created from two photographs of the object by changing the position and orientation of the camera using the principle of stereo vision, the two In the camera calibration method for obtaining information on the direction and position of the camera from the corresponding points, the relative camera direction and position are calculated from the correspondence between two corresponding points in two photographs and two sets of two parallel straight lines. It is characterized by the following.

【0013】[0013]

【発明の実施の形態】本発明の実施形態の説明に使用す
る基本事項、記号等について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Basic matters, symbols, and the like used in the description of the embodiments of the present invention will be described.

【0014】3次元上の点(X,Y,Z)が写真上の点
(u,v)に投影されているときの変換は次式で定式化
される。
The transformation when a three-dimensional point (X, Y, Z) is projected on a point (u, v) on a photograph is formulated by the following equation.

【0015】[0015]

【数1】 (Equation 1)

【0016】ここで、3次元回転行列Rがカメラの向き
を表わし、3次元ベクトルTが位置を表わす。また、カ
メラの焦点距離を1に正規化している。また、写真1上
の点(u1,v1)と写真2上の点(u2,v2)が同じ3
次元上の点の像であるとき、これらの点を対応点と呼
び、また次のエピポーラ関係が成立する。
Here, the three-dimensional rotation matrix R indicates the direction of the camera, and the three-dimensional vector T indicates the position. Also, the focal length of the camera is normalized to 1. Also, the point (u 1 , v 1 ) on Photo 1 and the point (u 2 , v 2 ) on Photo 2 are the same 3
When the images are points on a dimension, these points are called corresponding points, and the following epipolar relationship is established.

【0017】[0017]

【数2】 (Equation 2)

【0018】ここで、R1 T、R1 T(T2−T1)はそれぞ
れ写真1を撮影したカメラ(カメラ1)の座標系でみた
ときの写真2を撮影したカメラ(カメラ2)の向き、位
置である。すなわち、カメラ2のカメラ1に対する相対
的なカメラ向き、位置である。
Here, R 1 T and R 1 T (T 2 −T 1 ) are the values of the camera (camera 2) that took picture 2 when viewed in the coordinate system of the camera (camera 1) that took picture 1. Orientation, position. That is, the direction and position of the camera 2 relative to the camera 1.

【0019】(第1の実施形態)本実施形態は、2枚の
写真において、2対応点、相互に垂直な3直線の対応か
ら相対的なカメラの向き、位置(スケールを除いて)を
算出するカメラキャリブレーション方法である。
(First Embodiment) In this embodiment, relative camera orientation and position (excluding scale) are calculated from two corresponding points and three straight lines perpendicular to each other in two photographs. Camera calibration method.

【0020】図1に示すように、対象物を異なる位置で
撮影した2枚の写真をそれぞれ、写真1、写真2であら
わす。今、写真1を撮影したカメラ(カメラ1)の座標
系を基準にとり、この座標系で見たときのカメラ2の位
置を3次元ベクトルT、向きを3次元回転行列Rで表
す。また、カメラ1の位置は0ベクトル、向きは3次元
単位行列となる。
As shown in FIG. 1, two photographs of the object taken at different positions are represented as photograph 1 and photograph 2, respectively. Now, based on the coordinate system of the camera (camera 1) that took the photograph 1, the position of the camera 2 when viewed in this coordinate system is represented by a three-dimensional vector T, and the direction is represented by a three-dimensional rotation matrix R. The position of the camera 1 is a zero vector, and the direction is a three-dimensional unit matrix.

【0021】3次元空間中で相互に垂直な3直線をa,
b,cの写真1上の像をl,m,nとする。また、3次
元空間中で相互に垂直な3直線をd,e,fの写真2上
の像をs,t,uとする。このときaとdは同一かある
いは平行であり、bとe及びcとfについても同一かあ
るいは平行とする。つまり、((a=d or a//
d)and(b=e or b//e)and(c=f
or c//f))になる。
In the three-dimensional space, three mutually perpendicular straight lines are denoted by a,
The images b and c on the photograph 1 are denoted by l, m and n. In addition, let three straight lines d, e, and f in the three-dimensional space be images s, t, and u on the photograph 2, respectively. At this time, a and d are the same or parallel, and b and e and c and f are also the same or parallel. That is, ((a = d or a //
d) and (b = e or b // e) and (c = f
or c // f)).

【0022】図2は、カメラキャリブレーションを行う
アルゴリズムを示すフローチャートである。以下、各ス
テップS1〜S6について説明する。
FIG. 2 is a flowchart showing an algorithm for performing camera calibration. Hereinafter, steps S1 to S6 will be described.

【0023】(S1)3次元空間中の相互に垂直な3直
線をa,b,cの写真1上の像l,m,n上の点を一つ
の直線につき2つ、計6つ選択する。
(S1) Six mutually perpendicular three straight lines in the three-dimensional space are selected, two points on the images 1, m and n on the photograph 1 of a, b and c, two for each straight line, a total of six. .

【0024】これらの点があらわしている実際の3次元
空間中の点をPa1,Pa2,Pb1,Pb2,Pc1,Pc2であ
らわし、その3次元座標を(Xa1,Ya1,Za1)、…、
(Xc2,Yc2,Zc2)、画像座標をそれぞれ(ua1,v
a1)、…、(uc2,vc2)とする。
The points in the actual three-dimensional space where these points are represented are represented by P a1 , P a2 , P b1 , P b2 , P c1 , P c2 , and their three-dimensional coordinates are represented by (X a1 , Y a1). , Z a1 ),…,
(X c2 , Y c2 , Z c2 ) and the image coordinates are (u a1 , v
a1 ), ..., ( uc2 , vc2 ).

【0025】各点は3つのベクトルPa1a2、P
b1b2、Pc1c2がこの順番で右手系を成すように選択
する。ベクトル(ua1,va1,1)Tをqa1であらわ
し、qa2、…、qc2も同様に定義する。このとき前記の
(1)式よりあるλa1、…、λc2が存在して、以下の
(3)式が成立する。
Each point has three vectors P a1 P a2 , P
b1 Pb2 and Pc1 Pc2 are selected so as to form a right-handed system in this order. The vector (u a1 , v a1 , 1) T is represented by q a1 , and q a2 ,..., Q c2 are similarly defined. At this time, there are certain λ a1 ,..., Λ c2 from the above equation (1), and the following equation (3) is established.

【0026】[0026]

【数3】 (Equation 3)

【0027】(S2)3次元空間中の相互に垂直な3直
線をd,e,fの写真2上の像s,t,u上の点を一つ
の直線につき2つ、計6つ選択する。
(S2) Two mutually perpendicular three straight lines in the three-dimensional space are selected from d, e, and f on the image s, t, and u of the image 2 on the photograph 2, two for each straight line, that is, six in total. .

【0028】これらの点があらわしている実際の3次元
空間中の点をPd1,Pd2,Pe1,Pe2,Pf1,Pf2であ
らわし、その3次元座標を(Xd1,Yd1,Zd1)、…、
(Xf2,Yf2,Zf2)、画像座標をそれぞれ(ud1,v
d1)、…、(uf2,vf2)とする。
The points in the actual three-dimensional space where these points are represented are represented by P d1 , P d2 , P e1 , P e2 , P f1 , and P f2 , and their three-dimensional coordinates are represented by (X d1 , Y d1). , Z d1 ),…,
(X f2 , Y f2 , Z f2 ) and the image coordinates are (ud 1 , v
d1 ), ..., ( uf2 , vf2 ).

【0029】各点は3つのベクトルPd1d2、P
e1e2、Pf1f2がこの順番で右手系を成し、またベク
トルPa1a2、Pd1d2が同方向、ベクトルPb1b2
e1e2が同方向、ベクトルPc1c2、Pf1f2が同方
向になるように選択する。前記の(S1)と同様に、ベ
クトルqd1、…、qf2を定義する。このとき(1)式よ
りあるλc1、…、λf2が存在して、以下の式が成立す
る。
Each point has three vectors P d1 P d2 , P
e1 P e2, P f1 P f2 is forms a right-handed in this order, also a vector P a1 P a2, P d1 P d2 is the same direction, the vector P b1 P b2,
P e1 P e2 are the same direction, the vector P c1 P c2, P f1 P f2 is chosen to be in the same direction. In the same manner as in the above (S1), vectors q d1 ,..., Q f2 are defined. At this time, there are certain λ c1 ,..., Λ f2 from equation (1), and the following equation is established.

【0030】[0030]

【数4】 (Equation 4)

【0031】(S3)3つのベクトルλa2a2−λa1
a1、λb2b2−λb1b1、λc2c2−λc1c1が相互に
垂直であり、この順番で右手系を成すことから、λa2
λa1、λb2/λb1、λc2/λc1の値を算出する。
(S3) Three vectors λ a2 q a2 −λ a1 q
a1, λ b2 q b2 -λ b1 q b1, λ c2 q c2 -λ c1 q c1 are perpendicular to each other, from the fact that form a right-handed in this order, λ a2 /
The values of λ a1 , λ b2 / λ b1 , λ c2 / λ c1 are calculated.

【0032】(S4)3つのベクトルλd2d2−λd1
d1、λe2e2−λe1e1、λf2f2−λf1f1が相
互に垂直であり、この順番で右手系を成すことから、λ
d2/λd1、λe2/λe1、λf2/λf1の値を算出する。
(S4) Three vectors λ d2 q d2 −λ d1 q
d1, λ e2 q e2 -λ e1 q e1, λ f2 q f2 -λ f1 q f1 are perpendicular to each other, from the fact that form a right-handed in this order, λ
The values of d2 / λd1 , λe2 / λe1 , and λf2 / λf1 are calculated.

【0033】(S5)回転行列Rを算出する。前記の
(3)式、および(4)式より、以下の式が成り立つ。
(S5) The rotation matrix R is calculated. From the above equations (3) and (4), the following equations hold.

【0034】[0034]

【数5】 (Equation 5)

【0035】これより、以下のように回転行列Rが求ま
る。
From this, the rotation matrix R is obtained as follows.

【0036】[0036]

【数6】 (Equation 6)

【0037】(S6)2つの対応点及びエピポーラ関
係、前記の(2)式より位置ベクトルTを算出する。
(S6) The position vector T is calculated from the two corresponding points and the epipolar relationship and the above equation (2).

【0038】(第2の実施形態)本実施形態は、2枚の
写真において、2対応点、2組の平行な2直線の対応か
ら相対的なカメラの向き、位置(スケールを除いて)を
算出するカメラキャリブレーション方法である。
(Second Embodiment) In this embodiment, the relative camera direction and position (excluding the scale) are determined based on the correspondence between two corresponding points and two sets of two parallel straight lines in two photographs. This is a camera calibration method to be calculated.

【0039】図3に示すように、対象物を異なる位置で
撮影した2枚の写真をそれぞれ、写真1、写真2であら
わす。今、写真1を撮影したカメラ(カメラ1)の座標
系を基準にとり、この座標系で見たときのカメラ2の位
置を3次元ベクトルT、向きを3次元回転行列Rで表
す。また、カメラ1の位置は0ベクトル、向きは3次元
単位行列となる。
As shown in FIG. 3, two photographs of the object taken at different positions are represented as photograph 1 and photograph 2, respectively. Now, based on the coordinate system of the camera (camera 1) that took the photograph 1, the position of the camera 2 when viewed in this coordinate system is represented by a three-dimensional vector T, and the direction is represented by a three-dimensional rotation matrix R. The position of the camera 1 is a zero vector, and the direction is a three-dimensional unit matrix.

【0040】3次元空間中で平行な2組の平行な2直線
a,b(a//b,a≠b)及びc、d(c//d,c≠
d)の写真1上の像をk,l,m,nとする。また、3
次元空間中で平行な2組の平行な2直線e,f(e//
f,e≠f)及びg,h(g//h,g≠h)の写真2上
の像をs,t,u,vとする。
In a three-dimensional space, two sets of parallel two straight lines a and b (a / b, a (b) and c and d (c // d, c ≠)
The image on the photograph 1 of d) is k, l, m, n. Also, 3
Two sets of parallel two straight lines e and f (e //
f, e ≠ f) and g, h (g // h, g ≠ h) on the photograph 2 are denoted by s, t, u, v.

【0041】このとき、eはa,bと平行かあるいは
a,bのどちらか一方と同一であり、(e//a//b o
r e=a or a=b)となる。同様に、fはa,
bと平行かあるいはa,bのどちらか一方と同一であ
り、(f//a//b or f=aor f=b)とな
る。c,d,g,hについても同様に、(g//c//d
org=c or g=d、h//c//d or h=c
or h=d)とする。
At this time, e is parallel to a and b or the same as either a or b, and (e // a // bo
re = a or a = b). Similarly, f is a,
It is parallel to b or the same as either one of a and b, and (f // a // borf = aorf = b). Similarly, for c, d, g, and h, (g // c // d
org = c or g = d, h // c // d or h = c
or h = d).

【0042】透視投影において、3次元空間中で平行な
直線群の像が一点で交わる点を消失点と呼ぶ。カメラキ
ャリブレーションを行うアルゴリズムを図4にフローチ
ャートで示す。以下、各ステップS11〜S14につい
て説明する。
In perspective projection, a point at which the images of a group of parallel straight lines intersect at one point in a three-dimensional space is called a vanishing point. FIG. 4 is a flowchart showing an algorithm for performing camera calibration. Hereinafter, steps S11 to S14 will be described.

【0043】(S11)写真1上の2つの消失点の画像
座標を求める。平行な2直線a,bの写真1上の像k,
lが交わる点(消失点)の画像座標を(ukl,vkl)と
し、ベクトル(ukl,vkl,1)Tをqklであらわす。
同様に、平行な2直線c、dの写真1上の像m,nが交
わる点の画像座標を(umn,vmn)とし、ベクトル(u
mn,vmn,1)Tをqmnであらわす。
(S11) Image coordinates of two vanishing points on the photograph 1 are obtained. Image k, on photo 1, of two parallel straight lines a, b,
point l intersects the image coordinates of (vanishing point) and (u kl, v kl), represents a vector (u kl, v kl, 1 ) a T at q kl.
Similarly, the image coordinates of the point at which the images m and n of the two parallel straight lines c and d on the photograph 1 intersect are defined as ( umn , vmn ), and the vector (u
mn , v mn , 1) T is represented by q mn .

【0044】(S12)写真2上の2つの消失点の画像
座標を求める。平行な2直線e,fの写真1上の像s,
tが交わる点(消失点)の画像座標を(ust.vst)と
し、ベクトル(ust.vst,1)Tをqstであらわす。
同様に、平行な2直線g,hの写真1上の像u,vが交
わる点の画像座標を(uuv,vuv)とし、ベクトル(u
uv,vuv,1)Tをquvであらわす。
(S12) Image coordinates of two vanishing points on the photograph 2 are obtained. Images s, on photograph 1 of two parallel straight lines e, f
t intersect point the image coordinates of (vanishing point) and (u st .v st), represents a vector (u st .v st, 1) T with q st.
Similarly, the image coordinates of the point where the images u and v of the two parallel straight lines g and h intersect on the photograph 1 are (u uv , v uv ), and the vector (u
uv, the v uv, 1) T represented by q uv.

【0045】(S13)回転行列Rを算出する。消失点
は、無限遠点の像であるからqkl∝Rqst、qmn∝Rq
uvが成立する。これより
(S13) The rotation matrix R is calculated. Since the vanishing point is an image at a point at infinity, q kl ∝Rq st , q mn ∝Rq
uv holds. Than this

【0046】[0046]

【数7】 (Equation 7)

【0047】とすると、回転行列Rは次式で求められ
る。
Then, the rotation matrix R is obtained by the following equation.

【0048】[0048]

【数8】 (Equation 8)

【0049】(S14)2つの対応点及びエピポーラ関
係、前記の(2)式より位置ベクトルTを算出する。
(S14) The position vector T is calculated from the two corresponding points and the epipolar relationship and the above equation (2).

【0050】[0050]

【発明の効果】以上のとおり、本発明によれば、2枚の
写真における、2対応点と相互に垂直な3直線の対応か
ら、または2対応点と2組の平行な2直線の対応から相
対的なカメラの向き、位置を算出するようにしたため、
従来の方法に比較してカメラキャリブレーションのため
に必要な情報の設定における作業時間が削減できる。
As described above, according to the present invention, the correspondence between two corresponding points and three straight lines perpendicular to each other, or the correspondence between two corresponding points and two sets of two parallel straight lines in two photographs. Since the relative camera direction and position are calculated,
The work time in setting information necessary for camera calibration can be reduced as compared with the conventional method.

【0051】また、相互に垂直な3直線、平行な直線の
設定は、コンピュータ画像処理によるエッジ抽出を抽出
した直線の中からユーザーが選択する方法を使用できる
ため、作業時間が削減できる。
The setting of three mutually perpendicular lines and the parallel lines can be performed by a method in which the user can select a straight line extracted from edges extracted by computer image processing, thereby reducing work time.

【0052】また、相互に垂直な3直線、平行な直線群
の情報を利用することにより、対応点の数が多く付けら
れない写真においてもカメラキャリブレーションを実行
できる。
Further, by using information of a group of three straight lines and a group of parallel straight lines, camera calibration can be performed even for a photograph in which the number of corresponding points is not large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】写真1、2の2対応点と垂直3直線の関係図。FIG. 1 is a diagram showing the relationship between two corresponding points in photographs 1 and 2 and three vertical straight lines.

【図2】第1の実施形態におけるカメラキャリブレーシ
ョンのアルゴリズム。
FIG. 2 illustrates a camera calibration algorithm according to the first embodiment.

【図3】写真1、2の2対応点と垂直2直線の関係図。FIG. 3 is a diagram showing the relationship between two corresponding points in photographs 1 and 2 and two vertical straight lines.

【図4】第2の実施形態におけるカメラキャリブレーシ
ョンのアルゴリズム。
FIG. 4 illustrates a camera calibration algorithm according to the second embodiment.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 カメラの位置と向きを変えて対象物を撮
影した2枚の写真からステレオ視の原理を用いて対象物
の3次元モデルを作成するため、2枚の写真上の対応点
からカメラの向きと位置の情報を得るカメラキャリブレ
ーション方法において、 2枚の写真における2つの対応点と相互に垂直な3直線
の対応から相対的なカメラの向きと位置を算出すること
を特徴とするカメラキャリブレーション方法。
1. A three-dimensional model of an object is created from the two photographs of the object by changing the position and orientation of the camera using the principle of stereoscopic vision. A camera calibration method for obtaining camera orientation and position information, comprising calculating a relative camera orientation and position from a correspondence between two corresponding points in two photographs and three mutually perpendicular lines. Camera calibration method.
【請求項2】 カメラの位置と向きを変えて対象物を撮
影した2枚の写真からステレオ視の原理を用いて対象物
の3次元モデルを作成するため、2枚の写真上の対応点
からカメラの向きと位置の情報を得るカメラキャリブレ
ーション方法において、 2枚の写真における2つの対応点と2組の平行な2直線
の対応から相対的なカメラの向きと位置を算出すること
を特徴とするカメラキャリブレーション方法。
2. A three-dimensional model of an object is created from the two photographs of the object by changing the position and orientation of the camera using the principle of stereoscopic vision. A camera calibration method for obtaining camera orientation and position information, comprising calculating a relative camera orientation and position from correspondence between two corresponding points in two photographs and two sets of two parallel straight lines. Camera calibration method.
JP10353678A 1998-12-14 1998-12-14 Camera calibration method Pending JP2000182051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10353678A JP2000182051A (en) 1998-12-14 1998-12-14 Camera calibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10353678A JP2000182051A (en) 1998-12-14 1998-12-14 Camera calibration method

Publications (1)

Publication Number Publication Date
JP2000182051A true JP2000182051A (en) 2000-06-30

Family

ID=18432484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10353678A Pending JP2000182051A (en) 1998-12-14 1998-12-14 Camera calibration method

Country Status (1)

Country Link
JP (1) JP2000182051A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102693539A (en) * 2012-03-13 2012-09-26 夏东 Rapid three-dimensional calibration method for wide baselines for intelligent monitoring systems
JP2016504561A (en) * 2012-10-16 2016-02-12 クゥアルコム・インコーポレイテッドQualcomm Incorporated Sensor calibration and position estimation based on vanishing point determination

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102693539A (en) * 2012-03-13 2012-09-26 夏东 Rapid three-dimensional calibration method for wide baselines for intelligent monitoring systems
JP2016504561A (en) * 2012-10-16 2016-02-12 クゥアルコム・インコーポレイテッドQualcomm Incorporated Sensor calibration and position estimation based on vanishing point determination
US9361688B2 (en) 2012-10-16 2016-06-07 Qualcomm Incorporated Sensor calibration and position estimation based on vanishing point determination

Similar Documents

Publication Publication Date Title
Guillou et al. Using vanishing points for camera calibration and coarse 3D reconstruction from a single image
JP4392507B2 (en) 3D surface generation method
KR100721536B1 (en) Method for restoring 3-dimension image using silhouette information in 2-dimension image
US8208029B2 (en) Method and system for calibrating camera with rectification homography of imaged parallelogram
KR100755450B1 (en) 3d reconstruction apparatus and method using the planar homography
CN106846467A (en) Entity scene modeling method and system based on the optimization of each camera position
JP2000268179A (en) Three-dimensional shape information obtaining method and device, two-dimensional picture obtaining method and device and record medium
Dzwierzynska Reconstructing architectural environment from the perspective image
JP2832463B2 (en) 3D model reconstruction method and display method
JP2000182051A (en) Camera calibration method
CN109341530B (en) Object point positioning method and system in binocular stereo vision
JP2022025818A (en) Three-dimensional bar arrangement data creation method and three-dimensional bar arrangement data creation system for bar arrangement measurement
Lai et al. Projective reconstruction of building shape from silhouette images acquired from uncalibrated cameras
Chuang et al. A new technique of camera calibration: A geometric approach based on principal lines
KR20210085953A (en) Apparatus and Method for Cailbrating Carmeras Loaction of Muti View Using Spherical Object
Collins Projective reconstruction of approximately planar scenes
Wu et al. Projective rectification based on relative modification and size extension for stereo image pairs
JP3504128B2 (en) Three-dimensional information restoration apparatus and method
Chan et al. A panoramic-based walkthrough system using real photos
Weinshall et al. From ordinal to euclidean reconstruction with partial scene calibration
JP2000076417A (en) Camera calibration method
Iwashita et al. Fast alignment of 3D geometrical models and 2D grayscale images using 2D distance maps
CN108510578A (en) Threedimensional model building method, device and electronic equipment
JP2000322599A (en) Manufacture of three-dimensional model
Conesa et al. New advances in obtaining three-dimensional models from conical perspectives