JP2000181547A - Hydraulic power plant - Google Patents

Hydraulic power plant

Info

Publication number
JP2000181547A
JP2000181547A JP10361391A JP36139198A JP2000181547A JP 2000181547 A JP2000181547 A JP 2000181547A JP 10361391 A JP10361391 A JP 10361391A JP 36139198 A JP36139198 A JP 36139198A JP 2000181547 A JP2000181547 A JP 2000181547A
Authority
JP
Japan
Prior art keywords
signal
monitoring
governor
monitoring signal
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10361391A
Other languages
Japanese (ja)
Inventor
Hisao Kuwabara
尚夫 桑原
Shinji Yumoto
伸司 湯本
Hiroto Nakagawa
博人 中川
Sosuke Fukaya
宗資 深屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Hitachi Ltd
Original Assignee
Kansai Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Hitachi Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP10361391A priority Critical patent/JP2000181547A/en
Publication of JP2000181547A publication Critical patent/JP2000181547A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Control Of Water Turbines (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Feedback Control In General (AREA)
  • Flow Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydraulic power plant capable of detecting the shift to single operation and automatically switching the governor gain at the time of the shift to single operation. SOLUTION: A governor is provided with an integration operating part 5a for cooperative operating mode and an integration operating part 5b for single operating mode and contacts 19a and 19b are switched by a shift-to single operation sensor 20. The shift-to single operation sensor 20 sets the monitoring period from the monitoring signal of either each response signals ε of respective parts of the governor or rotating speed signal N and operates the attenuation degree of the monitoring signal during that period and when the attenuation degree is worse than a prescribed one, it is judged that the operation has been shifted to be in the shift to single operating state.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、大電力系統に接続され
る連繋運転モードと、比較的小さい電力系統に接続さ
れ、該電力系統の大半又は全ての電力を負担する単独運
転モードがある水力発電プラントに関し、特に連繋運転
モードではガバナを比較的高速応答に設定し、単独運転
モードではガバナを比較的低速応答に設定する水力発電
プラントに関する。
BACKGROUND OF THE INVENTION The present invention relates to a hydroelectric power station having a linked operation mode connected to a large power system and a single operation mode connected to a relatively small power system to bear most or all of the power in the power system. The present invention relates to a power plant, and more particularly to a hydroelectric power plant in which a governor is set to a relatively high-speed response in a linked operation mode and a governor is set to a relatively low-speed response in an isolated operation mode.

【0002】[0002]

【従来の技術】図8は、水力発電プラントのブロック図
である。Gaは当水力プラントの発電機、Laは当水力
プラントと同じ電力系統100に接続される近隣負荷、
L1、L2は遠方負荷、101〜106は遮断器であ
る。
FIG. 8 is a block diagram of a hydroelectric power plant. Ga is a generator of the hydropower plant, La is a neighboring load connected to the same power system 100 as the hydropower plant,
L1 and L2 are distant loads and 101 to 106 are circuit breakers.

【0003】当水力プラントGaが発電運転中遮断器1
01が開かれた場合には、当水力プラントGaの負荷は
今までの設定値から急にゼロになり、電力系統100と
は完全に切り離され送電はここで終了する。すなわち、
完全な「負荷遮断」の状態となる。これに対して、当水
力プラントGaが発電運転中遮断器102が開かれた場
合は、当水力プラントの負荷は今までの設定値から急に
近隣負荷Laだけになる。なお、この場合には近隣負荷
Laに対する送電を継続する必要がある。このようなケ
ースでは電力系統の周波数調整をするプラントは当水力
プラントGaだけになるので、これを「単独送電」状
態、すなわち「単独運転モード」と呼んでいる。
[0003] The breaker 1 during the power generation operation of the hydropower plant Ga
When 01 is opened, the load of the hydropower plant Ga suddenly becomes zero from the set value up to now, the power plant 100 is completely disconnected from the power system 100, and power transmission ends here. That is,
A complete “load shedding” state is achieved. On the other hand, when the circuit breaker 102 is opened during the power generation operation of the hydropower plant Ga, the load of the hydropower plant suddenly becomes only the neighboring load La from the set value up to now. In this case, it is necessary to continue power transmission to the neighboring load La. In such a case, the only plant that adjusts the frequency of the power system is the hydropower plant Ga, and this is called the “single power transmission” state, that is, the “single operation mode”.

【0004】一方、遮断器全て101〜106が入った
状態では、プラントG1、G2も電力系統の周波数安定
化に参画する。また、一般に負荷La、L1、L2等も
自己制御を有している場合が多い。このため電力系統の
サイズが無限大になれば、当水力プラントGaのガバナ
を速応性重点に設定しておいても(安定性が悪くなる設
定)電力系統全体の周波数安定性を損うことはない。こ
れを「連繋運転モード」と呼んでいる。
On the other hand, when all the circuit breakers 101 to 106 are in, the plants G1 and G2 also participate in the stabilization of the frequency of the power system. Generally, the loads La, L1, L2, and the like often have self-control. For this reason, if the size of the power system becomes infinite, even if the governor of this hydropower plant Ga is set to the quick-response emphasis (setting where stability becomes worse), the frequency stability of the entire power system will not be impaired. Absent. This is called a "linked operation mode".

【0005】上記の完全な単独送電にならなくても、そ
れに近い単独送電状態になる可能性は無数に存在する。
たとえば、遮断器101、102は閉じていても遮断器
103〜106が一斉に開かれた場合、遮断器101、
102、103以外の遮断器が開かれ、発電プラントG
1に周波数安定化支援を期待したが、このプラントから
期待通りの支援が得られなかった場合等である。
[0005] Even if the above-mentioned complete power transmission is not achieved, there are countless possibilities of a near power transmission state.
For example, when the circuit breakers 103 to 106 are simultaneously opened even if the circuit breakers 101 and 102 are closed,
Circuit breakers other than 102 and 103 are opened, and power plant G
1 is expected to support frequency stabilization, but this plant does not provide the expected support.

【0006】以上のように、営業電力を発電する水力発
電プラントでは、大電力系統に接続する連繋運転モード
においては、必ずしも当該プラント単独の周波数/回転
速度の安定性を追求する必要がないので、ガバナのゲイ
ンは比較的高く設定される。中央給電所等からの電力増
加/減少指令にできるだけすばやく追従させるよう速応
性を重視するためである。他方、比較的小さい電力系統
に接続され、該電力系統の大半又は全ての電力を負担す
る単独運転モードにおいては、該電力系統全体の周波数
/回転速度の安定性が全面的又はほぼ全面的に当該水力
プラントに懸かってくるので、当該プラントのガバナの
ゲインは比較的低く設定せざるをえない。連繋運転モー
ドのままの高いゲインにしておけば周波数f/回転速度
Nの安定性が保てないからである。
As described above, in a hydroelectric power plant that generates commercial power, it is not always necessary to pursue the stability of the frequency / rotational speed of the plant alone in the linked operation mode connected to the large power system. The governor gain is set relatively high. This is because quick response is emphasized so as to follow a power increase / decrease command from a central power supply station or the like as quickly as possible. On the other hand, in a single operation mode in which the power system is connected to a relatively small power system and bears most or all of the power in the power system, the stability of the frequency / rotational speed of the entire power system is completely or almost completely maintained. Because it depends on the hydro plant, the governor gain of that plant must be set relatively low. This is because if the gain is kept high in the linked operation mode, the stability of the frequency f / rotational speed N cannot be maintained.

【0007】[0007]

【発明が解決しようとする課題】ところで、従来技術で
は、当該プラントが連繋運転から単独運転に移行した
時、移行条件に関わらず、常に的確に検出する方法がな
かった。電力系統との接続点(遮断機)が特定されてい
る場合ならば、その遮断機の入/切状態を検出すればよ
い。しかし、実際には、電力系統との接続点は無数にあ
り、特定できない。そのため、当該プラントが連繋運転
から単独運転に移行した時、ガバナのゲインを確実に切
換できない。このため従来は、単独運転移行がありうる
プラントでは、常時ガバナゲインを低く、すなわち、安
定性本位の設定にしていた。しかし、これでは、AFC
等の中央給電所等からの電力増加/減少指令に対し、ガ
バナの応答速度が低すぎるという問題があった。
By the way, in the prior art, there is no method for always accurately detecting when the plant shifts from the linked operation to the isolated operation regardless of the shift condition. If the connection point (breaker) with the power system is specified, the ON / OFF state of the breaker may be detected. However, in reality, the number of connection points with the power system is innumerable and cannot be specified. Therefore, when the plant shifts from the linked operation to the isolated operation, the governor gain cannot be reliably switched. For this reason, conventionally, in a plant where there is a possibility of a transition to an isolated operation, the governor gain is always set to a low value, that is, a stability-oriented setting is used. However, in this case, AFC
However, there is a problem that the governor response speed is too low in response to a power increase / decrease command from a central power supply station or the like.

【0008】本発明の目的は、単独運転に移行したこと
を回転速度Nやこれに応答するガバナの応答波形から、
単独運転移行を確実に検出し、これによって単独運転移
行時ガバナゲインの自動切り換えを行う水力発電プラン
トを提供することにある。
[0008] An object of the present invention is to determine that the operation has shifted to the islanding operation from the rotation speed N and the governor response waveform corresponding to the rotation speed N.
An object of the present invention is to provide a hydroelectric power plant that reliably detects an islanding operation shift and thereby automatically switches the governor gain during the islanding operation shift.

【0009】[0009]

【課題を解決するための手段】上記の目的は、発電機が
大電力系統に接続されている通常運転モードではガバナ
の設定値を速応性を重視した設定にする一方、無負荷運
転時または前記大電力系統から分離された単独運転時に
は安定性を重視した設定にするように、ガバナに設定値
自動切換装置を備えた水力発電プラントにおいて、ガバ
ナの各部応答信号及び回転速度信号から選んだ2つの信
号を第一信号及び第二信号とすれば、前記第一信号か前
記第一信号に所定の演算を加えた信号のいずれかで、定
常時はゼロ又は略ゼロに戻り、過渡時には絶対値が比較
的大きく変位する信号を選択して、これを第一監視信号
とし、前記第二信号か第二信号に所定の演算を加えた信
号のいずれかで、単独運転移行直後の過渡時には絶対値
が比較的大きく変位する信号を選択して、これを第二監
視信号とし、前記第一監視信号または前記第二監視信号
のいずれかの絶対値が所定値以上変化したことを条件に
監視を開始し、その後前記第一監視信号がゼロを挟んで
プラス側、マイナス側と交互に繰り返すサイクルが少な
くとも略1.5回終了してから監視を終了する監視期間
設定手段と、前記監視期間設定手段の設定する監視期間
中の前記第一監視信号の減衰度合を演算する手段と、前
記減衰度合が所定値以上に悪い場合には前記水力プラン
トが実質的に単独運転状態へ移行したと判定する手段と
より成る単独運転移行センサーを設けたことによって達
成される。
In the normal operation mode in which the generator is connected to a large power system, the governor is set to a value that emphasizes the quick response, while the governor is set to a value in the no-load operation or when the generator is connected to the high power system. In a hydropower plant equipped with an automatic set value switching device in the governor so that the stability is emphasized at the time of isolated operation from the large power system, two values selected from the governor response signal and the rotation speed signal If the signal is a first signal and a second signal, either the first signal or a signal obtained by adding a predetermined operation to the first signal, the signal returns to zero or substantially zero in a steady state, and the absolute value in a transient state. A signal that displaces relatively greatly is selected, this is used as a first monitoring signal, and either the second signal or a signal obtained by adding a predetermined operation to the second signal has an absolute value during a transition immediately after the transition to the islanding operation. Relatively large change Select a signal to be monitored, set this as a second monitoring signal, and start monitoring on the condition that the absolute value of either the first monitoring signal or the second monitoring signal has changed by a predetermined value or more, and then the second monitoring signal Monitoring period setting means for ending the monitoring after at least approximately 1.5 times a cycle in which one monitoring signal alternates between the plus side and the minus side with zero interposed therebetween; and a monitoring period set by the monitoring period setting means. Means for calculating the degree of attenuation of the first monitoring signal, and means for determining that the hydropower plant has substantially shifted to the islanding operation state when the degree of attenuation is lower than a predetermined value. This is achieved by providing a sensor.

【0010】なお、前述において、第二監視信号は特に
用意しなくても、第一監視信号自身が、所定値以上変化
したことを条件に監視を開始してもよい。前記単独運転
移行センサーが単独運転移行を検出した時は、前記設定
値切換装置に働きかけて、ガバナの設定値を安定性を重
視した設定に自動的に切り換える。
In the above description, the monitoring may be started on the condition that the first monitoring signal itself has changed by a predetermined value or more without preparing the second monitoring signal. When the islanding shift sensor detects the islanding shift, it operates the set value switching device to automatically switch the governor set value to a setting that emphasizes stability.

【0011】また前記単独運転移行センサーは、具体的
には、前記監視期間設定手段がONしている間、前記監
視対象信号>0のプラス側と前記監視対象信号<0のマ
イナス側につき別々に前記監視対象信号と継続時間の
積、すなわち、監視信号の時間積分値を算出し、プラス
側の前記各時間積分値が1波目より2波目、2波目より
3波目のように時間の経過と共に減衰していく減衰傾
向、及びマイナス側の前記各時間積分値が1波目より2
波目、2波目より3波目のように時間の経過と共に減衰
していく減衰傾向の一方または両方で単独運転状態に移
行したことを判定する。ここで2つの波の時間積分値を
比較して減衰度合が所定値以上に悪い場合には単独運転
状態に移行したと判定する方法もある。
In addition, specifically, while the monitoring period setting means is ON, the islanding operation transition sensor separates the plus side of the monitoring target signal> 0 and the minus side of the monitoring target signal <0 separately. The product of the monitoring target signal and the duration, that is, the time integration value of the monitoring signal is calculated, and the respective time integration values on the plus side are timed as the second wave from the first wave and the third wave from the second wave. And the time integration value on the minus side is 2 from the first wave.
It is determined that the state has shifted to the islanding operation state in one or both of the decay tendencies that decay with time as the third wave from the second wave. Here, there is a method of comparing the time integral values of the two waves and determining that the state has shifted to the islanding operation state when the degree of attenuation is lower than a predetermined value.

【0012】上述では、前記監視期間設定手段がONし
ている間の、前記監視対象信号の時間積分値の減衰度合
で単独運転移行を判断しているが、その代わりに、前記
監視期間設定手段がONしている間、前記監視対象信号
>0のプラス側と前記監視対象信号<0のマイナス側に
つき別々に前記監視対象信号の継続時間を測定し、プラ
ス側の継続時間が1波目より2波目、2波目より3波目
のように時間の経過と共に短縮(減衰)していくか、マ
イナス側の前記継続時間が1波目より2波目、2波目よ
り3波目のように時間の経過と共に短縮(減衰)してい
くかで単独運転移行を判断してもよい。
In the above description, while the monitoring period setting means is ON, the transition to the isolated operation is determined based on the degree of attenuation of the time integrated value of the monitoring target signal. Is ON, the duration of the signal to be monitored is separately measured for the plus side of the signal to be monitored> 0 and the minus side of the signal to be monitored <0, and the duration of the plus side is measured from the first wave. Either the second wave, the third wave from the second wave, shortens (decays) over time, or the duration on the minus side is the second wave from the first wave, the third wave from the second wave, As described above, the transition to the islanding operation may be determined based on the shortening (decay) with the passage of time.

【0013】上記の手段は次のように作用する。連繋運
転モードから単独運転モードに移行すれば、当該機が同
じ出力変化をしても、電力系統周波数fの変動幅は拡大
する。連繋運転モードでは、当該機の出力変化によって
加速/減速する対象は、もはや、当該機の回転部の慣性
効果だけではなく、電力系統全体の慣性効果になり慣性
効果が大幅に増加すること、さらには、周波数fが上昇
すれば、水車出力を下げ、発電機負荷を上げ周波数上昇
を抑えようとし、反対に周波数fが低下すれば、水車出
力を上げ、発電機負荷を下げ周波数低下を抑えようとす
る、いわゆる自己制御性の作用が大幅増加するためであ
る。
The above means operates as follows. If the operation mode is shifted from the linked operation mode to the isolated operation mode, the fluctuation width of the power system frequency f is widened even if the corresponding machine performs the same output change. In the linked operation mode, the object to be accelerated / decelerated by the output change of the machine is not only the inertial effect of the rotating part of the machine but also the inertia effect of the entire power system, and the inertia effect is greatly increased. If the frequency f increases, the turbine wheel output is reduced, and the generator load is increased to suppress the frequency increase. Conversely, if the frequency f decreases, the turbine wheel output is increased, the generator load is reduced, and the frequency decrease is suppressed. This is because the effect of the so-called self-controllability greatly increases.

【0014】従って、連繋運転モードでも単独運転モー
ドでも、ガバナ設定値を変えない場合には、f→ガイド
ベーン開度Y→水車出力P→fと一巡する水車制御系の
ループゲインが、単独運転モードにおいて大きくなる。
もし、このガバナのP(比例要素),I(積分要素),
D(微分要素)ゲインが連繋運転モードに適するように
設定されていれば、単独運転モードでは、前記ループゲ
インが過大になって、水車制御系全体が不安定になる。
ガバナゲインを単独運転モードに適するように充分低く
設定しておけば問題はないが、この場合、連繋運転モー
ドにてガバナの応答が遅すぎて、中央給電所等からの電
力制御指令に対する応答性が悪くなり過ぎる。従って、
運転モードに応じてガバナのP,I,Dゲインを自動的
に切り換える方法が広く使われている。
Therefore, when the governor set value is not changed in the linked operation mode or the stand-alone operation mode, the loop gain of the turbine control system that loops through f → guide vane opening Y → water turbine output P → f becomes the single operation. In mode.
If P (proportional element), I (integral element),
If the D (differential element) gain is set to be suitable for the linked operation mode, the loop gain becomes excessive in the single operation mode, and the entire turbine control system becomes unstable.
There is no problem if the governor gain is set low enough to be suitable for the stand-alone operation mode, but in this case, the response of the governor is too slow in the linked operation mode, and the response to the power control command from the Too bad. Therefore,
A method of automatically switching the governor P, I, and D gains according to the operation mode is widely used.

【0015】そこで問題になるのは、連繋運転モードか
単独運転モードかの判定/検出であるが、前述のように
従来は確実な検出方法がなかった。本発明の代表例で
は、ガバナの偏差信号(すなわちP,I,D演算部入
力)を第一監視対象信号にする。一般に発電機負荷は連
繋運転モードで大きく(例えば50%以上)、単独送電
モードでは小さい(例えば10〜30%)ので、単独運
転モード移行時に負荷が階段状に低下する。このため、
回転速度は上昇し、これにガバナが応答して、水車出力
は最終的に単独送電系統の要求する負荷で落ち着く。定
常時はゼロで落ち着いているガバナの偏差信号は先ずマ
イナス側(ガイドベーンを閉める側)に大きく振り、次
にプラス側(ガイドベーンを開ける側)に振る。ガバナ
を含む水車制御系が安定(ループゲインが充分小さい)
であれば、第一監視対象信号はこのような振りを繰り返
しながら振れ幅は次第に減衰していく。しかし、ガバナ
を含む水車制御系が不安定(ループゲイン過大)であれ
ば、単独運転移行直後、第一監視対象信号の振れ幅は次
第に拡大する。なお、この振れ幅拡大はやがて飽和し、
後は同じ振幅を繰り返す、いわゆる、リミットサイクル
状態になる。ところで、水車制御系が安定である限り定
常状態が存在し、定常状態では、第一監視対象信号はゼ
ロに戻る。
The problem is how to determine / detect whether the operation mode is the linked operation mode or the isolated operation mode. As described above, there has been no reliable detection method. In a representative example of the present invention, the governor deviation signal (that is, the input of the P, I, and D calculation units) is used as the first monitoring target signal. Generally, the generator load is large (for example, 50% or more) in the linked operation mode and small (for example, 10 to 30%) in the single power transmission mode, so that the load decreases stepwise when shifting to the single operation mode. For this reason,
The speed increases and the governor responds to this, and the turbine output eventually settles at the load required by the isolated grid. The governor deviation signal, which is normally settled at zero, is largely shaken to the minus side (side to close the guide vane) and then to the plus side (side to open the guide vane). Stable turbine control system including governor (loop gain is small enough)
If so, the swing width of the first monitoring target signal gradually attenuates while repeating such swing. However, if the turbine control system including the governor is unstable (loop gain is excessive), the swing of the first monitoring target signal gradually increases immediately after the shift to the islanding operation. In addition, the expansion of the run-out becomes saturated soon.
Thereafter, the same amplitude is repeated, that is, a so-called limit cycle state. By the way, a steady state exists as long as the turbine control system is stable. In the steady state, the first monitoring target signal returns to zero.

【0016】これに対して、単独運転移行直後には水車
制御系の安定性に応じて、第一監視対象信号の波形の現
れ方は前述のように大きく異なる。この意味でガバナの
偏差信号を第一監視対象信号に選ぶと都合がよい。もち
ろん、ガバナの偏差信号と同等の信号をガバナの入力で
あるf/Nやガバナのいずれかの状態量に所定の演算を
して引き出すことは可能である。前述では、連繋運転時
の負荷が大きく、単独運転移行後の負荷が小さい階段状
移行の場合であるが、両者の負荷がほぼ等しいいわゆる
水平移行の場合には、単独移行直後に第一監視対象信号
が大きく変動しないので、前記監視期間設定手段のON
が遅れる。しかし、第一監視対象信号の振幅は次第に拡
大してくるので、前記監視期間設定手段がONしないこ
とはない。この間の振幅拡大を充分小さくするためには
前記監視期間設定手段の動作点を下げておく必要があ
る。リミットサイクル時の振幅に比べて格段に小さくし
ておくのが望ましい。
On the other hand, the appearance of the waveform of the first monitoring target signal differs greatly as described above immediately after the transition to the islanding operation, depending on the stability of the water turbine control system. In this sense, it is convenient to select the governor deviation signal as the first monitoring target signal. Of course, it is possible to derive a signal equivalent to the governor deviation signal by performing a predetermined operation on any of the f / N and governor state quantities that are inputs to the governor. In the above-mentioned case, the load during the linked operation is large, and the load after the transition to the isolated operation is a staircase-like transition. Since the signal does not fluctuate significantly, the monitoring period setting means is turned on.
Is late. However, since the amplitude of the first signal to be monitored gradually increases, the monitoring period setting means does not turn ON. In order to sufficiently reduce the amplitude expansion during this period, it is necessary to lower the operating point of the monitoring period setting means. It is desirable that the amplitude be much smaller than the amplitude during the limit cycle.

【0017】ところで、ガバナの最終の操作端である水
量調節手段に与えられる開速度制限と閉速度制限が大き
く異なる場合には、前述の第一監視対象信号の波形分析
に注意を要する。特に、ポンプ水車の場合には、ガイド
ベーン開度<60〜80%で開速度に比し閉速度を極端
に遅くする制限を掛ける必要がある。水量調節手段まで
含むガバナ系が仮に線形系であったり、速度制限があっ
ても開閉でほとんど差がない場合には、単独送電移行直
後の第一監視対象信号のマイナス側振れより、次のプラ
ス側振れの方が確実に小さくなり、以下順に単調に減少
していく。
When the limit of the opening speed and the limit of the closing speed given to the water amount adjusting means, which is the final operating end of the governor, are significantly different, it is necessary to pay attention to the waveform analysis of the first signal to be monitored. In particular, in the case of a pump turbine, it is necessary to limit the closing speed extremely lower than the opening speed when the guide vane opening is <60 to 80%. If the governor system including the water flow control means is a linear system, or if there is almost no difference in opening and closing even if there is a speed limit, the next plus The side runout is surely smaller, and monotonically decreases in the following order.

【0018】しかし、前述のポンプ水車のガイドベーン
開度<60〜80%では、マイナス側(閉側)応答波形
が異常に大きくなり、プラス側(開側)応答波形が異常
に小さくなる傾向があるので、両者を直接比較分析する
のは適当でない。本発明では、マイナス側波形とプラス
側波形を別個に分析する。具体的には、マイナス側の1
波目とマイナス側2波目を比較するか、プラス側1波目
とプラス側2波目を比較する。従って、前記監視期間設
定手段により決められる波形分析期間は少なくとも1.
5サイクルにする必要がある。
However, when the guide vane opening degree of the pump turbine is <60 to 80%, the negative (closed) response waveform tends to be abnormally large and the positive (open) response waveform tends to be abnormally small. Therefore, it is not appropriate to directly analyze the two. In the present invention, the negative waveform and the positive waveform are separately analyzed. Specifically, 1 on the minus side
The wave and the second wave on the minus side are compared, or the first wave on the plus side and the second wave on the plus side are compared. Therefore, the waveform analysis period determined by the monitoring period setting means is at least 1.
It is necessary to make 5 cycles.

【0019】なお、ガバナの偏差信号は、P,I,D等
の積分を含む演算部の入力でもある。今、P,D演算を
無視すれば、ガバナ偏差信号はガイドベーン開度指令信
号の微分値に相当する。したがって、これの時間積分は
おおまかにガバナのガイドベーン開度指令信号に相当
し、分析指標として意味がある。この代わりに、マイナ
ス側波形の1波目と2波目の継続時間比較や、プラス側
波形の1波目と2波目の継続時間比較で分析してもよい
(シミュレーション解析例で確認済)。
Note that the governor deviation signal is also an input to an arithmetic unit including integration of P, I, D, and the like. If the P and D calculations are ignored, the governor deviation signal corresponds to the differential value of the guide vane opening command signal. Therefore, the time integration of this roughly corresponds to the guide vane opening command signal of the governor, and is significant as an analysis index. Alternatively, the analysis may be performed by comparing the durations of the first and second waves of the negative waveform or the duration of the first and second waves of the positive waveform (confirmed in the simulation analysis example). .

【0020】[0020]

【発明の実施の形態】以下、本発明の実施の形態を図面
により説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0021】図1は、本発明の一実施形態を示す。1は
速度検出部、2は一般に65Fと呼ばれる速度調整部、
3は加算部、4はガバナの比例演算部(P演算部)、5
aは連繋運転モードの積分演算部(I演算部)、5bは
単独運転モードの積分演算部(I演算部)、6は微分演
算部(D演算部)である。7は加算部、8は加算部、9
はガイドベーン開閉速度制限設定部、10はガイドベー
ン用油圧増幅部、11は加算部、12は速度調定率設定
部、13は一般に65Pと呼ばれる水車出力設定部であ
る。14は上下流水路の影響を含む水車(ポンプ水車)
特性部、15は加算部、16は水車(ポンプ水車)及び
発電機(発電電動機)の回転部慣性効果部、17aは水
車(ポンプ水車)の自己制御性部、17bは電力系統の
自己制御性部、18は加算部、21は加算部である。2
0は単独移行センサーで、19a,19bのガバナのI
ゲイン切換用の接点を操作する。
FIG. 1 shows an embodiment of the present invention. 1 is a speed detecting unit, 2 is a speed adjusting unit generally called 65F,
3 is an adder, 4 is a governor proportional calculator (P calculator), 5
a is an integral operation unit (I operation unit) in the linked operation mode, 5b is an integral operation unit (I operation unit) in the independent operation mode, and 6 is a differential operation unit (D operation unit). 7 is an adder, 8 is an adder, 9
Is a guide vane opening / closing speed limit setting unit, 10 is a guide vane hydraulic amplification unit, 11 is an adding unit, 12 is a speed regulation rate setting unit, and 13 is a turbine output setting unit generally called 65P. 14 is a turbine (pump turbine) including the influence of the upstream and downstream waterways
Characterizing section, 15 is an adding section, 16 is a rotating section inertia effect section of a turbine (pump turbine) and a generator (generator / motor), 17a is a self-controlling section of a turbine (pump turbine), and 17b is a self-controlling property of a power system. , 18 is an adder, and 21 is an adder. 2
0 is a single transfer sensor, the governor I of 19a and 19b
Operate the gain switching contact.

【0022】Lは電力系統から発電機にかかるベース負
荷、RLは回転速度N(pu)又はf(pu)が定格値
(1.0)から上昇した場合には、電力系統側から発電
機にかかる負荷を増し、反対に、Nが下降した場合に
は、負荷を減少させて回転速度Nの変動を抑えるように
作用する電力系統の自己制御制性分の負荷を示す。すな
わち、定常的には、発電機にかかる負荷はLで,過渡的
にかかる負荷は加算出力(L+RL)になる。RTは回
転速度N(pu)又はf(pu)が定格値(1.0)か
ら上昇した場合には、水車出力を減少させ、反対に、N
が下降した場合には、水車出力を増加させて回転速度N
の変動を抑えるように作用する水車の自己制御性分の出
力である。すなわち、定常的には、水車出力はPで、過
渡的には加算出力(P−RT)になる。
L is the base load applied from the power system to the generator, and RL is the power system side to the generator when the rotational speed N (pu) or f (pu) rises from the rated value (1.0). When the load is increased, and conversely, when N decreases, it indicates a load for the self-control function of the power system that acts to reduce the load and suppress the fluctuation of the rotation speed N. That is, normally, the load applied to the generator is L, and the load applied transiently becomes an added output (L + RL). RT decreases the turbine output when the rotation speed N (pu) or f (pu) rises from the rated value (1.0), and conversely, N
Is decreased, the turbine output is increased to increase the rotation speed N
This is the output of the self-controllability of the water turbine acting to suppress the fluctuation of the water turbine. That is, the output of the turbine is normally P, and the output is transiently the added output (P-RT).

【0023】ところで、この発電機が大電力系統に連繋
される連繋運転モードでは、電力系統の自己制御性のゲ
インが非常に大きく、わずかのN変動で大きなRL変動
が起きる。なお、この場合、電力系統の自己制御性のゲ
インに比べれば、水車の自己制御性のゲインは無視でき
るほど小さい。従って、今仮に、水車特性部14の水車
出力Pが増加して回転速度Nが上昇する場合でも、Nの
変化がほとんど進まない内にRLが増加して、先のP増
加を打ち消してしまう。換言すれば、PからNの総合ゲ
インは極めて小さい。
By the way, in the linked operation mode in which the generator is connected to the large power system, the gain of the self-controllability of the power system is very large, and a large RL fluctuation occurs with a small N fluctuation. In this case, the self-controllable gain of the water turbine is negligibly small compared to the self-controllable gain of the electric power system. Therefore, even if the turbine output P of the turbine characteristic section 14 increases and the rotational speed N increases, the RL increases before the change of N hardly progresses, thereby canceling the previous increase in P. In other words, the total gain from P to N is extremely small.

【0024】他方、この発電機が固有に有している慣性
効果に比べて、格段に小さい慣性効果を有するような小
さな電力系統に送電する単独運転モードの場合には、水
車特性部14の水車出力Pから回転速度Nまでの伝達関
数はほぼ回転部慣性効果部16の回転部慣性効果と水車
自己特性部17aの水車自身の自己制御性によって決ま
る。当然ながらこの場合は起動時の挙動や、負荷遮断後
の挙動のようになり、PからNの総合ゲインは前述の連
繋運転モードにおける値とは比べものにならないほど大
きい。
On the other hand, in the case of the single operation mode in which power is transmitted to a small electric power system having a significantly smaller inertia effect than the inherent inertia effect of the generator, the turbine of the turbine characteristic section 14 The transfer function from the output P to the rotation speed N is substantially determined by the rotary unit inertia effect of the rotary unit inertia effect unit 16 and the self-controllability of the water turbine itself by the water turbine self-characterizing unit 17a. Naturally, in this case, the behavior at the time of start-up and the behavior after load shedding are performed, and the total gain from P to N is so large as to be incomparable with the value in the above-described linked operation mode.

【0025】回転速度Nの変動はガバナの速度検出部1
によって検出され、このN検出信号が速度調整部2で設
定される定格回転速度N0と比較され速度偏差信号とな
る。ガバナはこの速度偏差信号を入力とし、ガイドベー
ン開度Yを出力とする。ガイドベーン開度Yは速度調定
率設定部12を介して復元され前記速度偏差信号と加算
部3で突き合わせされる。詳しくは、この開度Yの復元
信号は途中で加算部11において水車出力設定部13で
与えられるガイドベーン開度指令値Y0と比較され、両
者の差分だけが復元される。
The change in the rotation speed N is determined by the governor speed detection unit 1.
The N detection signal is compared with the rated rotation speed N0 set by the speed adjustment unit 2 to become a speed deviation signal. The governor receives the speed deviation signal as input and outputs the guide vane opening Y as output. The guide vane opening Y is restored via the speed regulation rate setting unit 12 and is compared with the speed deviation signal by the adding unit 3. More specifically, the restoration signal of the opening Y is compared with the guide vane opening command value Y0 given by the water turbine output setting unit 13 in the adding unit 11 on the way, and only the difference between the two is restored.

【0026】結局、前記速度偏差信号と速度調定率設定
部12からの復元信号の差εがガバナに偏差信号として
入力し、これがP,I,D演算部の入力信号になる。I
演算部は2つ5a、5bがあり、通常の連繋運転では図
示状態のI演算部5aの方を使うが、単独移行センサー
20が単独運転移行を検出したら、接点19aと19b
を同時に切り換えて、I演算部5aを切り離してI演算
部5bに接続するようにする。かくしてP,I,D各演
算部の出力は加算部7で合計され、この合成信号Yxが
以下の油圧増幅部10の入力になる。油圧増幅部10は
通常2〜3段あるが、ここでは1段に簡略化している。
Eventually, the difference ε between the speed deviation signal and the restoration signal from the speed regulation rate setting unit 12 is input to the governor as a deviation signal, and this is the input signal for the P, I, and D calculation units. I
There are two operation units 5a and 5b, and in the normal linked operation, the I operation unit 5a in the illustrated state is used, but when the single transfer sensor 20 detects the single operation transfer, the contacts 19a and 19b are used.
At the same time so that the I operation unit 5a is disconnected and connected to the I operation unit 5b. Thus, the outputs of the P, I, and D calculation units are summed up by the addition unit 7, and the combined signal Yx is input to the hydraulic amplification unit 10 described below. Although the hydraulic pressure amplification unit 10 usually has two or three stages, it is simplified here to one stage.

【0027】前記合成信号Yxは油圧増幅部10の復元
信号であるガイドベーン開度Yと突き合わせ、偏差があ
れば、この偏差信号をガイドベーン開閉速度制限設定部
9を介してガイドベーン用油圧増幅部10へ入力する。
ガイドベーン用油圧増幅部10はここでは単純な積分要
素として近似されている。すなわち、ガイドベーン用油
圧増幅部10の出力がガイドベーン開度Yであるので、
ガイドベーン用油圧増幅部10の入力はdY/dt、す
なわち、ガイドベーン走行速度に相当する。ガイドベー
ン開閉速度制限設定部9はこのdY/dt相当信号に制
限を与えるもので、開速度制限は+側のθRで制限し、
閉速度制限は−側のθLで制限する。
The composite signal Yx is compared with the guide vane opening Y which is a restoration signal of the hydraulic amplification unit 10, and if there is a deviation, this deviation signal is passed through the guide vane opening / closing speed limit setting unit 9 and hydraulically amplified for the guide vane. Input to the unit 10.
Here, the guide vane hydraulic amplification unit 10 is approximated as a simple integral element. That is, since the output of the guide vane hydraulic amplification unit 10 is the guide vane opening Y,
The input of the guide vane hydraulic pressure amplification unit 10 corresponds to dY / dt, that is, the guide vane traveling speed. The guide vane opening / closing speed limit setting unit 9 limits the signal corresponding to dY / dt, and the opening speed limit is limited by θR on the + side,
The closing speed is limited by θL on the negative side.

【0028】ここで、速度調整部2、水車出力設定部1
3、速度調定率設定部12の作用を図2、図3により説
明する。なお、ここで無負荷時のガイドベーン開度は
0.2(pu)と仮定する。図2の右下がりの実線はこ
のプラントが電力系統に接続される直前の状態を示す。
すなわち、Nの定格値(同期速度)ラインとこの実線の
交点Z1がガイドベーン開度を示すが、丁度無負荷開度
0.2になっている。なお、水車を起動する前はこの実
線はこれより低い位置に設定される。例えば図2の点線
の位置に設定される。このように図2の実線より下側で
この実線を上下に平行移動させるのが、速度調整部2で
ある。この実線を上下に平行移動した時無負荷開度0.
2線上の交点が上下に動くことから速度調整部の名が付
いている。他方、このプラントが電力系統に接続された
後の動きについて図3により説明する。この場合は、実
線と定格速度との交点Z2はY=1.0になっている。
すなわち、100%負荷運転中を示す。図2の無負荷時
の実線位置は本図では点線の位置になる。このように実
線を平行移動させてガイドベーン開度を調整するのが水
車出力設定部13である。水車出力設定部13は、実線
を水平方向に平行移動させるものであるが、無限大電力
系統に連繋された状態では、回転速度は事実上1.0に
固定されるので、実線の水平方向移動に伴うN=1.0
線上の交点は左右に動くことから、この名が付けられて
いる。
Here, the speed adjusting unit 2 and the water turbine output setting unit 1
3. The operation of the speed regulation rate setting unit 12 will be described with reference to FIGS. Here, it is assumed that the guide vane opening at no load is 0.2 (pu). The solid line in the lower right of FIG. 2 shows a state immediately before this plant is connected to the power system.
That is, the intersection Z1 between the rated value (synchronous speed) line of N and this solid line indicates the guide vane opening, but is just the no-load opening 0.2. Before the water turbine is started, this solid line is set at a lower position. For example, it is set at the position indicated by the dotted line in FIG. The speed adjuster 2 moves the solid line up and down in parallel below the solid line in FIG. When this solid line is moved up and down in parallel, the no-load opening is 0.
The intersection of the two lines moves up and down, so the name of the speed adjustment unit is given. On the other hand, the operation after the plant is connected to the power system will be described with reference to FIG. In this case, the intersection Z2 between the solid line and the rated speed is Y = 1.0.
That is, it indicates that 100% load operation is being performed. The position of the solid line at the time of no load in FIG. 2 is the position of the dotted line in FIG. Thus, the water turbine output setting unit 13 adjusts the guide vane opening by moving the solid line in parallel. The water turbine output setting unit 13 translates the solid line in the horizontal direction. However, when the turbine is connected to the infinite power system, the rotation speed is practically fixed to 1.0. With N = 1.0
Intersections on the line move from side to side, hence the name.

【0029】図3の実線の設定では、定常時はN=1.
0,Y=1.0で運転されるが、今、仮に電力系統の周
波数が3%上昇しN=1.03になったとすると、Yは
0.2になる。電力系統周波数の上昇幅が1.5%であ
れば、Y=0.6に閉め込まれる。このように周波数変
化幅とガイドベーン閉め込み幅の間に比例関係を与えて
いるのが、速度調定率設定部12である。速度調定率設
定部12のゲインを大きくすれば、図3の実線の右下が
り勾配はよりきつくなり、周波数変化に対するガイドベ
ーン開度応答幅のゲインが下がってくる。
In the setting of the solid line in FIG. 3, N = 1.
Although the operation is performed at 0, Y = 1.0, if the frequency of the power system rises by 3% and becomes N = 1.03, Y becomes 0.2. If the increase of the power system frequency is 1.5%, it is confined to Y = 0.6. The speed regulation rate setting unit 12 gives a proportional relationship between the frequency change width and the guide vane closing width as described above. If the gain of the speed regulation rate setting unit 12 is increased, the slope of the solid line in FIG. 3 falling to the right becomes steeper, and the gain of the guide vane opening response width with respect to the frequency change decreases.

【0030】図4はポンプ水車の閉鎖速度制限を示す典
型的な例図である。ポンプ水車の場合には、ガイドベー
ン開度Y>Yaの範囲では勾配がθ1aより大きくなら
ないよう、Y<Yaの範囲では勾配がθ1aよりさらに
小さくθ1bより大きくならないよう速度制限を与える
必要がある。ポンプ水車の場合には、水車領域にS字特
性という特殊な特性があり、ガイドベーンを閉めなくて
も、回転速度の上昇に伴って、自然に水車流量が急減す
る傾向があるためである。他方、ガイドベーンの開動作
については、前述の閉動作のような特殊事情がない。従
って、ポンプ水車においても、一般に図5のようにガイ
ドベーン開度に関係なく|θ1a|>|θ2|>|θ1
b|となるような一定値θ2に設定する場合が多い。特
別の事情がない限り、ガバナ本来の動作は妨げるべきで
はなく、ガイドベーン走行速度制限もできるだけ与えな
いように配慮するべきである。図5はこのような事情を
反映した慣習である。
FIG. 4 is a typical example showing the closing speed limitation of the pump turbine. In the case of a pump turbine, it is necessary to limit the speed so that the gradient does not become larger than θ1a in the range of guide vane opening Y> Ya, and that the gradient is smaller than θ1a and smaller than θ1b in the range of Y <Ya. In the case of a pump turbine, there is a special characteristic called an S-shaped characteristic in the turbine region, and even if the guide vane is not closed, the flow rate of the turbine tends to decrease naturally as the rotation speed increases. On the other hand, the opening operation of the guide vanes does not have special circumstances as in the closing operation described above. Therefore, also in the pump turbine, generally | θ1a |> | θ2 |> | θ1 regardless of the guide vane opening degree as shown in FIG.
In many cases, the constant value θ2 is set to be b |. Unless there are special circumstances, the original operation of the governor should not be hindered, and care should be taken to minimize the guide vane traveling speed limit. FIG. 5 shows a custom reflecting such circumstances.

【0031】さて、図1の水力プラントが大電力系統と
連繋されL=L0,P=P0=L0+RL0で運転中
に、当該電力系統との連繋が切れ、完全に又は実質的に
単独運転に移行した場合を考える。負荷LはL0からL
1になる。電力系統の自己制御性RLはRL0→ゼロに
なる。この結果、加算部15では、今までゼロ(P0−
L0−RL0)であった偏差がP0−L1に拡大する。
この結果、Nが上昇し始める。Nの上昇に伴って、RT
が増すので、前記偏差P0−L1はP0−L1−RTと
なり減少する。
Now, while the hydroelectric power plant of FIG. 1 is connected to a large power system and operated at L = L0, P = P0 = L0 + RL0, the connection with the power system is cut off, and the operation shifts completely or substantially to standalone operation. Consider the case. Load L is from L0 to L
Becomes 1. The self-controllability RL of the power system changes from RL0 to zero. As a result, the adder 15 has performed zero (P0−
L0−RL0) expands to P0−L1.
As a result, N starts to rise. With the rise of N, RT
Increases, the deviation P0-L1 becomes P0-L1-RT and decreases.

【0032】加算部3では、それまで、ε=1.0(6
5F出力)−1.0(定格N=N0のこと)−σ(ここ
では0.03)*[1.0(65Pの出力)−Y(=
1.0)]でバランスをしていたが、Nの上昇に伴っ
て、εがマイナス側に振れ始める。すなわち、閉信号を
出し始める。このεがPID演算を経て、加算部7か
ら、積分演算部初期値−ε[Kp+(Kia/S)+
(Kd*S/(1+T1*S))]のガイドベーン開度
制御信号が出力される。以後これをYxと呼ぶ。なお、
積分演算部(Kia/S)の出力初期値はY=1.0
(pu)相当の1.0であるので、前述のεのマイナス
方向振れで、上記ガイドベーン開度制御信号Yxは1.
0から減少し始める。かくして、加算部8、ガイドベー
ン開閉速度制限設定部9、ガイドベーン用油圧増幅部1
0で構成される増幅部は前記ガイドベーン開度制御信号
Yxの減少に追従してガイドベーン開度Yを閉め始め
る。このYの閉め操作は、速度調定率設定部12を介し
て、加算部3に復元される。また、このYの閉め操作に
よって、水車出力Pが減少していく。当然ながら、この
水車出力Pの減少によって加算部15の偏差P−L1−
RTも減少しNの上昇速度が次第に抑えられる。
In the adding section 3, ε = 1.0 (6
5F output) -1.0 (rated N = N0)-[sigma] (here 0.03) * [1.0 (output of 65P) -Y (=
1.0)], but as N increases, ε starts to swing to the minus side. That is, a close signal is started to be issued. This ε is subjected to the PID operation, and the adder 7 outputs the integral operation unit initial value −ε [Kp + (Kia / S) +
(Kd * S / (1 + T1 * S))] is output. Hereinafter, this is referred to as Yx. In addition,
The initial output value of the integration operation unit (Kia / S) is Y = 1.0
(Pu), which corresponds to 1.0, so that the guide vane opening control signal Yx becomes 1.
Start to decrease from zero. Thus, the adding section 8, the guide vane opening / closing speed limit setting section 9, the guide vane hydraulic amplification section 1
The amplifying unit composed of 0 starts closing the guide vane opening Y following the decrease of the guide vane opening control signal Yx. This Y closing operation is restored to the adding unit 3 via the speed adjustment rate setting unit 12. Further, by the closing operation of Y, the water turbine output P decreases. Naturally, the decrease P-L1−
RT also decreases, and the rising speed of N is gradually suppressed.

【0033】上述のような、水力プラントの単独運転へ
の移行時、各変数はどのように変化するかを示した説明
図が図6、図7である。図6は連繋運転時のI演算部ゲ
インが元々充分低かった場合の説明図である。図7は連
繋運転時の高いI演算部ゲインから単独運転時の低いI
演算部ゲインへの切換が確実に行われなかった場合、ま
たは、切換が行われる以前の状態を示す。図7の状態で
は、電力系統の自己制御性RLが作用しなくなったなど
の理由でP→N間のゲインが上がったにも拘わらずガバ
ナのI演算部ゲインが高いままなのでN→ε→Yx→Y
→P→Nのループゲインが高くなり過ぎて系全体が不安
定になる。図7はこの時の各部の応答カーブを示す。な
お△N=N−N0である。
FIGS. 6 and 7 show how the variables change when the hydropower plant shifts to the islanding operation as described above. FIG. 6 is an explanatory diagram in a case where the I operation unit gain during the linked operation is originally sufficiently low. FIG. 7 shows that the high I operation unit gain in the linked operation and the low I
This indicates a case where the switching to the arithmetic unit gain has not been reliably performed, or a state before the switching has been performed. In the state of FIG. 7, the governor I-operation unit gain remains high despite the increase in gain from P to N due to the fact that the self-controllability RL of the power system does not work, and so N → ε → Yx → Y
→ P → N The loop gain becomes too high and the whole system becomes unstable. FIG. 7 shows a response curve of each part at this time. Note that ΔN = N−N0.

【0034】本発明の代表例では、ガバナの偏差信号
(すなわちP,I,D演算部入力)εを第一監視対象信
号とし、この波形分析で単独移行を判定する。連繋運転
継続中は安定性は確保されているので、εは、出力調整
時等過渡的に大きくなることはあってもεは必ず減衰す
る。連繋運転中からガバナのI演算部ゲインを充分下げ
ておいた場合には、単独運転に移行してもεはやはり減
衰する。単独運転に移行した時、εが発散傾向を示すの
は、連繋運転時のI演算部ゲインのままで単独運転を継
続した場合である。換言すると、I演算部ゲインを低い
値に切換える必要がある場合に限られる。
In the representative example of the present invention, the governor deviation signal (ie, the input of the P, I, and D calculation units) ε is used as the first monitoring target signal, and a single transition is determined by this waveform analysis. Since stability is ensured during the continuous operation, ε may be transiently increased, for example, during output adjustment, but ε always decreases. If the governor I-operation unit gain is sufficiently reduced during the linked operation, ε is still attenuated even when the operation shifts to the isolated operation. When shifting to the islanding operation, ε shows a tendency to diverge when the islanding operation is continued with the I operation unit gain during the linked operation. In other words, only when it is necessary to switch the I operation unit gain to a lower value.

【0035】一般に連繋運転モードでの発電機負荷は大
きく(例えば50%以上)、単独運転モードでの発電機
負荷は小さい(例えば10〜30%)ので、単独運転モ
ード移行時に負荷が突然低下する。このため、前述のよ
うに回転速度は上昇し、これにガバナが応答する。定常
時はゼロで落ち着いているガバナの偏差信号εは先ずマ
イナス側(ガイドベーンを閉める側)に大きく振り、次
にプラス側(ガイドベーンを開ける側)に振る。この
時、ガバナI演算部ゲインが連繋運転時に好適な設定の
ままでは、ループゲイン過大となり、単独運転移行後、
第一監視対象信号εの振れ幅は少なくともしばらくの間
は次第に発散傾向を示す。
Generally, the generator load in the linked operation mode is large (for example, 50% or more), and the generator load in the isolated operation mode is small (for example, 10 to 30%). . Therefore, as described above, the rotation speed increases, and the governor responds to the rotation speed. The governor deviation signal ε, which is settled at zero at normal times, is first largely shaken to the minus side (side to close the guide vane) and then to the plus side (side to open the guide vane). At this time, if the governor I operation unit gain remains at a suitable setting during the linked operation, the loop gain becomes excessive, and after the transition to the isolated operation,
The swing width of the first monitored signal ε gradually shows a diverging tendency at least for a while.

【0036】ところで、水量調節手段まで含むガバナ系
が仮に線形系であれば、この第一監視対象信号εの波形
分析は比較的簡単である。
If the governor system including the water volume adjusting means is a linear system, the waveform analysis of the first monitored signal ε is relatively simple.

【0037】単独運転移行直後の第一監視対象信号εの
マイナス側振れより、次のプラス側振れの方が確実に小
さくなり、以下順に単調に減少していくからである。し
かし、図4のようにガイドベーン開度<Yaでは、ガイ
ドベーン速度制限の度合が大きいのでεの波形が著しく
歪む。結果的に、マイナス側(閉側)の振れ幅が異常に
大きくなり、プラス側(開側)の振れ幅が異常に小さく
なる。しかし、ポンプ水車の場合は、ほとんど例外なし
に、ガイドベーン開度Ya以下で単独運転を迎える場合
が多く、上述のような極端な波形歪は避けられない。
This is because the next plus-side swing is surely smaller than the minus-side swing of the first monitored signal ε immediately after the transition to the islanding operation, and monotonically decreases in the following order. However, as shown in FIG. 4, when the guide vane opening degree <Ya, the waveform of ε is significantly distorted because the degree of guide vane speed limitation is large. As a result, the swing width on the minus side (closed side) becomes abnormally large, and the swing width on the plus side (open side) becomes abnormally small. However, in the case of a pump-turbine, there is almost no exception, and in many cases, the pump-turbine is operated independently at the guide vane opening degree Ya or less, and the above-described extreme waveform distortion cannot be avoided.

【0038】このような背景を踏まえて、本発明では、
マイナス側波形とプラス側波形を別個に分析する。具体
的には、マイナス側の1波目とマイナス側2波目を比較
するか、プラス側1波目とプラス側2波目を比較する。
従って、少なくとも1.5サイクルの間波形分析を継続
する。
Based on this background, the present invention provides:
The negative waveform and the positive waveform are separately analyzed. Specifically, the first wave on the minus side is compared with the second wave on the minus side, or the first wave on the plus side is compared with the second wave on the plus side.
Therefore, the waveform analysis is continued for at least 1.5 cycles.

【0039】そこで、上述の波形分析を開始する条件が
問題になる。第一案では、発電機負荷があって(電力系
統から完全に遮断されていない)εが所定値以上になっ
た時とする。連繋運転中にεが大きく変動する時は、連
繋運転中の出力調整指令時か連繋運転から単独運転へ移
行した場合に限られる。前者の場合には、指令信号は6
5Pから与えられるが、65Pは一般に数十秒でPを0
→1.0(pu)変化させており、指令は比較的ゆっく
りと入力されるので過渡的なεの変化幅も大きくない。
これに対して単独移行時は、一般に、負荷変化により回
転速度変化を伴うのでεの一時的変化幅は大きくなる。
これらを考慮してεの所定値を決めればよい。
Therefore, the condition for starting the above-mentioned waveform analysis becomes a problem. In the first plan, it is assumed that there is a generator load (not completely disconnected from the power system) and ε has reached a predetermined value or more. A large change in ε during the linked operation is limited only to an output adjustment command during the linked operation or to a transition from the linked operation to the isolated operation. In the former case, the command signal is 6
Given from 5P, 65P generally takes P to 0 in tens of seconds.
→ It is changed by 1.0 (pu), and the command is input relatively slowly, so that the transient change width of ε is not large.
On the other hand, at the time of the single shift, the change in load generally accompanies a change in the rotational speed, so that the temporary change width of ε becomes large.
The predetermined value of ε may be determined in consideration of these.

【0040】波形分析を開始する条件の第二案は回転速
度Nが定格のN0から所定値以上離れたという条件であ
る。連繋運転中には電力系統の自己制御性やAFC等電
力系統の周波数制御が利いているので回転速度Nの変動
はほとんどありない。Nの変動がありえるのは単独運転
移行後しかありえないからである。この場合、Nを第二
監視対象信号とし、|(N−N0)|>所定値を波形分
析開始条件とする。
The second condition for starting the waveform analysis is a condition that the rotation speed N is apart from the rated N0 by a predetermined value or more. During the linked operation, since the self-controllability of the power system and the frequency control of the power system such as the AFC are effective, the rotation speed N hardly varies. The reason that N can fluctuate is that it can occur only after the transition to the islanding operation. In this case, N is a second monitoring target signal, and | (N−N0) |> predetermined value is a waveform analysis start condition.

【0041】前述では、連繋運転時の負荷が大きく、単
独運転移行後の負荷が小さい階段状移行の場合を前提に
説明してきたが、両者の負荷がほぼ等しいいわゆる水平
移行の場合にも、上述の単独移行センサーは有効であ
る。確かに、単独移行直後は、第一監視対象信号εは大
きく変動しないが、時間が経つにつれて次第に拡大して
くるので、前記波形分析開始条件第一案の検出が若干遅
れたとしても検出しないことはない。この間の振幅拡大
を充分小さくするためにはεの所定値をできるだけ下げ
る。上記水平移行の場合、前記波形分析開始条件第二案
も単独移行直後は動作しないが、次第にNの変動幅が拡
大してくるのでやがては動作する。
In the above description, the description has been made on the assumption that the load is large in the continuous operation, and the load after the transition to the independent operation is the stair-like transition. The single transfer sensor is effective. Certainly, immediately after the single transition, the first monitored signal ε does not fluctuate greatly, but since it gradually expands with time, even if the detection of the first proposal for the waveform analysis start condition is slightly delayed, it should not be detected. There is no. In order to sufficiently reduce the amplitude expansion during this period, the predetermined value of ε is reduced as much as possible. In the case of the above-mentioned horizontal shift, the second alternative for the waveform analysis start condition also does not operate immediately after the single shift, but will operate soon because the fluctuation range of N gradually increases.

【0042】ここで第一監視対象信号の波形分析の方法
について説明する。第一案はマイナス側(プラス側)の
1波目のεの時間積分∫|ε|dtに対して、マイナス
側(プラス側)の2波目のεの時間積分∫|ε|dtが
いかほど減衰するかで判定する方法である。ガバナの偏
差信号εは、P,I,D等の積分を含む演算部の入力で
もある。今、P,D演算を無視すれば、ガバナ偏差信号
εはガイドベーン開度指令信号の微分値に相当する。し
たがって、これの時間積分はおおまかにガバナのガイド
ベーン開度指令信号相当し、上記波形分析指標として意
味がある。
Here, a method of analyzing the waveform of the first signal to be monitored will be described. The first alternative is how much the time integration ε | ε | dt of the second wave on the minus side (plus side) || ε | dt, compared to the time integration ε | ε | dt of the first wave on the minus side (plus side). This is a method of determining whether or not attenuation occurs. The governor deviation signal ε is also an input of an arithmetic unit including integration of P, I, D, and the like. If the P and D calculations are ignored, the governor deviation signal ε corresponds to the differential value of the guide vane opening command signal. Therefore, the time integral of this roughly corresponds to the guide vane opening command signal of the governor, and is significant as the waveform analysis index.

【0043】また上記波形分析において、マイナス側の
各時間積分値が1波目より2波目、2波目より3波目の
ように時間経過と共に減衰し、またプラス側の各時間積
分値が1波目より2波目、2波目より3波目のように時
間経過と共に減衰していき、マイナス側の少なくとも3
つの波の各時間積分値の時間経過に伴う減衰傾向及びプ
ラス側の少なくとも3つの波の各時間積分値の時間経過
に伴う減衰傾向の一方または両方で単独運転への移行を
判定することができる。
In the above-mentioned waveform analysis, each time integrated value on the minus side attenuates as time elapses from the first wave to the second wave and from the second wave to the third wave, and each time integrated value on the plus side becomes It attenuates with time as the second wave from the first wave and the third wave from the second wave, and at least 3
The transition to the islanding operation can be determined based on one or both of the decay tendency of each of the time integrals of the three waves with time and the decay of each of the time integrals of the at least three positive waves with time. .

【0044】波形分析方法の第二案は、マイナス側(プ
ラス側)の1波目と2波目の波形の継続時間の減衰(短
縮)による判定である。1波目と2波目の減衰率(短縮
度合)の評価は、単独運転時に要求される安定度との関
係で決めるのが合理的である。
The second alternative of the waveform analysis method is to judge by the decay (reduction) of the duration of the first and second waveforms on the minus side (plus side). It is reasonable to evaluate the attenuation rates (degrees of shortening) of the first wave and the second wave based on the relationship with the stability required during single operation.

【0045】また上記波形分析において、マイナス側と
プラス側の監視信号を別々にその継続時間を測定し、マ
イナス側の少なくとも3つの波の各継続時間が時間経過
に伴って減衰(短縮)する傾向及びプラス側の少なくと
も3つの波の各継続時間が時間経過に伴って減衰(短
縮)していく傾向の一方または両方で単独運転への移行
を判定することができる。
In the above-described waveform analysis, the durations of the minus side and plus side monitoring signals are separately measured, and the durations of at least three minus side waves tend to attenuate (shorten) over time. The transition to the islanding operation can be determined based on one or both of the durations of the at least three waves on the plus side and the decay (shortening) over time.

【0046】次に、単独移行センサーが、単独運転移行
を検出した時のガバナゲインの切換方法について述べ
る。図1ではI演算部を連繋運転用と単独運転用の2種
類用意し切り換える。積分演算部の場合には、このよう
に設定値の違う2種類の積分演算部を瞬時切り換えして
も出力がジャンプすることはない。P,Iの2種類の演
算部を切り換える方法も可能である。この場合には、図
1の場合と違ってP演算部ゲイン切換によって出力がジ
ャンプする可能性があるが、その対策としては、例えば
特許1951283号に記載の方法を使えばよい。
Next, a method of switching the governor gain when the independent transfer sensor detects the transfer of the isolated operation will be described. In FIG. 1, two types of I operation units are prepared and switched for linked operation and independent operation. In the case of the integral operation unit, the output does not jump even if the two types of integral operation units having different set values are instantaneously switched. It is also possible to switch between the two types of operation units P and I. In this case, unlike the case of FIG. 1, there is a possibility that the output jumps due to the switching of the P operation unit gain. As a countermeasure, for example, a method described in Japanese Patent No. 1951283 may be used.

【0047】前述では、第一監視対象信号としてεを選
んだ場合を説明したが、この代わりに、同等の信号(定
常時はゼロ又はゼロ近辺に落ち着き過渡時に大きく振れ
る信号)をガバナの入力であるf/Nやガバナのいずれ
かの状態量に所定の演算をして引き出すことが可能であ
る。
In the above description, the case where ε is selected as the first signal to be monitored has been described. Instead, an equivalent signal (a signal which is settled at or near zero in a steady state and largely swings in a transient state) is input to the governor. It is possible to perform a predetermined calculation on any of the state quantities of a certain f / N or governor and to extract it.

【0048】上記のように本発明によれば、単独移行セ
ンサーの設置やガバナ設定値の自動切換はガバナの部分
的な修正で達成でき、コストは極めて安価である。
As described above, according to the present invention, the installation of the single transfer sensor and the automatic switching of the governor set value can be achieved by partially modifying the governor, and the cost is extremely low.

【0049】[0049]

【発明の効果】以上のように本発明は、電力系統との分
離がどこで行われても、単独運転移行を安価で確実に検
出でき、その結果、単独運転移行時には確実にガバナゲ
イン切換ができるようになる。このため、連繋運転モー
ドでは速応性を重視した設定を安心して追求できるよう
になる。
As described above, according to the present invention, it is possible to reliably and inexpensively detect the transition to the islanding operation regardless of the separation from the power system, and as a result, the governor gain can be reliably switched at the time of the transition to the islanding operation. become. For this reason, in the linked operation mode, it is possible to securely pursue a setting that places importance on quick response.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態の水力プラントのブロック
図。
FIG. 1 is a block diagram of a hydroelectric power plant according to an embodiment of the present invention.

【図2】水車出力設定器(65P)の無負荷時の設定方
法を示す説明図。
FIG. 2 is an explanatory diagram showing a setting method of a water turbine output setting device (65P) when there is no load.

【図3】水車出力設定器(65P)の全負荷時の設定方
法を示す説明図。
FIG. 3 is an explanatory diagram showing a setting method of a water turbine output setting device (65P) at a full load.

【図4】ポンプ水車の閉鎖速度制限を示す例図。FIG. 4 is a diagram showing an example of limiting the closing speed of a pump turbine.

【図5】ポンプ水車の開速度制限を示す例図。FIG. 5 is a diagram showing an example of limiting the opening speed of a pump turbine.

【図6】図1の本発明の一実施形態の動作を示す波形
図。
FIG. 6 is a waveform chart showing the operation of the embodiment of the present invention shown in FIG. 1;

【図7】図1の本発明の一実施形態の動作を示す波形
図。
FIG. 7 is a waveform chart showing the operation of the embodiment of the present invention shown in FIG. 1;

【図8】従来技術を適用した水力プラントを示すブロッ
ク線図。
FIG. 8 is a block diagram showing a hydraulic plant to which the related art is applied.

【符号の説明】[Explanation of symbols]

1…速度検出部、2…速度調整部、3…加算部、4…比
例演算部、(P演算部)、5a…連繋運転モードの積分
演算部(I演算部)、5b…単独運転モードの積分演算
部(I演算部)、6…微分演算部(D演算部)、7…加
算部、8…加算部、9…ガイドベーン開閉速度制限設定
部、10…ガイドベーン用油圧増幅部、11…加算部、
12…速度調定率設定部、13…水車出力設定部、14
…水車(ポンプ水車)特性部、15…加算部、16…水
車及び発電機の回転部慣性効果部、17a…水車の自己
制御性部、17b…電力系統の自己制御性部、18…加
算部、19a、19b…ガバナのIゲイン切換用接点、
20…単独運転移行センサー。
DESCRIPTION OF SYMBOLS 1 ... Speed detection part, 2 ... Speed adjustment part, 3 ... Addition part, 4 ... Proportional calculation part, (P calculation part), 5a ... Integration calculation part (I calculation part) of linked operation mode, 5b ... Single operation mode Integral calculator (I calculator), 6 Differential calculator (D calculator), 7 Adder, 8 Adder, 9 Guide vane opening / closing speed limit setting unit, 10 Guide vane hydraulic amplifying unit, 11 … Addition unit,
12: speed adjustment rate setting unit, 13: water turbine output setting unit, 14
... Hydro turbine (pump turbine) characteristic section, 15... Addition section, 16... Rotating section and inertia effect section of the turbine and generator, 17a... Water turbine self-controllability section, 17b. , 19a, 19b ... governor I gain switching contact,
20 ... Single operation shift sensor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 湯本 伸司 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 中川 博人 大阪市北区中之島三丁目3番22号 関西電 力株式会社内 (72)発明者 深屋 宗資 大阪市北区中之島三丁目3番22号 関西電 力株式会社内 Fターム(参考) 3H073 AA12 BB13 BB25 CC12 CC20 CC26 CD03 CE06 CE09 FF03 5G066 HA11 HB02 5H004 GA05 GA08 GA12 GA28 GB04 HA14 HA16 HB08 HB14 JA01 JA03 JA23 JB09 KA53 KA54 KA69 KB02 KB04 KB06 KB39 KC39 LB02 LB08 LB09 5H307 AA03 BB06 EE02 EE16 GG20 HH04  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shinji Yumoto 3-1-1, Sakaimachi, Hitachi-shi, Ibaraki Pref. Hitachi, Ltd. Hitachi Plant (72) Inventor Hiroto Nakagawa 3-chome Nakanoshima, Kita-ku, Osaka-shi No. 22 Kansai Electric Power Co., Inc. (72) Inventor Sosuke Fukaya 3-2-2 Nakanoshima, Kita-ku, Osaka F Kansai Electric Power Co., Inc. F term (reference) 3H073 AA12 BB13 BB25 CC12 CC20 CC26 CD03 CE06 CE09 FF03 5G066 HA11 HB02 5H004 GA05 GA08 GA12 GA28 GB04 HA14 HA16 HB08 HB14 JA01 JA03 JA23 JB09 KA53 KA54 KA69 KB02 KB04 KB06 KB39 KC39 LB02 LB08 LB09 5H307 AA03 BB06 EE02 EE16 GG20 HH04

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 開度が可調整で、少なくとも開度可調整
範囲の一部分においては開操作速度制限と閉操作速度制
限が異なるように設定される水量調節手段を備えた水車
と、該水車によって駆動される発電機と、前記水車の回
転速度を検出する回転速度検出器と、前記水量調節手段
の開度または相当信号を検出する開度検出器と、前記回
転速度検出器によって検出された回転速度信号と前記開
度検出器によって検出された水量調節手段の開度復元信
号に応じて前記水量調節手段を制御するガバナと、前記
発電機が大電力系統に接続されている連繋運転モードで
はガバナの設定値を速応性を重視した設定にする一方、
無負荷運転時または前記大電力系統から分離された単独
運転モードでは安定性を重視した設定にする前記ガバナ
用設定値切換装置とを備えた水力発電プラントにおい
て、前記ガバナの各部応答信号及び前記回転速度信号か
ら選んだ2つの信号を第一信号及び第二信号とすれば、
前記第一信号か該第一信号に所定の演算を加えた信号の
いずれかで、定常時はゼロ又は略ゼロに戻り、過渡時に
は絶対値が比較的大きく変位する信号を選択して、これ
を第一監視信号とし、前記第二信号か該第二信号に所定
の演算を加えた信号のいずれかで、単独運転移行直後の
過渡時には絶対値が比較的大きく変位する信号を選択し
て、これを第二監視信号とし、前記第一監視信号または
前記第二監視信号のいずれかの絶対値が所定値以上変化
したことを条件に監視を開始し、その後前記第一監視信
号がゼロを挟んでプラス側、マイナス側と交互に繰り返
すサイクルが少なくとも略1.5回終了してから監視を
終了する監視期間設定手段と、前記監視期間設定手段の
設定する監視期間中の前記第一監視信号の減衰度合を演
算する手段と、前記減衰度合が所定値以上に悪い場合に
は前記水力プラントが実質的に単独運転状態へ移行した
と判定する手段とより成る単独運転移行センサーを備え
たことを特徴とする水力発電プラント。
1. A water turbine provided with a water amount adjusting means whose opening degree is adjustable, and at least in a part of the opening degree adjustable range, an opening operation speed limit and a closing operation speed limit are set differently. A driven generator, a rotation speed detector for detecting a rotation speed of the water wheel, an opening degree detector for detecting an opening degree or an equivalent signal of the water amount adjusting means, and a rotation detected by the rotation speed detector. A governor for controlling the water flow rate adjusting means in accordance with a speed signal and an opening degree restoration signal of the water flow rate adjusting means detected by the opening degree detector; and a governor in a linked operation mode in which the generator is connected to a large power system. While setting the setting value for quick response,
In a hydroelectric power plant including the governor set value switching device that sets a value that emphasizes stability during no-load operation or in the isolated operation mode separated from the large power system, a response signal of each section of the governor and the rotation If two signals selected from the speed signal are a first signal and a second signal,
One of the first signal or the signal obtained by adding a predetermined operation to the first signal, the signal returns to zero or substantially zero in a steady state, and a signal whose absolute value is relatively largely displaced in a transient state is selected. As the first monitoring signal, a signal whose absolute value is relatively largely displaced during the transition immediately after the shift to the isolated operation is selected from either the second signal or a signal obtained by adding a predetermined calculation to the second signal, and As a second monitoring signal, start monitoring on the condition that the absolute value of any of the first monitoring signal or the second monitoring signal has changed by a predetermined value or more, and then the first monitoring signal is sandwiched by zero Monitoring period setting means for ending the monitoring after at least approximately 1.5 cycles of alternately repeating the plus side and the negative side are completed, and attenuation of the first monitoring signal during the monitoring period set by the monitoring period setting means Means to calculate the degree Hydroelectric power plant attenuation degree, characterized in that the hydraulic plant with more consisting isolated operation proceeds sensor and means for determining that it has substantially shifted to islanding state in the worse case than a predetermined value.
【請求項2】 開度が可調整で、少なくとも開度可調整
範囲の一部分においては開操作速度制限と閉操作速度制
限が異なるように設定される水量調節手段を備えた水車
と、該水車によって駆動される発電機と、前記水車の回
転速度を検出する回転速度検出器と、前記水量調節手段
の開度または相当信号を検出する開度検出器と、前記回
転速度検出器によって検出された回転速度信号と前記開
度検出器によって検出された水量調節手段の開度復元信
号に応じて前記水量調節手段を制御するガバナと、前記
発電機が大電力系統に接続されている連繋運転モードで
はガバナの設定値を速応性を重視した設定にする一方、
無負荷運転時または前記大電力系統から分離された単独
運転モードでは安定性を重視した設定にする前記ガバナ
用設定値切換装置とを備えた水力プラントにおいて、前
記ガバナの各部応答信号または前記回転速度信号の内い
ずれかの信号またはそれに微分または微分に似た演算を
行った信号で、定常時はゼロ又は略ゼロに戻り、過渡時
は絶対値が比較的大きく変位する信号を選択して、これ
を監視信号とし、前記監視信号の絶対値が所定値以上変
化したことを条件に監視を開始し、その後前記監視信号
がゼロを挟んでプラス側、マイナス側と交互に繰り返す
サイクルが少なくとも略1.5回終了してから監視を終
了する監視期間設定手段と、前記監視期間設定手段の設
定する監視期間中の前記監視信号の減衰度合を演算する
手段と、前記減衰度合が所定値以上に悪い場合には前記
水力プラントが実質的に単独運転状態へ移行したと判定
する手段とより成る単独運転移行センサーを備えたこと
を特徴とする水力発電プラント。
2. A water turbine provided with a water amount adjusting means whose opening is adjustable and at least a part of the opening adjustment range is set so that the opening operation speed limit and the closing operation speed limit are different from each other. A driven generator, a rotation speed detector for detecting a rotation speed of the water wheel, an opening degree detector for detecting an opening degree or an equivalent signal of the water amount adjusting means, and a rotation detected by the rotation speed detector. A governor that controls the water flow rate adjusting means in response to a speed signal and an opening degree restoration signal of the water flow rate adjusting means detected by the opening degree detector; and a governor in a linked operation mode in which the generator is connected to a large power system. While setting the setting value for quick response,
In a hydropower plant having the governor set value switching device that sets a value that emphasizes stability in a no-load operation or in an isolated operation mode separated from the high power system, a response signal of each part of the governor or the rotation speed is provided. Select one of the signals or a signal that has undergone a derivative or an operation similar to the derivative, and returns a signal that returns to zero or nearly zero in a steady state, and that has a relatively large displacement in the transient state. Is a monitoring signal, the monitoring is started on condition that the absolute value of the monitoring signal has changed by a predetermined value or more, and thereafter, a cycle in which the monitoring signal alternately repeats on the plus side and the minus side across zero at least approximately 1. Monitoring period setting means for ending monitoring after five times, means for calculating the degree of attenuation of the monitoring signal during the monitoring period set by the monitoring period setting means, Hydroelectric power plant if is characterized in that the hydraulic plant with more consisting isolated operation proceeds sensor and means for determining that it has substantially shifted to islanding state in the worse case than a predetermined value.
【請求項3】 前記単独運転移行センサーは、単独運転
移行を検出した時、前記ガバナ用設定値切換装置に働き
かけてガバナの設定値を安定性を重視した設定に自動的
に切り換える手段を有することを特徴とする請求項1ま
たは2記載の水力発電プラント。
3. The system according to claim 1, wherein the isolated operation transition sensor has means for operating the governor set value switching device to automatically switch the governor set value to a setting that emphasizes stability when the isolated operation transition is detected. The hydroelectric power plant according to claim 1 or 2, wherein:
【請求項4】 前記ガバナ用設定値切換装置は、ガバナ
の積分演算部を切換えるものであることを特徴とする請
求項1または2記載の水力発電プラント。
4. The hydroelectric power plant according to claim 1, wherein the governor set value switching device switches an governor integral operation unit.
【請求項5】 前記単独運転移行センサーは、前記監視
期間設定手段の設定監視期間中、前記監視信号>0のプ
ラス側と前記監視信号<0のマイナス側との監視信号を
別々に前記演算手段により時間積分した積分値を算出
し、前記判定手段により、プラス側の少なくとも3つの
波の前記各時間積分値の時間経過に伴なう減衰傾向、及
びマイナス側の少なくとも3つの波の前記各時間積分値
の時間経過に伴なう減衰傾向の一方または両方で単独運
転状態への移行を判定するものであることを特徴とする
請求項1または2記載の水力発電プラント。
5. The single-operation shift sensor separates a monitoring signal between a plus side of the monitoring signal> 0 and a minus side of the monitoring signal <0 during the monitoring period set by the monitoring period setting unit. The integrated value obtained by time integration is calculated according to the following formula, and the determination means determines, by the determination means, the decay tendency of the at least three waves on the plus side with the lapse of time, and the respective times of the at least three waves on the minus side. 3. The hydroelectric power plant according to claim 1, wherein the transition to the islanding operation state is determined based on one or both of the attenuation tendencies of the integral value over time.
【請求項6】 前記単独運転移行センサーは、前記監視
期間設定手段の設定監視期間中、前記監視信号>0のプ
ラス側と前記監視信号<0のマイナス側との監視信号を
別々に前記演算手段により時間積分した積分値を算出
し、前記判定手段により、プラス側またはマイナス側の
少なくとも2つの波の前記各時間積分値を比較した減衰
度合で単独運転状態への移行を判定するものであること
を特徴とする請求項1または2記載の水力発電プラン
ト。
6. The arithmetic operation means separately monitors the monitoring signal of the monitoring signal> 0 and the monitoring signal of the monitoring signal <0 during the monitoring period set by the monitoring period setting means. Calculating an integrated value obtained by time integration according to the above, and determining the shift to the islanding operation state based on the degree of attenuation obtained by comparing the respective time integrated values of at least two waves on the plus side or the minus side by the determination means. The hydroelectric power plant according to claim 1 or 2, wherein:
【請求項7】 前記単独運転移行センサーは、前記監視
期間設定手段の設定監視期間中、前記監視信号>0のプ
ラス側と前記監視信号<0のマイナス側との監視信号を
別々に前記演算手段によりその継続時間を測定し、前記
判定手段により、プラス側の少なくとも3つの波の前記
各継続時間の時間経過に伴なう減衰傾向、及びマイナス
側の少なくとも3つの波の前記各継続時間の時間経過に
伴なう減衰傾向の一方または両方で単独運転状態への移
行を判定するものであることを特徴とする請求項1また
は2記載の水力発電プラント。
7. The arithmetic operation unit separately monitors the monitoring signal of the monitoring signal> 0 and the monitoring signal of the monitoring signal <0 during the monitoring period set by the monitoring period setting unit. The decay tendency of the at least three waves on the plus side with the lapse of time for each of the durations, and the time of the durations of the at least three waves on the minus side are determined by the determination means. 3. The hydroelectric power plant according to claim 1, wherein the transition to the islanding operation state is determined based on one or both of the attenuation tendencies with the lapse of time.
【請求項8】 前記単独運転移行センサーは、前記監視
期間設定手段の設定監視期間中、前記監視信号>0のプ
ラス側と前記監視信号<0のマイナス側との監視信号を
別々に前記演算手段によりその継続時間を測定し、前記
判定手段により、プラス側またはマイナス側の少なくと
も2つの波の前記各継続時間を比較した減衰度合で単独
運転状態への移行を判定するものであることを特徴とす
る請求項1または2記載の水力発電プラント。
8. The single-operation shift sensor separately calculates a monitoring signal of a plus side of the monitoring signal> 0 and a monitoring signal of a minus side of the monitoring signal <0 during the monitoring period set by the monitoring period setting unit. And measuring the duration of the at least two waves on the plus side or the minus side based on the degree of attenuation by comparing the durations of the at least two waves on the plus side or the minus side. The hydroelectric power plant according to claim 1 or 2, wherein:
JP10361391A 1998-12-18 1998-12-18 Hydraulic power plant Pending JP2000181547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10361391A JP2000181547A (en) 1998-12-18 1998-12-18 Hydraulic power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10361391A JP2000181547A (en) 1998-12-18 1998-12-18 Hydraulic power plant

Publications (1)

Publication Number Publication Date
JP2000181547A true JP2000181547A (en) 2000-06-30

Family

ID=18473393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10361391A Pending JP2000181547A (en) 1998-12-18 1998-12-18 Hydraulic power plant

Country Status (1)

Country Link
JP (1) JP2000181547A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210101375A (en) * 2020-02-07 2021-08-19 한국수력원자력 주식회사 Auxiliary Water Supply Pump Turbine Control System and Method of Nuclear Power Plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210101375A (en) * 2020-02-07 2021-08-19 한국수력원자력 주식회사 Auxiliary Water Supply Pump Turbine Control System and Method of Nuclear Power Plant
KR102319798B1 (en) 2020-02-07 2021-11-03 한국수력원자력 주식회사 Auxiliary Water Supply Pump Turbine Control System and Method of Nuclear Power Plant

Similar Documents

Publication Publication Date Title
US7053341B2 (en) Method and apparatus for drum level control for drum-type boilers
US8160799B2 (en) Turbine bypass control apparatus and turbine bypass control method
JP2000181547A (en) Hydraulic power plant
US6336322B1 (en) Method of controlling a pump turbine
JPH01277699A (en) Adjusting method avoiding surge of turbocompressor
WO2019150517A1 (en) Hydroelectric power generation control system and control method
JP5797513B2 (en) Hydroelectric power generation control system and governor control device thereof
JP2635356B2 (en) Speed control device of turbine generator
JP2000240556A (en) Operation controller for hydro-electric power plant
JP2001153023A (en) Hydraulic power plant and single power transmission conversion detector
JP4078003B2 (en) Pump water wheel
CN113985775B (en) Nuclear power unit control method and system considering fast closing valve action
JP3555248B2 (en) Water turbine governor
JP2960950B2 (en) Electric / hydraulic governor
JP2001132606A (en) Pump turbine
JP2012255419A (en) Speed control device of water turbine
JP2990317B2 (en) Turbine control device
JPH0346161Y2 (en)
JPH0158322B2 (en)
JP2001132610A (en) Pump turbine
JPS62147003A (en) Load anticipator device
JPH10127099A (en) Turbine control device
JP2002130107A (en) Guide vane opening controller for hydraulic power plant
JPH0751886B2 (en) Control method for steam turbine
JP2003042051A (en) Method and device for inputting rotational speed in speed governor