JP2000180680A - Signal transmitting multicore plastic optical fiber - Google Patents

Signal transmitting multicore plastic optical fiber

Info

Publication number
JP2000180680A
JP2000180680A JP10360456A JP36045698A JP2000180680A JP 2000180680 A JP2000180680 A JP 2000180680A JP 10360456 A JP10360456 A JP 10360456A JP 36045698 A JP36045698 A JP 36045698A JP 2000180680 A JP2000180680 A JP 2000180680A
Authority
JP
Japan
Prior art keywords
core
optical fiber
small
plastic optical
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10360456A
Other languages
Japanese (ja)
Other versions
JP3961701B2 (en
Inventor
Shinichi Toyoshima
真一 豊島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP36045698A priority Critical patent/JP3961701B2/en
Publication of JP2000180680A publication Critical patent/JP2000180680A/en
Application granted granted Critical
Publication of JP3961701B2 publication Critical patent/JP3961701B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a plastic optical fiber having a little loss caused by bending, stabilized in connection to a very small spot light source, and efficiency in coupling of light. SOLUTION: In an optical fiber, a large coated fiber 4a having sheath layers 2a, 3a on the periphery of a core 1a having the diameter in the range of 200 μm to 500 μm is arranged in the central part in the section of the fiber, small coated fibers 4b each of which has sheath layers 2b, 3b on the periphery of a small core 1b having the diameter smaller than that of the core 1a of the large coated fiber 4a are arranged on the periphery of the large coated fiber 4a, small coated fibers 4c are concentrically arranged, and therefore, light deviated from the core 1a of the large coated fiber 4a is recovered by the cores 2b of the small coated fibers 4b, and the internal core is protected by the small coated fibers 4c.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、パソコン通信、工
場の機械装置の制御、移動体の中での光通信における信
号伝送に使用する光ファイバに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber used for signal transmission in personal computer communication, control of factory machinery, and optical communication in a moving body.

【0002】[0002]

【従来の技術】プラスチック光ファイバは、通常、直径
が1mm程度に構成され、機械的な強度の維持と取り扱
い易さを図っている。一方で、100Mbps以上の高
速の信号伝送を行うためには、ホトダイオードの受光径
は0.5mm以下に小さくなることが多いため、このよ
うなホトダイオードとの組み合わせに直径が1mm程度
の大口径のプラスチック光ファイバを用いたのでは、光
がホトダイオードからはみ出してしまい、光の結合ロス
が大きい。多芯プラスチック光ファイバでは、光源側の
スポットの光の強弱がそのままホトダイオード側に伝送
されるので、大口径の単芯プラスチック光ファイバより
は光の結合効率は高い。特に、LDやLEDのスポット
は中央部が明るく、周辺が暗いため、中央部の光の伝送
が特に重要である。
2. Description of the Related Art Plastic optical fibers are usually formed to have a diameter of about 1 mm to maintain mechanical strength and facilitate handling. On the other hand, in order to perform high-speed signal transmission of 100 Mbps or more, the light receiving diameter of the photodiode is often reduced to 0.5 mm or less. Therefore, a large-diameter plastic having a diameter of about 1 mm is used in combination with such a photodiode. When an optical fiber is used, light protrudes from the photodiode, and the coupling loss of light is large. In a multi-core plastic optical fiber, the intensity of light at a light source-side spot is transmitted to the photodiode as it is, so that the light coupling efficiency is higher than that of a large-diameter single-core plastic optical fiber. In particular, since the spot of the LD or LED is bright at the center and dark at the periphery, transmission of light at the center is particularly important.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、多芯プ
ラスチック光ファイバは、光源との結合効率に問題があ
った。従来の光通信の信号伝送に用いられていた多芯プ
ラスチック光ファイバは、ほぼ均一な直径の複数本の芯
を、鞘層を介して一体化したものであり、直径の小さな
複数本の芯に光が導入され、芯と芯との間に介在する鞘
層は光が透過しない構造となっている。従って、光源の
スポット径が芯の直径よりもはるかに大きい場合には、
ファイバ断面において占める鞘層の面積分だけ受光量が
減少することは避けられず、通常、15%〜30%程度
のロスが生じていた。
However, the multi-core plastic optical fiber has a problem in the coupling efficiency with the light source. A multi-core plastic optical fiber used for signal transmission in conventional optical communication is obtained by integrating a plurality of cores having a substantially uniform diameter through a sheath layer, and forming a plurality of cores having a small diameter. Light is introduced, and the sheath layer interposed between the cores has a structure that does not transmit light. Therefore, if the spot diameter of the light source is much larger than the core diameter,
It is inevitable that the amount of received light decreases by the area of the sheath layer occupying the fiber cross section, and a loss of about 15% to 30% has usually occurred.

【0004】また、石英光ファイバ用のトランシーバー
などの光スポットが非常に小さいものを用いた場合のよ
うに、光スポットの大きさと芯と芯の距離、即ち鞘層の
厚さが無視できない場合には、光の入射位置の微小な変
化が受光量の変化となり、光スポットが鞘層にほとんど
の光を入射してしまった場合には、受光量が非常に小さ
くなってしまうという問題がある。
Further, when a light spot such as a transceiver for a quartz optical fiber having a very small light spot is used, the size of the light spot and the distance between the cores, ie, the thickness of the sheath layer cannot be ignored. However, there is a problem in that a small change in the incident position of light results in a change in the amount of received light, and when the light spot has almost entered the sheath layer, the amount of received light becomes extremely small.

【0005】本発明の目的は、上記問題を解決し、効率
的な光の授受が可能なプラスチック光ファイバを提供す
ることにあり、より詳細には、光源の光スポットの大き
さに関わらず、受光量ロスを低減したプラスチック光フ
ァイバを提供することにある。
An object of the present invention is to solve the above problems and to provide a plastic optical fiber capable of efficiently transmitting and receiving light, and more specifically, to provide a plastic optical fiber irrespective of the size of a light spot of a light source. An object of the present invention is to provide a plastic optical fiber in which a loss of received light is reduced.

【0006】[0006]

【課題を解決するための手段】本発明は、透明樹脂から
なる芯と、該芯よりも屈折率の低い樹脂からなり該芯の
周囲を取り囲む鞘層と、からなる心線を複数本一纏めに
してなる多芯プラスチック光ファイバであって、ファイ
バ断面の中央部に芯の直径が200μm〜500μmの
大心線を配置し、該大心線の周囲を該大心線よりも芯の
直径が小さい複数の小心線で取り囲み、複合紡糸により
一体化してなること特徴とする信号伝送用多芯プラスチ
ック光ファイバである。
According to the present invention, a plurality of cores comprising a core made of a transparent resin and a sheath layer made of a resin having a lower refractive index than the core and surrounding the core are integrated. A multi-core plastic optical fiber, wherein a core having a core diameter of 200 μm to 500 μm is arranged at the center of the fiber cross section, and the circumference of the large core is smaller in core diameter than the large core. A multi-core plastic optical fiber for signal transmission characterized by being surrounded by a plurality of small cords and integrated by composite spinning.

【0007】本発明において好ましくは、上記小心線
が、上記大心線の周囲に二重の同心円状に配置されてい
るプラスチック光ファイバであり、また、上記鞘層を二
重構造とした構成も好ましく適用される。
In the present invention, preferably, the small core wire is a plastic optical fiber arranged in a double concentric manner around the large core wire, and the sheath layer may have a double structure. It is preferably applied.

【0008】[0008]

【発明の実施の形態】本発明のプラスチック光ファイバ
は、ファイバの中央部に芯の直径が大きな大心線を配置
し、該大心線の周囲に芯の直径が大心線の芯よりも小さ
い小心線を配置したことに特徴を有する。
BEST MODE FOR CARRYING OUT THE INVENTION The plastic optical fiber of the present invention has a large core wire having a large core diameter disposed in the center of the fiber, and the core diameter is larger than that of the large core wire around the large core wire. The feature is that small small cords are arranged.

【0009】大心線は、直径が200μm〜500μm
の透明樹脂からなる芯の周囲に鞘層を設けてなるが、該
鞘層は、芯を構成する樹脂よりも屈折率の低い樹脂で形
成され、少なくとも1層、1μm〜10μm程度の厚さ
に形成する。小心線の芯の直径は大心線の芯の直径より
も小さく、50μm〜250μmが好ましく、該芯の周
囲に、大心線と同様の鞘層を設ける。本発明において
は、曲げによる光ロスを低減する上で、上記鞘層を第1
の鞘層として、その外側に、より屈折率の低い樹脂で第
2の鞘層を形成し、2層構造とすることが好ましい。
The core wire has a diameter of 200 μm to 500 μm.
A sheath layer is provided around a core made of a transparent resin. The sheath layer is formed of a resin having a lower refractive index than the resin constituting the core, and has a thickness of at least one layer and about 1 μm to 10 μm. Form. The diameter of the core of the small core wire is smaller than the diameter of the core of the large core wire, and is preferably 50 μm to 250 μm. A sheath layer similar to the large core wire is provided around the core. In the present invention, in order to reduce light loss due to bending, the above-mentioned sheath layer is formed of the first layer.
It is preferable that a second sheath layer is formed on the outside with a resin having a lower refractive index as a sheath layer, and a two-layer structure is formed.

【0010】大心線の芯の直径方向の断面積は、用いる
ホトダイオードの受光面積の25%〜150%が好まし
く、より好ましくは50%〜110%である。最も好ま
しくは、ホトダイオードの受光面とファイバの大心線の
芯の断面とが丁度重なり合うように、光源のスポットの
中央部に大心線を配置するのが理想的であるが、実装段
階でのコネクターの精度等を考慮した上で、光源の中央
部の最も密度の高い部分の光を大心線の芯に入射させる
には、上記面積範囲が好ましい。
The cross-sectional area in the diameter direction of the core of the large core wire is preferably 25% to 150%, more preferably 50% to 110% of the light receiving area of the photodiode used. Most preferably, it is ideal to arrange the large conductor at the center of the spot of the light source so that the light receiving surface of the photodiode and the cross section of the core of the large conductor of the fiber just overlap with each other. In consideration of the accuracy of the connector and the like, the above-mentioned area range is preferable in order to cause the light of the highest density portion at the center of the light source to enter the core of the large core line.

【0011】上記面積範囲内において、芯の断面積をホ
トダイオードの受光面積よりも小さく構成した場合に
は、曲げによるロスをより低減することができる。この
場合、大心線からはずれた光を該大心線に接する小心線
が小刻みに受け、ホトダイオードに送り込むという役割
を果たす。尚、この場合には、鞘層による受光面でのロ
スが有るが、大心線の周囲の小心線の領域では光源のス
ポットの光の強さも弱くなっているため、受光量全体へ
の影響は少ない。
When the sectional area of the core is configured to be smaller than the light receiving area of the photodiode within the above-mentioned area range, the loss due to bending can be further reduced. In this case, the small core line in contact with the large core line receives the light deviating from the large core line, and plays a role of sending the light to the photodiode. In this case, although there is a loss on the light receiving surface due to the sheath layer, the light intensity of the spot of the light source in the region of the small core line around the large core line is also weak, so that the influence on the entire received light amount is reduced. Is less.

【0012】本発明にかかる小心線には、上記大心線か
らはずれた光を伝送する役割と、もう一つは、大心線を
保護する役割がある。小心線は、少なくとも1層、大心
線の周囲に配置していれば良いが、多層とすることもで
きる。好ましくは、大心線の周囲に二重の同心円状に配
置させる。この場合、大心線に接する内側の小心線が大
心線からはずれた光を回収し、外側の小心線が保護層の
役割を果たす。小心線は、できるだけ高密度に規則的に
配置させることが好ましく、また、芯の直径も、内側と
外側で適宜設定することができる。
The small core wire according to the present invention has a role of transmitting light deviating from the large core wire and another role of protecting the large core wire. It is sufficient that at least one layer of the small core wire is arranged around the large core wire, but it may be formed of multiple layers. Preferably, they are arranged in double concentric circles around the major cord. In this case, the inner small core line in contact with the large core line collects light deviating from the large core line, and the outer small core line serves as a protective layer. It is preferable that the small cords are regularly arranged as densely as possible, and the diameter of the core can be set appropriately inside and outside.

【0013】図1は、上記大心線の周囲に小心線を二重
の同心円状に配置したプラスチック光ファイバの一実施
形態の構造を模式的に示す断面図である。本実施形態
は、各心線を、上記した第2の鞘層を設けた2層構成と
したものである。図中、1a〜1cは芯、2a〜2cは
第1の鞘層、3a〜3cは第2の鞘層であり、4aが大
心線、4bが光を回収する内側の小心線、4cが保護層
として機能する外側の小心線である。このように、内側
の小心線4bと外側の小心線4cとを同心円状に均等に
配置させることにより、内部の心線のダメージが生じに
くく、且つ、小心線4bによる光の回収も効率的に行わ
れるため好ましい。尚、図1は心線の配置を示すための
模式図であって、実際のファイバ断面においては、芯の
断面形状が真円ではなく、多少歪んでいるため、鞘層の
厚みは均一に近い。従って、本発明における芯の直径
は、芯が真円でない場合は、長径と短径との平均値を意
味する。
FIG. 1 is a cross-sectional view schematically showing the structure of one embodiment of a plastic optical fiber in which a small core wire is arranged in a double concentric manner around the large core wire. In the present embodiment, each core wire has a two-layer structure provided with the above-described second sheath layer. In the figure, 1a-1c is a core, 2a-2c is a first sheath layer, 3a-3c is a second sheath layer, 4a is a large core wire, 4b is a small inner core wire for collecting light, and 4c is a core wire. It is an outer small cord that functions as a protective layer. As described above, by arranging the inner small core wire 4b and the outer small core wire 4c concentrically and evenly, damage to the inner core wire is less likely to occur, and light is efficiently collected by the small core wire 4b. It is preferable because it is performed. FIG. 1 is a schematic view showing the arrangement of the core wires. In an actual fiber cross section, the core has a non-circular cross-sectional shape and is slightly distorted, so that the thickness of the sheath layer is almost uniform. . Therefore, when the core is not a perfect circle, the diameter of the core in the present invention means the average value of the major axis and the minor axis.

【0014】本発明のプラスチック光ファイバにおい
て、断面積に占める芯の面積比率が大きくなると形状の
崩れが生じるが、芯の面積比率として、60%〜95%
が好ましく、より好ましくは75%〜90%である。芯
の総数は8本〜500本が好ましい。本発明のプラスチ
ック光ファイバの直径は、0.4mm〜1.5mmを対
象としており、好ましくは0.5mm〜1.2mmであ
る。
In the plastic optical fiber of the present invention, when the area ratio of the core to the cross-sectional area increases, the shape collapses, but the area ratio of the core is 60% to 95%.
Is more preferable, and more preferably 75% to 90%. The total number of cores is preferably 8 to 500. The diameter of the plastic optical fiber of the present invention is intended for 0.4 mm to 1.5 mm, preferably 0.5 mm to 1.2 mm.

【0015】次に、各部材の素材について説明する。各
心線の芯は、透明樹脂で形成されるが、具体的には、例
えばポリメチルメタクリレート系樹脂やポリカーボネー
ト系樹脂、全フッ素化樹脂(例えば旭ガラス社の「サイ
トップ」など)などのプラスチック光ファイバの芯樹脂
として公知の透明樹脂を使用することができる。また、
鞘層を形成する樹脂としては、芯樹脂よりも屈折率の低
い樹脂が用いられ、例えば、フルオロアルキルメタクリ
レートを含む樹脂やビニリデンフロライド系樹脂、或い
は、ビニリデンフロライド系樹脂とメタクリレート系樹
脂を混合したアロイなどが用いられる。鞘層は、前記し
たように1層の場合や、多層構成も可能であり、多層の
場合には外側の鞘層の屈折率を内側よりも低くする。多
層構成の場合の外側の鞘層としては、ビニリデンフロラ
イド系樹脂が機械的強度の点から好ましい。
Next, the material of each member will be described. The core of each core wire is formed of a transparent resin. Specifically, for example, a plastic such as a polymethyl methacrylate-based resin, a polycarbonate-based resin, or a perfluorinated resin (for example, “CYTOP” of Asahi Glass Co., Ltd.) is used. A known transparent resin can be used as the core resin of the optical fiber. Also,
As the resin forming the sheath layer, a resin having a lower refractive index than the core resin is used.For example, a resin containing a fluoroalkyl methacrylate or a vinylidene fluoride resin, or a mixture of a vinylidene fluoride resin and a methacrylate resin is used. Alloys and the like are used. As described above, the sheath layer may be a single layer or a multilayer structure. In the case of a multilayer, the refractive index of the outer sheath layer is lower than that of the inner sheath layer. As the outer sheath layer in the case of a multilayer structure, a vinylidene fluoride-based resin is preferable in terms of mechanical strength.

【0016】本発明の多芯プラスチック光ファイバは、
相対的な芯の直径と芯の配置を決めた複合紡糸ダイを用
いた複合紡糸法によって成形される。即ち、それぞれ溶
融した芯樹脂と鞘樹脂とを複合紡糸ダイに供給し、一気
に成形する。本発明のプラスチック光ファイバの断面積
に占める全ての芯の面積、鞘層の面積の割合は、複合紡
糸ダイに供給する芯樹脂、鞘樹脂の体積比率によって決
定できる。
[0016] The multi-core plastic optical fiber of the present invention comprises:
It is formed by a composite spinning method using a composite spinning die in which the relative core diameter and core arrangement are determined. That is, the melted core resin and sheath resin are supplied to the composite spinning die and molded at a stretch. The ratio of the area of all the cores and the area of the sheath layer to the cross-sectional area of the plastic optical fiber of the present invention can be determined by the volume ratio of the core resin and the sheath resin supplied to the composite spinning die.

【0017】本発明の多芯プラスチック光ファイバは、
通常裸線として、その外側にポリエチレン、ポリプロピ
レン、エチレン−ビニルアルコール共重合体、ゴム、各
種の熱可塑性エラストマー、ポリ塩化ビニル、架橋ポリ
オレフィン、架橋ポリ塩化ビニル、塩素化ポリエチレン
コンパウンド、ポリアミド樹脂、フッ化ビニリデン系樹
脂、ポリエステル樹脂、ポリウレタン樹脂、シリコーン
樹脂、熱硬化性樹脂、紫外線硬化性樹脂などで被覆した
芯プラスチック光ファイバケーブルとして用いられる。
The multi-core plastic optical fiber according to the present invention comprises:
Usually as bare wire, polyethylene, polypropylene, ethylene-vinyl alcohol copolymer, rubber, various thermoplastic elastomers, polyvinyl chloride, cross-linked polyolefin, cross-linked polyvinyl chloride, chlorinated polyethylene compound, polyamide resin, fluoride It is used as a core plastic optical fiber cable coated with a vinylidene resin, a polyester resin, a polyurethane resin, a silicone resin, a thermosetting resin, an ultraviolet curable resin, or the like.

【0018】[0018]

【実施例】芯樹脂として、屈折率が1.492、メルト
フローインデックスが230℃、荷重3.8Kg、オリ
フィスの直径が2mm、長さが8mmの条件で、1.5
g/10分のメチルメタクリレート樹脂を用いた。鞘層
は2層構成であり、内側の第1の鞘層を構成する第1の
鞘樹脂としては、17FMA(ヘプタデカフルオロデシ
ルメタクリレート)14重量%、4FM(テトラフルオ
ロプロピルメタクリレート)6重量%、3FM(トリフ
ルオロエチルメタクリレート)6重量%、MMA(メチ
ルメタクリレート)74重量%をキャスト重合して、2
30℃、3.8Kg荷重におけるメルトフローインデッ
クスが25g/10分、屈折率が1.470の共重合体
を用いた。NAは0.26である。外側の第2の鞘層を
構成する第2の鞘樹脂としては、ビニリデンフロライド
80モル%とテトラフロロエチレン20モル%からなる
共重合体で、上記第1の鞘樹脂と同じ条件で測定したメ
ルトフローインデックスが30g/10分の樹脂を用い
た。屈折率は1.402であった。
EXAMPLE As a core resin, a resin having a refractive index of 1.492, a melt flow index of 230 ° C., a load of 3.8 kg, an orifice diameter of 2 mm and a length of 8 mm was used.
A g / 10 min methyl methacrylate resin was used. The sheath layer has a two-layer structure, and as a first sheath resin constituting the inner first sheath layer, 17% by weight of 17FMA (heptadecafluorodecyl methacrylate), 4% by weight of 4FM (tetrafluoropropyl methacrylate), 6% by weight of 3FM (trifluoroethyl methacrylate) and 74% by weight of MMA (methyl methacrylate) were cast polymerized to give 2% by weight.
A copolymer having a melt flow index of 25 g / 10 minutes at 30 ° C. and a load of 3.8 kg and a refractive index of 1.470 was used. NA is 0.26. The second sheath resin constituting the outer second sheath layer was a copolymer composed of 80 mol% of vinylidene fluoride and 20 mol% of tetrafluoroethylene, and was measured under the same conditions as the first sheath resin. A resin having a melt flow index of 30 g / 10 min was used. The refractive index was 1.402.

【0019】複合紡糸ダイとしては、大心線1本とその
外側に第1層目の小心線11本を同心円状に配置し、さ
らにその外側に第1層目の小心線に接するように第2層
目の小心線を11本、同心円状に配置した構成のものを
用いた。当該ダイにおけるこれらの心線の芯の孔径は、
6.2mm、2.4mm、3、8mmとした。この複合
紡糸ダイに、芯樹脂、第1の鞘樹脂、第2の鞘樹脂が容
積比率で80対5対15になるように供給し、ダイから
排出されるストランドを収束し、2倍に延伸して、直径
が1.00mmの、鞘が2層構成の多芯プラスチック光
ファイバを得た。このファイバの断面は、図1に模式的
に示されるように、大心線の周囲に11本の小心線が配
置し、さらにその外側に11本の小心線が配置したもの
であり、各心線は芯の周囲に第1の鞘層と第2の鞘層を
有し、該第2の鞘層によって、隣接する心線と一体化さ
れている。
As the composite spinning die, one large core wire and eleven small core wires of the first layer are arranged concentrically outside the large core wire, and the outside is further contacted with the small core wire of the first layer. A configuration in which eleven small-core wires of the second layer are arranged concentrically was used. The core diameter of these core wires in the die is
6.2 mm, 2.4 mm, 3, and 8 mm. The core resin, the first sheath resin, and the second sheath resin are supplied to the composite spinning die in a volume ratio of 80: 5: 15, and the strands discharged from the die are converged and stretched twice. Thus, a multi-core plastic optical fiber having a diameter of 1.00 mm and a sheath having two layers was obtained. As shown schematically in FIG. 1, the cross section of this fiber is such that eleven small cores are arranged around a large core and eleven small cores are arranged outside the core. The wire has a first sheath layer and a second sheath layer around the core, and is integrated with the adjacent core wire by the second sheath layer.

【0020】得られたファイバの大心線の芯の直径は3
00μm、内側の小心線の芯の直径が116μm、外側
の小心線の芯の直径が184μmであった。このファイ
バを裸線として、黒色ポリエチレンで被覆することによ
り、直径が2.2mmの多芯プラスチック光ファイバケ
ーブルが得られた。
The diameter of the core of the core fiber of the obtained fiber is 3
The diameter of the core of the inner cord was 116 μm, and the diameter of the core of the outer cord was 184 μm. This fiber was used as a bare wire and coated with black polyethylene to obtain a multicore plastic optical fiber cable having a diameter of 2.2 mm.

【0021】[0021]

【発明の効果】以上説明したように、本発明の多芯プラ
スチック光ファイバは、LEDやLDのような送信光源
を用いた場合には、重要な中央部の光を大心線の太い芯
で受光し、さらに、該大心線よりはずれた光を小心線で
回収するため、光ロスが大幅に低減され、曲げによる光
ロスも少ない。また、光スポットの小さい光源を用いた
場合でも、大心線の芯の直径が大きいため、結合時に該
光スポットとのずれがなく、該ずれによる受光量の低減
が防止される。よって、スポット径の大きな光源であっ
ても、石英光ファイバ用の非常にスポット径の小さな光
源であっても、安定した結合によって、効率的な光の授
受を行うことできる。
As described above, the multi-core plastic optical fiber of the present invention, when using a transmission light source such as an LED or an LD, transmits important central light with a thick core line. Since light is received and the light deviated from the large cord is collected by the small cord, light loss is greatly reduced, and light loss due to bending is also small. Further, even when a light source having a small light spot is used, there is no deviation from the light spot at the time of coupling because the diameter of the core of the large core wire is large, and a reduction in the amount of received light due to the deviation is prevented. Therefore, even if the light source has a large spot diameter or a light source with a very small spot diameter for a quartz optical fiber, efficient light transmission and reception can be performed by stable coupling.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の多芯プラスチック光ファイバの一実施
形態の断面模式図である。
FIG. 1 is a schematic cross-sectional view of one embodiment of a multi-core plastic optical fiber of the present invention.

【符号の説明】[Explanation of symbols]

1a〜1c 芯 2a〜2c 第1の鞘層 3a〜3c 第2の鞘層 4a 大心線 4b,4c 小心線 1a-1c Core 2a-2c First sheath layer 3a-3c Second sheath layer 4a Large cord 4b, 4c Small cord

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 透明樹脂からなる芯と、該芯よりも屈折
率の低い樹脂からなり該芯の周囲を取り囲む鞘層と、か
らなる心線を複数本一纏めにしてなる多芯プラスチック
光ファイバであって、ファイバ断面の中央部に芯の直径
が200μm〜500μmの大心線を配置し、該大心線
の周囲を該大心線よりも芯の直径が小さい複数の小心線
で取り囲み、複合紡糸により一体化してなること特徴と
する信号伝送用多芯プラスチック光ファイバ。
1. A multi-core plastic optical fiber comprising a plurality of cores made of a core made of a transparent resin and a sheath layer made of a resin having a lower refractive index than the core and surrounding the core. A core wire having a core diameter of 200 μm to 500 μm is arranged at the center of the fiber cross section, and the periphery of the core wire is surrounded by a plurality of small core wires whose core diameter is smaller than that of the large core wire. A multi-core plastic optical fiber for signal transmission characterized by being integrated by spinning.
【請求項2】 上記小心線が、上記大心線の周囲に二重
の同心円状に配置されている請求項1記載の信号伝送用
多芯プラスチック光ファイバ。
2. The multi-core plastic optical fiber for signal transmission according to claim 1, wherein said small core wire is arranged in a double concentric manner around said large core wire.
【請求項3】 上記鞘層が、外側が屈折率の低い樹脂か
らなる二層構造である請求項1又は2記載の信号伝送用
多芯プラスチック光ファイバ。
3. The multi-core plastic optical fiber for signal transmission according to claim 1, wherein the sheath layer has a two-layer structure in which the outside is made of a resin having a low refractive index.
JP36045698A 1998-12-18 1998-12-18 Multicore plastic optical fiber for signal transmission Expired - Fee Related JP3961701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36045698A JP3961701B2 (en) 1998-12-18 1998-12-18 Multicore plastic optical fiber for signal transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36045698A JP3961701B2 (en) 1998-12-18 1998-12-18 Multicore plastic optical fiber for signal transmission

Publications (2)

Publication Number Publication Date
JP2000180680A true JP2000180680A (en) 2000-06-30
JP3961701B2 JP3961701B2 (en) 2007-08-22

Family

ID=18469488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36045698A Expired - Fee Related JP3961701B2 (en) 1998-12-18 1998-12-18 Multicore plastic optical fiber for signal transmission

Country Status (1)

Country Link
JP (1) JP3961701B2 (en)

Also Published As

Publication number Publication date
JP3961701B2 (en) 2007-08-22

Similar Documents

Publication Publication Date Title
KR100248137B1 (en) Plastic fiber bundle for optical communication
EP1498755A1 (en) Optical signal transmission system
WO1998035247A1 (en) Optical signal transmission multicore plastic optical fiber
US20130129288A1 (en) Optical cable
US20140376866A1 (en) Optical fiber and optical cable
JPH05341147A (en) Multi-core type single mode optical fiber and transmission using it
KR100493798B1 (en) Plastic optical fiber, optical fiber cable and optical transmission device
JP3961701B2 (en) Multicore plastic optical fiber for signal transmission
JP5095328B2 (en) Optical transmission module
CN210572862U (en) Simple multimode optical fiber mode scrambler
KR102466037B1 (en) Plastic optical fiber, plastic optical fiber cable, plastic optical fiber cable with connector, optical communication system, and plastic optical fiber sensor
JP4980271B2 (en) Mixed multi-core plastic optical fiber and optical communication method using the same
JP5214286B2 (en) Optical branch coupler, optical branch coupler manufacturing method, and single-core bidirectional communication device
JP4057691B2 (en) Mixed multi-core plastic optical fiber and optical communication method using the same
JPH09218327A (en) Plastic optical fiber cable
JP4057709B2 (en) High-speed communication method for multi-core plastic optical fiber
JP2002267867A (en) Optical communication method using multilayer core plastic optical fiber
JPH11258432A (en) Multi-core type plastic optical fiber and optical communication method using it
JPH11337747A (en) Multiple plastic optical fiber unit for communication
JP2009115976A (en) Optical fiber sensor
JP2000162450A (en) Plastic composite multi-core optical fiber, optical fiber cable and optical fiber cable with plug
JP2005037641A (en) Optical fiber cable
JP2002107587A (en) Plastic optical fiber cable and optical sensor having the same
JPH08101316A (en) Wide band multiple plastic optical fiber unit
JPH112747A (en) Multi-core plastic optical fiber cable

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051213

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees