JP2000178960A5 - - Google Patents

Download PDF

Info

Publication number
JP2000178960A5
JP2000178960A5 JP1998354166A JP35416698A JP2000178960A5 JP 2000178960 A5 JP2000178960 A5 JP 2000178960A5 JP 1998354166 A JP1998354166 A JP 1998354166A JP 35416698 A JP35416698 A JP 35416698A JP 2000178960 A5 JP2000178960 A5 JP 2000178960A5
Authority
JP
Japan
Prior art keywords
downstream
solidifying material
pumping
side pressure
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1998354166A
Other languages
Japanese (ja)
Other versions
JP2000178960A (en
JP4072266B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP35416698A priority Critical patent/JP4072266B2/en
Priority claimed from JP35416698A external-priority patent/JP4072266B2/en
Publication of JP2000178960A publication Critical patent/JP2000178960A/en
Publication of JP2000178960A5 publication Critical patent/JP2000178960A5/ja
Application granted granted Critical
Publication of JP4072266B2 publication Critical patent/JP4072266B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【書類名】明細書
【発明の名称】固化材圧送ラインの分配装置、ならびに地盤の撹拌混合処理装置
【特許請求の範囲】
【請求項1】上流側圧送管路から圧送される固化材を、基端入口が並列する複数の下流側圧送管路のそれぞれに分配供給する固化材圧送ラインの分配装置であって;
前記複数の下流側圧送管路を、これらの各基端入口と結ぶ距離が実質的に同一となる位置にある回転軸心周りに、共通的に回転するように構成するか、前記上流側圧送管路を前記回転軸心周りに回転するように構成するか、あるいは前記複数の下流側圧送管路が前記回転軸心周りに共通的に回転し、且つ前記上流側圧送管路がこれら複数の下流側圧送管路より低速となる差速をもって同方向に前記回転軸心周りに回転するように構成し、
前記回転軸心周りの基端入口の軌跡円内に前記上流側圧送管路の先端出口が臨むように位置決めし、前記上流側圧送管路の先端出口と前記複数の下流側圧送管路の各基端入口とを連通可能に接続し、
前記下流側圧送管路が前記回転軸心周りに共通的に回転すること、前記上流側圧送管路が前記回転軸心周りに回転すること、あるいは前記複数の下流側圧送管路が前記回転軸心周りに共通的に回転し、且つ前記上流側圧送管路がこれら複数の下流側圧送管路より低速となる差速をもって同方向に前記回転軸心周りに回転することによって、前記上流側圧送管路を通る固化材が順次前記下流側圧送管路に供給されるように構成したことを特徴とする固化材圧送ラインの分配装置。
【請求項2】先端出口が並列する複数の上流側圧送管路のうち少なくとも一つの管路から圧気に乗せて圧送される粉体系固化材をならびに少なくとも一つの管路から圧気を供給し、基端入口が並列する複数の下流側圧送管路のそれぞれに前記粉体系固化材を分配供給する固化材圧送ラインの分配装置であって;
前記複数の下流側圧送管路を、これらの各基端入口と結ぶ距離が実質的に同一となる位置にある回転軸心周りに、共通的に回転するように構成し、
前記回転軸心周りの基端入口の軌跡円内に前記各上流側圧送管路の各先端出口が臨むように位置決めし、前記各上流側圧送管路の各先端出口と前記複数の下流側圧送管路の各基端入口とを連通可能に接続し、
前記上流側圧送管路を通る粉体系固化材が、前記下流側圧送管路の前記回転軸心周りの共通的回転により順次前記下流側圧送管路に供給され、かつ下流側圧送管路の基端入口が圧気が供給される上流側圧送管路に連通した時点で圧気が当該下流側圧送管路内の粉体系固化材に対して作用されるように構成したことを特徴とする固化材圧送ラインの分配装置。
【請求項3】先端出口が並列する複数の上流側圧送管路のそれぞれから圧送される固化材を、基端入口が並列する複数の下流側圧送管路のそれぞれに分配供給する固化材圧送ラインの分配装置であって;
前記複数の下流側圧送管路を、これらの各基端入口と結ぶ距離が実質的に同一となる位置にある回転軸心周りに、共通的に回転するように構成し、
前記回転軸心周りの基端入口の軌跡円内に前記各上流側圧送管路の各先端出口が臨むように位置決めし、前記各上流側圧送管路の各先端出口と前記複数の下流側圧送管路の各基端入口とを連通可能に接続し、
前記各上流側圧送管路を通る各固化材が、前記下流側圧送管路の前記回転軸心周りの共通的回転により順次前記下流側圧送管路に供給されるように構成したことを特徴とする固化材圧送ラインの分配装置。
【請求項4】前記複数の上流側圧送管路も前記回転軸心周りに共通的に回転するように構成されており、これら複数の上流側圧送管路を前記複数の下部管路群より低速となる差速をもって同方向に前記回転軸心周りに回転させるように構成した請求項2または3記載の固化材圧送ラインの分配装置。
【請求項5】上流側圧送管路のうち少なくとも一つの本管路から圧気に乗せて圧送される粉体系固化材をならびに副管路から圧気を供給し、並列する複数の下流側圧送管路のそれぞれに前記粉体系固化材を分配供給する固化材圧送ラインの分配装置であって;
前記複数の下流側圧送管路を、これらの各基端入口と結ぶ距離が実質的に同一となる位置にある回転軸心周りに、共通的に回転するように構成し、
前記回転軸心周りの基端入口の軌跡円内に前記本管路の先端出口が臨むように位置決めし、前記本管路の先端出口と前記複数の下流側圧送管路の各基端入口とを連通可能に接続し、かつ前記副管路の先端出口は前記回転に関係なく常時前記複数の下流側圧送管路の各基端入口と連通する状態で接続し、
前記本管路を通る粉体系固化材が、前記下流側圧送管路の前記回転軸心周りの共通的回転により順次前記下流側圧送管路に供給され、かつ前記副管路を通して圧気が当該下流側圧送管路内の粉体系固化材に対して作用されるように構成したことを特徴とする固化材圧送ラインの分配装置。
【請求項6】撹拌翼を有し、外部に開口する複数の吐出口を有し、かつこれらに連通し固化材を通す複数の下流側圧送管路を有する撹拌ロッドと、この撹拌ロッドを地盤内に貫入した状態で回転軸心周りに回転させる回転駆動手段とを備えるとともに、
前記下流側圧送管路に対して、固化材を圧送する上流側圧送管路が設けられ、
前記回転軸心は、前記複数の下流側圧送管路の各基端入口と結ぶ距離が実質的に同一となる位置にあり、
前記回転軸心周りの基端入口の軌跡円内に前記上流側圧送管路の先端出口が臨むように位置決めされ、前記上流側圧送管路の先端出口と前記複数の下流側圧送管路の各基端入口とが連通可能に接続され、
前記上流側圧送管路を通る固化材が、前記撹拌ロッドの前記回転軸心周りの回転により順次前記下流側圧送管路に供給されるように構成したことを特徴とする地盤の撹拌混合処理装置。
【請求項7】撹拌翼を有し、外部に開口する複数の吐出口を有し、かつこれらに連通し粉体系固化材を通す複数の下流側圧送管路を有する撹拌ロッドと、この撹拌ロッドを地盤内に貫入した状態で回転軸心周りに回転させる回転駆動手段とを備えるとともに、
前記下流側圧送管路に対して、少なくとも一つの管路が圧気に乗せて圧送される粉体系固化材を、少なくとも一つの管路が圧気を供給する、先端出口が並列する複数の上流側圧送管路が設けられ、
前記回転軸心は、前記複数の下流側圧送管路の各基端入口と結ぶ距離が実質的に同一となる位置にあり、
前記回転軸心周りの基端入口の軌跡円内に前記各上流側圧送管路の各先端出口が臨むように位置決めされ、前記各上流側圧送管路の各先端出口と前記複数の下流側圧送管路の各基端入口とが連通可能に接続され、
前記上流側圧送管路を通る粉体系固化材が、前記撹拌ロッドの前記回転軸心周りの共通的回転により順次前記下流側圧送管路に供給され、かつ下流側圧送管路の基端入口が圧気が供給される上流側圧送管路に連通した時点で圧気が当該下流側圧送管路内の粉体系固化材に対して作用されるように構成したことを特徴とする地盤の撹拌混合処理装置。
【請求項8】撹拌翼を有し、外部に開口する複数の吐出口を有し、かつこれらに連通し粉体系固化材を通す複数の下流側圧送管路を有する撹拌ロッドと、この撹拌ロッドを地盤内に貫入した状態で回転軸心周りに回転させる回転駆動手段とを備えるとともに、
前記下流側圧送管路に対して、圧送される固化材をそれぞれ供給する、先端出口が並列する複数の上流側圧送管路が設けられ、
前記回転軸心は、前記複数の下流側圧送管路の各基端入口と結ぶ距離が実質的に同一となる位置にあり、
前記回転軸心周りの基端入口の軌跡円内に前記各上流側圧送管路の各先端出口が臨むように位置決めされ、前記各上流側圧送管路の各先端出口と前記複数の下流側圧送管路の各基端入口とが連通可能に接続され、
前記各上流側圧送管路を通る各固化材が、前記撹拌ロッドの前記回転軸心周りの共通的回転により順次前記下流側圧送管路に供給されるように構成したことを特徴とする地盤の撹拌混合処理装置。
【請求項9】撹拌翼を有し、外部に開口する複数の吐出口を有し、かつこれらに連通し粉体系固化材を通す複数の下流側圧送管路を有する撹拌ロッドと、この撹拌ロッドを地盤内に貫入した状態で回転軸心周りに回転させる回転駆動手段とを備えるとともに、
前記下流側圧送管路に対して、少なくとも一つの本管路が圧気に乗せて圧送される粉体系固化材を、少なくとも一つの副管路が圧気を供給する、先端出口が並列する複数の上流側圧送管路が設けられ、
前記回転軸心は、前記複数の下流側圧送管路の各基端入口と結ぶ距離が実質的に同一となる位置にあり、
前記回転軸心周りの基端入口の軌跡円内に前記本管路の先端出口が臨むように位置決めされ、前記本管路の先端出口と前記複数の下流側圧送管路の各基端入口とが連通可能に接続され、かつ前記副管路の先端出口は前記回転に関係なく常時前記複数の下流側圧送管路の各基端入口と連通する状態で接続され、
前記本管路を通る粉体系固化材が、前記撹拌ロッドの前記回転軸心周りの共通的回転により順次前記下流側圧送管路に供給され、かつ前記副管路を通して圧気が当該下流側圧送管路内の粉体系固化材に対して作用されるように構成したことを特徴とする地盤の撹拌混合処理装置。
【発明の詳細な説明】
【0001】
【発明の属する技術分野】
本発明は、固化材圧送ラインの分配装置、ならびに地盤の撹拌混合処理装置に関する。
【0002】
【従来の技術】
軟弱地盤を改良する工法の一つとして、外部に開口する吐出口を有し、かつこれらに連通し固化材を通す管路を有する撹拌ロッドを地盤内に貫入した状態で、軸心周りに回転させつつ、前記吐出口から粉体系の固化材やスラリー状の固化材を吐出させ、固化材と原位置の地盤土とを撹拌ロッドにより撹拌混合する地盤の撹拌混合処理工法が知られている。
【0003】
ここで撹拌混合処理効果および処理能率を高めるためには、吐出口を複数設けることが有効である。
【0004】
【発明が解決しようとする課題】
しかるに、この場合、一つの管路に対して複数の吐出口を連通させると、運転の経時に伴って一方の吐出口が閉塞傾向になり、他方の吐出口からのみ吐出される傾向がある。この傾向は特に石灰などの粉体系固化材の場合において顕著である。
【0005】
したがって、複数の下流側圧送管を設け、これらの下流側圧送管に対してそれぞれ吐出口を連通して形成し、これら各下流側圧送管に対して固化材を供給する1本の上流側圧送管を設け、この上流側圧送管から圧送される固化材を、各下流側圧送管に対して同時に分配供給することが閉塞防止のために望まれる。
【0006】
しかし、1系統で圧送されてくる固化材を、複数の下流側圧送管のそれぞれに対して同時に分配供給したとしても、下流側圧送管のうち最も供給抵抗の小さい管路に対して、多量の固化材が勢い良く供給されてしまい、閉塞により他の管路に流れないか、少なくとも各下流側圧送管に均一に供給されないことが問題であった。
【0007】
そこで、本発明の主たる課題は、固化材圧送ラインにおける分配を円滑かつ均一にし、もって圧送ラインにおける閉塞等を防止するともに、円滑な地盤の撹拌混合処理を図ることにある。
【0008】
【課題を解決するための手段】
上記課題を解決した本発明のうち、請求項1記載の発明は、上流側圧送管路から圧送される固化材を、基端入口が並列する複数の下流側圧送管路のそれぞれに分配供給する固化材圧送ラインの分配装置であって;
前記複数の下流側圧送管路を、これらの各基端入口と結ぶ距離が実質的に同一となる位置にある回転軸心周りに、共通的に回転するように構成するか、前記上流側圧送管路を前記回転軸心周りに回転するように構成するか、あるいは前記複数の下流側圧送管路が前記回転軸心周りに共通的に回転し、且つ前記上流側圧送管路がこれら複数の下流側圧送管路より低速となる差速をもって同方向に前記回転軸心周りに回転するように構成し、
前記回転軸心周りの基端入口の軌跡円内に前記上流側圧送管路の先端出口が臨むように位置決めし、前記上流側圧送管路の先端出口と前記複数の下流側圧送管路の各基端入口とを連通可能に接続し、
前記下流側圧送管路が前記回転軸心周りに共通的に回転すること、前記上流側圧送管路が前記回転軸心周りに回転すること、あるいは前記複数の下流側圧送管路が前記回転軸心周りに共通的に回転し、且つ前記上流側圧送管路がこれら複数の下流側圧送管路より低速となる差速をもって同方向に前記回転軸心周りに回転することによって、前記上流側圧送管路を通る固化材が順次前記下流側圧送管路に供給されるように構成したことを特徴とする固化材圧送ラインの分配装置である。本請求項1記載の分配装置は、粉体系固化材の分配に適用するのが好ましいが、スラリー系固化材の分配にも適用することができる。
【0009】
請求項2記載の発明は、先端出口が並列する複数の上流側圧送管路のうち少なくとも一つの管路から圧気に乗せて圧送される粉体系固化材をならびに少なくとも一つの管路から圧気を供給し、基端入口が並列する複数の下流側圧送管路のそれぞれに前記粉体系固化材を分配供給する固化材圧送ラインの分配装置であって;
前記複数の下流側圧送管路を、これらの各基端入口と結ぶ距離が実質的に同一となる位置にある回転軸心周りに、共通的に回転するように構成し、
前記回転軸心周りの基端入口の軌跡円内に前記各上流側圧送管路の各先端出口が臨むように位置決めし、前記各上流側圧送管路の各先端出口と前記複数の下流側圧送管路の各基端入口とを連通可能に接続し、
前記上流側圧送管路を通る粉体系固化材が、前記下流側圧送管路の前記回転軸心周りの共通的回転により順次前記下流側圧送管路に供給され、かつ下流側圧送管路の基端入口が圧気が供給される上流側圧送管路に連通した時点で圧気が当該下流側圧送管路内の粉体系固化材に対して作用されるように構成したことを特徴とする固化材圧送ラインの分配装置である。
【0010】
請求項3記載の発明は、先端出口が並列する複数の上流側圧送管路のそれぞれから圧送される固化材を、基端入口が並列する複数の下流側圧送管路のそれぞれに分配供給する固化材圧送ラインの分配装置であって;
前記複数の下流側圧送管路を、これらの各基端入口と結ぶ距離が実質的に同一となる位置にある回転軸心周りに、共通的に回転するように構成し、
前記回転軸心周りの基端入口の軌跡円内に前記各上流側圧送管路の各先端出口が臨むように位置決めし、前記各上流側圧送管路の各先端出口と前記複数の下流側圧送管路の各基端入口とを連通可能に接続し、
前記各上流側圧送管路を通る各固化材が、前記下流側圧送管路の前記回転軸心周りの共通的回転により順次前記下流側圧送管路に供給されるように構成したことを特徴とする固化材圧送ラインの分配装置である。
【0011】
請求項4記載の発明は、前記複数の上流側圧送管路も前記回転軸心周りに共通的に回転するように構成されており、これら複数の上流側圧送管路を前記複数の下部管路群より低速となる差速をもって同方向に前記回転軸心周りに回転させるように構成した請求項2または3記載の固化材圧送ラインの分配装置である。
【0012】
請求項5記載の発明は、上流側圧送管路のうち少なくとも一つの本管路から圧気に乗せて圧送される粉体系固化材をならびに副管路から圧気を供給し、並列する複数の下流側圧送管路のそれぞれに前記粉体系固化材を分配供給する固化材圧送ラインの分配装置であって;
前記複数の下流側圧送管路を、これらの各基端入口と結ぶ距離が実質的に同一となる位置にある回転軸心周りに、共通的に回転するように構成し、
前記回転軸心周りの基端入口の軌跡円内に前記本管路の先端出口が臨むように位置決めし、前記本管路の先端出口と前記複数の下流側圧送管路の各基端入口とを連通可能に接続し、かつ前記副管路の先端出口は前記回転に関係なく常時前記複数の下流側圧送管路の各基端入口と連通する状態で接続し、
前記本管路を通る粉体系固化材が、前記下流側圧送管路の前記回転軸心周りの共通的回転により順次前記下流側圧送管路に供給され、かつ前記副管路を通して圧気が当該下流側圧送管路内の粉体系固化材に対して作用されるように構成したことを特徴とする固化材圧送ラインの分配装置である。
【0013】
請求項6記載の発明は、撹拌翼を有し、外部に開口する複数の吐出口を有し、かつこれらに連通し固化材を通す複数の下流側圧送管路を有する撹拌ロッドと、この撹拌ロッドを地盤内に貫入した状態で回転軸心周りに回転させる回転駆動手段とを備えるとともに、
前記下流側圧送管路に対して、固化材を圧送する上流側圧送管路が設けられ、
前記回転軸心は、前記複数の下流側圧送管路の各基端入口と結ぶ距離が実質的に同一となる位置にあり、
前記回転軸心周りの基端入口の軌跡円内に前記上流側圧送管路の先端出口が臨むように位置決めされ、前記上流側圧送管路の先端出口と前記複数の下流側圧送管路の各基端入口とが連通可能に接続され、
前記上流側圧送管路を通る固化材が、前記撹拌ロッドの前記回転軸心周りの回転により順次前記下流側圧送管路に供給されるように構成したことを特徴とする地盤の撹拌混合処理装置である。本請求項5記載の撹拌混合処理装置では、粉体系固化材を使用するのが好ましいが、スラリー系固化材を使用することもできる。
【0014】
請求項7記載の発明は、撹拌翼を有し、外部に開口する複数の吐出口を有し、かつこれらに連通し粉体系固化材を通す複数の下流側圧送管路を有する撹拌ロッドと、この撹拌ロッドを地盤内に貫入した状態で回転軸心周りに回転させる回転駆動手段とを備えるとともに、
前記下流側圧送管路に対して、少なくとも一つの管路が圧気に乗せて圧送される粉体系固化材を、少なくとも一つの管路が圧気を供給する、先端出口が並列する複数の上流側圧送管路が設けられ、
前記回転軸心は、前記複数の下流側圧送管路の各基端入口と結ぶ距離が実質的に同一となる位置にあり、
前記回転軸心周りの基端入口の軌跡円内に前記各上流側圧送管路の各先端出口が臨むように位置決めされ、前記各上流側圧送管路の各先端出口と前記複数の下流側圧送管路の各基端入口とが連通可能に接続され、
前記上流側圧送管路を通る粉体系固化材が、前記撹拌ロッドの前記回転軸心周りの共通的回転により順次前記下流側圧送管路に供給され、かつ下流側圧送管路の基端入口が圧気が供給される上流側圧送管路に連通した時点で圧気が当該下流側圧送管路内の粉体系固化材に対して作用されるように構成したことを特徴とする地盤の撹拌混合処理装置である。
【0015】
請求項8記載の発明は、撹拌翼を有し、外部に開口する複数の吐出口を有し、かつこれらに連通し粉体系固化材を通す複数の下流側圧送管路を有する撹拌ロッドと、この撹拌ロッドを地盤内に貫入した状態で回転軸心周りに回転させる回転駆動手段とを備えるとともに、
前記下流側圧送管路に対して、圧送される固化材をそれぞれ供給する、先端出口が並列する複数の上流側圧送管路が設けられ、
前記回転軸心は、前記複数の下流側圧送管路の各基端入口と結ぶ距離が実質的に同一となる位置にあり、
前記回転軸心周りの基端入口の軌跡円内に前記各上流側圧送管路の各先端出口が臨むように位置決めされ、前記各上流側圧送管路の各先端出口と前記複数の下流側圧送管路の各基端入口とが連通可能に接続され、
前記各上流側圧送管路を通る各固化材が、前記撹拌ロッドの前記回転軸心周りの共通的回転により順次前記下流側圧送管路に供給されるように構成したことを特徴とする地盤の撹拌混合処理装置である。
【0016】
請求項9記載の発明は、撹拌翼を有し、外部に開口する複数の吐出口を有し、かつこれらに連通し粉体系固化材を通す複数の下流側圧送管路を有する撹拌ロッドと、この撹拌ロッドを地盤内に貫入した状態で回転軸心周りに回転させる回転駆動手段とを備えるとともに、
前記下流側圧送管路に対して、少なくとも一つの本管路が圧気に乗せて圧送される粉体系固化材を、少なくとも一つの副管路が圧気を供給する、先端出口が並列する複数の上流側圧送管路が設けられ、
前記回転軸心は、前記複数の下流側圧送管路の各基端入口と結ぶ距離が実質的に同一となる位置にあり、
前記回転軸心周りの基端入口の軌跡円内に前記本管路の先端出口が臨むように位置決めされ、前記本管路の先端出口と前記複数の下流側圧送管路の各基端入口とが連通可能に接続され、かつ前記副管路の先端出口は前記回転に関係なく常時前記複数の下流側圧送管路の各基端入口と連通する状態で接続され、
前記本管路を通る粉体系固化材が、前記撹拌ロッドの前記回転軸心周りの共通的回転により順次前記下流側圧送管路に供給され、かつ前記副管路を通して圧気が当該下流側圧送管路内の粉体系固化材に対して作用されるように構成したことを特徴とする地盤の撹拌混合処理装置である。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態について添付図面を参照しつつ詳述する。
<第1の形態;請求項1および請求項6記載の発明に関する>
図1〜図3は、本発明に係る撹拌混合処理装置1(本発明に係る分配装置10を採用する)を示しており、このものは、自走型ベースマシン1Aのブーム10B先端部にリーダー1Lを取り付け、上側攪拌翼WUおよび下側攪拌翼WLの各背面に各1つの外部に開口する固化材吐出口(図示せず)を有する撹拌ロッド1Rと、この撹拌ロッド1Rを周方向に回転させる回転駆動手段1Mとを、長手方向に前後進自在なようにリーダー1Lに対して取り付けてなり、撹拌ロッド1Rを地盤内へ貫入した状態で回転軸心AX周りに回転させるとともに、各吐出口を介して固化材を地盤内にそれぞれ圧送吐出させて、これら吐出固化材と原位置の地盤土とを回転する撹拌ロッド1Rにより撹拌混合するものである。
【0018】
撹拌ロッド1Rは、図3に示すように上側攪拌翼WU背面の固化材吐出口および下側攪拌翼WL背面の固化材吐出口(図示せず)にそれぞれ連通する2本の下流側圧送管路11A,11Bを、その各基端入口が並列となるように備えており、特に攪拌ロッド1Rの回転軸心AXは、2本の下流側圧送管路11A,11Bの各基端入口と結ぶ距離が実質的に同一となる位置にあるように構成されている。
【0019】
また本発明に従って、これら下流側圧送管路11A,11Bに対して、粉体系固化材を圧気に乗せて圧送する上流側圧送管路12が設けられるとともに、下流側圧送管路11A,11Bの各基端入口を通る、攪拌ロッド1Rの回転軸心AX周りの軌跡円内に、上流側圧送管路12の先端出口が臨むように位置決めされ、上流側圧送管路12の先端出口と下流側圧送管路11A,11Bの各基端入口とが連通可能にスイベル接続されており、さらに、上流側圧送管路12を通る粉体系固化材が、撹拌ロッド1Rの回転軸心AX周りの回転により、順次各下流側圧送管路11A,11Bに供給されるように構成されている。
【0020】
他方、各下流側圧送管路11A,11Bの各基端入口部は、図4に示すように、上流側圧送管路12(図4には示していない)の先端出口に近づくにつれて、攪拌ロッド1Rの回転軸心AXを中心とする円周方向に半円分広がる、入口が略U字形かつ出口が真円形の漏斗状をなしている。11a,11bは漏斗状入口部分を示している。また、攪拌ロッド1Rの回転軸心AXを通る所定面に関して対称をなしている。これは、上流側圧送管路12を2本の下流側圧送管路11A,11Bの各々に同時間だけ連通させる場合の入口形状例であり、他の場合については後述する。
【0021】
かかる装置において、例えば撹拌ロッド1Rを地盤内に貫入しつつまたは引き上げつつ回転させる通常の地盤の撹拌混合動作によって(少なくとも撹拌ロッドを回転させることによって)、2本の下流側圧送管路11A,11Bが一体的に回転する。そしてこの回転によって、上流側圧送管路12と連通する下流側圧送管路11A,11Bが切り替わりつつ、上流側圧送管路12からの固化材が各下流側圧送管路11A,11Bに対して順に供給される。各下流側圧送管路11A,11Bに分配供給された固化材は、対応する各吐出口を介して地盤内にそれぞれ圧送吐出され、これら吐出固化材と原位置の地盤土とが回転する攪拌ロッド1Rの攪拌翼WU,WLにより撹拌混合される。
【0022】
特にかかる切替えにおいて、上流側圧送管路12は、2本の下流側圧送管路11A,11Bの両方に連通する状態もあるが、これは一瞬であり、殆どの状態において下流側圧送管路11A,11Bの一方に一対一で連通する。このように本形態は、実質的には、上流側圧送管路12と各下流側圧送管路11A,11Bとの一対一連通の切り替えにより固化材の分配供給を行うと、同時分配供給を行う従来例のように、供給抵抗の少ない下流側圧送管路に多量の固化材が勢い良く流れることが少ない。よって、下流側圧送管路以降の圧送ラインにおける閉塞も生じ難い。また、前記の切替を高速で行えば、前記の各下流側圧送管路に対する一対一での分配供給の切替えでありながらも、同時供給と同程度で分配を行うことができる。
【0023】
なお、上記説明では粉体系固化材を用いているが、前述のとおりスラリー系の固化材を用いることもできる。
【0024】
<第2の形態;請求項2および7記載の発明に関する>
上述の第1の形態では、上流側圧送管路12が一方の下流側圧送管路(例えば11A)にのみ連通し、当該下流側圧送管路(11A)にのみ固化材が供給されており、かつ他方の下流側圧送管路(11B)には何も供給されない瞬間が存在する。よって、下流側圧送管路内に供給された粉体系固化材には、断続的に圧送力が作用することになる。そのため、特に粉体系固化材を圧気に乗せて圧送する場合に、閉塞を起こすことが想定される。もっとも、従来方法と比べれば前述の第1の形態でも閉塞の可能性は格段に減る。
【0025】
かかる点を考慮する場合、請求項2記載の分配装置を採用する請求項6記載の発明に従って次のようにすることを推奨する。すなわち、図5に示す本第2の形態では、前述第1の形態の上流側圧送管路12に代えて、圧気に乗せて圧送される粉体系固化材を供給する第1の上流側圧送管路22Aと、圧気のみを供給する第2の上流側圧送管路22Bとを各先端出口が並列するように設け、基端出口が並列する2本の下流側圧送管路(それぞれ対応する固化材吐出口に連通する)11A,11Bのそれぞれに粉体系固化材あるいは圧気のみを分配供給するように構成している。10Aは、分配装置部分を示している。
【0026】
そして、特に本発明に従って、攪拌ロッド1Rの回転軸心AXは、各下流側圧送管路11A,11Bの各基端入口と結ぶ距離が実質的に同一となる位置にあり、回転軸心AX周りの基端入口の軌跡円内に各上流側圧送管路22A,22Bの各先端出口が臨むように位置決めされ、各上流側圧送管路22A,22Bの各先端出口と各下流側圧送管路11A,11Bの各基端入口とが連通可能にスイベル接続されており、第1の上流側圧送管路11Aを通る粉体系固化材が、撹拌ロッド1Rの回転軸心AX周りの共通的回転により順次下流側圧送管路11A,11Bに供給され、かつ下流側圧送管路11A,11Bの基端入口が圧気が供給される第2の上流側圧送管路11Bに連通した時点で圧気が当該下流側圧送管路11A,11B内の粉体系固化材に対して作用されるように構成されている。
【0027】
本第2の形態においても、少なくとも撹拌ロッド1Rを回転させることによって、また例えば撹拌ロッド1Rを地盤内に貫入しつつまたは引き上げつつ回転させる通常の地盤の撹拌混合動作によって、2本の下流側圧送管路11A,11Bが一体的に回転する。そしてこの回転によって、各下流側圧送管路11A,11Bと連通する上流側圧送管路22A,22Bが、第1の上流側圧送管路22Aのみ、第1および第2の上流側圧送管路22A,22B、第2の上流側圧送管路22Bのみ、という一連のサイクルで順次切り替わる。かかる切替えにより、第1の上流側圧送管路22Aからの固化材が各下流側圧送管路11Aに対して順に供給されるとともに、下流側圧送管路11A,11Bの基端入口が第2の上流側圧送管路22Bに連通した時点で圧気が当該下流側圧送管路11A,11B内の粉体系固化材に対して作用する。
【0028】
なお、かかる切替えにおいて、各上流側圧送管路22A,22Bは、2本の下流側圧送管路11A,11Bの両方に連通する状態もあるが、これは一瞬であり、殆どの状態において下流側圧送管路11A,11Bの一方に一対一で連通するのは、前述第1の形態と同様である。
【0029】
特に本第2の形態では、下流側圧送管路11A,11Bの基端入口が第2の上流側圧送管路22Bに連通した時点で圧気が当該下流側圧送管路11A11B内の粉体系固化材に対して作用するので、例えば第1の上流側圧送管路22Aが一方の下流側圧送管路11Aにのみ連通し、当該下流側圧送管路11Aにのみ固化材が供給されているときには、他方の下流側圧送管路11Bには第2の上流側圧送管路22Bが連通し、当該第2の上流側圧送管路22Bからの圧気が当該下流側圧送管路11B内の粉体系固化材に対して作用することになる。
【0030】
したがって、下流側圧送管路11A,11B内に供給された粉体系固化材に、断続的に圧送力が作用することはない。また、前述の第1の形態と同様に各上流側圧送管路22A,22Bと各下流側圧送管路11A,11Bとの実質的な一対一連通の切り替えにより固化材の分配供給を行うものであるので、同時分配供給を行う従来例のように、供給抵抗の少ない下流側圧送管路に多量の固化材が勢い良く流れることも少ない。総じて、本第2の形態は、前述第1の形態との比較において、より閉塞が生じにくいものと言える。
【0031】
他方、上記説明では、第1の上流側圧送管路22Aを通して圧気に乗せて粉体系固化材を供給し、第2の上流側圧送管路22Bを通して圧気のみを供給するように構成したが、本発明では、第1の上流側圧送管路22Aおよび第2の上流側圧送管路22Bのそれぞれを介して、圧気に乗せて粉体系固化材を供給したり、それぞれを介してスラリー系固化材を圧送供給したりすることもできる(請求項3および8記載の発明に関する)。
【0032】
<第3の形態;請求項4記載の発明に関する>
図6に示す本第3の形態では、圧気に乗せて圧送される粉体系固化材を供給する第1の上流側圧送管路32Aと、圧気のみを供給する第2の上流側圧送管路32Bとを各先端出口が並列するように設け、並列する2本の下流側圧送管路11A,11B(それぞれ対応する固化材吐出口に連通する)のそれぞれに粉体系固化材あるいは圧気のみを分配供給するように構成している。なお、図示しないが、2本の下流側圧送管路11A,11Bは、攪拌ロッド1R内を通って各固化材吐出口にそれぞれ連通している。10Bは、分配装置部分を示している。
【0033】
また、攪拌ロッド1Rの回転軸心AXは、下流側圧送管路11A,11Bの各基端入口と結ぶ距離が実質的に同一となる位置にあり、回転軸心AX周りの基端入口の軌跡円内に各上流側圧送管路32A,32Bの各先端出口が臨むように位置決めされ、各上流側圧送管路32A,32Bの各先端出口と各下流側圧送管路11A,11Bの各基端入口とが連通可能にスイベル接続されている。さらに、攪拌ロッド1Rを回転駆動する回転駆動手段1Mが設けられており、攪拌ロッド1Rの回転により、2本の下流側圧送管路11A,11Bが、攪拌ロッド1Rの回転軸心AX周りに共通的に回転するようになっている。ここまでは、第2の形態と実質的には異ならない。
【0034】
特徴的には、攪拌ロッド1Rに伴って回転する2本の下流側圧送管路11A,11Bに対して、第1および第2の上流側圧送管路32A,32Bも、一体的に且つ独立して攪拌ロッド1Rの回転軸心AX周りに回転するようになっており、さらに上流側圧送管路32A,32Bと下流側圧送管路11A,11Bを含む攪拌ロッド1Rとを位相ギヤを介して繋ぎ、第1および第2の上流側圧送管路32A,32Bが、2本の下流側圧送管路11A,11Bより低速となる差速をもって同方向に前記の回転軸心AX周りに共通的に回転するようになっている。
【0035】
他方、第1および第2の上流側圧送管路32A,32Bは、先端側部分32Tは並列しているが、基端側部分32Pは2重管構造とされており、基端側部分32Pにおける外管33内面と内管34外面との隙間S1が第2の上流側圧送管路32Bとされ且つ内管34内が第1の上流側圧送管路32Aとされている。この基端側部分32Pに対して2重管構造の上流側2重管35がスイベル接続されており、この上流側2重管35の外管35Aと内管35Bとの隙間S2が、対応する第2の上流側圧送管路32B(すなわち隙間S1)に常時連通し、上流側2重管35の内管35B内が、対応する第1の上流側圧送管路32A(すなわち内管34内)に常時連通するようになっている。これにより、第1および第2の上流側圧送管路32A,32Bの回転に関係なく、常時、第1の上流側圧送管路32Aには圧気に乗った固化材が供給され、かつ第2の上流側圧送管路32Bには、圧気のみが供給される。
【0036】
かかる第3の形態によると、例えば前述の第2の形態と比べて、第1および第2の上流側圧送管路32A,32Bと、下流側圧送管路11A,11Bとを差速をもって同方向に回転させることができ、両者の相対回転速度差を小さくすることができる。例えば、撹拌ロッド1Rの回転速度が速い場合に、各下流側圧送管路11A,11Bが、第1の上流側圧送管路32Aと一対一で連通する状態と、第2の上流側圧送管路32Bと一対一で連通する状態との切り替わり速度を遅くして、固化材の分配供給をより確実なものとすることができる。
【0037】
<第4の形態;請求項5および請求項9記載の発明に関する>
第2の形態では、圧気に乗せて粉体系固化材を圧送供給する第1の上流側圧送管路22Aと、圧気のみを供給する第2の上流側圧送管路22Bとは、ともに攪拌ロッド1Rの回転により、連通する下流側圧送管路11A,11Bが変化するものである(第3の形態も同様である)が、次のように構成することもできる。
【0038】
すなわち、図7に示す第4の形態では、2本の上流側圧送管路42A,42Bは2重管構造となり、内管43Aを本管路42Aとし、内管43A外面と外管43B内面との隙間S3を副管路42Bとして、本管路からは圧気に乗せて粉体系固化材を圧送供給し、副管路からは圧気のみを供給するように構成し、基端入口が並列する2本の下流側圧送管路11A,11Bのそれぞれに粉体系固化材を分配供給するように構成している。なお、図示しないが、2本の下流側圧送管路11A,11Bは、攪拌ロッド1R内を通って前述の各固化材吐出口にそれぞれ連通している。10Cは、分配装置部分を示している。
【0039】
特徴的には、2本の下流側圧送管路11A,11Bを、これらの各基端入口と結ぶ距離が実質的に同一となる位置にある回転軸心AX周りに、共通的に回転するように構成するとともに、下流側圧送管路11A,11Bの各基端入口を通る、その回転軸心AX周りの軌跡円内に本管路42Aの先端出口が臨むように位置決めし、本管路42Aの先端出口と2本の下流側圧送管路11A,11Bの各基端入口とを連通可能にスイベル接続するだけでなく、副管路42B(すなわち隙間S3)の先端出口を、攪拌ロッド1Rの回転に伴う下流側圧送管路11A,11Bの共通的回転に関係なく、常時2本の下流側圧送管路11A,11Bの各基端入口と連通する状態でスイベル接続している。
【0040】
この場合、本管路42Aを通る粉体系固化材が、下流側圧送管路11A,11Bの回転軸心AX周りの共通的回転により、順次、各下流側圧送管路11A,11Bに粉体系固化材が供給されるだけでなく、副管路42Bを通して圧気が当該本管路42Aに連通する下流側圧送管路を含む全ての下流側圧送管路11A,11B内の粉体系固化材に対して作用される。
【0041】
<下流側圧送管の基端入口形状の他の例>
他方、下流側圧送管路の入口部形状の具体例を図8および図9に示した。なお、図示の符号は、上記形態と異なるが、上記の全ての形態に適用できるものである。
【0042】
まず、図8に示す例は、上流側圧送管路(図示せず)を2本の下流側圧送管路52,53の各々に異なる時間連通させる場合の下流側圧送管路の入口形状例を示している。各下流側圧送管路52,53は、それぞれ、漏斗状入口部分52A,53Aとこの出口に連続する円形管部分52B,53Bとからなり、各下流側圧送管路52,53の漏斗状部分52A,53Aの入口開口面積が異なるものである。さらに具体的には、本例の漏斗状入口部分52A,53Aは、一方の漏斗状入口部分52Aが円形管部52Bから入口端面に近くなるにつれて、上流側圧送管路または下流側圧送管路の回転軸を中心とする円周方向に2/3円分広がる形をなしており、他方の漏斗状入口部分53Aが円形管部53Bから入口端面に近くなるにつれて、上流側圧送管路または下流側圧送管路の回転軸を中心とする円周方向に1/3円分だけ広がる形状をなしているものである。よって、各漏斗状入口部分52A,53Aの入口はそれぞれ異なるが略U字形をなし、その出口は真円形をなしている。
【0043】
また、図9に示す例は、図8に示す例よりも連通時間の差を大きくしたものであり、各下流側圧送管路54,55は、それぞれ、漏斗状入口部分54A,55Aとこの出口に連続する円形管部分54B,55Bとからなり、各下流側圧送管路54,55の漏斗状部分54A,55Aの入口開口面積が大幅に異なるものである。具体的には、一方の漏斗状入口部分54Aは、円形管部54Bから入口端面に近くなるにつれて、上流側圧送管路または下流側圧送管路の回転軸を中心とする円周方向に3/4円分広がる形状をなしており、他方の漏斗状入口部分55Aが円形管部55Bから入口端面に近くなるにつれて、上流側圧送管路または下流側圧送管路の回転軸を中心とする円周方向に1/4円分だけ広がる形状をなしているものである。各漏斗状入口部分54A,55Aの入口はそれぞれ異なるが略U字形をなし、その出口は真円形をなしているのは、図8の例と同様である。本例における広がり形状は、図9に示す例におけるII−II断面を示した図10を参照すると容易に理解される。
【0044】
これらの例を適用すれば、固化材の吐出口を長手方向に複数箇所設けた攪拌ロッドを用いて、地盤の攪拌混合を行うに際し、例えば吐出口が2箇所の場合に、前述の図8および図9に示すように、上側の吐出口に連通する下流側圧送管路の入口面積を相対的に狭くし、下側の吐出口に連通する下流側圧送管路の入口面積を相対的に広くすることにより、吐出抵抗の相対的に大きい下側の吐出口からの固化材吐出時間を上側の吐出口からのそれよりも長くすることができる。
【0045】
<他の形態>
他方、上記の本発明に係る攪拌混合処理装置は、本発明の分配装置の構造を採用するものであり、したがって、分配装置部分のみを単独の装置とすることができる。
【0046】
この第1の例(請求項1記載の発明に関する)を図11に示す。本分配装置例60では、上流側圧送管路62から圧送される固化材(粉体系であっても、スラリー系であっても良い)を、基端入口が並列する2本の下流側圧送管路61A,61Bのそれぞれに分配供給するべく、上流側圧送管路62を2本の下流側圧送管路61A,61Bの各基端入口と結ぶ距離が実質的に同一となる位置にある回転軸心AX周りに回転するように構成し、その回転軸心AX周りの基端入口の軌跡円内に上流側圧送管路62の先端出口が臨むように位置決めし、上流側圧送管路62の先端出口と下流側圧送管路61A,61Bの各基端入口とを連通可能にスイベル接続し、上流側圧送管路62が前記の回転軸心AX周りに回転することによって、上流側圧送管路62を通る固化材が、順次下流側圧送管路61A,61Bに分配供給されるように構成している。60Mは、上流側圧送管路62を回転させるための回転駆動手段を示している。
【0047】
特に本例では、2本の下流側圧送管路61A,61Bは回転させず、上流側圧送管路62を回転させるようにしているため、回転しない非回転上流側管路63(回転軸心AX周りに回転しない)を上流側圧送管路62の基端入口に対して常時連通可能にスイベル接続しており、この上流側非回転管路63からの固化材が上流側圧送管路62に供給され、上流側圧送管路62を通る固化材が各下流側圧送管路61A,61Bに、順次分配供給されるようになっている。
【0048】
なお、本分配装置でも、前記の攪拌混合処理装置例にならって、複数の下流側圧送管路を共通的に回転するように構成したり、複数の下流側圧送管路が共通的に回転し、且つ上流側圧送管路がこれら複数の下流側圧送管路より低速となる差速をもって同方向に回転するように構成したりすることができる。
【0049】
本分配装置を用いることにより、シングルライン出力タイプの固化材圧送ポンプを一台用いるだけで、これからの固化材を、複数の固化材圧送ライン(例えば複数軸型の深層混合処理機の各攪拌軸内の圧送ライン)のそれぞれに対して分配供給することができようになり、またその際の各固化材圧送ラインにおける閉塞も生じ難くなる。
【0050】
第2の例(請求項2記載の発明に関する)を図12に示す。本第2の例は、粉体系固化材の圧気による圧送に適するものであり、先端出口が並列する2本の上流側圧送管路72A,72Bのうち第1の上流側圧送管路72Aから圧気に乗せて圧送される粉体系固化材を供給し、ならびに第2の管路72Bから圧気を供給し、基端入口が並列する2本の下流側圧送管路71A,71Bのそれぞれに粉体系固化材を分配供給する固化材圧送ラインの分配装置70である。
【0051】
特に、2本の下流側圧送管路71A,71Bを、これらの各基端入口と結ぶ距離が実質的に同一となる位置にある回転軸心AX周りに、共通的に回転するように構成し、下流側圧送管路71A,71Bの各基端入口を通る回転軸心AX周りの軌跡円内に各上流側圧送管路72A,72Bの各先端出口が臨むように位置決めし、各上流側圧送管路72A,72Bの各先端出口と複数の下流側圧送管路の各基端入口とを連通可能にスイベル接続している。70Mは、下流側圧送管路71A,71を回転させるための回転駆動手段を示している。
【0052】
さらに本例では、2本の下流側圧送管路71A,71Bを前述のとおり共通的に回転させるようにしているため、これらを介して圧送される固化材を2本の非回転下流側管路(回転軸心AX周りに共通的に回転しない)を介して送出するようにしている。すなわち、下流側圧送管路71A,71Bの各先端出口を通る前記の回転軸心AX周りの軌跡円内に、非回転下流側管路73A,73Bの各基端入口が臨むように位置決めするとともに、下流側圧送管路71A,71Bの各先端出口と非回転下流側管路73A,73Bの各基端入口とを連通可能にスイベル接続している。
【0053】
したがって、下流側圧送管路71A,71B前記回転軸心AX周りの共通的回転させるとともに、第1の上流側圧送管路72Aを介して粉体系固化材を圧気に乗せて供給し、第2の上流側圧送管路72Bを介して圧気のみを供給すれば、第1の上流側圧送管路72Aを通る粉体系固化材が、下流側圧送管路71A,71Bの前記回転軸心AX周りの共通的回転により、順次各下流側圧送管路71A,71Bに供給され、かつ下流側圧送管路71A,71Bの基端入口が圧気が供給される第2の上流側圧送管路72Bに連通した時点で圧気が当該下流側圧送管路71A,71B内の粉体系固化材に対して作用されるようになる。また、各下流側圧送管路71A,71B内に分配供給された粉体系固化材は、各非回転下流側管路73A,73Bを介して送出される。
【0054】
この場合、前述の攪拌混合処理装置の第2の形態と同様の作用効果が奏せられ、より閉塞を起こしにくくなる。
【0055】
また、第2の形態と同様に、本発明では、第1の上流側圧送管路72Aおよび第2の上流側圧送管路72Bのそれぞれを介して、圧気に乗せて粉体系固化材を供給したり、それぞれを介してスラリー系固化材を圧送供給したりすることもできる(請求項3記載の発明に関する)。
【0056】
<その他>
上記例では、上流側圧送管路は1本または2本とされ、下流側圧送管路は2本とされているが、本発明ではそれぞれ3本以上とすることもできる。
【0057】
【発明の効果】
以上のとおり、本発明によれば、固化材圧送ラインにおける分配を円滑かつ均一にし、もって圧送ラインにおける閉塞等を防止するともに、円滑な地盤の撹拌混合処理を図ることができるようになる。
【図面の簡単な説明】
【図1】
本発明の第1の実施形態を示す概略側面図である。
【図2】
その正面図である。
【図3】
その要部拡大断面図である。
【図4】
図3のI−I断面の要部を示す図である。
【図5】
第2の実施形態の要部を示す要部拡大断面図である。
【図6】
第3の実施形態の要部を示す要部拡大断面図である。
【図7】
第4の実施形態の要部を示す要部拡大断面図である。
【図8】
下流側圧送管路の入口部形状例を示す断面図である。
【図9】
下流側圧送管路の入口部形状例を示す断面図である。
【図10】
II−II断面を示す図である。
【図11】
他の例を示す断面図である。
【図12】
他の例を示す断面図である。
【符号の説明】
1…地盤の攪拌混合処理装置、11A,11B…下流側圧送管路、12…上流側圧送管路
[Document name] Specification [Title of invention] Distributing device for solidifying material pumping line, and stirring and mixing processing device for ground [Claims]
1. A distribution device for a solidifying material pumping line that distributes and supplies a solidifying material pumped from an upstream pumping pipe to each of a plurality of downstream pumping pipes in which base end inlets are parallel to each other;
The plurality of downstream pumping pipelines are configured to rotate in common around a rotation axis at a position where the distances connecting the plurality of downstream pumping pipelines are substantially the same, or the upstream pumping is performed. The pipeline is configured to rotate around the rotation axis, or the plurality of downstream pumping pipelines rotate in common around the rotation axis, and the upstream pumping conduits are a plurality of these. It is configured to rotate around the rotation axis in the same direction with a differential speed that is lower than the downstream pressure feed line.
Positioned so that the tip outlet of the upstream pumping line faces within the locus circle of the base end inlet around the center of rotation of the rotation axis, and the tip outlet of the upstream pumping line and each of the plurality of downstream pressure feeding lines. Connect to the base entrance so that it can communicate
The downstream pressure feeding line rotates in common around the rotation axis, the upstream pressure feeding line rotates around the rotation axis, or the plurality of downstream pressure feeding lines rotate around the rotation axis. The upstream side pumping line rotates in common around the center and rotates around the rotation axis in the same direction with a difference speed at which the upstream side pressure feeding line is slower than the plurality of downstream side pressure feeding lines. A distribution device for a solidifying material pumping line, characterized in that the solidifying material passing through the pipeline is sequentially supplied to the downstream pressure feeding pipeline.
2. A powder-based solidifying material that is pressure-fed from at least one of a plurality of upstream pressure-feeding pipes having parallel tip outlets and pressure-fed from at least one pipe to supply pressure. It is a distribution device for a solidifying material pumping line that distributes and supplies the powder-based solidifying material to each of a plurality of downstream pressure feeding pipes in which the end inlets are parallel;
The plurality of downstream pumping pipes are configured to rotate in common around a rotation axis at a position where the distances connecting the respective proximal inlets are substantially the same.
Positioning is performed so that each tip outlet of each upstream side pumping line faces within the locus circle of the base end inlet around the center of rotation, and each tip outlet of each upstream side pressure feeding line and the plurality of downstream side pumping lines. Connect each base end entrance of the pipeline so that it can communicate with each other.
The powder-based solidifying material passing through the upstream-side pressure-feeding pipe is sequentially supplied to the downstream-side pressure-feeding pipe by a common rotation around the rotation axis of the downstream-side pressure-feeding pipe, and is a base of the downstream-side pressure-feeding pipe. The solidifying material pumping is configured so that the pressure is acted on the powder-based solidifying material in the downstream pressure feeding pipe when the end inlet communicates with the upstream pressure feeding pipe to which the pressure air is supplied. Line distributor.
3. A solidifying material pumping line that distributes and supplies solidifying material pumped from each of a plurality of upstream pumping pipelines having parallel tip outlets to each of a plurality of downstream pumping pipelines having parallel proximal inlets. Distributor;
The plurality of downstream pumping pipes are configured to rotate in common around a rotation axis at a position where the distances connecting the respective proximal inlets are substantially the same.
Positioning is performed so that each tip outlet of each upstream side pumping line faces within the locus circle of the base end inlet around the center of rotation, and each tip outlet of each upstream side pressure feeding line and the plurality of downstream side pumping lines. Connect each base end entrance of the pipeline so that it can communicate with each other.
Each solidifying material passing through each of the upstream side pressure feeding pipes is configured to be sequentially supplied to the downstream side pressure feeding pipe by a common rotation around the rotation axis of the downstream side pressure feeding pipe. Distributor of solidifying material pumping line.
4. The plurality of upstream pressure feeding pipelines are also configured to rotate in common around the rotation axis, and these plurality of upstream pumping pipelines are slower than the plurality of lower pipelines. The distribution device for a solidifying material pumping line according to claim 2 or 3, which is configured to rotate around the rotation axis in the same direction with a differential speed.
5. A plurality of downstream pressure-feeding pipelines in which a powder-based solidifying material that is pressure-fed from at least one main pipeline of the upstream-side pumping pipeline and pressure-feeding from a sub-pipeline is supplied and parallel to each other. It is a distribution device of a solidifying material pumping line that distributes and supplies the powder-based solidifying material to each of the above;
The plurality of downstream pumping pipes are configured to rotate in common around a rotation axis at a position where the distances connecting the respective proximal inlets are substantially the same.
Positioning the tip outlet of the main pipeline so as to face within the locus circle of the proximal end inlet around the center of rotation, the distal end outlet of the main conduit and each proximal inlet of the plurality of downstream pumping pipelines. And the tip outlet of the sub-pipeline is always connected to each base end inlet of the plurality of downstream pumping pipes regardless of the rotation.
The powder-based solidifying material passing through the main pipeline is sequentially supplied to the downstream pressure feed pipeline by a common rotation around the rotation axis of the downstream pressure feed pipeline, and the pressure air is supplied to the downstream side pressure feed pipeline through the auxiliary pipeline. A distribution device for a solidifying material pumping line, characterized in that it is configured to act on a powder-based solidifying material in a side pumping pipeline.
6. A stirring rod having a stirring blade, having a plurality of discharge ports open to the outside, and having a plurality of downstream pressure feeding pipes communicating with the stirring rod and passing a solidifying material through the stirring rod, and ground the stirring rod. It is equipped with a rotation drive means that rotates around the center of rotation while penetrating inside.
An upstream side pressure feeding line for pumping the solidifying material is provided for the downstream side pressure feeding line.
The rotation axis is located at a position where the distances connected to the respective base end inlets of the plurality of downstream pumping pipelines are substantially the same.
The tip outlet of the upstream pumping line is positioned so as to face the locus circle of the base end inlet around the center of rotation of the rotation axis, and the tip outlet of the upstream pumping line and each of the plurality of downstream pressure feeding lines are located. It is connected to the base entrance so that it can communicate with it.
A ground agitation and mixing treatment apparatus characterized in that the solidifying material passing through the upstream side pressure feeding pipe is configured to be sequentially supplied to the downstream side pressure feeding pipe by rotation of the stirring rod around the rotation axis. ..
7. A stirring rod having a stirring blade, a plurality of discharge ports that open to the outside, and a plurality of downstream pressure feeding pipes that communicate with the stirring blades and pass a powder-based solidifying material through the stirring rods. Is provided with a rotation driving means for rotating around the axis of rotation while penetrating into the ground.
A plurality of upstream side pressure feeds in which the tip outlets are parallel to each other, in which at least one pipe line supplies pressure to the powder-based solidifying material which is pressure-fed by applying pressure to the downstream side pressure feed pipe line. A pipeline is provided,
The rotation axis is located at a position where the distances connected to the respective base end inlets of the plurality of downstream pumping pipelines are substantially the same.
Each tip outlet of each upstream side pressure feeding line is positioned so as to face the locus circle of the base end inlet around the center of rotation, and each tip outlet of each upstream side pressure feeding line and the plurality of downstream side pumping lines. Each base end entrance of the pipeline is connected so that it can communicate with each other.
The powder-based solidifying material passing through the upstream pressure-feeding pipe is sequentially supplied to the downstream pressure-feeding pipe by a common rotation around the rotation axis of the stirring rod, and the base end inlet of the downstream pressure-feeding pipe is A ground agitation and mixing treatment apparatus characterized in that the pressure is applied to the powder-based solidifying material in the downstream pressure-feeding pipe when it communicates with the upstream pressure-feeding pipe to which the pressure is supplied. ..
8. A stirring rod having a stirring blade, a plurality of discharge ports that open to the outside, and a plurality of downstream pressure feeding pipes that communicate with the stirring blades and pass a powder-based solidifying material through the stirring rods. Is provided with a rotation driving means for rotating around the axis of rotation while penetrating into the ground.
A plurality of upstream side pressure feeding pipes having parallel tip outlets are provided to each of the downstream side pressure feeding pipes to supply the solidified material to be pumped.
The rotation axis is located at a position where the distances connected to the respective base end inlets of the plurality of downstream pumping pipelines are substantially the same.
Each tip outlet of each upstream side pressure feeding line is positioned so as to face the locus circle of the base end inlet around the center of rotation, and each tip outlet of each upstream side pressure feeding line and the plurality of downstream side pumping lines. Each base end entrance of the pipeline is connected so that it can communicate with each other.
The ground is characterized in that each solidifying material passing through each of the upstream pressure feeding pipes is sequentially supplied to the downstream pressure feeding pipe by a common rotation of the stirring rod around the rotation axis. Stirring and mixing processing equipment.
9. A stirring rod having a stirring blade, a plurality of discharge ports that open to the outside, and a plurality of downstream pressure feeding pipes that communicate with the stirring blades and pass a powder-based solidifying material through the stirring rods. Is provided with a rotation driving means for rotating around the axis of rotation while penetrating into the ground.
A plurality of upstreams in which the tip outlets are parallel to each other, in which at least one main pipeline supplies the powder-based solidifying material which is pressure-fed to the downstream pressure-feeding pipeline with pressure, and at least one auxiliary pipeline supplies the pressure. A side pumping line is provided,
The rotation axis is located at a position where the distances connected to the respective base end inlets of the plurality of downstream pumping pipelines are substantially the same.
The tip outlet of the main pipeline is positioned so as to face the locus circle of the proximal end inlet around the center of rotation, and the distal end outlet of the main conduit and each proximal inlet of the plurality of downstream pumping pipelines. Are connected so as to be able to communicate with each other, and the tip outlet of the sub-pipeline is always connected to each base end inlet of the plurality of downstream pumping pipes regardless of the rotation.
The powder-based solidifying material passing through the main pipeline is sequentially supplied to the downstream side pressure feed pipe by a common rotation around the rotation axis of the stirring rod, and pressure is supplied to the downstream side pressure feed pipe through the sub-pipeline. A ground agitation and mixing treatment device characterized in that it is configured to act on a powder-based solidifying material in a path.
Description: TECHNICAL FIELD [Detailed description of the invention]
[0001]
[Technical field to which the invention belongs]
The present invention relates to a distribution device for a solidifying material pumping line and a stirring and mixing treatment device for ground.
0002.
[Conventional technology]
As one of the construction methods for improving soft ground, a stirring rod having a discharge port that opens to the outside and a conduit that communicates with these and allows a solidifying material to pass through is penetrated into the ground and rotated around the axis. There is known a ground stirring and mixing treatment method in which a powder-based solidifying material or a slurry-like solidifying material is discharged from the discharge port, and the solidifying material and the ground soil at the in-situ position are stirred and mixed by a stirring rod.
0003
Here, in order to enhance the stirring / mixing treatment effect and the treatment efficiency, it is effective to provide a plurality of discharge ports.
0004
[Problems to be Solved by the Invention]
However, in this case, if a plurality of discharge ports are communicated with each other through one pipeline, one discharge port tends to be closed with the lapse of time of operation, and the discharge tends to be discharged only from the other discharge port. This tendency is particularly remarkable in the case of powder-based solidifying materials such as lime.
0005
Therefore, a plurality of downstream pressure feed pipes are provided, each of these downstream pressure feed pipes is formed by communicating a discharge port, and one upstream side pressure feed pipe that supplies a solidifying material to each of these downstream side pressure feed pipes is provided. It is desired to provide a pipe and simultaneously distribute and supply the solidifying material pumped from the upstream pressure-feeding pipe to each downstream pressure-feeding pipe in order to prevent blockage.
0006
However, even if the solidifying material pumped by one system is simultaneously distributed and supplied to each of the plurality of downstream pumping pipes, a large amount of the solidifying material is supplied to the pipeline having the smallest supply resistance among the downstream pumping pipes. The problem was that the solidifying material was supplied vigorously and did not flow to other pipelines due to blockage, or at least it was not uniformly supplied to each downstream pumping pipe.
0007
Therefore, a main object of the present invention is to make the distribution in the solidifying material pumping line smooth and uniform, prevent blockage in the pumping line, and achieve smooth ground stirring and mixing treatment.
0008
[Means for solving problems]
Among the present inventions that have solved the above problems, the invention according to claim 1 distributes and supplies the solidifying material pumped from the upstream pumping pipeline to each of the plurality of downstream pumping pipelines in which the base end inlets are parallel. It is a distributor of solidifying material pumping line;
The plurality of downstream pumping pipelines are configured to rotate in common around a rotation axis at a position where the distances connecting the plurality of downstream pumping pipelines are substantially the same, or the upstream pumping is performed. The pipeline is configured to rotate around the rotation axis, or the plurality of downstream pumping pipelines rotate in common around the rotation axis, and the upstream pumping conduits are a plurality of these. It is configured to rotate around the rotation axis in the same direction with a differential speed that is lower than the downstream pressure feed line.
Positioned so that the tip outlet of the upstream pumping line faces within the locus circle of the base end inlet around the center of rotation of the rotation axis, and the tip outlet of the upstream pumping line and each of the plurality of downstream pressure feeding lines. Connect to the base entrance so that it can communicate
The downstream pressure feeding line rotates in common around the rotation axis, the upstream pressure feeding line rotates around the rotation axis, or the plurality of downstream pressure feeding lines rotate around the rotation axis. The upstream side pumping line rotates in common around the center and rotates around the rotation axis in the same direction with a difference speed at which the upstream side pressure feeding line is slower than the plurality of downstream side pressure feeding lines. This is a distribution device for a solidifying material pumping line, characterized in that the solidifying material passing through the pipeline is sequentially supplied to the downstream pressure feeding pipeline. The distribution device according to claim 1 is preferably applied to the distribution of the powder-based solidifying material, but can also be applied to the distribution of the slurry-based solidifying material.
0009
The invention according to claim 2 supplies a powder-based solidifying material that is pressure-fed by applying pressure from at least one of a plurality of upstream pressure-feeding pipes having parallel tip outlets, and also supplies pressure from at least one pipe. However, it is a distribution device for a solidifying material pumping line that distributes and supplies the powder-based solidifying material to each of a plurality of downstream pressure feeding pipes in which the base end inlets are parallel;
The plurality of downstream pumping pipes are configured to rotate in common around a rotation axis at a position where the distances connecting the respective proximal inlets are substantially the same.
Positioning is performed so that each tip outlet of each upstream side pumping line faces within the locus circle of the base end inlet around the center of rotation, and each tip outlet of each upstream side pressure feeding line and the plurality of downstream side pumping lines. Connect each base end entrance of the pipeline so that it can communicate with each other.
The powder-based solidifying material passing through the upstream-side pressure-feeding pipe is sequentially supplied to the downstream-side pressure-feeding pipe by a common rotation around the rotation axis of the downstream-side pressure-feeding pipe, and is a base of the downstream-side pressure-feeding pipe. The solidifying material pumping is configured so that the pressure is acted on the powder-based solidifying material in the downstream pressure feeding pipe when the end inlet communicates with the upstream pressure feeding pipe to which the pressure air is supplied. It is a line distribution device.
0010
According to the third aspect of the present invention, the solidifying material pumped from each of the plurality of upstream pumping pipelines in which the tip outlets are parallel is distributed and supplied to each of the plurality of downstream pumping pipelines in which the proximal inlets are parallel. It is a distribution device for material pumping lines;
The plurality of downstream pumping pipes are configured to rotate in common around a rotation axis at a position where the distances connecting the respective proximal inlets are substantially the same.
Positioning is performed so that each tip outlet of each upstream side pumping line faces within the locus circle of the base end inlet around the center of rotation, and each tip outlet of each upstream side pressure feeding line and the plurality of downstream side pumping lines. Connect each base end entrance of the pipeline so that it can communicate with each other.
Each solidifying material passing through each of the upstream side pressure feeding pipes is configured to be sequentially supplied to the downstream side pressure feeding pipe by a common rotation around the rotation axis of the downstream side pressure feeding pipe. It is a distribution device for the solidifying material pumping line.
0011
The invention according to claim 4 is configured such that the plurality of upstream pumping pipelines also rotate in common around the rotation axis, and the plurality of upstream pumping pipelines are connected to the plurality of lower pipelines. The distribution device for a solidifying material pumping line according to claim 2 or 3, which is configured to rotate around the rotation axis in the same direction with a differential speed lower than that of the group.
0012
The invention according to claim 5 comprises a powder-based solidifying material that is pressure-fed from at least one main pipe of the upstream pressure-feeding pipe, and a plurality of downstream sides that supply pressure from a sub-pipeline and are parallel to each other. It is a distribution device for a solidifying material pumping line that distributes and supplies the powder-based solidifying material to each of the pumping pipelines;
The plurality of downstream pumping pipes are configured to rotate in common around a rotation axis at a position where the distances connecting the respective proximal inlets are substantially the same.
Positioning the tip outlet of the main pipeline so as to face within the locus circle of the proximal end inlet around the center of rotation, the distal end outlet of the main conduit and each proximal inlet of the plurality of downstream pumping pipelines. And the tip outlet of the sub-pipeline is always connected to each base end inlet of the plurality of downstream pumping pipes regardless of the rotation.
The powder-based solidifying material passing through the main pipeline is sequentially supplied to the downstream pressure feed pipeline by a common rotation around the rotation axis of the downstream pressure feed pipeline, and the pressure air is supplied to the downstream side pressure feed pipeline through the auxiliary pipeline. It is a distribution device for a solidifying material pumping line, characterized in that it is configured to act on a powder-based solidifying material in a side pumping pipeline.
0013
The invention according to claim 6 comprises a stirring rod having a stirring blade, a plurality of discharge ports opening to the outside, and a plurality of downstream pressure feeding pipes communicating with the stirring rod and passing a solidifying material therethrough, and the stirring thereof. It is equipped with a rotation drive means for rotating the rod around the center of rotation while the rod is penetrated into the ground.
An upstream side pressure feeding line for pumping the solidifying material is provided for the downstream side pressure feeding line.
The rotation axis is located at a position where the distances connected to the respective base end inlets of the plurality of downstream pumping pipelines are substantially the same.
The tip outlet of the upstream pumping line is positioned so as to face the locus circle of the base end inlet around the center of rotation of the rotation axis, and the tip outlet of the upstream pumping line and each of the plurality of downstream pressure feeding lines are located. It is connected to the base entrance so that it can communicate with it.
A ground agitation and mixing treatment apparatus characterized in that the solidifying material passing through the upstream side pressure feeding pipe is configured to be sequentially supplied to the downstream side pressure feeding pipe by rotation of the stirring rod around the rotation axis. Is. In the stirring and mixing treatment apparatus according to claim 5, it is preferable to use a powder-based solidifying material, but a slurry-based solidifying material can also be used.
0014.
The invention according to claim 7 comprises a stirring rod having a stirring blade, a plurality of discharge ports that open to the outside, and a plurality of downstream pressure feeding pipes that communicate with the stirring blades and pass a powder-based solidifying material through the stirring rods. It is provided with a rotation driving means for rotating the stirring rod around the center of rotation while penetrating into the ground.
A plurality of upstream side pressure feeds in which the tip outlets are parallel to each other, in which at least one pipe line supplies pressure to the powder-based solidifying material which is pressure-fed by applying pressure to the downstream side pressure feed pipe line. A pipeline is provided,
The rotation axis is located at a position where the distances connected to the respective base end inlets of the plurality of downstream pumping pipelines are substantially the same.
Each tip outlet of each upstream side pressure feeding line is positioned so as to face the locus circle of the base end inlet around the center of rotation, and each tip outlet of each upstream side pressure feeding line and the plurality of downstream side pumping lines. Each base end entrance of the pipeline is connected so that it can communicate with each other.
The powder-based solidifying material passing through the upstream pressure-feeding pipe is sequentially supplied to the downstream pressure-feeding pipe by a common rotation around the rotation axis of the stirring rod, and the base end inlet of the downstream pressure-feeding pipe is A ground agitation and mixing treatment apparatus characterized in that the pressure is applied to the powder-based solidifying material in the downstream pressure-feeding pipe when it communicates with the upstream pressure-feeding pipe to which the pressure is supplied. Is.
0015.
The invention according to claim 8 comprises a stirring rod having a stirring blade, a plurality of discharge ports that open to the outside, and a plurality of downstream pressure feeding pipes that communicate with the stirring blades and pass a powder-based solidifying material through the stirring rods. It is provided with a rotation driving means for rotating the stirring rod around the center of rotation while penetrating into the ground.
A plurality of upstream side pressure feeding pipes having parallel tip outlets are provided to each of the downstream side pressure feeding pipes to supply the solidified material to be pumped.
The rotation axis is located at a position where the distances connected to the respective base end inlets of the plurality of downstream pumping pipelines are substantially the same.
Each tip outlet of each upstream side pressure feeding line is positioned so as to face the locus circle of the base end inlet around the center of rotation, and each tip outlet of each upstream side pressure feeding line and the plurality of downstream side pumping lines. Each base end entrance of the pipeline is connected so that it can communicate with each other.
The ground is characterized in that each solidifying material passing through each of the upstream pressure feeding pipes is sequentially supplied to the downstream pressure feeding pipe by a common rotation of the stirring rod around the rotation axis. It is a stirring and mixing processing device.
0016.
The invention according to claim 9 comprises a stirring rod having a stirring blade, a plurality of discharge ports that open to the outside, and a plurality of downstream pressure feeding pipes that communicate with the stirring blades and pass a powder-based solidifying material through the stirring rods. It is provided with a rotation driving means for rotating the stirring rod around the center of rotation while penetrating into the ground.
A plurality of upstreams in which the tip outlets are parallel to each other, in which at least one main pipeline supplies the powder-based solidifying material which is pressure-fed to the downstream pressure-feeding pipeline with pressure, and at least one auxiliary pipeline supplies the pressure. A side pumping line is provided,
The rotation axis is located at a position where the distances connected to the respective base end inlets of the plurality of downstream pumping pipelines are substantially the same.
The tip outlet of the main pipeline is positioned so as to face the locus circle of the proximal end inlet around the center of rotation, and the distal end outlet of the main conduit and each proximal inlet of the plurality of downstream pumping pipelines. Are connected so as to be able to communicate with each other, and the tip outlet of the sub-pipeline is always connected to each base end inlet of the plurality of downstream pumping pipes regardless of the rotation.
The powder-based solidifying material passing through the main pipeline is sequentially supplied to the downstream side pressure feed pipe by a common rotation around the rotation axis of the stirring rod, and pressure is supplied to the downstream side pressure feed pipe through the sub-pipeline. It is a ground agitation and mixing treatment device characterized in that it is configured to act on a powder-based solidifying material in the path.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
<First form; relating to the invention according to claim 1 and claim 6>
1 to 3 show the stirring / mixing processing device 1 according to the present invention (the distribution device 10 according to the present invention is adopted), which is a leader at the tip of the boom 10B of the self-propelled base machine 1A. A stirring rod 1R having 1 L attached and each having a solidifying material discharge port (not shown) opened to the outside on the back surface of each of the upper stirring blade WU and the lower stirring blade WL, and the stirring rod 1R are rotated in the circumferential direction. The rotation driving means 1M is attached to the leader 1L so as to be able to move forward and backward in the longitudinal direction, and the stirring rod 1R is rotated around the rotation axis AX with the stirring rod 1R penetrating into the ground, and each discharge port. The solidifying material is pumped and discharged into the ground via the above, and the discharged solidifying material and the ground soil in the original position are stirred and mixed by the rotating stirring rod 1R.
0018
As shown in FIG. 3, the stirring rod 1R has two downstream pressure feed pipes communicating with the solidifying material discharge port on the back surface of the upper stirring blade WU and the solidifying material discharge port (not shown) on the back surface of the lower stirring blade WL. 11A and 11B are provided so that their respective base end inlets are parallel to each other. In particular, the rotation axis AX of the stirring rod 1R is the distance connecting the two downstream side pumping pipes 11A and 11B to each base end inlet. Are configured to be in substantially the same position.
0019
Further, according to the present invention, the upstream side pressure feeding pipe lines 12A and 11B are provided with the upstream side pressure feeding pipe lines 12 for pumping the powder-based solidifying material on the pressure air, and the downstream side pressure feeding pipe lines 11A and 11B are provided. The tip outlet of the upstream side pressure feeding pipe line 12 is positioned so as to face in the locus circle around the rotation axis AX of the stirring rod 1R passing through the base end inlet, and the tip outlet and the downstream side pumping pipe of the upstream side pressure feeding pipe line 12 face. The base end inlets of the pipe lines 11A and 11B are swivel-connected so as to be able to communicate with each other, and the powder-based solidifying material passing through the upstream side pressure feeding pipe line 12 is rotated around the rotation axis AX of the stirring rod 1R. It is configured to be sequentially supplied to the downstream pressure feeding pipes 11A and 11B.
0020
On the other hand, as each downstream side pressure feed pipe 11A, the proximal inlet portion of 11B, as shown in FIG. 4, toward the end outlet of the upstream side pressure feed conduit 12 (not shown in FIG. 4), stirring rod It has a funnel shape with a substantially U-shaped entrance and a perfect circular outlet, which spreads by a semicircle in the circumferential direction centered on the 1R rotation axis AX. Reference numerals 11a and 11b indicate a funnel-shaped entrance portion. Further, the stirring rod 1R is symmetrical with respect to a predetermined surface passing through the rotation axis AX. This is an inlet shape example of a case where the feed upstream side pressure conduit 12 two downstream side pressure feed pipe 11A, communicating by the same time in each of 11B, it will be described later in other cases.
0021.
In such a device, for example, by a normal ground stirring and mixing operation (at least by rotating the stirring rod) in which the stirring rod 1R is rotated while penetrating or pulling up into the ground, the two downstream pumping pipes 11A and 11B Rotates integrally. Then, by this rotation, the downstream side pressure feeding pipes 11A and 11B communicating with the upstream side pressure feeding pipe 12 are switched, and the solidifying material from the upstream side pressure feeding pipe 12 is sequentially referred to the downstream side pressure feeding pipes 11A and 11B. Be supplied. Each downstream side pressure feed pipe 11A, solidified material which is distributed and supplied to 11B are respectively pumped discharge into the soil through each corresponding discharge port, stirring rod and a ground earth of these ejection solidifying material and the original position to rotate Stirring and mixing are performed by the stirring blades WU and WL of 1R.
0022.
In particular such switching it, the conduit 12 feeding the upstream side pressure are two downstream side pressure Okukanro 11A, there is also a state communicating with both 11B, which is the moment, the downstream side pressure Okukanro 11A in most states , 11B one-to-one communication. As described above, in this embodiment, when the solidifying material is distributed and supplied by switching between the upstream side pressure feeding line 12 and the downstream side pressure feeding lines 11A and 11B, the solidifying material is substantially distributed and supplied at the same time. As in the conventional example, a large amount of solidifying material rarely flows vigorously in the downstream pressure feed line with low supply resistance. Therefore, blockage in the pumping line after the downstream pumping line is unlikely to occur. Further, if the above-mentioned switching is performed at high speed, it is possible to perform the distribution at the same level as the simultaneous supply, even though the distribution and supply are switched on a one-to-one basis for each of the downstream-side pumping pipelines.
[0023]
Although the powder-based solidifying material is used in the above description, a slurry-based solidifying material can also be used as described above.
0024
<Second form; relating to the invention according to claims 2 and 7>
In the first aspect described above, the upstream side pressure feeding pipe line 12 communicates with only one downstream side pressure feeding pipe line (for example, 11A), and the solidifying material is supplied only to the downstream side pressure feeding pipe line (11A). And there is a moment when nothing is supplied to the other downstream pumping line (11B). Therefore, the pumping force acts intermittently on the powder-based solidifying material supplied into the downstream pressure-feeding pipeline. Therefore, it is expected that the powder-based solidifying material will be clogged, especially when the powder-based solidifying material is pressure-fed. However, as compared with the conventional method, the possibility of obstruction is significantly reduced even in the above-mentioned first form.
0025
In consideration of this point, it is recommended to do the following in accordance with the invention of claim 6, which employs the distribution device of claim 2. That is, in this second embodiment shown in FIG. 5, instead of the conduit 12 feeding the upstream side pressure of the aforementioned first embodiment, the first upstream side pressure flue supplying powdery scheme solidifying material pumped put the gas A passage 22A and a second upstream pressure feed line 22B for supplying only pressure air are provided so that the tip outlets are parallel to each other, and two downstream pressure feed lines (each corresponding solidifying material) having the base end outlets in parallel are provided. It is configured to distribute and supply only the powder-based solidifying material or pressure to each of 11A and 11B (which communicate with the discharge port). Reference numeral 10A indicates a distributor portion.
0026
Then, particularly in accordance with the present invention, the rotation axis AX of the stirring rod 1R is located at a position where the distances connected to the respective base end inlets of the downstream pressure feeding pipes 11A and 11B are substantially the same, and is around the rotation axis AX. Each tip outlet of each upstream side pressure feeding pipe line 22A, 22B is positioned so as to face in the locus circle of the base end inlet, and each tip outlet of each upstream side pressure feeding pipe line 22A, 22B and each downstream side pressure feeding pipe line 11A. , 11B are swivel-connected to each base end inlet so as to be able to communicate with each other, and the powder-based solidifying material passing through the first upstream side pressure feeding pipe line 11A is sequentially rotated by a common rotation around the rotation axis AX of the stirring rod 1R. The pressure is supplied to the downstream pressure feeding lines 11A and 11B, and the pressure is applied to the downstream side when the base end inlets of the downstream pressure feeding lines 11A and 11B communicate with the second upstream pressure feeding line 11B to which the pressure is supplied. It is configured to act on the powder-based solidifying material in the pumping pipes 11A and 11B.
[0027]
Also in the second embodiment, the two downstream side pumping is performed by rotating at least the stirring rod 1R, or by, for example, a normal ground stirring and mixing operation in which the stirring rod 1R is rotated while penetrating or pulling up into the ground. The pipelines 11A and 11B rotate integrally. Then, due to this rotation, the upstream side pressure feeding pipes 22A and 22B communicating with the downstream side pressure feeding pipes 11A and 11B are only the first upstream side pressure feeding pipe 22A, and the first and second upstream side pressure feeding pipes 22A. , 22B, and only the second upstream pressure feed line 22B, which are sequentially switched in a series of cycles. By such switching, the solidifying material from the first upstream side pressure feeding pipe line 22A is sequentially supplied to each downstream side pressure feeding pipe line 11A, and the base end inlets of the downstream side pressure feeding pipe lines 11A and 11B are second. At the time of communicating with the upstream side pressure feeding pipe line 22B, the pressure air acts on the powder-based solidifying material in the downstream side pressure feeding pipe lines 11A and 11B.
[0028]
Incidentally, in such switching, the upstream side pressure feed pipe 22A, 22B is, two downstream side pressure Okukanro 11A, there is also a state communicating with both 11B, which is the moment, the downstream side in most states One-to-one communication with one of the pumping pipes 11A and 11B is the same as in the first aspect described above.
[0029]
Particularly in the second embodiment, the downstream side pressure Okukanro 11A, proximal inlet of 11B is a second gas at the time of communication with the upstream side pressure flue passage 2 2B is the downstream side pressure Okukanro 11A, powder in 11B Since it acts on the systematic solidifying material, for example, the first upstream side pressure feeding pipe line 22A communicates only with one downstream side pressure feeding pipe line 11A, and the solidifying material is supplied only to the downstream side pressure feeding pipe line 11A. Occasionally, a second upstream pressure feeding line 22B communicates with the other downstream pressure feeding line 11B, and the pressure air from the second upstream pressure feeding line 22B is a powder system in the downstream pressure feeding line 11B. It will act on the solidifying material.
[0030]
Therefore, the pumping force does not act intermittently on the powder-based solidifying material supplied into the downstream pressure feeding pipes 11A and 11B. Further, as in the first embodiment described above, the solidifying material is distributed and supplied by substantially switching between the upstream side pressure feeding pipes 22A and 22B and the respective downstream side pressure feeding pipes 11A and 11B. Therefore, unlike the conventional example in which simultaneous distribution and supply are performed, a large amount of solidifying material does not flow vigorously in the downstream pressure feed line with low supply resistance. In general, it can be said that the second form is less likely to cause obstruction as compared with the first form described above.
0031
On the other hand, in the above description, the powder-based solidifying material is supplied by being put on the pressure air through the first upstream side pressure feeding pipe line 22A, and only the pressure air is supplied through the second upstream side pressure feeding pipe line 22B. In the present invention, the powder-based solidifying material is supplied by applying pressure through each of the first upstream side pressure feeding pipe line 22A and the second upstream side pressure feeding pipe line 22B, or the slurry-based solidifying material is supplied through each of them. It can also be pumped and supplied (with respect to the inventions of claims 3 and 8).
[0032]
<Third form; relating to the invention according to claim 4>
In the third embodiment shown in FIG. 6, the first upstream pressure-feeding pipe line 32A for supplying the powder-based solidifying material to be pumped on the pressure air and the second upstream pressure-feeding pipe line 32B for supplying only the pressure air. And are provided so that the tip outlets are parallel to each other, and only the powder-based solidifying material or the pressure air is distributed and supplied to each of the two parallel downstream pressure feeding pipes 11A and 11B (which communicate with the corresponding solidifying material discharge ports). It is configured to do. Although not shown, the two downstream pressure feeding pipes 11A and 11B pass through the stirring rod 1R and communicate with each solidifying material discharge port. Reference numeral 10B indicates a distributor portion.
0033
Further, the rotation axis AX of the stirring rod 1R is located at a position where the distances connected to the respective base end inlets of the downstream pressure feeding pipes 11A and 11B are substantially the same, and the locus of the base end inlet around the rotation axis AX. Each tip outlet of each upstream side pressure feeding line 32A, 32B is positioned to face in a circle, and each tip outlet of each upstream side pressure sending line 32A, 32B and each base end of each downstream side pressure feeding line 11A, 11B. A swivel is connected to the entrance so that it can communicate with each other. Further, a rotation driving means 1M for rotationally driving the stirring rod 1R is provided, and due to the rotation of the stirring rod 1R, the two downstream pressure feeding pipes 11A and 11B are common around the rotation axis AX of the stirring rod 1R. It is designed to rotate. Up to this point, it is not substantially different from the second form.
0034
Characteristically, the first and second upstream pressure feeding pipes 32A and 32B are integrally and independently of the two downstream pressure feeding pipes 11A and 11B that rotate with the stirring rod 1R. The stirring rod 1R rotates around the rotation axis AX, and the stirring rods 1R including the upstream pressure feeding pipes 32A and 32B and the downstream pressure feeding pipes 11A and 11B are connected via a phase gear. , The first and second upstream pressure feeding pipes 32A and 32B rotate in the same direction in the same direction in common around the rotation axis AX with a difference speed lower than that of the two downstream pressure feeding pipes 11A and 11B. It is designed to do.
0035.
On the other hand, in the first and second upstream pumping pipe lines 32A and 32B, the distal end side portion 32T is parallel to each other, but the proximal end side portion 32P has a double pipe structure, and the proximal end side portion 32P has a double pipe structure. The gap S1 between the inner surface of the outer pipe 33 and the outer surface of the inner pipe 34 is the second upstream side pressure feeding pipe line 32B, and the inside of the inner pipe 34 is the first upstream side pressure feeding pipe line 32A. The upstream double pipe 35 of the double pipe structure is swivel-connected to the base end side portion 32P, and the gap S2 between the outer pipe 35A and the inner pipe 35B of the upstream double pipe 35 corresponds to this. The inner pipe 35B of the upstream double pipe 35 is always connected to the second upstream pressure feed pipe 32B (that is, the gap S1), and the corresponding first upstream pressure feed pipe 32A (that is, the inner pipe 34) is inside the inner pipe 35B. It is designed to always communicate with. Thus, the first and second upstream side pressure feed pipe 32A, regardless of the rotation of 32B, at all times, the first upstream side pressure feed line 32A is supplied solidified material riding a gas, and the second the upstream side pressure feed line 32B, only the gas is supplied.
0036
According to such third embodiment, for example, as compared with the second embodiment described above, the first and second upstream side pressure feed pipe 32A, 32B and the downstream side pressure feed pipe 11A, 11B in the same direction with a differential rate of It can be rotated to reduce the relative rotation speed difference between the two. For example, when the rotational speed of the stirring rod 1R is fast, the downstream side pressure feed pipe 11A, 11B is, a state of communicating with one-to-one with the first upstream side pressure feed line 32A, a second upstream side pressure feed pipe The switching speed between the 32B and the one-to-one communication state can be slowed down to make the distribution and supply of the solidifying material more reliable.
0037
<Fourth form; relating to the inventions according to claims 5 and 9>
In the second embodiment, the first upstream pressure-feeding pipe line 22A that supplies the powder-based solidifying material by pressure on the pressure air and the second upstream pressure-feeding pipe line 22B that supplies only the pressure air are both a stirring rod 1R. The downstream pumping pipes 11A and 11B that communicate with each other change due to the rotation of the above (the same applies to the third embodiment), but it can also be configured as follows.
[0038]
That is, in the fourth embodiment shown in FIG. 7, the two upstream pumping pipes 42A and 42B have a double pipe structure, the inner pipe 43A is the main pipe 42A, and the inner pipe 43A outer surface and the outer pipe 43B inner surface. The gap S3 of the above is used as the sub-pipeline 42B, and the powder-based solidifying material is pumped and supplied from the main pipe with pressure air, and only the pressure air is supplied from the sub-pipeline. The powder-based solidifying material is distributed and supplied to each of the downstream pressure feeding pipes 11A and 11B of the book. Although not shown, the two downstream pressure feeding pipes 11A and 11B pass through the stirring rod 1R and communicate with each of the above-mentioned solidifying material discharge ports. Reference numeral 10C indicates a distributor portion.
[0039]
Characteristically, the two downstream pumping pipes 11A and 11B are commonly rotated around the rotation axis AX at a position where the distances connecting the two downstream pumping pipes 11A and 11B are substantially the same. The main pipe 42A is positioned so that the tip outlet of the main pipe 42A faces the locus circle around the rotation axis AX that passes through the base end inlets of the downstream pressure feeding pipes 11A and 11B. The tip outlet of the sub-pipeline 42B (that is, the gap S3 ) is connected to the tip outlet of the sub-pipeline 42B (that is, the gap S3) by the stirring rod 1R. Regardless of the common rotation of the downstream pressure feeding pipes 11A and 11B due to the rotation, the swivel connection is always made in a state of communicating with the respective base end inlets of the two downstream pressure feeding pipes 11A and 11B.
0040
In this case, the powder-based solidifying material passing through the main pipeline 42A is sequentially solidified in the downstream-side pressure-feeding pipelines 11A and 11B by the common rotation around the rotation axis AX of the downstream-side pressure-feeding pipelines 11A and 11B. Not only the material is supplied, but also the powder-based solidifying material in all the downstream pressure feeding pipes 11A and 11B including the downstream pressure feeding pipe where the pressure air communicates with the main pipe 42A through the auxiliary pipe 42B. Be acted upon.
[0041]
<Other examples of the base end inlet shape of the downstream pumping pipe>
On the other hand, shows a specific example of the inlet shape of the downstream side pressure feed line in FIGS. Although the illustrated reference numerals are different from the above-mentioned forms, they can be applied to all the above-mentioned forms.
[0042]
First, the example shown in FIG. 8, the inlet shape example of the downstream side pressure feed conduit case of different time communicated upstream side pressure feed line (not shown) to each of two downstream side pressure feed pipe 52 and 53 Shown. Conduit 52 and 53 feed the downstream side pressure, respectively, funnel-shaped inlet portion 52A, 53A and the circular tube portion 52B contiguous to the outlet consists of a 53B, the funnel-shaped portion 52A of the downstream side pressure feed pipe 52 and 53 , 53A have different entrance opening areas. More specifically, the funnel-shaped inlet portion 52A, 53A of the present embodiment, one of the funnel-shaped inlet portion 52A is as close becomes the inlet end face of the circular tube portion 52B, the upstream side pressure feed conduit or downstream side pressure feed pipe and forms a shape that extends 2/3 yen in the circumferential direction around the rotation axis, as the other funnel-shaped inlet portion 53A is close to the inlet end face of the circular tube portion 53B, the upstream side pressure feed conduit or downstream It has a shape that extends by 1/3 circle in the circumferential direction centered on the rotation axis of the pumping pipe. Therefore, although the entrances of the funnel-shaped entrance portions 52A and 53A are different, they form a substantially U-shape, and the outlets form a perfect circle.
[0043]
Also, the example shown in FIG. 9 is obtained by increasing the difference in communication time than the example shown in FIG. 8, line 54, 55 feeding the downstream side pressure, the outlet respectively, the funnel-shaped inlet portion 54A, 55A and circular tube portions 54B continuous with, consists of a 55B, the funnel-shaped portion 54A of the downstream side pressure feed conduit 55, the inlet opening area of 55A is different significantly. Specifically, one of the funnel-shaped inlet portion 54A, as the close becomes the inlet end face of the circular tube portion 54B, the circumferential direction around the rotational axis of the upstream side pressure feed conduit or downstream side pressure feed conduit 3 / and none of the 4 yen spreading shape, the circumferential other funnel inlet portion 55A is centered as nearly becomes the inlet end face of the circular tube portion 55B, the axis of rotation of the upstream side pressure feed conduit or downstream side pressure feed pipe It has a shape that spreads by 1/4 circle in the direction. The entrances of the funnel-shaped entrance portions 54A and 55A are different, but have a substantially U-shape, and the outlets have a perfect circle, as in the example of FIG. The spread shape in this example can be easily understood by referring to FIG. 10 showing the II-II cross section in the example shown in FIG.
[0044]
If these examples are applied, when the ground is agitated and mixed by using a stirring rod having a plurality of solidifying material discharge ports in the longitudinal direction, for example, when there are two discharge ports, the above-mentioned FIG. As shown in FIG. 9, the inlet area of the downstream pressure feed line communicating with the upper discharge port is relatively narrow, and the inlet area of the downstream pressure feed line communicating with the lower discharge port is relatively wide. By doing so, the solidifying material discharge time from the lower discharge port, which has a relatively large discharge resistance, can be made longer than that from the upper discharge port.
0045
<Other forms>
On the other hand, the stirring / mixing processing device according to the present invention adopts the structure of the distribution device of the present invention, and therefore, only the distribution device portion can be a single device.
[0046]
The first example (related to the invention according to claim 1) is shown in FIG. In this distribution device example 60, the solidifying material (which may be powder-based or slurry-based) pumped from the upstream-side pumping pipe line 62 is fed by two downstream-side pumping pipes in which the base end inlets are parallel. A rotating shaft at a position where the distance connecting the upstream side pressure feeding pipe line 62 to the respective base end inlets of the two downstream side pressure feeding pipe lines 61A and 61B is substantially the same in order to distribute and supply to each of the roads 61A and 61B. It is configured to rotate around the center AX, and is positioned so that the tip exit of the upstream pumping line 62 faces within the locus circle of the proximal end inlet around the center AX of rotation, and the tip of the upstream pumping line 62. The outlet and the inlets of the base ends of the downstream pressure feeding pipes 61A and 61B are swivel-connected so that the upstream pressure feeding pipe 62 rotates around the rotation axis AX, whereby the upstream pressure feeding pipe 62 The solidifying material passing through the above is configured to be sequentially distributed and supplied to the downstream pressure feeding pipes 61A and 61B. Reference numeral 60M indicates a rotation driving means for rotating the upstream side pressure feeding pipe line 62.
[0047]
In particular, in this example, since the two downstream pressure feeding pipes 61A and 61B are not rotated and the upstream pressure feeding pipe 62 is rotated, the non-rotating upstream side pipe 63 (rotating axis AX) that does not rotate is used. (Does not rotate around) is swiveled so that it can always communicate with the base end inlet of the upstream pumping pipe 62, and the solidifying material from the upstream non-rotating pipe 63 is supplied to the upstream pumping pipe 62. Then, the solidifying material passing through the upstream side pressure feeding pipe line 62 is sequentially distributed and supplied to the downstream side pressure feeding pipe lines 61A and 61B.
0048
In addition, also in this distribution device, according to the above-mentioned example of the stirring / mixing processing device, a plurality of downstream side pressure feeding pipe lines may be configured to rotate in common, or a plurality of downstream side pressure feeding pipe lines may rotate in common. Moreover, the upstream side pressure feeding line can be configured to rotate in the same direction with a difference speed that is lower than those of the plurality of downstream side pressure feeding lines.
[0049]
By using this distributor, only one single-line output type solidifying material pumping pump is used, and the solidifying material from now on can be transferred to a plurality of solidifying material pumping lines (for example, each stirring shaft of a multi-axis deep mixing processor). It becomes possible to distribute and supply to each of the inner pumping lines), and at that time, blockage in each solidifying material pumping line is less likely to occur.
0050
A second example (related to the invention according to claim 2) is shown in FIG. This second example is suitable for pressure feeding of a powder-based solidifying material by pressure, and pressure is supplied from the first upstream pressure feeding pipe 72A of the two upstream pressure feeding pipes 72A and 72B in which the tip outlets are parallel to each other. The powder-based solidifying material to be pumped on the pipe is supplied, and the pressure air is supplied from the second pipeline 72B, and the powder-based solidifying material is supplied to each of the two downstream pressure-feeding pipelines 71A and 71B in which the base end inlets are parallel to each other. It is a distribution device 70 of a solidifying material pumping line that distributes and supplies materials.
0051
In particular, the two downstream pumping pipes 71A and 71B are configured to rotate in common around the rotation axis AX at a position where the distances connecting the two downstream pumping pipes 71A and 71B are substantially the same. Positioned so that the tip outlets of the upstream pressure feeding pipes 72A and 72B face each other in the locus circle around the rotation axis AX passing through the base end inlets of the downstream pressure feeding pipes 71A and 71B. The tip outlets of the pipelines 72A and 72B and the base end inlets of the plurality of downstream pressure feed pipelines are swivel-connected so as to be able to communicate with each other. Reference numeral 70M indicates a rotation driving means for rotating the downstream pressure feeding pipes 71A and 71.
[0052]
Further, in this example, since the two downstream pressure feeding pipes 71A and 71B are rotated in common as described above, the solidifying material pumped through these is made into two non-rotating downstream pipes. It is sent out via (it does not rotate in common around the rotation axis AX). That is, the positions are such that the base end inlets of the non-rotating downstream side pipelines 73A and 73B face in the locus circle around the rotation axis AX passing through the tip outlets of the downstream side pressure feeding pipes 71A and 71B. , The tip outlets of the downstream pressure feeding pipes 71A and 71B and the base end inlets of the non-rotating downstream pipes 73A and 73B are swivel-connected so as to be able to communicate with each other.
[0053]
Therefore, the downstream side pressure feeding pipes 71A and 71B are commonly rotated around the rotation axis AX, and the powder-based solidifying material is supplied under pressure through the first upstream side pressure feeding pipe 72A, and the second If only the pressure air is supplied through the upstream side pressure feeding pipe line 72B, the powder-based solidifying material passing through the first upstream side pressure feeding pipe line 72A will be around the rotation axis AX of the downstream side pressure feeding pipe lines 71A and 71B. By common rotation, the downstream side pressure feeding pipes 71A and 71B are sequentially supplied, and the base end inlets of the downstream side pressure feeding pipes 71A and 71B communicate with the second upstream side pressure feeding pipe 72B to which the pressure air is supplied. At this point, pressure is applied to the powder-based solidifying material in the downstream pressure feeding pipes 71A and 71B. Further, the powder-based solidifying material distributed and supplied into the downstream pressure feeding pipes 71A and 71B is delivered via the non-rotating downstream pipes 73A and 73B.
0054
In this case, the same effect as that of the second embodiment of the above-mentioned stirring / mixing processing apparatus can be obtained, and clogging is less likely to occur.
0055
Further, as in the second embodiment, in the present invention, the powder-based solidifying material is supplied by being put on pressure through each of the first upstream side pressure feeding pipe line 72A and the second upstream side pressure feeding pipe line 72B. Alternatively, the slurry-based solidifying material can be pumped and supplied via each of them (related to the invention according to claim 3).
0056
<Others>
In the above example, the upstream side pressure feed line is one or two, but downstream side pressure feed conduit is a two, the present invention can be respectively 3 or more.
[0057]
【Effect of the invention】
As described above, according to the present invention, it is possible to smoothly and uniformly distribute the solidified material in the pumping line, prevent blockage in the pumping line, and achieve smooth ground stirring and mixing treatment.
[Simple explanation of drawings]
FIG. 1
It is a schematic side view which shows the 1st Embodiment of this invention.
FIG. 2
It is the front view.
FIG. 3
It is an enlarged sectional view of the main part.
FIG. 4
It is a drawing showing the essential components of the I-I cross section in FIG.
FIG. 5
It is an enlarged sectional view of the main part which shows the main part of the 2nd Embodiment.
FIG. 6
It is an enlarged sectional view of the main part which shows the main part of the 3rd Embodiment.
FIG. 7
It is an enlarged sectional view of the main part which shows the main part of 4th Embodiment.
FIG. 8
It is sectional drawing which shows the example of the shape of the inlet part of the downstream side pumping line.
FIG. 9
It is sectional drawing which shows the example of the shape of the inlet part of the downstream side pumping line.
FIG. 10
Is a diagram showing the cross section II-II of FIG.
FIG. 11
It is sectional drawing which shows another example.
FIG. 12
It is sectional drawing which shows another example.
[Explanation of symbols]
1 ... agitation and mixing apparatus of the ground, 11A, 11B ... downstream side pressure feed conduit, 12 ... upstream side pressure feed pipe.

JP35416698A 1998-12-14 1998-12-14 Ground mixing and processing equipment Expired - Fee Related JP4072266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35416698A JP4072266B2 (en) 1998-12-14 1998-12-14 Ground mixing and processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35416698A JP4072266B2 (en) 1998-12-14 1998-12-14 Ground mixing and processing equipment

Publications (3)

Publication Number Publication Date
JP2000178960A JP2000178960A (en) 2000-06-27
JP2000178960A5 true JP2000178960A5 (en) 2005-11-24
JP4072266B2 JP4072266B2 (en) 2008-04-09

Family

ID=18435737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35416698A Expired - Fee Related JP4072266B2 (en) 1998-12-14 1998-12-14 Ground mixing and processing equipment

Country Status (1)

Country Link
JP (1) JP4072266B2 (en)

Similar Documents

Publication Publication Date Title
US20210251131A1 (en) Agricultural metering system having multiple sets of meter rollers
CA2648452C (en) Metering system for agricultural implement and having sectional control
EP0799560B1 (en) Exhaust air conduit for pneumatic distributor
US11212957B2 (en) Air entrainment device, systems, methods, and apparatus
WO2019167862A1 (en) Pipeline mixer and method for manufacturing and supplying mixture using same
US11352222B2 (en) Section control system
CN112360495B (en) Equipment for conveying excavated materials in tunneling
EP3981238A1 (en) Agricultural tool unit for rapid conversion of a combination seed drill having a trailed or fine-grain seed dispenser to an on-demand supply system and vice versa
US10172278B2 (en) Forming bar with liquid distribution passageway
JP2000178960A5 (en)
JP4072266B2 (en) Ground mixing and processing equipment
US7780097B2 (en) Fluid delivery system
EA038757B1 (en) Mixing apparatus with stator and method
CN107774193A (en) A kind of stirring-head prepared for bear gall water
US20080303268A1 (en) Fluid transport system
CN107715777B (en) A kind of manufacturing equipment and preparation method of multifunctional modification aromatic hydrocarbons
JP2020084695A (en) Excavation-agitation implement and construction method of ground improvement
JPH05168309A (en) Chemicals feeding apparatus for rice transplanter
JP2007056603A (en) Additive discharging device to soil, and additive discharging method to soil
JP2024021734A (en) Powder transfer device
JP2000064772A (en) System and method for measuring slurry property in chamber for shield machine in slurry type shield tunneling method, and system and method for supplying slurry
KR101608960B1 (en) Jet rotary type underground propulsion apparatus
JPS603745Y2 (en) Seaweed raw material blending device
JP3426106B2 (en) Excavation method without collapse of borehole inner wall
JPH04356120A (en) Deep-layer fertilizing apparatus