JP2000172163A5 - - Google Patents

Download PDF

Info

Publication number
JP2000172163A5
JP2000172163A5 JP1999271122A JP27112299A JP2000172163A5 JP 2000172163 A5 JP2000172163 A5 JP 2000172163A5 JP 1999271122 A JP1999271122 A JP 1999271122A JP 27112299 A JP27112299 A JP 27112299A JP 2000172163 A5 JP2000172163 A5 JP 2000172163A5
Authority
JP
Japan
Prior art keywords
hand
area
region
extracted
control information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1999271122A
Other languages
Japanese (ja)
Other versions
JP2000172163A (en
JP4565200B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP27112299A priority Critical patent/JP4565200B2/en
Priority claimed from JP27112299A external-priority patent/JP4565200B2/en
Publication of JP2000172163A publication Critical patent/JP2000172163A/en
Publication of JP2000172163A5 publication Critical patent/JP2000172163A5/ja
Application granted granted Critical
Publication of JP4565200B2 publication Critical patent/JP4565200B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

ここで、手領域および胴体の抽出方法について説明する。
最初、身体特徴抽出部302は、上記ステップS403と同様の方法で、手領域を抽出する。すなわち、入力画像から肌色領域を抽出して、抽出された肌色領域のうち頭部領域と重複しない部分を取り出し、それを手領域とする。
図7の場合、肌色領域のうち頭部領域と重複しない領域、すなわち手の肌色領域703が抽出される。
胴体については、ステップS402で検出された人物領域を、そのまま胴体とする。
Here, a method of extracting the hand region and the body will be described.
First, the body feature extraction unit 302 extracts the hand region in the same manner as in step S403. That is, the skin color region is extracted from the input image, and the portion of the extracted skin color region that does not overlap with the head region is extracted and used as the hand region.
In the case of FIG. 7, a region of the skin color region that does not overlap with the head region, that is, the skin color region 703 of the hand is extracted.
As for the torso, the person area detected in step S402 is used as the torso as it is.

抽出した手の数1701が0の場合、1つめの手の重心座標1702、および2つめの手の重心座標1704に、それぞれ(0,0)を設定し、また、1つめの手の面積1703、および2つめの手の面積1705に、それぞれ0を設定する。
抽出した手の数1701が「1」の場合、手領域の重心座標および面積を計算して、1つめ手の重心座標1702、および1つめの手の面積1703にセットする。また、2つめの手の重心座標1704に(0、0)をセットし、2つめの手の面積1705に0をセットする。
抽出した手の数1701が「2」の場合、2つの手領域のうち左側の領域の重心座標および面積を計算して、1つめ手の重心座標1702、および1つめの手の面積1703にセットする。また、2つの手領域のうち右側の領域の重心座標および面積を計算して、2つめ手の重心座標1704、および2つめの手の面積1705にセットする。
胴体情報body[i]は、顔領域情報face[i]と同様、図8の構成で実現できる。
その後、手話動作セグメンテーション装置は、ステップS404に進む。
When the number of extracted hands 1701 is 0, (0,0) is set in the barycentric coordinates 1702 of the first hand and the barycentric coordinates 1704 of the second hand, respectively, and the area of the first hand 1703. , And the area of the second hand 1705 are set to 0, respectively.
When the number of extracted hands 1701 is "1", the barycentric coordinates and area of the hand area are calculated and set in the barycentric coordinates 1702 of the first hand and the area 1703 of the first hand. Further, (0,0) is set in the barycentric coordinates 1704 of the second hand, and 0 is set in the area 1705 of the second hand.
When the number of extracted hands 1701 is "2", the coordinates and area of the center of gravity of the left region of the two hand regions are calculated and set to the coordinates of the center of gravity of the first hand 1702 and the area of the first hand 1703. To do. Further, the barycentric coordinates and area of the right region of the two hand regions are calculated and set to the barycentric coordinates 1704 of the second hand and the area 1705 of the second hand.
The body information body [i] can be realized by the configuration shown in FIG. 8 as in the face area information face [i].
After that, the sign language motion segmentation device proceeds to step S404.

認識結果入力部3001は、入力された認識状況情報を、誘導制御情報生成部3003に送る。セグメント結果入力部3002は、入力されたセグメント状況情報を、誘導制御情報生成部3003に送る。誘導制御情報生成部3003は、認識状況情報とセグメント状況情報とをもとに、誘導規則記憶部3005に記憶された誘導規則を使って誘導制御情報を生成し、出力部3004に送る。出力部3004は、出力部3004に接続された手話アニメーション装置等(図示せず)に、誘導制御情報を出力する。 The recognition result input unit 3001 sends the input recognition status information to the guidance control information generation unit 3003. The segment result input unit 3002 sends the input segment status information to the guidance control information generation unit 3003. The guidance control information generation unit 3003 generates guidance control information using the guidance rules stored in the guidance rule storage unit 3005 based on the recognition status information and the segment status information, and sends the guidance control information to the output unit 3004. The output unit 3004 outputs guidance control information to a sign language animation device or the like (not shown) connected to the output unit 3004.

JP27112299A 1998-09-28 1999-09-24 Manual motion segmentation method and apparatus Expired - Fee Related JP4565200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27112299A JP4565200B2 (en) 1998-09-28 1999-09-24 Manual motion segmentation method and apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27396698 1998-09-28
JP10-273966 1998-09-28
JP27112299A JP4565200B2 (en) 1998-09-28 1999-09-24 Manual motion segmentation method and apparatus

Publications (3)

Publication Number Publication Date
JP2000172163A JP2000172163A (en) 2000-06-23
JP2000172163A5 true JP2000172163A5 (en) 2006-10-12
JP4565200B2 JP4565200B2 (en) 2010-10-20

Family

ID=26549546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27112299A Expired - Fee Related JP4565200B2 (en) 1998-09-28 1999-09-24 Manual motion segmentation method and apparatus

Country Status (1)

Country Link
JP (1) JP4565200B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310068A (en) * 2004-04-26 2005-11-04 Noritsu Koki Co Ltd Method for correcting white of eye, and device for executing the method
JP4792824B2 (en) * 2004-11-05 2011-10-12 富士ゼロックス株式会社 Motion analysis device
JP2006301906A (en) * 2005-04-20 2006-11-02 Nec Corp Portable telephone terminal with camera, and operation method and operation program therefor
KR100817298B1 (en) 2005-12-08 2008-03-27 한국전자통신연구원 Method for detecting and tracking both hands
JP2007310914A (en) * 2007-08-31 2007-11-29 Nippon Telegr & Teleph Corp <Ntt> Mouse alternating method, mouse alternating program and recording medium
KR101652535B1 (en) * 2008-06-18 2016-08-30 오블롱 인더스트리즈, 인크 Gesture-based control system for vehicle interfaces
JP5598751B2 (en) * 2010-03-05 2014-10-01 日本電気株式会社 Motion recognition device
JP5915000B2 (en) * 2011-06-13 2016-05-11 ソニー株式会社 Information processing apparatus and program
US9996740B2 (en) 2013-09-30 2018-06-12 Sony Interactive Entertainment Inc. Information processing device, information processing method, program, and information storage medium
JP6177655B2 (en) * 2013-10-11 2017-08-09 株式会社Nttドコモ Image recognition apparatus and image recognition method
JP6144192B2 (en) * 2013-12-27 2017-06-07 株式会社Nttドコモ Image recognition apparatus and image recognition method
WO2016017101A1 (en) * 2014-07-30 2016-02-04 ソニー株式会社 Information processing device, information processing method and program
CN104616028B (en) * 2014-10-14 2017-12-12 北京中科盘古科技发展有限公司 Human body limb gesture actions recognition methods based on space segmentation study

Similar Documents

Publication Publication Date Title
JP2000172163A5 (en)
Cedras et al. Motion-based recognition a survey
Starner et al. A wearable computer based american sign language recognizer
Li et al. A web-based sign language translator using 3d video processing
Corradini Dynamic time warping for off-line recognition of a small gesture vocabulary
Balomenos et al. Emotion analysis in man-machine interaction systems
Sun et al. Latent support vector machine modeling for sign language recognition with Kinect
Geetha et al. A vision based dynamic gesture recognition of indian sign language on kinect based depth images
CN111680550B (en) Emotion information identification method and device, storage medium and computer equipment
CN107678550A (en) A kind of sign language gesture recognition system based on data glove
Ghotkar et al. Dynamic hand gesture recognition using hidden Markov model by Microsoft Kinect sensor
CN106909909A (en) A kind of Face datection and alignment schemes based on shared convolution feature
CN109409274A (en) A kind of facial image transform method being aligned based on face three-dimensional reconstruction and face
Krishnaraj et al. A Glove based approach to recognize Indian Sign Languages
Vogler et al. A framework for motion recognition with applications to American sign language and gait recognition
CN113807287B (en) 3D structured light face recognition method
Su et al. A fuzzy rule-based approach to recognizing 3-D arm movements
Sagawa et al. Pattern recognition and synthesis for a sign language translation system
Thalmann et al. Direct face-to-face communication between real and virtual humans
CN209514551U (en) A kind of intelligent AC robot and AC system
Vidalón et al. Continuous sign recognition of brazilian sign language in a healthcare setting
Proença et al. A gestural recognition interface for intelligent wheelchair users
Gao et al. HandTalker II: a Chinese sign language recognition and synthesis system
CN115454256A (en) Digital oath word tombstone device
Gao et al. Building language communication between deaf people and hearing society through multimodal human-computer interface