JP2000171592A - Liquid level calculating method for operating evaporator - Google Patents

Liquid level calculating method for operating evaporator

Info

Publication number
JP2000171592A
JP2000171592A JP10348626A JP34862698A JP2000171592A JP 2000171592 A JP2000171592 A JP 2000171592A JP 10348626 A JP10348626 A JP 10348626A JP 34862698 A JP34862698 A JP 34862698A JP 2000171592 A JP2000171592 A JP 2000171592A
Authority
JP
Japan
Prior art keywords
evaporator
liquid level
liquid
during operation
total
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10348626A
Other languages
Japanese (ja)
Other versions
JP2989183B1 (en
Inventor
Tomoyuki Usami
朋之 宇佐美
Hideaki Aikawa
英昭 会川
Yoshio Sugano
善夫 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Japan Atomic Energy Agency
Original Assignee
Fuji Electric Co Ltd
Japan Nuclear Cycle Development Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Japan Nuclear Cycle Development Institute filed Critical Fuji Electric Co Ltd
Priority to JP10348626A priority Critical patent/JP2989183B1/en
Application granted granted Critical
Publication of JP2989183B1 publication Critical patent/JP2989183B1/en
Publication of JP2000171592A publication Critical patent/JP2000171592A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain exact and stable liquid level with small fluctuation and contrive the reduction of a maintenance work by eliminating a density meter and the like and omitting welding inspection. SOLUTION: Processed liquid in a supply tank 10 is supplied to a evaporator 16 and evaporation-processed in the evaporator and the processing liquid quantity is controlled with a flow control valve 32 so as to maintain the evaporator liquid level constant. The generated vapor sent through a condenser 20 is stored in a condensate liquid tank 22 and the condensed liquid in the evaporator is batch-processed by draining at the time reaching a specific concentration. The evaporator liquid level in operation is obtained by such an operation process that evaporator liquid level in operation = evaporator liquid level before operation start + (evaporator total inflow - evaporator total outflow)/evaporator area. The evaporator total inflow is obtained from the measured value of a supply tank liquid level meter 24 and the like, and the evaporator total outflow is obtained from the measured value of a condensed liquid tank liquid level meter 28 and the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、運転中蒸発缶の液
位測定方法に関し、更に詳しく述べると、運転開始前の
蒸発缶液位と運転中の蒸発缶流入総量及び流出総量を計
測し、それを演算処理することにより、運転中の変動幅
が少ない安定した蒸発缶液位を求めることができる方法
に関するものである。この技術は、例えば原子力発電所
で発生する放射性廃液を蒸発缶で濃縮分離するシステム
などで有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the liquid level of an evaporator during operation. More specifically, it measures the evaporator liquid level before operation and the total inflow and outflow of evaporator during operation. The present invention relates to a method capable of obtaining a stable evaporator liquid level with a small fluctuation range during operation by arithmetic processing. This technique is useful, for example, in a system for concentrating and separating radioactive waste liquid generated in a nuclear power plant using an evaporator.

【0002】[0002]

【従来の技術】各種の蒸発缶を用いた処理液の濃縮分離
処理システムでは、運転中の蒸発缶液位を求め、その液
位がほぼ一定値を保つように処理液の供給量を制御しつ
つ、蒸発処理を行っている。液位が上昇すると缶内気相
有効高さが減少し、例えば放射性廃液を蒸発濃縮処理し
ている場合には、所定の除染係数が得られなくなるから
である。この種の蒸発による濃縮分離システムにおいて
は、測定対象及び設置環境などの関係上、液位は差圧式
(隔膜式)液位計で求めている。
2. Description of the Related Art In a system for concentrating and separating a processing solution using various types of evaporators, the level of the evaporator during operation is determined, and the supply amount of the processing solution is controlled so that the level remains substantially constant. While performing the evaporation process. This is because when the liquid level rises, the effective gas-phase height in the can decreases, and for example, when the radioactive waste liquid is subjected to evaporative concentration, a predetermined decontamination coefficient cannot be obtained. In this type of concentration / separation system by evaporation, the liquid level is determined by a differential pressure type (diaphragm type) liquid level meter due to the measurement object and installation environment.

【0003】ところが、カランドリア型自然循環式蒸発
缶や晶析用外部加熱強制循環式蒸発缶、あるいはその他
の蒸発缶では、上記のような差圧式液位計では運転中の
正確な液位が求められない。蒸発濃縮処理が進行するに
つれて、処理液の密度が徐々に増大し、そのため運転中
の蒸発缶液位を、実際の液位よりも高く検出するからで
ある。
However, in a calandria natural circulation evaporator, an externally heated forced circulation evaporator for crystallization, or other evaporators, an accurate liquid level during operation is required by the above-mentioned differential pressure level gauge. I can't. This is because as the evaporative concentration process proceeds, the density of the processing liquid gradually increases, so that the evaporator liquid level during operation is detected to be higher than the actual liquid level.

【0004】そこで、蒸発缶に密度計等のセンサを組み
込み、測定した液体密度を用いて液位を補正し、運転中
の蒸発缶液位を求めることが行われている(例えば、特
開平2−232600号公報参照)。
Therefore, a sensor such as a density meter is incorporated in the evaporator, and the liquid level is corrected using the measured liquid density to obtain the evaporator liquid level during operation (for example, Japanese Patent Laid-Open No. Hei 2 232600).

【0005】[0005]

【発明が解決しようとする課題】運転中の蒸発缶の内部
の処理液は、沸騰により気泡が発生し、この気泡は、液
中から沸き出すため液に浮力を与える。発生する気泡
は、大小さまざまであるとともに、発生時間、発生場所
も不規則である。蒸発缶の液位測定が水頭圧による測定
方式では、発生する大きさ、時間及び場所が不規則な気
泡により、浮力が大きく変化し、差圧式液位計による液
位測定値は大きく変動してしまう。
The processing liquid inside the evaporator during operation generates bubbles due to boiling, and the bubbles boil out of the liquid to give buoyancy to the liquid. The generated bubbles vary in size and size, and their generation time and location are also irregular. In the method of measuring the liquid level of the evaporator using the head pressure, the buoyancy greatly changes due to bubbles generated at irregular size, time and place, and the liquid level measurement value by the differential pressure level meter fluctuates greatly. I will.

【0006】そのため、上記のような密度補正方式を採
用しても、常に大きく変動している測定液位に対して密
度補正するために、原理的に補正液位の変動幅も大きい
ままとなる。蒸発缶液位測定値を、測定した密度によっ
て、ある幅を補正(シフト)するだけなので、大きく液
位が変動する様子は補正無しの場合と変わらない。
Therefore, even if the above-described density correction method is adopted, the fluctuation width of the correction liquid level remains large in principle in order to perform the density correction for the measurement liquid level that constantly fluctuates greatly. . Since only a certain width is corrected (shifted) in the evaporator liquid level measurement value according to the measured density, the state in which the liquid level fluctuates greatly is the same as the case without correction.

【0007】また、密度計は圧力容器である蒸発缶の一
部に取り付けるため、取付け部は溶接検査対象となり、
厳しい検査に合格しなければならない。更に、密度計は
徐々に濃縮される蒸発缶内の処理液に直接触れているた
め、センサ部にゴミ等が付着し易く、誤動作予防のため
にもメンテナンスを頻繁に行わなければならない。この
ように、製造(組立)及び保守の両面でコストアップと
なる。
In addition, since the density meter is attached to a part of the evaporator, which is a pressure vessel, the attachment portion is subjected to welding inspection.
You have to pass strict inspections. Further, since the densitometer is in direct contact with the processing liquid in the evaporator, which is gradually concentrated, dust and the like easily adhere to the sensor unit, and frequent maintenance is required to prevent malfunction. In this way, costs are increased in both manufacturing (assembly) and maintenance.

【0008】本発明の目的は、正確な且つ変動幅の少な
い安定した液位を得ることができる運転中蒸発缶の液位
算定方法を提供することである。本発明の他の目的は、
密度計などの取り付けを不要として溶接検査などを省略
できるようにし、またメンテナンス作業の軽減化を図る
ことができるような蒸発缶による濃縮処理システムを提
供することである。
An object of the present invention is to provide a method for calculating the liquid level of an evaporator during operation, which can obtain a stable liquid level with accuracy and a small fluctuation range. Another object of the present invention is to
An object of the present invention is to provide a concentration processing system using an evaporator, which can eliminate welding inspection and the like by eliminating the need for mounting a density meter or the like and can reduce maintenance work.

【0009】[0009]

【課題を解決するための手段】本発明は、供給タンクに
貯留されている処理液を蒸発缶に供給し、該蒸発缶で内
部の処理液を蒸発処理し、蒸発缶液位がほぼ一定値を保
つように供給タンクからの処理液量を流量調節弁で制御
して、発生した蒸気は凝縮器を経て凝縮液タンクに排出
して貯留し、蒸発缶内濃縮液は所定濃縮度に達した時点
で排出するバッチ処理システムを前提とするものであ
る。ここで本発明では、運転開始前の蒸発缶液位と運転
中の蒸発缶流入総量及び蒸発缶流出総量を求め、運転中
の蒸発缶液位=運転開始前の蒸発缶液位+(運転中の蒸
発缶流入総量−蒸発缶流出総量)/蒸発缶面積という演
算処理によって運転中の蒸発缶液位を求めるようにした
運転中蒸発缶の液位算出方法である。
According to the present invention, a processing liquid stored in a supply tank is supplied to an evaporator, and the processing liquid in the evaporator is subjected to an evaporating process. The amount of the processing liquid from the supply tank is controlled by the flow control valve so as to maintain the pressure, and the generated vapor is discharged to the condensate tank through the condenser and stored, and the concentrated liquid in the evaporator reaches the predetermined concentration. It assumes a batch processing system that discharges at the time. Here, in the present invention, the evaporator liquid level before the start of operation, the total evaporator inflow amount and the total evaporator outflow amount during operation are obtained, and the evaporator liquid level during operation = evaporator liquid level before operation start + (during operation) This is a method for calculating the liquid level of the evaporator during operation by calculating the evaporator liquid level during operation by the calculation process of (evaporator inflow total amount-evaporator outflow amount) / evaporator area.

【0010】本発明において、運転中の蒸発缶流入総量
は、供給タンク液位計の計測値、又は供給タンクと蒸発
缶とを連結する配管に設けた供給液流量計の計測値から
求める。また運転中の蒸発缶流出総量は、凝縮液タンク
液位計の計測値、又は凝縮器と凝縮液タンクとを連結す
る配管に設けた凝縮液流量計の計測値から求める。更に
液位算出精度を上げるために、凝縮器内に滞留する凝縮
液容量を、蒸発缶流出総量に加えて補正することも可能
である。
In the present invention, the total evaporator inflow during operation is obtained from a measured value of a supply tank level meter or a measured value of a supply liquid flow meter provided in a pipe connecting the supply tank and the evaporator. Further, the total amount of the evaporator flowing out during the operation is obtained from the measured value of the condensate tank level meter or the measured value of the condensate flow meter provided in the pipe connecting the condenser and the condensate tank. In order to further improve the liquid level calculation accuracy, the volume of the condensed liquid remaining in the condenser can be corrected in addition to the total amount of the outflow of the evaporator.

【0011】[0011]

【発明の実施の形態】図1は本発明方法で用いるバッチ
式蒸発濃縮システムの一例を示す構成図である。供給タ
ンク10に貯留されている処理液を、供給配管12を通
してポンプ14によって蒸発缶16に供給する。蒸発缶
16で内部の処理液を蒸発処理し、発生した蒸気は排出
配管18を通り、凝縮器20を経て凝縮液タンク22に
排出して貯留する。供給タンク10には供給タンク液位
計24を、蒸発缶16には差圧式(隔膜式)の蒸発缶液
位計26を、凝縮液タンク22には凝縮液タンク液位計
28をそれぞれ付設する。それらの測定データは演算制
御装置30に送られる。また演算制御装置30での演算
結果に基づいて開閉度合いが制御される流量調節弁32
を前記供給配管12に組み込む。図1において、実線は
配管系統を表し、点線は信号系統を表している。なお、
ここで蒸発缶16は、蒸気を加熱源とする装置である。
FIG. 1 is a block diagram showing an example of a batch-type evaporative concentration system used in the method of the present invention. The processing liquid stored in the supply tank 10 is supplied to the evaporator 16 by the pump 14 through the supply pipe 12. The processing liquid inside is evaporated by the evaporator 16, and the generated vapor passes through the discharge pipe 18, passes through the condenser 20, and is discharged and stored in the condensate tank 22. The supply tank 10 is provided with a supply tank level gauge 24, the evaporator 16 is provided with a differential pressure type (diaphragm type) evaporator level gauge 26, and the condensate tank 22 is provided with a condensate tank level gauge 28. . Those measurement data are sent to the arithmetic and control unit 30. In addition, a flow control valve 32 whose degree of opening and closing is controlled based on the calculation result in the calculation control device 30.
Into the supply pipe 12. In FIG. 1, a solid line represents a piping system, and a dotted line represents a signal system. In addition,
Here, the evaporator 16 is a device using steam as a heating source.

【0012】図2は本発明方法で用いるバッチ式蒸発濃
縮システムの他の例を示す構成図である。基本的な構成
は、図1と同様であるので、説明を分かりやすくするた
めに対応する部分には同一符号を付す。供給タンク10
に貯留されている処理液を、供給配管12を通してポン
プ14によって蒸発缶16に供給する。蒸発缶16で内
部の処理液を蒸発処理し、発生した蒸気は排出配管18
を通り、凝縮器20を経て凝縮液タンク22に排出して
貯留する。供給配管12には供給液流量計34を、蒸発
缶16には差圧式(隔膜式)の蒸発缶液位計26を、凝
縮器20から凝縮液タンク22に至る排出配管18には
凝縮液流量計36をそれぞれ設ける。それらの測定デー
タは演算制御装置30に送られる。また演算制御装置3
0での演算結果に基づいて開閉度合いが制御される流量
調節弁32を前記供給配管12に組み込む。
FIG. 2 is a block diagram showing another example of a batch-type evaporative concentration system used in the method of the present invention. Since the basic configuration is the same as that of FIG. 1, the corresponding portions are denoted by the same reference numerals for easy understanding of the description. Supply tank 10
Is supplied to the evaporator 16 by the pump 14 through the supply pipe 12. The internal processing liquid is evaporated in the evaporator 16, and the generated steam is discharged to the discharge pipe 18.
Through the condenser 20 and discharged to the condensed liquid tank 22 for storage. A supply liquid flow meter 34 is provided in the supply pipe 12, a differential pressure type (diaphragm type) evaporator liquid level meter 26 is provided in the evaporator 16, and a condensate flow rate is provided in the discharge pipe 18 from the condenser 20 to the condensate tank 22. A total of 36 are provided. Those measurement data are sent to the arithmetic and control unit 30. The arithmetic and control unit 3
A flow control valve 32 whose degree of opening and closing is controlled based on the calculation result of 0 is incorporated in the supply pipe 12.

【0013】これらにおいて、演算制御装置30では、
各計測データに基づき、蒸発缶16内の処理液の液位を
算出し、その算出液位がほぼ一定値を保つように供給タ
ンク10から供給する処理液量を流量調節弁32によっ
て制御する。運転中の蒸発缶液位は、前記のように、 運転中の蒸発缶液位=運転開始前の蒸発缶液位+(運転
中の蒸発缶流入総量−蒸発缶流出総量)/蒸発缶面積 から算出する。
In these, in the arithmetic and control unit 30,
Based on each measurement data, the liquid level of the processing liquid in the evaporator 16 is calculated, and the amount of the processing liquid supplied from the supply tank 10 is controlled by the flow control valve 32 so that the calculated liquid level keeps a substantially constant value. As described above, the evaporator liquid level during operation is obtained from the following equation: evaporator liquid level during operation = evaporator liquid level before operation + (total evaporator inflow during operation-total evaporator outflow) / evaporator area. calculate.

【0014】ここで、運転開始前の蒸発缶液位は、差圧
式(隔膜式)の蒸発缶液位計26で求める。運転中の蒸
発缶流入総量は、図1の場合には供給タンク液位計24
の計測値から(即ち、液位変化量とタンク内径との積か
ら)、また図2の場合には供給液流量計34の計測値か
ら(即ち、流量の積算から)求める。また運転中の蒸発
缶流出総量は、図1の場合には凝縮液タンク液位計28
の計測値から(即ち、液位変化量とタンク内径との積か
ら)、また図2の場合には凝縮液流量計36の計測値か
ら(即ち、流量の積算から)求める。
Here, the evaporator liquid level before the start of operation is obtained by a differential pressure type (diaphragm type) evaporator liquid level meter 26. In the case of FIG. 1, the total amount of evaporator inflow during the operation is the supply tank level meter 24.
(That is, from the product of the liquid level change amount and the tank inner diameter), and in the case of FIG. 2, from the measurement value of the supply liquid flow meter 34 (that is, from the integrated flow rate). Further, the total amount of the evaporator flowing out during operation is the condensate tank level gauge 28 in FIG.
(That is, from the product of the liquid level change amount and the inner diameter of the tank), and in the case of FIG. 2, from the measurement value of the condensate flow meter 36 (that is, from the integrated flow rate).

【0015】なお、蒸発缶流入総量と蒸発缶流出総量の
求め方は、図1に示す方法と図2に示す方法の組み合わ
せでもよい。タンク液位計から求める方法は、安価であ
るが(通常、タンクには液位計が設備化されているた
め、その信号を利用できる)、タンクが大口径になるほ
ど、精度が低下する。流量から求める方法は、流量を直
接測定するために精度が高いが、場合によっては高価と
なる(流量計が設備化されていない場合があり、追加に
よってコストアップとなる)。従って、これらのことを
勘案して、適切な方法を選択するのが望ましい。
The method for calculating the total amount of evaporator inflow and the total amount of evaporator outflow may be a combination of the method shown in FIG. 1 and the method shown in FIG. The method of obtaining from the tank liquid level meter is inexpensive (usually, since the liquid level meter is installed in the tank, its signal can be used), but the accuracy decreases as the diameter of the tank increases. The method of obtaining the flow rate is high in accuracy because the flow rate is directly measured, but it is expensive in some cases (the flow meter may not be provided as an equipment, and the cost increases due to addition). Therefore, it is desirable to select an appropriate method in consideration of these points.

【0016】蒸発濃縮処理の過程では、凝縮器20の内
部にいくらかの凝縮液が滞留している。滞留している凝
縮液の量は、凝縮器20の容量から推定できる。従っ
て、凝縮液タンク液位計28の計測値から、あるいは凝
縮液流量計36の計測値から求めた運転中の蒸発缶流出
総量に、上記凝縮器20の内部に滞留している凝縮液の
量を加えて補正すれば、より正確な蒸発缶液位を算出す
ることができる。但し、凝縮器20の容量が比較的小さ
い場合には、補正を行わなくても、必要十分な精度で蒸
発缶液位を算出できる。
In the course of the evaporative concentration process, some condensate remains inside the condenser 20. The amount of retained condensate can be estimated from the capacity of the condenser 20. Therefore, the amount of the condensate remaining inside the condenser 20 is calculated from the measured value of the condensate tank level meter 28 or the total amount of the evaporator outflow during operation obtained from the measured value of the condensate flow meter 36. , And a more accurate evaporator liquid level can be calculated. However, when the capacity of the condenser 20 is relatively small, the evaporator liquid level can be calculated with necessary and sufficient accuracy without performing correction.

【0017】本発明では、蒸発缶液位計26は、運転開
始前の計測値のみ利用するが、運転中の計測値は全く利
用しない。本発明では、供給タンクや凝縮液タンクに本
来付設されている液位計や流量計の値を利用して、運転
中の蒸発缶液位を算出する。従って、従来の技術のよう
な密度計等のセンサの追加取付けは不要であり、それに
伴う溶接検査を省略できるし、メンテナンス作業も軽減
できる。
In the present invention, the evaporator level gauge 26 uses only the measured values before the start of operation, but does not use the measured values during the operation at all. In the present invention, the evaporator liquid level during operation is calculated using the values of the liquid level meter and the flow meter originally provided in the supply tank and the condensate tank. Therefore, it is not necessary to additionally mount a sensor such as a density meter as in the prior art, and it is possible to omit the accompanying welding inspection and reduce the maintenance work.

【0018】[0018]

【実施例】図3に示す蒸発濃縮システムを用い、蒸気を
加熱源とする蒸発缶によって、放射性廃液の蒸発濃縮
(蒸発分離)を行った。1日毎のバッチ処理を基本と
し、所定の濃縮度に達した時点で、蒸発缶内濃縮液の排
出を行う。システムの基本的な構成は、図1及び図2に
示すシステムを組み合わせたものであり、対応する部分
に同一符号を付し、それらに付いての詳しい説明は省略
する。この実施例のシステムでは、供給タンク10には
供給タンク液位計24を、蒸発缶16には差圧式(隔膜
式)の蒸発缶液位計26を、凝縮器20から凝縮液タン
ク22に至る排出配管18には凝縮液流量計36をそれ
ぞれ設けている。蒸発缶流入総量は供給タンク液位計2
4の計測値から演算処理し、蒸発缶流出総量は凝縮液流
量計36の計測値から演算処理した。
EXAMPLE Using the evaporative concentration system shown in FIG. 3, the evaporative concentration (evaporation separation) of the radioactive waste liquid was performed by an evaporator using steam as a heating source. On the basis of batch processing every day, the concentrated liquid in the evaporator is discharged when a predetermined concentration is reached. The basic configuration of the system is a combination of the systems shown in FIGS. 1 and 2, and the corresponding parts are denoted by the same reference numerals and detailed description thereof will be omitted. In the system of this embodiment, a supply tank level meter 24 is provided in the supply tank 10, a differential pressure type (diaphragm type) evaporator level meter 26 is provided in the evaporator 16, and the condenser 20 reaches the condensate tank 22. The discharge pipe 18 is provided with a condensate flow meter 36. The total amount of evaporator inflow is the supply tank liquid level meter 2.
4 and the total amount of evaporator outflow was calculated from the measured value of the condensate flow meter 36.

【0019】プロセス制御は、次の2項目で行った。
設定した凝縮液流量に対応して、加熱蒸気入口流量調節
弁の開度を自動調節する。なお、凝縮液流量が定格流量
に達するまでは、徐々に加熱蒸気入口流量調節弁の開度
を上昇させた。設定した蒸発缶液位に対応して、供給
液流量調節弁の開度を自動調節した。運転開始前の蒸発
缶液位は差圧式(隔膜式)液位計により検出した。
The process control was performed in the following two items.
The opening degree of the heating steam inlet flow rate control valve is automatically adjusted in accordance with the set condensate flow rate. The opening of the heating steam inlet flow rate control valve was gradually increased until the condensate flow rate reached the rated flow rate. The opening of the supply liquid flow control valve was automatically adjusted according to the set evaporator liquid level. The evaporator liquid level before the start of operation was detected by a differential pressure type (diaphragm type) liquid level meter.

【0020】運転中の蒸発缶液位は、演算制御装置30
により次のように算出した。運転開始前の蒸発缶液位L
S に、蒸発缶流入量(積算値)ΣVI と蒸発缶流出量
(積算値)ΣVO の差を蒸発缶面積Sで除した値を加算
して、運転中の蒸発缶液位LRとする。即ち、 LR =(ΣVI −ΣVO )/S+LS
The evaporator liquid level during operation is calculated by the arithmetic and control unit 30.
Was calculated as follows. Evaporator liquid level L before starting operation
The S, by adding the value obtained by dividing the difference between the evaporator inlet flow (integrated value) [sigma] v I and evaporator runoff (cumulative value) [sigma] v O in evaporator area S, and the evaporator liquid level L R during operation I do. That, L R = (ΣV I -ΣV O) / S + L S

【0021】蒸発缶流入量(積算値)ΣVI は、供給タ
ンク液位計24の液位信号を演算制御装置30に入力し
て求める。但し、供給タンク10の液面は、攪拌により
常に変動しているために、液位信号にフィルタをかけて
平滑化を図る。また蒸発缶流出量(積算値)ΣVO は凝
縮液流量計36の流量信号を演算制御装置30に入力し
て求める。演算制御装置30では、これらの信号から、
前記の式による液位補正を行い、補正した液位信号によ
って、蒸発缶16の実液位を一定に保つように流量調節
弁32で供給する処理液量を制御する。
The evaporator inflow amount (integrated value) ΣV I is obtained by inputting a liquid level signal of the supply tank liquid level meter 24 to the arithmetic and control unit 30. However, since the liquid level of the supply tank 10 constantly fluctuates due to agitation, the liquid level signal is filtered and smoothed. The evaporator outflow amount (integrated value) ΣV O is obtained by inputting a flow rate signal of the condensate flow meter 36 to the arithmetic and control unit 30. In the arithmetic and control unit 30, from these signals,
The liquid level is corrected by the above equation, and the amount of the processing liquid supplied by the flow control valve 32 is controlled by the corrected liquid level signal so that the actual liquid level of the evaporator 16 is kept constant.

【0022】全く液位補正を行わずに、蒸発缶液位計の
計測値を用いて濃縮処理を行った場合には、蒸発缶内液
の気泡などの浮力に依存して、運転中の蒸発缶液位が実
際の液位よりも低く検出される。そのため、実際は設定
値よりも高い液位で運転されることになり、蒸発缶内気
相部有効高さが減少するために、所定の除染係数が得ら
れない。密度補正方式は、蒸発缶液位測定値を密度を考
慮して、ある幅を補正(シフト)するだけなので、沸騰
により発生する気泡などによる不規則な変動がそのまま
現れる、つまり変動幅が大きい。それに対して本発明の
液位補正方式では、安定した精度の高い液位が得られ
る。
When the concentration process is performed using the measured value of the evaporator liquid level meter without performing any liquid level correction, the evaporation during operation depends on the buoyancy of bubbles in the liquid in the evaporator. The can level is detected lower than the actual level. For this reason, the operation is actually performed at a liquid level higher than the set value, and a predetermined decontamination coefficient cannot be obtained because the effective height of the gas phase portion in the evaporator decreases. The density correction method merely corrects (shifts) a certain width in consideration of the density of the measured liquid level of the evaporator, so that irregular fluctuations due to bubbles generated by boiling appear as they are, that is, the fluctuation width is large. On the other hand, in the liquid level correction method of the present invention, a stable and accurate liquid level can be obtained.

【0023】なお蒸発缶による濃縮システムとしては、
バッチ処理(短期間の運転)ではなく長期間にわたって
連続運転する場合もある。蒸発缶への流入総量及び蒸発
缶からの流出総量は、時間の経過とともに誤差が大きく
なるので、長期間連続運転する場合には、現在値(瞬時
値)である密度で液位を補正する方が有効であるが、バ
ッチ処理による運転方法では、運転前に誤差のリセット
(正確な液位の測定)が可能であり、誤差も小さいこと
から、本発明方法の方が有利である。
As a concentration system using an evaporator,
In some cases, continuous operation is performed over a long period of time instead of batch processing (short-term operation). The error in the total amount of inflow into the evaporator and the total amount of outflow from the evaporator increases with the passage of time. Therefore, when operating continuously for a long period, the liquid level should be corrected with the density that is the current value (instantaneous value). However, in the operation method by the batch processing, the method of the present invention is more advantageous because the error can be reset (accurate liquid level measurement) before the operation and the error is small.

【0024】[0024]

【発明の効果】本発明は、バッチ処理で比較的短期間の
運転を前提とするものであり、運転開始前に正確な蒸発
缶液位を測定し、運転開始後は蒸発缶への流入総量と総
流出量とから蒸発缶液位を算出する方法だから、運転中
でも安定した精度の高い液位が得られ、精密な蒸発缶内
液位制御が行える。特に放射性廃液の処理においては、
正確な液位の制御によって蒸発缶内気相有効高さを一定
に保つことができ、所定の除染係数を確保できる効果が
ある。また本発明では、密度計などのセンサを蒸発缶に
取り付ける必要がなく、そのため溶接検査が不要とな
り、またメンテナンス作業を軽減化できる。
The present invention is based on the premise that a batch process is operated for a relatively short period of time. Before starting the operation, an accurate evaporator liquid level is measured. Because the method calculates the evaporator liquid level from the total flow rate and the total amount of outflow, a stable and accurate liquid level can be obtained even during operation, and precise liquid level control in the evaporator can be performed. Especially in the treatment of radioactive liquid waste,
By controlling the liquid level accurately, the effective height of the gas phase in the evaporator can be kept constant, and there is an effect that a predetermined decontamination coefficient can be secured. Further, in the present invention, it is not necessary to attach a sensor such as a density meter to the evaporator, so that welding inspection becomes unnecessary and maintenance work can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法で用いるバッチ式蒸発濃縮システム
の一例を示す構成図。
FIG. 1 is a block diagram showing an example of a batch evaporation concentration system used in the method of the present invention.

【図2】本発明方法で用いるバッチ式蒸発濃縮システム
の他の例を示す構成図。
FIG. 2 is a configuration diagram showing another example of a batch evaporation concentration system used in the method of the present invention.

【図3】本発明方法で用いるバッチ式蒸発濃縮システム
の更に他の例を示す構成図。
FIG. 3 is a configuration diagram showing still another example of a batch-type evaporative concentration system used in the method of the present invention.

【符号の説明】[Explanation of symbols]

10 供給タンク 12 供給配管 14 ポンプ 16 蒸発缶 18 排出配管 20 凝縮器 22 凝縮液タンク 24 供給タンク液位計 26 蒸発缶液位計 28 凝縮液タンク液位計 30 演算制御装置 32 流量調節弁 34 供給液流量計 36 凝縮液流量計 DESCRIPTION OF SYMBOLS 10 Supply tank 12 Supply pipe 14 Pump 16 Evaporator 18 Discharge pipe 20 Condenser 22 Condensate tank 24 Supply tank level gauge 26 Evaporator level gauge 28 Condensate tank level gauge 30 Arithmetic control unit 32 Flow control valve 34 Supply Liquid flow meter 36 Condensate flow meter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 会川 英昭 茨城県東茨城郡大洗町成田町4002 核燃料 サイクル開発機構大洗工学センター内 (72)発明者 菅野 善夫 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 Fターム(参考) 2F014 AC05 BA03 GA01 4D076 AA08 AA22 AA24 BA02 BB01 DA03 DA25 EA02Y EA04Y EA05Y EA08Y EA14Y EA15Y EA16Y EA32 FA31 HA06 HA13 JA02 JA03 JA05  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hideaki Aikawa 4002 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki Prefecture (72) Inventor Yoshio Sugano Yoshio Sugano 1 Tanabe Nitta, Kawasaki-ku, Kawasaki City, Kanagawa Prefecture No. 1 Fuji Electric Co., Ltd. F term (reference) 2F014 AC05 BA03 GA01 4D076 AA08 AA22 AA24 BA02 BB01 DA03 DA25 EA02Y EA04Y EA05Y EA08Y EA14Y EA15Y EA16Y EA32 FA31 HA06 HA13 JA02 JA03 JA05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 供給タンクに貯留されている処理液を蒸
発缶に供給し、該蒸発缶で内部の処理液を蒸発処理し、
蒸発缶液位がほぼ一定値を保つように供給タンクからの
処理液量を流量調節弁で制御して、発生した蒸気は凝縮
器を経て凝縮液タンクに排出して貯留し、蒸発缶内濃縮
液は所定濃縮度に達した時点で排出するバッチ処理シス
テムにおいて、運転開始前の蒸発缶液位と運転中の蒸発
缶流入総量及び蒸発缶流出総量を求め、運転中の蒸発缶
液位=運転開始前の蒸発缶液位+(運転中の蒸発缶流入
総量−蒸発缶流出総量)/蒸発缶面積という演算処理に
よって運転中の蒸発缶液位を求めることを特徴とする運
転中蒸発缶の液位算出方法。
1. A processing liquid stored in a supply tank is supplied to an evaporator, and the processing liquid inside is evaporated by the evaporator.
The amount of processing liquid from the supply tank is controlled by a flow control valve so that the evaporator liquid level remains almost constant, and the generated steam is discharged to the condensate tank through the condenser and stored, and concentrated in the evaporator. In a batch processing system that discharges liquid when it reaches a predetermined concentration, the evaporator liquid level before operation, the total evaporator inflow and total evaporator outflow during operation are determined, and the evaporator liquid level during operation = operation The evaporator liquid level during operation is obtained by calculating the evaporator liquid level before start + (total evaporator inflow amount during operation−total evaporator outflow amount) / evaporator area. Position calculation method.
【請求項2】 運転中の蒸発缶流入総量を、供給タンク
液位計の計測値、又は供給タンクと蒸発缶とを連結する
配管に設けた供給液流量計の計測値から求める請求項1
記載の運転中蒸発缶の液位算出方法。
2. The total evaporator inflow during operation is obtained from a measured value of a supply tank level meter or a measured value of a supply liquid flow meter provided in a pipe connecting the supply tank and the evaporator.
The method for calculating the liquid level of the evaporator during operation as described in the above.
【請求項3】 運転中の蒸発缶流出総量を、凝縮液タン
ク液位計の計測値、又は凝縮器と凝縮液タンクとを連結
する配管に設けた凝縮液流量計の計測値から求める請求
項1又は2記載の運転中蒸発缶の液位算出方法。
3. The total evaporator outflow during operation is obtained from a measured value of a condensate tank level meter or a measured value of a condensate flow meter provided in a pipe connecting the condenser and the condensate tank. 3. The method for calculating the liquid level of an in-operation evaporator according to 1 or 2.
【請求項4】 凝縮器内に滞留する凝縮液容量を、蒸発
缶流出総量に加えて補正する請求項1乃至3のいずれか
に記載の運転中蒸発缶の液位算出方法。
4. The method for calculating the liquid level of an in-operation evaporator according to claim 1, wherein the volume of the condensate remaining in the condenser is corrected by adding it to the total amount of outflow of the evaporator.
JP10348626A 1998-12-08 1998-12-08 Calculating the liquid level of the evaporator during operation Expired - Fee Related JP2989183B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10348626A JP2989183B1 (en) 1998-12-08 1998-12-08 Calculating the liquid level of the evaporator during operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10348626A JP2989183B1 (en) 1998-12-08 1998-12-08 Calculating the liquid level of the evaporator during operation

Publications (2)

Publication Number Publication Date
JP2989183B1 JP2989183B1 (en) 1999-12-13
JP2000171592A true JP2000171592A (en) 2000-06-23

Family

ID=18398265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10348626A Expired - Fee Related JP2989183B1 (en) 1998-12-08 1998-12-08 Calculating the liquid level of the evaporator during operation

Country Status (1)

Country Link
JP (1) JP2989183B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010194505A (en) * 2009-02-27 2010-09-09 Tokai Senko Kk Evaporation and condensation apparatus
US9822019B2 (en) 2013-01-18 2017-11-21 Panasonic Intellectual Property Management Co., Ltd. Desalination system and desalination method
US9873618B2 (en) 2012-12-27 2018-01-23 Panasonic Intellectual Property Management Co., Ltd. Measurement system included in desalination system, desalination system, and desalination method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113963833B (en) * 2021-11-30 2023-10-24 中国原子能科学研究院 Heat pump evaporation treatment system and method for radioactive waste liquid treatment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010194505A (en) * 2009-02-27 2010-09-09 Tokai Senko Kk Evaporation and condensation apparatus
US9873618B2 (en) 2012-12-27 2018-01-23 Panasonic Intellectual Property Management Co., Ltd. Measurement system included in desalination system, desalination system, and desalination method
US9822019B2 (en) 2013-01-18 2017-11-21 Panasonic Intellectual Property Management Co., Ltd. Desalination system and desalination method

Also Published As

Publication number Publication date
JP2989183B1 (en) 1999-12-13

Similar Documents

Publication Publication Date Title
CA2073822C (en) Liquid coolant circulating system
JP5259454B2 (en) Flow control device and water treatment device incorporating flow control device
JP2989183B1 (en) Calculating the liquid level of the evaporator during operation
JPH0241441Y2 (en)
JPS60129103A (en) Apparatus for preparing extremely pure water
JPS60235604A (en) Reverse osmotic membrane separation device
JP3060575B2 (en) Water level measuring device
JPH052730U (en) High concentration ammonia automatic dissolver
US4346673A (en) Apparatus and method for metering and controlling a feed of hydrogen fluoride vapor
JP2841409B2 (en) DO control device
SU1180852A1 (en) Device for measuring pressure in liquid mediums
JPS605892B2 (en) Pipe rupture detection device
JP3288443B2 (en) Vacuum heat pump evaporative concentrator
JP3000815B2 (en) Raw water supply control method for deaerator
JP2538894Y2 (en) Pressurizer water level control device
JPH06304549A (en) Water treating device
JPS5840104B2 (en) absorption refrigerator
JP3133272B2 (en) Method for estimating suspended solids concentration and evaporating and concentrating desulfurization wastewater
RU2314147C2 (en) Distillation tower operation control and monitoring method
US11067346B2 (en) Cooling tower adjusting method and system
JP3404487B2 (en) Automatic defoamer injection device
JP3928886B2 (en) Method and apparatus for detecting liquid leakage panel in open rack type LNG vaporizer
JP2672729B2 (en) Water quality adjustment device
JPH03275101A (en) Method and device for automatically controlling evaporation amount in concentrator
JP2001099401A (en) Steam generator using spiral heat-exchanger

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees