JP2000171451A - Analytical method for protein - Google Patents

Analytical method for protein

Info

Publication number
JP2000171451A
JP2000171451A JP10348349A JP34834998A JP2000171451A JP 2000171451 A JP2000171451 A JP 2000171451A JP 10348349 A JP10348349 A JP 10348349A JP 34834998 A JP34834998 A JP 34834998A JP 2000171451 A JP2000171451 A JP 2000171451A
Authority
JP
Japan
Prior art keywords
protein
resin
solution
column
passed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10348349A
Other languages
Japanese (ja)
Other versions
JP3414287B2 (en
Inventor
Michiko Tani
道子 谷
Yutaka Hayashibe
豊 林部
Minoru Takeya
実 竹谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP34834998A priority Critical patent/JP3414287B2/en
Publication of JP2000171451A publication Critical patent/JP2000171451A/en
Application granted granted Critical
Publication of JP3414287B2 publication Critical patent/JP3414287B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method in which protein, in a trace amount, contained in an electrolytic solution or a plating solution can be quantitatively determined simply and with good accuracy. SOLUTION: A sample solution containing protein, such as an electrolytic solution, a plating solution or the like is passed through a column into which a hydrophobic adsorption resin is filled. The protein is adsorbed to the resin. Then, an eluent is made to flow to the column. The protein is eluted. An analytical reagent is added to an eluate. Then, the protein is quantitatively analyzed. Preferably, the protein is analyzed in a continuous flow. As the hydrophobic adsorption resin, a nonpolar resin or an intermediate polar resin is preferable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液中のタンパク質
を簡便に精度良く分析する方法に関し、特に電解液また
はメッキ液中に含まれる膠やゼラチンなどの微量タンパ
ク質の定量分析に適する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for simply and accurately analyzing proteins in a solution, and more particularly to a method suitable for quantitative analysis of trace proteins such as glue and gelatin contained in an electrolytic solution or a plating solution.

【0002】[0002]

【従来の技術】電解液またはメッキ液中には、電着にお
ける光沢化やメッキ層の硬化、面の平滑化などの種々の
目的に応じて添加剤が加えられる。添加剤としては、電
解製錬では膠が、メッキではゼラチンがしばしば用いら
れているが、その濃度を一定の範囲内に保つことが品質
管理上極めて重要である。例えば、膠は電着面の平滑化
するために用いられるが、濃度が過剰になると分極を著
しく高め、ビスマス等の不純物が析出しやすくなるなど
の問題がある。
2. Description of the Related Art Additives are added to an electrolytic solution or a plating solution for various purposes such as glossing during electrodeposition, hardening of a plating layer, and smoothing of a surface. As an additive, glue is often used in electrolytic smelting and gelatin is often used in plating, but keeping its concentration within a certain range is extremely important for quality control. For example, glue is used for smoothing the electrodeposited surface, but when the concentration is excessive, there is a problem that polarization is remarkably increased and impurities such as bismuth are easily deposited.

【0003】しかし、一般に知られているタンパク質の
分析法は、弱酸性から弱アルカリ性の条件下で行われる
ものが多く、電解液やメッキ液などのpHが1以下であ
るような強酸性の試料溶液に適用できる例は少ない。従
来、電解液やメッキ液などに含まれる膠やゼラチンなど
のタンパク質は、電位差滴定法やケルダール蒸留法など
により測定されているが、いずれも特殊な装置が必要で
ある上、操作が煩雑であった。また、ケルダール蒸留法
は膠をアンモニア態窒素に分解してから測定を行なうも
のであるが、電解液中にはタンパク質以外の窒素化合物
が含まれる場合が多く、正確な測定を困難にしている。
[0003] However, generally known protein analysis methods are performed under conditions of weak acidity to weak alkalinity, and a strongly acidic sample such as an electrolytic solution or a plating solution having a pH of 1 or less is used. Few examples are applicable to solutions. Conventionally, proteins such as glue and gelatin contained in electrolytes and plating solutions have been measured by potentiometric titration, Kjeldahl distillation, etc., all of which require special equipment and complicated operations. Was. In the Kjeldahl distillation method, the measurement is performed after the glue is decomposed into ammonium nitrogen. However, the electrolyte often contains nitrogen compounds other than proteins, which makes accurate measurement difficult.

【0004】この他に、強酸性溶液中のゼラチン・膠定
量法として、ゼラチンまたは膠をメンブランフィルター
に捕集して特定の試薬(アミドブラック10B色素)と結
合させ、過剰の色素を洗浄した後、色素を溶出してゼラ
チン等を検出する方法(特開平2-69660号公報)、ある
いはゼラチン等を捕集したフィルターを乾燥させ反射率
を利用して検出する方法(特開平6-337247号公報)など
が報告されている。しかし、これらの方法は膠の捕集量
がフィルターの孔径に著しく左右されると云う問題があ
る。またフィルターの捕集に濾過装置を必要とし、操作
も煩雑であり、しかもフィルターが使い捨てであるため
分析コストが嵩む等の問題がある。
[0004] In addition, as a method for determining gelatin and glue in a strongly acidic solution, gelatin or glue is collected on a membrane filter and bound to a specific reagent (Amide Black 10B dye), and excess dye is washed. A method of eluting a dye to detect gelatin or the like (Japanese Patent Application Laid-Open No. 2-69660), or a method of drying a filter that has collected gelatin or the like and detecting by utilizing the reflectance (Japanese Patent Application Laid-Open No. 6-337247). ) Has been reported. However, these methods have a problem that the amount of collected glue is significantly affected by the pore size of the filter. Further, there is a problem that a filtration device is required for collecting the filter, the operation is complicated, and the analysis cost is increased because the filter is disposable.

【0005】[0005]

【発明の解決課題】本発明は、従来のタンパク質測定方
法における上記問題を解決したものであって、強酸性の
溶液でも、液中のゼラチンや膠などのタンパク質を容易
に定量することができる分析方法を提供するものであ
る。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems in the conventional protein measurement method, and provides an assay which can easily quantify proteins such as gelatin and glue in a solution even in a strongly acidic solution. It provides a method.

【0006】[0006]

【課題の解決手段】本発明は、酸や有機溶媒に耐性を有
する疎水性吸着樹脂を用い、該樹脂を利用してタンパク
質の吸着・溶離を行うことにより、従来のフィルターを
用いる方法よりも信頼性が高く、しかも操作の容易な測
定方法を完成させたものである。
The present invention uses a hydrophobic adsorbent resin having resistance to acids and organic solvents, and uses the resin to adsorb and elute proteins, which is more reliable than the conventional method using a filter. This completes a measurement method that is highly operable and easy to operate.

【0007】すなわち、本発明は以下の構成を有するタ
ンパク質分析方法に関する。 (1)疎水性吸着樹脂を充填したカラムに、タンパク質
を含む試料液を通液して該樹脂にタンパク質を吸着さ
せ、次いで該カラムに溶離液を流してタンパク質を溶出
させ、該溶出液に分析試薬を添加してタンパク質を定量
分析することを特徴とするタンパク質の分析方法。 (2)疎水性吸着樹脂が無極性樹脂または中間極性樹脂
である上記(1)に記載する分析方法。 (3)試料液がpH1以下の強酸性であり、耐酸性の疎
水性吸着樹脂を用いる上記(1)または(2)に記載する分析
方法。 (4)試料液が膠ないしゼラチンを含む電解液またはメ
ッキ液である上記(1)(2)または(3)に記載する分析方
法。 (5)試料液が管路を流れる間に、試薬の添加と反応お
よび分析が連続して行われる流れ分析方法に基づいた電
解液ないしメッキ液のタンパク質定量方法であって、こ
れらの試料液を疎水性吸着樹脂を充填したカラムに通液
して液中に含まれるタンパク質を上記樹脂に吸着させ、
次いで、該カラムに溶離液を流してタンパク質を溶出さ
せ、該溶出液が管路を流れる間に分析試薬を添加し反応
させて検出部に導き、タンパク質を定量分析する上記
(1)〜(4)のいずれかに記載する分析方法。 (6)上記(5)の流れ分析方法において、管路を切り替
えることにより一定量の試料液と溶離液とを交互に樹脂
充填カラムに通液して、タンパク質の定量を連続的に行
う分析方法。
That is, the present invention relates to a protein analysis method having the following constitution. (1) A protein-containing sample solution is passed through a column filled with a hydrophobic adsorption resin to adsorb the protein to the resin, and then the eluent is passed through the column to elute the protein, and the eluate is analyzed. A protein analysis method comprising quantitatively analyzing a protein by adding a reagent. (2) The analysis method according to the above (1), wherein the hydrophobic adsorption resin is a nonpolar resin or an intermediate polar resin. (3) The analysis method according to the above (1) or (2), wherein the sample solution is a strongly acidic solution having a pH of 1 or less and uses an acid-resistant hydrophobic adsorption resin. (4) The analysis method according to (1), (2) or (3), wherein the sample solution is an electrolytic solution or a plating solution containing glue or gelatin. (5) A method for quantifying a protein in an electrolytic solution or a plating solution based on a flow analysis method in which addition, reaction, and analysis of a reagent are continuously performed while a sample solution flows through a pipeline. The protein contained in the liquid is adsorbed on the resin by passing through a column filled with a hydrophobic adsorption resin,
Next, an eluent is allowed to flow through the column to elute the protein, and while the eluate flows through the conduit, an analytical reagent is added and allowed to react, guided to the detection unit, and quantitatively analyzed for the protein.
The analysis method according to any one of (1) to (4). (6) In the flow analysis method of the above (5), a fixed amount of sample solution and eluent are alternately passed through a resin-packed column by switching a pipe line to continuously perform protein quantification. .

【0008】[0008]

【発明の実施の態様】本発明の分析方法は、疎水性吸着
樹脂を充填したカラムに、タンパク質を含む試料液を通
液して該樹脂にタンパク質を吸着させ、次いで該カラム
に溶離液を流してタンパク質を溶出させ、該溶出液に分
析試薬を添加してタンパク質を定量分析することを特徴
とする方法である。
BEST MODE FOR CARRYING OUT THE INVENTION In the analysis method of the present invention, a protein-containing sample solution is passed through a column filled with a hydrophobic adsorption resin to adsorb the protein to the resin, and then the eluent is passed through the column. To elute the protein, and add an analytical reagent to the eluate to quantitatively analyze the protein.

【0009】本発明において用いる疎水性吸着樹脂はタ
ンパク質に対して吸着性を有する樹脂であり、タンパク
質と樹脂の相互の疎水性作用によってタンパク質が樹脂
に吸着される。一般に、この疎水性吸着樹脂は酸や有機
溶媒に対して耐久性があり、比較的高い酸性の試料液に
ついても使用できる。この疎水性吸着樹脂を充填したカ
ラムを用いることにより、タンパク質の吸着・溶出手段
を簡便に形成することができ、また、その再生も容易で
ある。
The hydrophobic adsorbing resin used in the present invention is a resin having an adsorbing property to a protein, and the protein is adsorbed on the resin by mutual hydrophobic action of the protein and the resin. Generally, this hydrophobic adsorption resin is durable to acids and organic solvents, and can be used for relatively highly acidic sample liquids. By using a column filled with the hydrophobic adsorption resin, a means for adsorbing and eluting a protein can be easily formed, and its regeneration is also easy.

【0010】この疎水性吸着樹脂は無極性樹脂あるいは
中間極性樹脂が好ましい。無極性樹脂の例としてはスチ
レン−ジビニルベンゼン系樹脂などが挙げられ、中間極
性樹脂の例としてはアシル化エステル系樹脂などのエス
テル系樹脂が挙げられる。後述の実施例に示すように、
これらの無極性樹脂および中間極性樹脂はイオン交換樹
脂よりもタンパク質の回収率が高い。
The hydrophobic adsorption resin is preferably a nonpolar resin or an intermediate polar resin. Examples of the non-polar resin include a styrene-divinylbenzene resin and the like, and examples of the intermediate polar resin include an ester resin such as an acylated ester resin. As shown in the examples below,
These non-polar resins and intermediate polar resins have higher protein recovery than ion exchange resins.

【0011】本発明の分析方法は、タンパク質を含有す
る試料液を上記疎水性吸着樹脂を充填したカラムに通液
してタンパク質を上記樹脂に吸着させる。ここで、上記
樹脂に試料液を通液する前に、カラムのコンディショニ
ングを行なうと良い。コンディショニングにより、タン
パク質の吸着や不要な親水性物質の溶離を安定して行な
うことができる。コンディショニングは、例えばカラム
に少量の酸や水、あるいは緩衝液などを通液して行う。
In the analysis method of the present invention, a protein-containing sample solution is passed through a column filled with the hydrophobic adsorption resin to adsorb the protein to the resin. Here, the column is preferably conditioned before the sample solution is passed through the resin. Conditioning enables stable adsorption of proteins and elution of unnecessary hydrophilic substances. Conditioning is performed, for example, by passing a small amount of acid, water, buffer, or the like through the column.

【0012】具体的には、カラム内の樹脂に多量の金属
イオン等が残留している場合には、試料液を通液する前
に、カラムに希硫酸等を通液し、金属イオン等を希硫酸
等によって溶出除去する。また、カラム中に強酸性溶液
が残留している場合には、試料液を通液する前に、カラ
ムに水などを通液してカラムを洗浄し、内部の酸を除去
してpHを整える。なお、カラム内部がアルカリ性のと
きにはこれを緩和ないし中和する緩衝液や水を通液して
カラム内部を洗浄すれば良い。
Specifically, when a large amount of metal ions or the like remains in the resin in the column, dilute sulfuric acid or the like is passed through the column before passing the sample liquid to remove the metal ions or the like. Elute and remove with dilute sulfuric acid. If a strongly acidic solution remains in the column, pass water through the column to wash the column, remove the acid inside, and adjust the pH before passing the sample solution. . When the inside of the column is alkaline, the inside of the column may be washed by passing a buffer solution or water for relaxing or neutralizing the alkali.

【0013】また、試料液を通液してタンパク質を樹脂
に吸着させた後、このタンパク質を樹脂から溶出させる
際、必要に応じて洗浄を行う。例えば、タンパク質と共
に多量の金属イオンを含有する試料液をカラムに通液し
た後は、タンパク質の溶離に先立ち、カラムに希硫酸等
を通液して残留する金属イオンを除去し、さらにpHが
低すぎる場合は、水を流してカラム内の酸を除去し、p
Hを整える。その後、溶離液をカラムに通液して上記樹
脂に吸着したタンパク質を溶出させる。
After the protein is adsorbed on the resin by passing the sample solution through, the protein is eluted from the resin, if necessary, washing is performed. For example, after a sample solution containing a large amount of metal ions together with a protein is passed through the column, dilute sulfuric acid or the like is passed through the column to remove residual metal ions before the protein is eluted. If it is too high, pour water to remove the acid in the column.
Prepare H. Thereafter, the eluent is passed through the column to elute the protein adsorbed on the resin.

【0014】溶離液としては有機溶媒の水溶液を用いる
ことができる。具体的には、メタノール、エタノールな
どの低級アルコール、アセトニトリルなどの水溶液を使
用できる。有機溶媒の濃度は20〜50wt%が好まし
い。濃度が低すぎるとタンパク質の溶出が不十分であ
り、一方、濃度が高すぎるとカラム内のあるいは溶出し
たタンパク質が沈殿して、試薬との反応に支障をきた
す。
As the eluent, an aqueous solution of an organic solvent can be used. Specifically, lower alcohols such as methanol and ethanol, and aqueous solutions such as acetonitrile can be used. The concentration of the organic solvent is preferably 20 to 50% by weight. If the concentration is too low, the protein is insufficiently eluted, while if the concentration is too high, the protein in the column or eluted precipitates, which hinders the reaction with the reagent.

【0015】溶離したタンパク質を含有する溶出液に試
薬を添加して液中のタンパク質を定量分析する。分析法
としては、色素結合法、ビウレット法、蛍光光度法など
を利用することができる。ビウレット法はビウレット試
薬を添加してタンパク質と反応させ、その反応液の吸光
度に基づいてタンパク質を定量する方法である。蛍光光
度法はフルオレサミン試薬等を添加してタンパク質と反
応させ、その反応液の蛍光度からタンパク質を定量する
方法である。
[0015] A reagent is added to the eluate containing the eluted protein to quantitatively analyze the protein in the liquid. As the analysis method, a dye binding method, a biuret method, a fluorescence method, or the like can be used. The biuret method is a method in which a biuret reagent is added to react with a protein, and the protein is quantified based on the absorbance of the reaction solution. Fluorescence is a method in which a fluorescamine reagent or the like is added to react with a protein, and the protein is quantified from the fluorescence of the reaction solution.

【0016】このうち、ビシンコニン酸(BCA)を用い
た方法が微量のタンパク質を検出する場合に適してい
る。これはタンパク質による銅の還元・発色を利用した
方法であり、ビシンコニン酸を含む溶液(A液)と銅を含
む溶液(B液)を混合してなるビシンコニン酸試薬を用
い、タンパク質と反応させた後、その反応液の吸光度に
基づいてタンパク質の濃度を定量する方法である。この
方法は他の分析方法よりも高感度であるので、電解液や
メッキ液などに含まれる微量のタンパク質の定量に適す
る。また、試料液の反応と、その吸光度の測定により分
析を行うので連続流れ分析にも適する。
Among them, the method using bicinchoninic acid (BCA) is suitable for detecting a trace amount of protein. This is a method utilizing reduction and coloring of copper by protein, and reacted with protein using a bicinchoninic acid reagent obtained by mixing a solution containing bicinchoninic acid (solution A) and a solution containing copper (solution B). Thereafter, a method of quantifying the protein concentration based on the absorbance of the reaction solution. This method is more sensitive than other analysis methods, and thus is suitable for quantifying a trace amount of protein contained in an electrolytic solution, a plating solution, or the like. Further, since the analysis is performed by the reaction of the sample liquid and the measurement of the absorbance thereof, it is suitable for continuous flow analysis.

【0017】なお、上記疎水性樹脂によるタンパク質の
吸着は、タンパク質と樹脂の相互の疎水性作用による
が、タンパク質と共に疎水性部位を有する高分子化合物
が液中に存在すると、これがタンパク質と共に疎水性樹
脂に吸着されて溶出され、これがタンパク質を検出する
際の妨害要素になる虞があるので、このような場合には
タンパク質に特異的な検出法を選択し、あるいは溶離液
組成(種類・濃度)を選択すること等によって、この妨害
を排除することができる。
The protein adsorption by the hydrophobic resin is due to the mutual hydrophobic action of the protein and the resin. However, when a polymer compound having a hydrophobic site is present in the liquid together with the protein, this is combined with the protein by the hydrophobic resin. It may be eluted by being adsorbed on the surface, which may be a hindrance to protein detection.In such cases, select a protein-specific detection method or adjust the eluent composition (type / concentration). This interference can be eliminated by selection and the like.

【0018】本発明の上記分析方法は連続流れ分析(FI
分析)に適し、連続流れ分析に基づいて電解液ないしメ
ッキ液に含まれるタンパク質を定量することができる。
すなわち、試料液が管路を流れる間に、試薬の添加と反
応および分析が連続して行われる流れ分析方法におい
て、電解液ないしメッキ液を試料液として用い、この試
料液を疎水性吸着樹脂を充填したカラムに通液して液中
に含まれるタンパク質を上記樹脂に吸着させ、次いで、
該カラムに溶離液を流してタンパク質を溶出させ、該溶
出液が管路を流れる間に分析試薬を添加し反応させて検
出部に導き、タンパク質を定量分析する。
The analysis method of the present invention is a continuous flow analysis (FI
Analysis), and the protein contained in the electrolytic solution or the plating solution can be quantified based on the continuous flow analysis.
That is, in a flow analysis method in which addition, reaction, and analysis of a reagent are continuously performed while a sample solution flows through a pipeline, an electrolytic solution or a plating solution is used as a sample solution, and the sample solution is treated with a hydrophobic adsorption resin. Pass the liquid through the packed column to adsorb the protein contained in the liquid to the resin,
A protein is eluted by flowing an eluent through the column, and while the eluate flows through the conduit, an analytical reagent is added to cause a reaction to be led to a detection unit, where the protein is quantitatively analyzed.

【0019】上記流れ分析方法において、試料液を樹脂
充填カラムに導いて系外に通じる管路と、溶離液をこの
樹脂充填カラムに導いて試薬の添加部に通じる管路とを
交互に切り替えることにより、一定量の試料液と溶離液
とを交互に樹脂充填カラムに通液し、タンパク質の定量
を連続して行うことができる。
In the above-mentioned flow analysis method, a pipe line for leading the sample liquid to the resin-packed column and leading to the outside of the system and a pipe line for leading the eluent to the resin-packed column and leading to the reagent addition section are alternately switched. Thus, a fixed amount of the sample solution and the eluent are alternately passed through the resin-packed column, and the protein can be continuously quantified.

【0020】[0020]

【実施例】以下、本発明を実施例によって具体的に示
す。なお、本発明はこれらの例に限定されない。
EXAMPLES The present invention will be specifically described below with reference to examples. Note that the present invention is not limited to these examples.

【0021】実施例1 樹脂として表1に示す4種(疎水性分配吸着樹脂2種:
イオン交換樹脂2種)を用い、これら2gを各々内径8
mmのカラムに充填した。各カラムを予め0.1Mの硫酸
溶液で洗浄してコンディショニングを行なった後、ゼラ
チン200μgを含む疑似電解液(硫酸:1.5M、銅:40g/
l、ニッケル:20g/l)5mlを各カラムに付加した。試料液の
通液後、0.1Mの硫酸液10mlをカラムに流して残留
している金属イオンを除去し、さらに水20mlをカラム
に流して内部を洗浄し残留する酸を除去した。次いで、
50%のアセトニトリル水溶液20mlをカラムに通液
し、樹脂に吸着したタンパク質を溶出させた。得られた
溶出液20mlに水を加えて50mlとした。これを1ml分
取してビシンコニン酸試薬1mlを添加し、室温で2時間
放置して充分に反応を行なわせた。この反応液の吸光度
(波長562nm)を測定し、予め作成した検量線からゼラチ
ン濃度を求め、回収率を算出した。この結果を表1に示
した。表1から明らかなように、ゼラチンの回収率はイ
オン交換樹脂よりも無極性樹脂および中間極性樹脂が格
段に高い。このことから、液中の微量なタンパク質に対
して無極性樹脂および中間極性樹脂の吸着性能が特に優
れていることがわかる。
Example 1 As resins, four kinds of resins shown in Table 1 (two kinds of hydrophobic partition and adsorption resins:
(2 types of ion-exchange resins), and 2 g of each of these 2 g
mm column. After conditioning each column by washing it with a 0.1 M sulfuric acid solution in advance, a pseudo electrolyte containing 200 μg of gelatin (sulfuric acid: 1.5 M, copper: 40 g /
l, nickel: 20 g / l) was added to each column. After the sample solution was passed, 10 ml of a 0.1 M sulfuric acid solution was passed through the column to remove remaining metal ions, and 20 ml of water was further passed through the column to wash the inside to remove residual acid. Then
20 ml of a 50% aqueous solution of acetonitrile was passed through the column to elute the protein adsorbed on the resin. Water was added to 20 ml of the obtained eluate to make up to 50 ml. 1 ml of this was taken, 1 ml of bicinchoninic acid reagent was added, and the mixture was allowed to stand at room temperature for 2 hours to allow a sufficient reaction. Absorbance of this reaction solution
(Wavelength: 562 nm), the gelatin concentration was determined from a calibration curve created in advance, and the recovery was calculated. The results are shown in Table 1. As is clear from Table 1, the recovery rate of gelatin is much higher for the nonpolar resin and the intermediate polar resin than for the ion exchange resin. This indicates that the adsorption performance of the nonpolar resin and the intermediate polar resin is particularly excellent with respect to a trace amount of protein in the liquid.

【0022】[0022]

【表1】 [Table 1]

【0023】実施例2 実施例1の疎水性樹脂2種を各々充填したカラムを用
い、これにゼラチン5mgを含む1.5M硫酸液1mlを付
加してゼラチンを吸着させた。次いで、溶離液として5
0%メタノール、50%エタノール、50%アセトニト
リル、100%メタノールの4種を用い、実施例1と同
様の操作によりゼラチンを溶出させ、その回収率を求め
た。この結果を表2に示した。表2に示すように、無極
性樹脂(SM-2)および中間極性樹脂(XAD-7)を用いた場合
には、50%アセトニトリルの溶出効果が最も良く、次
いで50%メタノールおよび50%エタノールの溶出効
果が高い。一方、100%メタノールでは沈殿が生じて
測定できなかった。以上の結果から、溶離液としては5
0%アセトニトリルが好ましい。
Example 2 Using a column filled with two types of hydrophobic resins of Example 1, 1 ml of a 1.5 M sulfuric acid solution containing 5 mg of gelatin was added thereto to adsorb gelatin. Next, 5
Using four kinds of 0% methanol, 50% ethanol, 50% acetonitrile, and 100% methanol, gelatin was eluted by the same operation as in Example 1, and the recovery rate was determined. The results are shown in Table 2. As shown in Table 2, when the nonpolar resin (SM-2) and the intermediate polar resin (XAD-7) were used, the elution effect of 50% acetonitrile was the best, followed by 50% methanol and 50% ethanol. High dissolution effect. On the other hand, measurement was not possible with 100% methanol due to precipitation. From the above results, the eluent was 5
0% acetonitrile is preferred.

【0024】[0024]

【表2】 [Table 2]

【0025】実施例3 実施例1で用いた無極性樹脂(SM-2)充填カラムを、予め
0.1Mの硫酸液でコンディショニングした後、ゼラチ
ンを各々0mg、12.5mg、25mg含む疑似銅電解液
(硫酸:1.5M、銅:40g/l、ニッケル:20g/l)10mlをカラム
に付加した。次いで、実施例1と同様にして樹脂に吸着
したゼラチンを溶出させ、得られた溶出液をメスフラス
コに回収し、ビウレット試薬15mlを添加した後、水で
50ml定容とした。これを室温(25℃)で30分放置した
後、吸光度(波長540nm)を測定し、予め作成した検量線
からゼラチン濃度を求めて回収率を算出した。結果を表
3に示した。表3から明らかなように、ゼラチンの回収
率はいずれの濃度においても100%に近く、検量線の
相関係数は0.9992であり、信頼性が高い。
Example 3 A column packed with the nonpolar resin (SM-2) used in Example 1 was conditioned in advance with a 0.1 M sulfuric acid solution, and then a pseudo copper electrolytic solution containing 0 mg, 12.5 mg and 25 mg of gelatin respectively. 10 ml of a liquid (sulfuric acid: 1.5 M, copper: 40 g / l, nickel: 20 g / l) was added to the column. Next, the gelatin adsorbed on the resin was eluted in the same manner as in Example 1, and the obtained eluate was collected in a volumetric flask. After adding 15 ml of biuret reagent, the volume was adjusted to 50 ml with water. After leaving this at room temperature (25 ° C.) for 30 minutes, the absorbance (wavelength 540 nm) was measured, and the gelatin concentration was determined from a previously prepared calibration curve to calculate the recovery rate. The results are shown in Table 3. As is clear from Table 3, the recovery of gelatin was close to 100% at any concentration, and the correlation coefficient of the calibration curve was 0.99992, indicating high reliability.

【0026】[0026]

【表3】 [Table 3]

【0027】実施例4 無極性樹脂(SM-2)を充填したカラム(内径8mm)を用い、
予め0.1Mの硫酸液でコンディショニングした後、所
定量のゼラチンを含む銅電解液(硫酸:1.5M、銅:40g/
l、ニッケル:20g/l)50mlを各カラムに付加した。試料液
の通液後、0.1Mの硫酸液10mlを通液して残留して
いる金属イオンを除去し、次いで水20mlを流して残留
する酸を洗浄した。これに50%のアセトニトリル水溶
液20mlを通液し、この溶出液に水を加えて50mlと
し、1mlを分取してビシンコニン酸試薬1mlを添加し、
室温で2時間放置して充分に反応を行なわせた。この反
応液の吸光度(波長562nm)を測定し、予め作成した検量
線からゼラチン濃度を求めた。一方、上記電解液に50
0μgの膠を添加したものについて同様に操作を行い、
タンパク質を吸着・溶出させて、その回収率を求めた。
ゼラチンおよび膠について測定を各々2回行い、これら
の結果を表4に示した。表4に示すように、電解液のゼ
ラチン濃度は38ppm前後であり、この電解液にさらに
膠を500μg添加したものについて、検出したタンパ
ク質濃度はゼラチンと膠の合計量に見合い、そのゼラチ
ン回収率は90%程度であり、ゼラチンと膠を含むもの
についても精度よい定量ができた。なお、本例のゼラチ
ンの定量下限は試料濃度換算で10ppm程度であった。
Example 4 Using a column (inner diameter 8 mm) filled with a nonpolar resin (SM-2),
After conditioning with a 0.1 M sulfuric acid solution in advance, a copper electrolyte containing a predetermined amount of gelatin (sulfuric acid: 1.5 M, copper: 40 g /
l, nickel: 20 g / l) 50 ml was added to each column. After the sample solution was passed, 10 ml of a 0.1 M sulfuric acid solution was passed to remove the remaining metal ions, and then 20 ml of water was flown to wash the remaining acid. 20 ml of a 50% aqueous solution of acetonitrile was passed through this, water was added to the eluate to make 50 ml, 1 ml was collected, and 1 ml of bicinchoninic acid reagent was added.
The reaction was allowed to take place at room temperature for 2 hours. The absorbance (wavelength: 562 nm) of this reaction solution was measured, and the gelatin concentration was determined from a previously prepared calibration curve. On the other hand, 50
The same operation was performed for the sample to which 0 μg of glue was added,
The protein was adsorbed and eluted, and the recovery rate was determined.
The measurement was performed twice for gelatin and glue, and the results are shown in Table 4. As shown in Table 4, the concentration of gelatin in the electrolytic solution was about 38 ppm, and when 500 μg of glue was further added to the electrolytic solution, the detected protein concentration was proportional to the total amount of gelatin and glue, and the recovery rate of gelatin was It was about 90%, and accurate determination was possible for those containing gelatin and glue. The lower limit of quantification of gelatin in this example was about 10 ppm in terms of sample concentration.

【0028】[0028]

【表4】 [Table 4]

【0029】実施例5 試料液を流す管路に、無極性樹脂(SM-2)を充填したカラ
ムと試薬の添加部を設け、さらに該管路をコイル状に形
成した反応部を経て吸光光度計に通じる測定系を形成し
た流れ分析において、希硫酸(0.05M)をキャリアー液と
し、ゼラチン25μg/ml相当を添加した銅電解液(硫
酸:1.5M、銅:40g/l、ニッケル:20g/l)1mlを管路に流して
上記カラムに通液した。次いで、キャリアー液を約4ml
流した後に、該カラムに40%アセトニトリル水溶液を
通液し、この溶出液が管路を流れる間に該溶出液にビシ
ンコシン酸試薬0.5ml/minの流速で混合させて、該管
路を通じて吸光光度計に導き、反応液の吸光度(波長562
nm)を測定した。この吸光度に基づくゼラチンの濃度は
24μg/mlであり添加量とほぼ一致し、100%に近い
測定精度であった。
Example 5 A column filled with a nonpolar resin (SM-2) and a reagent addition section were provided in a pipe through which a sample solution flows, and the pipe was formed into a coil-shaped reaction section, and the absorption was measured. In a flow analysis in which a measurement system leading to a meter was formed, dilute sulfuric acid (0.05 M) was used as a carrier liquid, and a copper electrolyte solution (sulfuric acid: 1.5 M, copper: 40 g / l, nickel: 20 g / ml) containing 25 μg / ml of gelatin was added. l) 1 ml was passed through a pipe and passed through the column. Then, about 4 ml of carrier liquid
After the flow, a 40% aqueous solution of acetonitrile was passed through the column, and the eluate was mixed with the eluate at a flow rate of 0.5 ml / min of the bicinchosic acid reagent while flowing through the line. Guide to the photometer and measure the absorbance of the reaction solution (wavelength 562
nm). The concentration of gelatin based on this absorbance was 24 μg / ml, which almost coincided with the amount added, and the measurement accuracy was close to 100%.

【0030】[0030]

【表5】 [Table 5]

【0031】[0031]

【発明の効果】本発明の方法によれば、電解液やメッキ
液などの強酸性溶液中に含まれるゼラチンや膠などのタ
ンパク質濃度を容易にかつ精度良く定量することができ
る。また、本発明の分析方法は連続流れ分析に適し、電
解液やメッキ液に含まれるタンパク質濃度を流れ分析に
より連続的に定量することができる。
According to the method of the present invention, the concentration of proteins such as gelatin and glue contained in a strongly acidic solution such as an electrolytic solution or a plating solution can be easily and accurately determined. Further, the analysis method of the present invention is suitable for continuous flow analysis, and the concentration of protein contained in an electrolytic solution or a plating solution can be continuously quantified by flow analysis.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹谷 実 埼玉県大宮市北袋町1丁目297番地 三菱 マテリアル株式会社総合研究所内 Fターム(参考) 2G058 AA01 BA08 BA10 DA00 EA14 GA01 HA00  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Minoru Takeya 1-297 Kitabukuro-cho, Omiya-shi, Saitama F-term in Mitsubishi Materials Corporation General Research Laboratory 2G058 AA01 BA08 BA10 DA00 EA14 GA01 HA00

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 疎水性吸着樹脂を充填したカラムに、タ
ンパク質を含む試料液を通液して該樹脂にタンパク質を
吸着させ、次いで該カラムに溶離液を流してタンパク質
を溶出させ、該溶出液に分析試薬を添加してタンパク質
を定量分析することを特徴とするタンパク質の分析方
法。
1. A sample solution containing a protein is passed through a column filled with a hydrophobic adsorption resin to adsorb the protein to the resin, and then an eluent is passed through the column to elute the protein. A method for analyzing a protein, comprising quantitatively analyzing the protein by adding an analysis reagent to the protein.
【請求項2】 疎水性吸着樹脂が無極性樹脂または中間
極性樹脂である請求項1に記載する分析方法。
2. The method according to claim 1, wherein the hydrophobic adsorption resin is a non-polar resin or an intermediate polar resin.
【請求項3】 試料液がpH1以下の強酸性であり、耐
酸性の疎水性吸着樹脂を用いる請求項1または2に記載
する分析方法。
3. The analysis method according to claim 1, wherein the sample solution is a strongly acidic solution having a pH of 1 or less and uses an acid-resistant hydrophobic adsorption resin.
【請求項4】 試料液が膠ないしゼラチンを含む電解液
またはメッキ液である請求項1、2または3に記載する
分析方法。
4. The analysis method according to claim 1, wherein the sample solution is an electrolytic solution or a plating solution containing glue or gelatin.
【請求項5】 試料液が管路を流れる間に、試薬の添加
と反応および分析が連続して行われる流れ分析方法に基
づいた電解液ないしメッキ液のタンパク質定量方法であ
って、これらの試料液を疎水性吸着樹脂を充填したカラ
ムに通液して液中に含まれるタンパク質を上記樹脂に吸
着させ、次いで、該カラムに溶離液を流してタンパク質
を溶出させ、該溶出液が管路を流れる間に分析試薬を添
加し反応させて検出部に導き、タンパク質を定量分析す
る請求項1〜4のいずれかに記載する分析方法。
5. A method for quantifying a protein in an electrolytic solution or a plating solution based on a flow analysis method in which addition of a reagent, reaction and analysis are continuously performed while a sample solution flows through a pipe line. The liquid is passed through a column filled with a hydrophobic adsorption resin to adsorb the protein contained in the liquid onto the resin, and then the eluent is passed through the column to elute the protein. The analysis method according to any one of claims 1 to 4, wherein an analysis reagent is added during the flow, the reaction is performed, the reaction is led to the detection unit, and the protein is quantitatively analyzed.
【請求項6】 請求項5の流れ分析方法において、管路
を切り替えることにより一定量の試料液と溶離液とを交
互に樹脂充填カラムに通液してタンパク質の定量を連続
的に行う分析方法。
6. The flow analysis method according to claim 5, wherein a fixed amount of a sample solution and an eluent are alternately passed through a resin-packed column by switching a pipe line to continuously perform protein quantification. .
JP34834998A 1998-12-08 1998-12-08 Protein analysis method Expired - Lifetime JP3414287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34834998A JP3414287B2 (en) 1998-12-08 1998-12-08 Protein analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34834998A JP3414287B2 (en) 1998-12-08 1998-12-08 Protein analysis method

Publications (2)

Publication Number Publication Date
JP2000171451A true JP2000171451A (en) 2000-06-23
JP3414287B2 JP3414287B2 (en) 2003-06-09

Family

ID=18396434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34834998A Expired - Lifetime JP3414287B2 (en) 1998-12-08 1998-12-08 Protein analysis method

Country Status (1)

Country Link
JP (1) JP3414287B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6668624B2 (en) * 2000-03-03 2003-12-30 Mitsubishi Materials Corporation Method and apparatus for analyzing organic macromolecular component and application thereof
WO2021100474A1 (en) * 2019-11-22 2021-05-27 株式会社島津製作所 Pump unit and chromatograph
CN114746750B (en) * 2019-11-22 2024-04-19 株式会社岛津制作所 Pump unit and chromatograph

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6668624B2 (en) * 2000-03-03 2003-12-30 Mitsubishi Materials Corporation Method and apparatus for analyzing organic macromolecular component and application thereof
US6668623B2 (en) * 2000-03-03 2003-12-30 Mitsubishi Materials Corporation Method and apparatus for analyzing organic macromolecular component and application thereof
WO2021100474A1 (en) * 2019-11-22 2021-05-27 株式会社島津製作所 Pump unit and chromatograph
CN114746750A (en) * 2019-11-22 2022-07-12 株式会社岛津制作所 Pump unit and chromatograph
JP7288630B2 (en) 2019-11-22 2023-06-08 株式会社島津製作所 Pump unit and chromatograph
CN114746750B (en) * 2019-11-22 2024-04-19 株式会社岛津制作所 Pump unit and chromatograph

Also Published As

Publication number Publication date
JP3414287B2 (en) 2003-06-09

Similar Documents

Publication Publication Date Title
Séby et al. Chromium speciation by hyphenation of high-performance liquid chromatography to inductively coupled plasma-mass spectrometry—study of the influence of interfering ions
JPH0481659A (en) Analysis of fluid using suspension of granular reagent
JP5014251B2 (en) Column used for hexavalent chromium analysis
Chen et al. Simultaneous determination of Cr (III) and Cr (VI) in tannery wastewater using low pressure ion chromatography combined with flow injection spectrophotometry
CN110850018A (en) Method for analyzing and detecting four sulfonamides antibiotics in environmental water sample
Pyrzyńska et al. Flow-injection speciation of aluminium
Michalski Application of ion chromatography in clinical studies and pharmaceutical industry
US11226274B2 (en) Method of analyzing using analyte concentrator system having eluent generation module
do Nascimento Electrothermal atomic absorption spectrometric determination of lead, cadmium, copper and zinc in high-salt content samples after simultaneous separation on polyethylene powder impregnated with 1-(2-pyridylazo)-2-naphthol: application to the analysis of hemodialysis fluids
Himeno et al. Simultaneous determination of chromium (VI) and chromium (III) by capillary electrophoresis
CN111189956B (en) H 2 O 2 Method for detecting content of nitrite in sodium chloride sample by using oxidized ion chromatography
US20070077662A1 (en) APPARATUS AND METHOD FOR MEASURING 8-OHdG
Keil et al. Automated matrix separation and preconcentration for the trace level determination of metal impurities in ultrapure inorganic salts by high-resolution ICP-MS
JP3414287B2 (en) Protein analysis method
CN105004819B (en) A kind of method of hydrogen cyanide content in measure cigarette mainstream flue gas
Padarauskas et al. Ion-pair chromatographic determination of chromium (VI)
US6668623B2 (en) Method and apparatus for analyzing organic macromolecular component and application thereof
JP4641242B2 (en) Sample analysis pretreatment method, sample analysis pretreatment pH indicator, and sample analysis pretreatment kit
Lockridge et al. Potentiometric detection of halides and pseudohalides in anion chromatography
JP3414288B2 (en) Protein analyzer
JP2002296260A (en) Method and device for analyzing organic polymer component, and application thereof
JP3414289B2 (en) Protein analyzer
JP3413654B2 (en) Aluminum measurement method
Alberti et al. Determination of the total concentration and speciation of metal ions in river, estuarine and seawater samples
CN110907572B (en) Device and method for measuring 8-isomeric prostaglandin F2 alpha in urine

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 10

EXPY Cancellation because of completion of term