JP2000171415A - Method and apparatus for measuring life time of semiconductor sample - Google Patents

Method and apparatus for measuring life time of semiconductor sample

Info

Publication number
JP2000171415A
JP2000171415A JP34593998A JP34593998A JP2000171415A JP 2000171415 A JP2000171415 A JP 2000171415A JP 34593998 A JP34593998 A JP 34593998A JP 34593998 A JP34593998 A JP 34593998A JP 2000171415 A JP2000171415 A JP 2000171415A
Authority
JP
Japan
Prior art keywords
semiconductor sample
lifetime
measuring
light
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34593998A
Other languages
Japanese (ja)
Inventor
Naoyuki Yoshida
尚幸 吉田
Hiroyuki Takamatsu
弘行 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP34593998A priority Critical patent/JP2000171415A/en
Publication of JP2000171415A publication Critical patent/JP2000171415A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide the subject method and apparatus for preventing the introduction of a new contaminant into a semiconductor sample and capable of rapidly and accurately measuring the life time of the interior of the semiconductor sample. SOLUTION: The correlation of a reduction ratio α of a measured life time due to surface re-bonding, which is obtained as the relation between an interior life time τm obtained by a photoconductive attenuation method in a state such that a surface re-bonding suppressing treatment such as oxide film treatment is preliminarily applied to a semiconductor sample and a life time measured value τ1 obtained in a treatment unapplied state, with an attenuation time τ2 of light with a specific wavelength obtained by a PL(photoluminescence) method is preliminarily calculated (S1). In an actual measurement, a life time τ1 due to the photoconductive attenuation method (S2-S5) and an attenuation time τ2 due to the PL method (S2→S6, S7) are measured in a state such that surface re-bonding suppressing treatment is not applied to the semiconductor sample and, on the basis of τ1, τ2 and the correlation, the life time of the interior of the semiconductor sample τm is calculated (S8).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,半導体試料内部の
ライフタイムを測定する半導体試料のライフタイム測定
方法及びその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for measuring the lifetime of a semiconductor sample for measuring the lifetime inside a semiconductor sample.

【0002】[0002]

【従来の技術】半導体試料中に注入された電子・正孔
(以下キャリアという)が,消滅するまでのライフタイ
ムを測定する方法として,従来より光導電減衰法が幅広
く用いられている。この光導電減衰法では,半導体試料
にマイクロ波を照射しておき,同時にレーザ光をパルス
状に照射する。この照射されるレーザ光のフォトン・エ
ネルギーを試料中のバンドギャップ以上にしておくと,
試料中にキャリアが発生する。発生したキャリアは,半
導体中の欠陥や不純物がバンドギャップ中に形成される
エネルギー準位の位置を介して再結合し,その数が徐々
に減少していく。このとき,マイクロ波の反射波若しく
は透過波の強度がキャリアの量に伴って変化する。従っ
て,マイクロ波の反射波若しくは透過波の強度を測定
し,その強度が最大の位置からある一定の強度になるま
での時間をキャリアが半導体試料中に存在できる時間,
即ちライフタイムとして求める。この光導電減衰法で求
められるライフタイムは,通常次のような式により表す
ことができる。
2. Description of the Related Art A photoconductive decay method has been widely used as a method of measuring a lifetime until electrons and holes (hereinafter, referred to as carriers) injected into a semiconductor sample disappear. In this photoconductive decay method, a semiconductor sample is irradiated with microwaves, and at the same time, laser light is irradiated in a pulsed manner. If the photon energy of the irradiated laser beam is set to be larger than the band gap in the sample,
Carriers are generated in the sample. The generated carriers are recombined through the positions of energy levels at which defects and impurities in the semiconductor are formed in the band gap, and the number thereof gradually decreases. At this time, the intensity of the reflected or transmitted wave of the microwave changes with the amount of the carrier. Therefore, the intensity of the reflected or transmitted wave of the microwave is measured, and the time required for the intensity to reach a certain intensity from the maximum position is the time during which the carrier can exist in the semiconductor sample,
That is, it is obtained as a lifetime. The lifetime obtained by the photoconductive decay method can be generally expressed by the following equation.

【数1】 ここで,τ1 は測定によって求まるライフタイム,τm
は半導体試料内部のライフタイム,τs は半導体試料表
面のライフタイムである。
(Equation 1) Here, τ 1 is the lifetime determined by measurement, τ m
Is the lifetime inside the semiconductor sample, and τ s is the lifetime on the surface of the semiconductor sample.

【0003】通常,半導体試料基盤において,その表面
には内部よりも多くの欠陥が存在する。従って表面で多
くのキャリアが短い時間中に再結合するいわゆる表面再
結合が支配的となる。そのため,測定されるライフタイ
ムτ1 は,本来求めようとする半導体試料内部のライフ
タイムτm とは異なる。従って,上記光導電減衰法によ
って半導体試料内部のライフタイムτm を求めるために
は,何らかの方法で上記表面再結合を抑制する必要があ
る。そこで,上記表面再結合を抑制する方法としては,
例えば半導体試料表面に酸化膜を生成して測定する方法
や,ヨウ素を有機溶液に溶かしたものに半導体試料を浸
した状態で測定する方法(ケミカル・パッシベーション
法,以下CP法という)などが用いられている。また,
上記通常のCP法においては表面再結合が完全には抑制
できないため,励起光と同時に励起光とは別の定常的で
かつ所定の光強度を有するバイアス光を半導体試料表面
に照射することにより,表面再結合を更に抑制し,表面
再結合の影響を受けることなく高精度に半導体試料内部
のライフタイムを測定しうる方法が,特開平8−335
618号公報に提案されている。
In general, a semiconductor sample substrate has more defects on its surface than inside. Therefore, so-called surface recombination in which many carriers recombine on the surface in a short time becomes dominant. Therefore, the measured lifetime τ 1 is different from the lifetime τ m inside the semiconductor sample originally sought. Therefore, in order to determine the lifetime τ m inside the semiconductor sample by the photoconductive decay method, it is necessary to suppress the surface recombination by some method. Therefore, as a method of suppressing the surface recombination,
For example, a method in which an oxide film is formed on the surface of a semiconductor sample and measurement is performed, and a method in which a semiconductor sample is immersed in a solution of iodine in an organic solution (chemical passivation method, hereinafter referred to as a CP method) are used. ing. Also,
Since the surface recombination cannot be completely suppressed in the above-described ordinary CP method, the semiconductor sample surface is irradiated with a bias light having a constant and predetermined light intensity different from the excitation light simultaneously with the excitation light. Japanese Patent Application Laid-Open No. 8-335 discloses a method capable of further suppressing surface recombination and measuring the lifetime inside a semiconductor sample with high accuracy without being affected by surface recombination.
No. 618 publication.

【0004】[0004]

【発明が解決しようとする課題】しかしながら,上記の
ような表面に酸化膜を生成する方法やCP法によって表
面再結合を抑制する処理を行う場合には,酸化膜生成の
ための熱酸化処理や,電解液でのパッキング,電解溶液
への収容などの前処理が必要となるため,測定に多大な
時間と手間を必要とするという問題点があった。また,
上記のような前処理において半導体試料に新たな汚染が
導入される可能性もあった。本発明は上記事情に鑑みて
なされたものであり,その目的とするところは,半導体
試料への新たな汚染の導入を防止しつつ,半導体試料内
部のライフタイムを迅速且つ正確に測定することが可能
な半導体試料のライフタイム測定方法及びその装置を提
供することである。
However, when the above-described method of forming an oxide film on the surface or the process of suppressing surface recombination by the CP method are performed, a thermal oxidation process for forming an oxide film, In addition, since a pretreatment such as packing with an electrolytic solution and housing in an electrolytic solution is required, there is a problem that a large amount of time and labor is required for measurement. Also,
In the pretreatment as described above, new contamination may be introduced into the semiconductor sample. The present invention has been made in view of the above circumstances, and an object of the present invention is to quickly and accurately measure the lifetime of a semiconductor sample while preventing new contamination from being introduced into the semiconductor sample. It is an object of the present invention to provide a method and apparatus for measuring the lifetime of a semiconductor sample.

【0005】[0005]

【課題を解決するための手段】上述したように,酸化膜
処理などを行うことなく光導電減衰法を用いたライフタ
イム測定では,表面再結合による影響を大きく受けたラ
イフタイムしか測定できない。しかしながら,同時に表
面再結合による影響がどの程度であるかを測定すること
ができれば,それら2つの測定値と内部ライフタイムと
の関係を予め求めておくことで,内部ライフタイムを求
めることが可能である。ここで,表面再結合の情報を求
める方法として,例えば特開平8−139146号公報
に提案されているフォトルミネッセンス法(以下,PL
法という)が知られている。これは,励起光を半導体試
料表面に照射して表面近傍にキャリアを発生させ,この
キャリアが再結合する際に生ずる光(フォトルミネッセ
ンス)のうち,バンド端発光と呼ばれる室温での波長が
約1.15μmの光(特定波長の光)の強度を検出し,
この減衰時間に基づいて半導体試料表面におけるライフ
タイムを評価するものである。このPL法を用いれば,
上記光導電減衰法と同じように半導体試料に特別な処理
を施すことなく表面再結合による影響を測定することが
できる。上記光導電減衰法とPL法とを用いれば,内部
ライフタイム,上記光導電減衰法による測定ライフタイ
ム,及び上記PL法による減衰時間の関係を予め求めて
おくことで,実際の測定時には上記光導電減衰法とPL
法による測定を行ってその測定値を上記関係に当てはめ
ることで,実際の測定時に半導体試料に対して特別な処
理等を施すことなく内部ライフタイムを求めることが可
能となる。
As described above, the lifetime measurement using the photoconductive decay method without performing an oxide film treatment or the like can measure only the lifetime greatly affected by surface recombination. However, if the effect of surface recombination can be measured at the same time, it is possible to obtain the internal lifetime by obtaining the relationship between these two measured values and the internal lifetime in advance. is there. Here, as a method for obtaining information on surface recombination, for example, a photoluminescence method (hereinafter, referred to as PL) proposed in Japanese Patent Application Laid-Open No. 8-139146 has been proposed.
Is known). This is because the excitation light irradiates the surface of the semiconductor sample to generate carriers near the surface and the light (photoluminescence) generated when the carriers recombine has a wavelength at room temperature called band edge emission of about 1. Detects the intensity of 15 μm light (light of a specific wavelength)
The lifetime on the surface of the semiconductor sample is evaluated based on the decay time. Using this PL method,
As in the photoconductive decay method, the effect of surface recombination can be measured without subjecting the semiconductor sample to any special treatment. If the photoconductive decay method and the PL method are used, the relationship between the internal lifetime, the measurement lifetime by the photoconductive decay method, and the decay time by the PL method is determined in advance, so that the light Conduction decay method and PL
By performing measurement by the method and applying the measured value to the above relationship, the internal lifetime can be obtained without performing any special processing or the like on the semiconductor sample at the time of actual measurement.

【0006】そこで,上記目的を達成するために本発明
の方法は,半導体試料表面の所定領域にマイクロ波を照
射すると共に励起光を照射し,上記マイクロ波の上記半
導体試料による透過波若しくは反射波の時間変化に基づ
いて上記半導体試料のライフタイムを測定する光導電減
衰法を用いて,上記半導体試料内部のライフタイムを測
定する半導体試料のライフタイム測定方法において,上
記半導体試料に表面再結合抑制処理を施さない状態で上
記光導電減衰法によりライフタイムを測定する第1の測
定工程と,半導体試料表面の所定領域に励起光を照射
し,該励起光によって半導体試料表面に発生する光から
特定波長の光のみを抽出すると共にその光の減衰時間を
検出する第2の測定工程と,予め求められた,上記半導
体試料に表面再結合抑制処理を施した状態で上記光導電
減衰法により得られたライフタイム測定値と上記処理を
施さない状態で得られたライフタイム測定値との関係と
して得られる表面再結合による測定ライフタイムの減少
割合と,励起光の照射により上記半導体試料表面で発生
する光のうちの特定波長の光の減衰時間との相関関係
と,上記第1,第2の測定工程でそれぞれ得られた測定
値とに基づいて,半導体試料内部のライフタイムを算出
する内部ライフタイム算出工程とを具備してなることを
特徴とする半導体試料のライフタイム測定方法として構
成されている。上記表面再結合抑制処理としては,例え
ば上記半導体試料の表面への酸化膜処理や,電解質を含
む溶液を用いて上記半導体試料の表面をパッシベーショ
ン状態にする処理などを用いることができる。また,上
記第1,第2の測定工程を同一の励起光を用いて並行し
て行うようにすれば,2つの測定方法を併用することに
よる測定時間の増大という問題は生じない。
Therefore, in order to achieve the above object, a method of the present invention is to irradiate a predetermined region of a semiconductor sample surface with a microwave and irradiate an excitation light, and to transmit a reflected wave or a reflected wave of the microwave by the semiconductor sample. A method of measuring a lifetime of the semiconductor sample based on a time change of the semiconductor sample by using a photoconductive decay method to measure a lifetime of the inside of the semiconductor sample. A first measuring step of measuring the lifetime by the photoconductive decay method without treatment, and irradiating a predetermined region of the semiconductor sample surface with excitation light, and specifying the light generated on the semiconductor sample surface by the excitation light. A second measurement step of extracting only light having a wavelength and detecting the decay time of the light; Reduction of measurement lifetime due to surface recombination obtained as a relationship between the lifetime measurement value obtained by the above-described photoconductive decay method in a state where the surface treatment has been performed and the lifetime measurement value obtained in the state without the above-mentioned treatment The correlation between the ratio and the decay time of light of a specific wavelength among the light generated on the surface of the semiconductor sample by irradiation with the excitation light, and the measured values obtained in the first and second measurement steps, respectively. An internal lifetime calculation step of calculating a lifetime inside the semiconductor sample based on the method. As the surface recombination suppression treatment, for example, an oxide film treatment on the surface of the semiconductor sample, a treatment for making the surface of the semiconductor sample passivated using a solution containing an electrolyte, or the like can be used. In addition, if the first and second measurement steps are performed in parallel using the same excitation light, there is no problem that the measurement time is increased by using the two measurement methods together.

【0007】また,上記目的を達成するために本発明の
装置は,半導体試料表面の所定領域にマイクロ波を照射
すると共に励起光を照射し,上記マイクロ波の上記半導
体試料による透過波若しくは反射波の時間変化に基づい
て上記半導体試料のライフタイムを測定する光導電減衰
法を用いて,上記半導体試料内部のライフタイムを測定
する半導体試料のライフタイム測定装置において,予
め,上記半導体試料に表面再結合抑制処理を施した状態
で上記光導電減衰法により得られたライフタイム測定値
と上記処理を施さない状態で得られたライフタイム測定
値との関係として得られる表面再結合による測定ライフ
タイムの減少割合と,励起光の照射により上記半導体試
料表面で発生する光のうちの特定波長の光の減衰時間と
の相関関係を記憶する記憶手段と,上記半導体試料に表
面再結合抑制処理を施さない状態で上記光導電減衰法に
よりライフタイムを測定する第1の測定手段と,半導体
試料表面の所定領域に励起光を照射し,該励起光によっ
て半導体試料表面に発生する光から特定波長の光のみを
抽出すると共にその光の減衰時間を検出する第2の測定
手段と,上記記憶手段に予め記憶された上記相関関係
と,上記第1,第2の測定手段でそれぞれ得られた測定
値とに基づいて,半導体試料内部のライフタイムを算出
する内部ライフタイム算出手段とを具備してなることを
特徴とする半導体試料のライフタイム測定装置として構
成されている。
In order to achieve the above object, an apparatus according to the present invention irradiates a predetermined area on a surface of a semiconductor sample with microwaves and irradiates excitation light, and transmits or reflects the microwaves through the semiconductor sample. In a semiconductor sample lifetime measuring apparatus for measuring the lifetime inside the semiconductor sample by using the photoconductive decay method for measuring the lifetime of the semiconductor sample based on the time change of the surface of the semiconductor sample, the surface of the semiconductor sample is re-equipped in advance. Of the measured lifetime by surface recombination obtained as a relationship between the lifetime measured value obtained by the photoconductive decay method and the lifetime measured value obtained without performing the above-described process in a state where the coupling suppression process is performed. The correlation between the decrease rate and the decay time of light of a specific wavelength among the light generated on the surface of the semiconductor sample by irradiation with the excitation light is stored. Storage means, first measurement means for measuring the lifetime by the photoconductive decay method without subjecting the semiconductor sample to surface recombination suppression treatment, and irradiating a predetermined region of the semiconductor sample surface with excitation light; A second measuring means for extracting only light of a specific wavelength from light generated on the surface of the semiconductor sample by the excitation light and detecting a decay time of the light; the correlation previously stored in the storage means; An internal lifetime calculator for calculating a lifetime inside the semiconductor sample based on the measured values obtained by the first and second measuring means, respectively. It is configured as a device.

【0008】[0008]

【発明の実施の形態】以下,添付図面を参照して本発明
の実施の形態及び実施例につき説明し,本発明の理解に
供する。尚,以下の実施の形態及び実施例は,本発明を
具体化した一例であって,本発明の技術的範囲を限定す
る性格のものではない。ここに,図1は本発明の実施の
形態に係るライフタイム測定方法による処理手順を示す
フローチャート,図2は図1におけるS1の手順の詳細
フローチャート,図3は本発明の実施の形態に係るライ
フタイム測定装置Zの主として光導電減衰法に関する部
分の概略構成を示す模式図,図4は図3のA部詳細図で
あり,主としてPL法に関する部分の概略構成を示す模
式図である。本実施の形態に係る半導体試料のライフタ
イム測定装置Zは,大きく分けて2つの部分から構成さ
れている。1つは図3に示す構成であり,これは主に上
記従来の光導電減衰法を用いるための構成である。もう
1つは図3A部の詳細図である図4に示す構成であり,
これは主に上記PL法を用いるための構成である。
Embodiments and examples of the present invention will be described below with reference to the accompanying drawings to provide an understanding of the present invention. The following embodiments and examples are mere examples embodying the present invention, and do not limit the technical scope of the present invention. Here, FIG. 1 is a flowchart showing a processing procedure according to the lifetime measuring method according to the embodiment of the present invention, FIG. 2 is a detailed flowchart of the procedure of S1 in FIG. 1, and FIG. FIG. 4 is a schematic diagram showing a schematic configuration of a portion mainly related to the photoconductive decay method of the time measuring device Z, and FIG. 4 is a detailed view of a portion A in FIG. 3 and is a schematic diagram mainly showing a schematic configuration of a portion mainly related to the PL method. The semiconductor sample lifetime measuring apparatus Z according to the present embodiment is roughly composed of two parts. One is a configuration shown in FIG. 3, which is mainly for using the above-described conventional photoconductive attenuation method. The other is the configuration shown in FIG. 4, which is a detailed view of the part A in FIG.
This is a configuration mainly for using the PL method.

【0009】図3に示すように,マイクロ波発振器1よ
り発振されたマイクロ波送信波22は,減衰器2,サー
キュレータ3を通り,アンテナ4からステージ21上に
載置された半導体試料20に照射される。また,上記半
導体試料20上の上記マイクロ波22が照射される領域
には,パルス発振する短波長レーザ光源7より発振され
たパルスレーザ光23(励起光)が照射され,キャリア
が注入される。半導体試料20により反射した上記マイ
クロ波22の反射波24は,アンテナ4,サーキュレー
タ3を通り,マイクロ波検出器5によって検出される。
このとき検出されたマイクロ波の反射強度の時間変化が
演算器6により演算され,その演算結果からライフタイ
ムτ1 が求められる。以上の構成は,従来の光導電減衰
法を用いた装置と同様であり,第1の測定手段の一例で
ある。また,図3のA部を詳細にみると,図4に示すよ
うに,アンテナ4内にはレンズ11,コールドフィルタ
12,レンズ13が設置されている。上記短波長レーザ
光源7より発振されたパルスレーザ光23の照射により
発生した蛍光25は,上記レンズ11により集光され,
コールドフィルタ12によってパルスレーザ光23(励
起光)が除かれ,その光(ここでは赤外光)がレンズ1
3を介して分光器14に導かれ,ここで特定の波長のみ
が取り出され,光検出器15によって検出される。この
とき検出された特定波長の光の強度の時間変化が演算器
6により演算され,減衰時間τ2 が求められる。尚,効
率よく半導体試料表層の情報を得るため,上記パルスレ
ーザ光23の波長は800nm以下の短波長とし,ま
た,図4に示すように,受光系は半導体試料の表層に焦
点を合わせることが望ましい。以上の構成は,上記PL
法を用いた装置と同様であり,第2の測定手段の一例で
ある。尚,上記光導電減衰法による測定と上記PL法に
よる測定とは,共通のパルスレーザ光23(励起光)を
用いて並行して行うことができるため,測定処理を迅速
に行うことが可能である。上記演算器6(記憶手段,及
び内部ライフタイム算出手段の一例)では,後述する手
順により,予め求められているα(=τ1 /τm ;τm
は半導体試料20の内部ライフタイム)とτ2 との相関
関係と,上記求められたτ1 ,τ2 とを用いて,酸化膜
処理等を施すことなく内部ライフタイムτm が求められ
る。
As shown in FIG. 3, a microwave transmission wave 22 oscillated from a microwave oscillator 1 passes through an attenuator 2 and a circulator 3 and is irradiated from an antenna 4 onto a semiconductor sample 20 mounted on a stage 21. Is done. A region on the semiconductor sample 20 to which the microwave 22 is irradiated is irradiated with pulsed laser light 23 (excitation light) oscillated from the pulsed short-wavelength laser light source 7 to inject carriers. The reflected wave 24 of the microwave 22 reflected by the semiconductor sample 20 passes through the antenna 4 and the circulator 3 and is detected by the microwave detector 5.
In this case the time variation of the reflection intensity of the detected microwave is calculated by the calculator 6, the lifetime tau 1 is determined from the calculation result. The above configuration is the same as that of the conventional apparatus using the photoconductive decay method, and is an example of the first measuring means. Further, looking at the portion A in FIG. 3 in detail, as shown in FIG. 4, a lens 11, a cold filter 12, and a lens 13 are installed in the antenna 4. The fluorescent light 25 generated by the irradiation of the pulse laser light 23 oscillated from the short wavelength laser light source 7 is condensed by the lens 11,
The pulse laser light 23 (excitation light) is removed by the cold filter 12, and the light (here, infrared light) is
The light is guided to the spectroscope 14 via the light source 3, where only a specific wavelength is extracted and detected by the photodetector 15. At this time, the temporal change of the intensity of the light of the specific wavelength detected is calculated by the calculator 6, and the decay time τ 2 is obtained. In order to efficiently obtain information on the surface of the semiconductor sample, the wavelength of the pulse laser beam 23 is set to a short wavelength of 800 nm or less, and the light receiving system is focused on the surface of the semiconductor sample as shown in FIG. desirable. The above configuration is based on the PL
This is the same as the device using the method, and is an example of the second measuring means. The measurement by the photoconductive decay method and the measurement by the PL method can be performed in parallel using the common pulse laser beam 23 (excitation light), so that the measurement process can be performed quickly. is there. The calculator 6 (storage means, and the internal one example of a lifetime calculating means), the according to the procedure described below, alpha obtained in advance (= τ 1 / τ m; τ m
Using the correlation between τ 2 and the internal lifetime of the semiconductor sample 20 and τ 1 and τ 2 determined above, the internal lifetime τ m can be determined without performing an oxide film treatment or the like.

【0010】以下,ライフタイム測定装置Zによる半導
体試料内部のライフタイム測定方法を,図1,図2に示
すフローチャートを用いて詳しく説明する。まず,実際
の測定作業に先立って,α(=τ1 /τm )とτ2 との
相関関係が求められる(ステップS1)。このステップ
S1を図2に従って更に詳細に説明する。まず,半導体
試料に例えば酸化膜処理などの表面再結合抑制処理を施
した上で,例えば図3に示す装置を用いて光導電減衰法
により内部ライフタイムτm を測定する(ステップS1
1)。続いて,半導体試料に上記酸化膜処理などの表面
再結合抑制処理を全く施さない状態で,例えば図3に示
す装置を用いて光導電減衰法によりライフタイムτ1
測定し(ステップS12),更に,例えば図4に示す装
置を用いてPL法により特定波長の光の減衰時間τ2
測定する(ステップS13)。そして,上記求められた
各値を用いて,α(=τ1 /τm )とτ2 との相関関係 τ2 =F(α) … (2) を求める。ここで,上記αは表面再結合による測定ライ
フタイムの減少割合を示すもので,またτ2 は表面再結
合に関する情報を捕らえている値であるから,当然なが
ら両者には相関関係が存在する。得られた相関関係(上
記(2)式)は上記演算器6内に格納される。
Hereinafter, a method for measuring the lifetime inside a semiconductor sample by the lifetime measuring apparatus Z will be described in detail with reference to the flowcharts shown in FIGS. First, prior to the actual measurement operation, a correlation between α (= τ 1 / τ m ) and τ 2 is obtained (step S1). This step S1 will be described in more detail with reference to FIG. First, after applying the surface recombination suppression processing such as the semiconductor sample such as oxidation film process, for example using the apparatus shown in FIG. 3 for measuring the internal lifetime tau m by photoconductive decay method (step S1
1). Subsequently, the life time τ 1 is measured by a photoconductive decay method using, for example, the apparatus shown in FIG. 3 in a state where the surface recombination suppression processing such as the oxide film processing is not performed on the semiconductor sample (step S12). Further, the decay time τ 2 of the light having the specific wavelength is measured by the PL method using, for example, the apparatus shown in FIG. 4 (step S13). Then, a correlation τ 2 = F (α) (2) between α (= τ 1 / τ m ) and τ 2 is determined using the respective values obtained above. Here, α indicates the decrease rate of the measured lifetime due to surface recombination, and τ 2 is a value that captures information on surface recombination, so that there is naturally a correlation between the two. The obtained correlation (formula (2)) is stored in the arithmetic unit 6.

【0011】上記相関関係が求められた段階で,以下に
説明する実際のライフタイム測定処理が開始される。
尚,以下に説明するステップS2〜S5の処理(光導電
減衰法による測定)と,ステップS2→S6,S7の処
理(PL法による測定)とは同時並行で行うことができ
る。まず,短波長レーザ光源7より半導体試料20に対
してパルスレーザ光23(励起光)が照射される(ステ
ップS2)。続いて,光導電減衰法による測定処理に関
しては,マイクロ波発振器1よりマイクロ波送信波22
が発振され,減衰器2,サーキュレータ3を通り,アン
テナ4から半導体試料20に照射される(ステップS
3)。半導体試料20で反射した上記マイクロ波22の
反射波24は,アンテナ4,サーキュレータ3を通り,
マイクロ波検出器5によって検出される(ステップS
4)。そして,演算器6において,上記検出されたマイ
クロ波の反射強度の時間変化が測定され,その測定結果
からライフタイムτ1 が求められる(ステップS5)。
また,PL法による測定に関しては,上記ステップS2
による励起光の照射によって半導体試料から発生した光
がレンズ11により集光され,コールドフィルタ12に
よってパルスレーザ光23(励起光)が除かれ,その光
(ここでは赤外光)がレンズ13を介して分光器14に
導かれ,ここで特定の波長のみが取り出され,光検出器
15によって検出される(ステップS6)。そして,演
算器6において,上記検出された特定波長の光の強度の
時間変化が測定され,減衰時間τ 2 が求められる(ステ
ップS7)。上記演算器6では,予め記憶された上記相
関関係(上記(2)式)と,上記ステップS5及びS7
でそれぞれ得られたτ1 ,τ2 に基づいて,半導体試料
20の内部ライフタイムτm が求められる(ステップS
8)。
At the stage where the above correlation is obtained,
The actual lifetime measurement process to be described starts.
The processing of steps S2 to S5 described below (photoconductive
Measurement by the attenuation method) and the processing of steps S2 → S6, S7
(PL measurement) can be performed simultaneously and in parallel
You. First, a short wavelength laser light source 7 is applied to the semiconductor sample 20.
Then, pulse laser light 23 (excitation light) is irradiated (step
Step S2). Next, the measurement process using the photoconductive decay method was performed.
First, the microwave transmission wave 22 is transmitted from the microwave oscillator 1.
Is oscillated, passes through the attenuator 2 and the circulator 3, and
The semiconductor sample 20 is irradiated from the tener 4 (step S
3). Of the microwave 22 reflected by the semiconductor sample 20
The reflected wave 24 passes through the antenna 4 and the circulator 3,
Detected by the microwave detector 5 (step S
4). Then, in the arithmetic unit 6, the detected my
The time change of the reflection intensity of the black wave is measured and the measurement result
From lifetime τ1Is obtained (step S5).
Also, regarding the measurement by the PL method, the above-described step S2
Generated from semiconductor sample by irradiation of excitation light
Is condensed by the lens 11 and is
Therefore, the pulse laser light 23 (excitation light) is removed, and the light
(Here, infrared light) passes through a lens 13 to a spectroscope 14.
Where only a specific wavelength is extracted and
15 (step S6). And the performance
In the calculator 6, the detected intensity of the light of the specific wavelength is detected.
The time change is measured and the decay time τ TwoIs required
Step S7). In the computing unit 6, the phase stored in advance is stored.
The relationship (the above equation (2)) and the above steps S5 and S7
Τ obtained by1, ΤTwoSemiconductor sample based on
20 internal lifetime τmIs required (step S
8).

【0012】以上説明したように,本実施の形態に係る
ライフタイム測定装置Z及びそれを用いたライフタイム
測定方法によれば,実際の測定時には酸化膜処理などの
表面再結合抑制処理を行うことなく通常の光導電減衰法
とPL法による非接触測定を行うだけで内部ライフタイ
ムを測定することができるため,半導体試料に新たな汚
染が導入される危険性はなく,また,迅速且つ正確な測
定が可能である。また,上記ライフタイム測定装置Zで
は,光導電減衰法による測定とPL法による測定とが同
一の励起光を用いて並行して行われるため,2つの測定
方法を併用することによる測定時間の増大という問題は
生じない。
As described above, according to the lifetime measuring apparatus Z and the lifetime measuring method using the same according to the present embodiment, it is possible to perform a surface recombination suppressing process such as an oxide film process at the time of actual measurement. Since the internal lifetime can be measured simply by performing non-contact measurement by the ordinary photoconductive decay method and PL method, there is no danger of introducing new contamination into the semiconductor sample, and quick and accurate Measurement is possible. In addition, in the lifetime measuring apparatus Z, since the measurement by the photoconductive decay method and the measurement by the PL method are performed in parallel using the same excitation light, the measurement time is increased by using the two measurement methods together. The problem does not arise.

【0013】[0013]

【実施例】上記実施の形態では,ステップS11の内部
ライフタイムτm の測定を,半導体試料に酸化膜処理を
施した状態で光導電減衰法により行っているが,例えば
上記CP法を用いてもよい。また,内部ライフタイムを
正確に求められるものであれば上記以外のどのような方
法を用いてもよい。
In the above embodiment, the measurement of the internal lifetime τ m in step S11 is performed by the photoconductive decay method in a state where the semiconductor sample is subjected to the oxide film treatment. Is also good. Further, any method other than the above may be used as long as the internal lifetime can be accurately obtained.

【0014】[0014]

【発明の効果】以上説明したように,本発明は,半導体
試料表面の所定領域にマイクロ波を照射すると共に励起
光を照射し,上記マイクロ波の上記半導体試料による透
過波若しくは反射波の時間変化に基づいて上記半導体試
料のライフタイムを測定する光導電減衰法を用いて,上
記半導体試料内部のライフタイムを測定する半導体試料
のライフタイム測定方法において,上記半導体試料に表
面再結合抑制処理を施さない状態で上記光導電減衰法に
よりライフタイムを測定する第1の測定工程と,半導体
試料表面の所定領域に励起光を照射し,該励起光によっ
て半導体試料表面に発生する光から特定波長の光のみを
抽出すると共にその光の減衰時間を検出する第2の測定
工程と,予め求められた,上記半導体試料に表面再結合
抑制処理を施した状態で上記光導電減衰法により得られ
たライフタイム測定値と上記処理を施さない状態で得ら
れたライフタイム測定値との関係として得られる表面再
結合による測定ライフタイムの減少割合と,励起光の照
射により上記半導体試料表面で発生する光のうちの特定
波長の光の減衰時間との相関関係と,上記第1,第2の
測定工程でそれぞれ得られた測定値とに基づいて,半導
体試料内部のライフタイムを算出する内部ライフタイム
算出工程とを具備してなることを特徴とする半導体試料
のライフタイム測定方法として構成されているため,半
導体試料に新たな汚染が導入される危険性はなく,ま
た,迅速且つ正確な測定が可能である。また,上記第
1,第2の測定工程を同一の励起光を用いて並行して行
うようにすれば,2つの測定方法を併用することによる
測定時間の増大という問題は生じない。
As described above, the present invention irradiates a predetermined area on the surface of a semiconductor sample with a microwave and irradiates an excitation light, and the time change of a transmitted wave or a reflected wave of the microwave by the semiconductor sample. In the method for measuring the lifetime of the inside of the semiconductor sample using the photoconductive decay method for measuring the lifetime of the semiconductor sample based on the method, a surface recombination suppressing process is performed on the semiconductor sample. A first measuring step of measuring the lifetime by the photoconductive decay method in the absence of light, and irradiating a predetermined area of the semiconductor sample surface with excitation light, and generating light of a specific wavelength from light generated on the semiconductor sample surface by the excitation light. A second measurement step of extracting only the light and detecting the decay time of the light, and performing a surface recombination suppression treatment on the semiconductor sample previously determined. The reduction rate of the measured lifetime due to surface recombination obtained as the relationship between the lifetime measured value obtained by the photoconductive decay method in the above condition and the lifetime measured value obtained without the above treatment, and the excitation light Of the semiconductor sample based on the correlation with the decay time of light of a specific wavelength among the light generated on the surface of the semiconductor sample by the irradiation of the semiconductor sample, and the measured values obtained in the first and second measurement steps, respectively. Since the method is configured as a method for measuring the lifetime of a semiconductor sample, which comprises an internal lifetime calculation step for calculating the internal lifetime, there is no danger of introducing new contamination into the semiconductor sample. And quick and accurate measurements are possible. In addition, if the first and second measurement steps are performed in parallel using the same excitation light, there is no problem that the measurement time is increased by using the two measurement methods together.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態に係るライフタイム測定
方法による処理手順を示すフローチャート。
FIG. 1 is a flowchart showing a processing procedure according to a lifetime measuring method according to an embodiment of the present invention.

【図2】 図1におけるS1の手順の詳細フローチャー
ト。
FIG. 2 is a detailed flowchart of a procedure of S1 in FIG. 1;

【図3】 本発明の実施の形態に係るライフタイム測定
装置Zの主として光導電減衰法に関する部分の概略構成
を示す模式図。
FIG. 3 is a schematic diagram showing a schematic configuration of a portion mainly related to a photoconductive decay method of a lifetime measuring apparatus Z according to an embodiment of the present invention.

【図4】 図3のA部詳細図であり,主としてPL法に
関する部分の概略構成を示す模式図。
FIG. 4 is a detailed view of a portion A in FIG. 3, which is a schematic diagram mainly showing a schematic configuration of a portion related to a PL method.

【符号の説明】[Explanation of symbols]

6…演算器(記憶手段,及び内部ライフタイム算出手段
の一例) 20…半導体試料 23…パルスレーザ光(励起光の一例)
6 arithmetic unit (an example of storage means and internal lifetime calculation means) 20 semiconductor sample 23 pulse laser light (an example of excitation light)

フロントページの続き Fターム(参考) 2G043 AA03 CA07 EA01 EA13 EA14 FA03 GA02 GB03 HA01 HA09 JA01 KA08 KA09 LA01 NA01 NA06 4M106 AA10 BA04 BA09 BA12 CB11 DH01 DH17 DH32 DH35 DH60 DJ20 Continued on the front page F term (reference) 2G043 AA03 CA07 EA01 EA13 EA14 FA03 GA02 GB03 HA01 HA09 JA01 KA08 KA09 LA01 NA01 NA06 4M106 AA10 BA04 BA09 BA12 CB11 DH01 DH17 DH32 DH35 DH60 DJ20

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 半導体試料表面の所定領域にマイクロ波
を照射すると共に励起光を照射し,上記マイクロ波の上
記半導体試料による透過波若しくは反射波の時間変化に
基づいて上記半導体試料のライフタイムを測定する光導
電減衰法を用いて,上記半導体試料内部のライフタイム
を測定する半導体試料のライフタイム測定方法におい
て,上記半導体試料に表面再結合抑制処理を施さない状
態で上記光導電減衰法によりライフタイムを測定する第
1の測定工程と,半導体試料表面の所定領域に励起光を
照射し,該励起光によって半導体試料表面に発生する光
から特定波長の光のみを抽出すると共にその光の減衰時
間を検出する第2の測定工程と,予め求められた,上記
半導体試料に表面再結合抑制処理を施した状態で上記光
導電減衰法により得られたライフタイム測定値と上記処
理を施さない状態で得られたライフタイム測定値との関
係として得られる表面再結合による測定ライフタイムの
減少割合と,励起光の照射により上記半導体試料表面で
発生する光のうちの特定波長の光の減衰時間との相関関
係と,上記第1,第2の測定工程でそれぞれ得られた測
定値とに基づいて,半導体試料内部のライフタイムを算
出する内部ライフタイム算出工程とを具備してなること
を特徴とする半導体試料のライフタイム測定方法。
1. A semiconductor device, comprising: irradiating a predetermined region of a surface of a semiconductor sample with microwaves and irradiating excitation light; and setting a lifetime of the semiconductor sample based on a time change of a transmitted wave or a reflected wave of the microwave by the semiconductor sample. In the method for measuring the lifetime of the inside of the semiconductor sample using the photoconductive decay method for measuring, the life time of the semiconductor sample is measured by the photoconductive decay method without performing the surface recombination suppression treatment on the semiconductor sample. A first measuring step of measuring a time, irradiating a predetermined region of the semiconductor sample surface with excitation light, extracting only light of a specific wavelength from light generated on the semiconductor sample surface by the excitation light, and decay time of the light; A second measurement step of detecting the surface conductivity of the semiconductor sample, which is obtained in advance by the photoconductive decay method in a state where the surface recombination suppression processing is performed on the semiconductor sample. Of the measured lifetime reduction due to surface recombination obtained as a relationship between the measured lifetime measurement value and the lifetime measurement value obtained without performing the above treatment, and the rate of decrease in the measured lifetime caused by irradiation with excitation light. An internal lifetime for calculating a lifetime inside the semiconductor sample based on a correlation with a decay time of light of a specific wavelength of the light to be emitted and the measured values obtained in the first and second measurement steps, respectively. A method for measuring the lifetime of a semiconductor sample, comprising: a time calculating step.
【請求項2】 上記表面再結合抑制処理が,上記半導体
試料の表面への酸化膜処理である請求項1記載の半導体
試料のライフタイム測定方法。
2. The method for measuring the lifetime of a semiconductor sample according to claim 1, wherein the surface recombination suppression processing is an oxide film treatment on the surface of the semiconductor sample.
【請求項3】 上記表面再結合抑制処理が,電解質を含
む溶液を用いて上記半導体試料の表面をパッシベーショ
ン状態にする処理である請求項1記載の半導体試料のラ
イフタイム測定方法。
3. The method for measuring a lifetime of a semiconductor sample according to claim 1, wherein the surface recombination suppressing process is a process of putting the surface of the semiconductor sample into a passivation state using a solution containing an electrolyte.
【請求項4】 上記第1,第2の測定工程を同一の励起
光を用いて並行して行う請求項1〜3のいずれかに記載
の半導体試料のライフタイム測定方法。
4. The method for measuring the lifetime of a semiconductor sample according to claim 1, wherein the first and second measurement steps are performed in parallel using the same excitation light.
【請求項5】 半導体試料表面の所定領域にマイクロ波
を照射すると共に励起光を照射し,上記マイクロ波の上
記半導体試料による透過波若しくは反射波の時間変化に
基づいて上記半導体試料のライフタイムを測定する光導
電減衰法を用いて,上記半導体試料内部のライフタイム
を測定する半導体試料のライフタイム測定装置におい
て,予め,上記半導体試料に表面再結合抑制処理を施し
た状態で上記光導電減衰法により得られたライフタイム
測定値と上記処理を施さない状態で得られたライフタイ
ム測定値との関係として得られる表面再結合による測定
ライフタイムの減少割合と,励起光の照射により上記半
導体試料表面で発生する光のうちの特定波長の光の減衰
時間との相関関係を記憶する記憶手段と,上記半導体試
料に表面再結合抑制処理を施さない状態で上記光導電減
衰法によりライフタイムを測定する第1の測定手段と,
半導体試料表面の所定領域に励起光を照射し,該励起光
によって半導体試料表面に発生する光から特定波長の光
のみを抽出すると共にその光の減衰時間を検出する第2
の測定手段と,上記記憶手段に予め記憶された上記相関
関係と,上記第1,第2の測定手段でそれぞれ得られた
測定値とに基づいて,半導体試料内部のライフタイムを
算出する内部ライフタイム算出手段とを具備してなるこ
とを特徴とする半導体試料のライフタイム測定装置。
5. A method for irradiating a predetermined region of the surface of a semiconductor sample with microwaves and irradiating excitation light with the microwaves, and changing a lifetime of the semiconductor sample based on a time change of a transmitted wave or a reflected wave of the microwaves by the semiconductor sample. In the semiconductor sample lifetime measuring device for measuring the lifetime inside the semiconductor sample using the photoconductive decay method for measurement, the photoconductive decay method is performed in a state where the semiconductor sample is subjected to a surface recombination suppression treatment in advance. The reduction rate of the measured lifetime due to surface recombination obtained as the relationship between the measured lifetime obtained by the above and the measured lifetime obtained without performing the above treatment, and the surface of the semiconductor sample by irradiation with excitation light Storage means for storing a correlation with light decay time of light of a specific wavelength of light generated in the semiconductor device; First measuring means for measuring the lifetime by the photoconductive decay method in a state where no treatment is performed;
A second step of irradiating a predetermined area of the semiconductor sample surface with excitation light, extracting only light of a specific wavelength from light generated on the semiconductor sample surface by the excitation light, and detecting the decay time of the light;
And an internal life for calculating a lifetime inside the semiconductor sample based on the correlation previously stored in the storage and the measured values obtained by the first and second measurement, respectively. An apparatus for measuring the lifetime of a semiconductor sample, comprising: a time calculating means.
【請求項6】 上記表面再結合抑制処理が,上記半導体
試料の表面への酸化膜処理である請求項5記載の半導体
試料のライフタイム測定装置。
6. The apparatus for measuring a lifetime of a semiconductor sample according to claim 5, wherein the surface recombination suppression processing is an oxide film processing on the surface of the semiconductor sample.
【請求項7】 上記表面再結合抑制処理が,電解質を含
む溶液を用いて上記半導体試料の表面をパッシベーショ
ン状態にする処理である請求項5記載の半導体試料のラ
イフタイム測定装置。
7. The apparatus for measuring a lifetime of a semiconductor sample according to claim 5, wherein the surface recombination suppressing process is a process of putting the surface of the semiconductor sample into a passivation state using a solution containing an electrolyte.
【請求項8】 上記第1,第2の測定工程を同一の励起
光を用いて並行して行う請求項5〜7のいずれかに記載
の半導体試料のライフタイム測定装置。
8. The apparatus for measuring the lifetime of a semiconductor sample according to claim 5, wherein the first and second measurement steps are performed in parallel using the same excitation light.
JP34593998A 1998-12-04 1998-12-04 Method and apparatus for measuring life time of semiconductor sample Pending JP2000171415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34593998A JP2000171415A (en) 1998-12-04 1998-12-04 Method and apparatus for measuring life time of semiconductor sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34593998A JP2000171415A (en) 1998-12-04 1998-12-04 Method and apparatus for measuring life time of semiconductor sample

Publications (1)

Publication Number Publication Date
JP2000171415A true JP2000171415A (en) 2000-06-23

Family

ID=18380036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34593998A Pending JP2000171415A (en) 1998-12-04 1998-12-04 Method and apparatus for measuring life time of semiconductor sample

Country Status (1)

Country Link
JP (1) JP2000171415A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043048A1 (en) * 2009-10-06 2011-04-14 株式会社神戸製鋼所 Apparatus and method for measuring semiconductor carrier lifetime

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043048A1 (en) * 2009-10-06 2011-04-14 株式会社神戸製鋼所 Apparatus and method for measuring semiconductor carrier lifetime
KR101322591B1 (en) 2009-10-06 2013-10-28 가부시키가이샤 코베루코 카겐 Apparatus and method for measuring semiconductor carrier lifetime
US9279762B2 (en) 2009-10-06 2016-03-08 Kobe Steel, Ltd. Apparatus and method for measuring semiconductor carrier lifetime

Similar Documents

Publication Publication Date Title
US4259574A (en) Microanalysis by pulse laser emission spectroscopy
JPH067564B2 (en) Method for measuring semiconductor characteristics of wafer surface
KR940010642B1 (en) Method of inspecting an electronic state of a surface of a semiconductor substrate and inspecting apparatus therefor
WO2004113884A1 (en) Photothermal ultra-shallow junction monitoring system with uv pump
US20060166385A1 (en) Method for measuring peak carrier concentration in ultra-shallow junctions
JP3670051B2 (en) Method and apparatus for measuring lifetime of carrier of semiconductor sample
CN108318459A (en) Pulsed Laser induces the measuring device and measuring method of photoluminescence spectrum
KR20170122279A (en) Method of evaluating semiconductor substrate and method of manufacturing semiconductor substrate
JP2000171415A (en) Method and apparatus for measuring life time of semiconductor sample
JPS63151042A (en) Method and apparatus for measuring implanted ion quantity in semiconductor crystal
JP3688383B2 (en) Crystal defect detection method
JP2000183123A (en) Method and device for evaluating iron concentration of silicon semiconductor
JPS6253944B2 (en)
JPH04225150A (en) Method and apparatus for evaluating lifetime of semiconductor material
Usami et al. High-sensitivity surface characterization with injected carriers by lasers beam using focused reflectance microwave probe method
US8120776B1 (en) Measuring characteristics of ultra-shallow junctions
JPH0737958A (en) Monitoring apparatus for semiconductor treatment process
JPH09167791A (en) Method and device of evaluating silicon semiconductor substrate
JPH0729954A (en) Crystal defect measuring method
JPH102859A (en) Plasma monitoring method
JP2994859B2 (en) Gas temperature measurement method
JP2005019445A (en) Method of evaluating silicon wafer and method of manufacturing semiconductor device
JPH05136241A (en) Lifetime measuring method of semiconductor wafer
JPH04289442A (en) Lifetime measuring method
JPS63155628A (en) Measurement of crystal defect