JP2000164954A - Zigzag slab type solid state laser amplifier and oscillator - Google Patents

Zigzag slab type solid state laser amplifier and oscillator

Info

Publication number
JP2000164954A
JP2000164954A JP33977998A JP33977998A JP2000164954A JP 2000164954 A JP2000164954 A JP 2000164954A JP 33977998 A JP33977998 A JP 33977998A JP 33977998 A JP33977998 A JP 33977998A JP 2000164954 A JP2000164954 A JP 2000164954A
Authority
JP
Japan
Prior art keywords
state laser
solid
laser material
incident
parallel light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33977998A
Other languages
Japanese (ja)
Other versions
JP3640819B2 (en
Inventor
Hiromitsu Kiriyama
博光 桐山
Yoichiro Maruyama
庸一郎 丸山
Takashi Arisawa
孝 有澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP33977998A priority Critical patent/JP3640819B2/en
Publication of JP2000164954A publication Critical patent/JP2000164954A/en
Application granted granted Critical
Publication of JP3640819B2 publication Critical patent/JP3640819B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0606Crystal lasers or glass lasers with polygonal cross-section, e.g. slab, prism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08095Zig-zag travelling beam through the active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/092Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA

Landscapes

  • Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain energy coupling efficiency of 10% even when an inner reflective angle is 45 deg. or below. SOLUTION: An amplifying flux beam 16 of light in parallel with a thickness of d is cast as an incident light, with an inner reflective angle of θ with respect to a lower totally reflecting face 22a of a solid state laser material 10. In this case, d is 2t (cos θ) for uniformly propagating the beam 16 in the solid state laser material 10. A triangle prism-shaped incident light part 12 is provided. The length of a light incident face 18 in the thickness direction is set at d or longer. The light incident face 18 passes a point (w), extending by a given length determined by θ and t from a rising position (p) of the light incident part 12, and at the same time the light incident face 18 is provided at an angle of 90 deg.-θ with respect to the lower total reflection face 22a. A light outgoing part 14 has the same shape as with the light incident part 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体レーザー
(LD)やフラッシュランプなどの励起光源より端面あ
るいは側面励起されるジグザグスラブ型固体レーザー増
幅器及び発振器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zigzag slab type solid-state laser amplifier and an oscillator which are pumped at an end face or a side face by a pumping light source such as a semiconductor laser (LD) or a flash lamp.

【0002】[0002]

【従来の技術】従来、ジグザグスラブ型固体レーザー増
幅器及び発振器において、回折が起こらない程度に平行
光束の被増幅ビームの断面積をジグザグスラブ型固体レ
ーザー材料の入出射面の面積より小さくし、固体レーザ
ー材料に垂直に入射することによって被増幅ビームを増
幅してきた。代表的な従来例として、図3にジグザグス
ラブ型固体レーザーの増幅器及び発振器の構成図を示
す。
2. Description of the Related Art Conventionally, in a zigzag slab type solid-state laser amplifier and an oscillator, a cross-sectional area of an amplified beam of a parallel light beam is made smaller than an area of an input / output surface of a zigzag slab type solid-state laser material so that diffraction does not occur. The beam to be amplified has been amplified by vertically incident on the laser material. As a typical conventional example, FIG. 3 shows a configuration diagram of an amplifier and an oscillator of a zigzag slab type solid-state laser.

【0003】図3に示されるように、ジグザグスラブ型
固体レーザーは、ジグザグスラブ型固体レーザー材料1
00及び励起光源102を有する。固体レーザー材料1
00は、入射される平行光束の被増幅ビーム104に対
して垂直の入射面106、及び出射される被増幅ビーム
104に対して垂直の出射面108を有する。固体レー
ザー材料100は、例えばNd:YAGから成る。励起
光源102は、例えば半導体レーザー又はフラッシュラ
ンプから成る。なお、参照番号110は励起光源102
により励起される固体レーザー材料100の励起領域を
示す。図3に示されるように、被増幅ビーム104は、
入射面106から固体レーザー材料100に入射され、
固体レーザー材料100内の対向する全反射面112
a、112bで全反射してジグザグ状に出射面108に
伝搬し、その間励起された固体レーザー材料100から
エネルギーを得て増幅され、出射面108から出射され
る。
[0003] As shown in FIG. 3, a zigzag slab type solid-state laser is a zigzag slab type solid-state laser material.
00 and an excitation light source 102. Solid laser material 1
No. 00 has an incident surface 106 perpendicular to the amplified beam 104 of the incident parallel light beam, and an emission surface 108 perpendicular to the emitted amplified beam 104. The solid-state laser material 100 is made of, for example, Nd: YAG. The excitation light source 102 is composed of, for example, a semiconductor laser or a flash lamp. Reference numeral 110 denotes the excitation light source 102
3 shows an excitation region of the solid-state laser material 100 which is excited by. As shown in FIG. 3, the amplified beam 104 is
Incident on the solid-state laser material 100 from the entrance surface 106,
Opposing total reflection surfaces 112 in the solid state laser material 100
The laser light is totally reflected at the points a and 112b and propagates in a zigzag manner to the emission surface 108. During this time, energy is obtained from the excited solid-state laser material 100, amplified, and emitted from the emission surface 108.

【0004】今、被増幅ビーム104の断面が固体レー
ザー材料100の入射面106及び出射面108に完全
に一致しているとする。被増幅ビーム104が固体レー
ザー材料100の全反射面112a、112bで全反射
する内部反射角をθとすると、固体レーザー材料100
内の励起領域110で囲まれた部分をどれだけ被増幅ビ
ーム104が伝搬するかの割合を示すエネルギー結合効
率Cは次式で与えられる。
Now, it is assumed that the cross section of the amplified beam 104 completely matches the incident surface 106 and the exit surface 108 of the solid-state laser material 100. Assuming that the internal reflection angle at which the amplified beam 104 is totally reflected by the total reflection surfaces 112a and 112b of the solid-state laser material 100 is θ, the solid-state laser material 100
The energy coupling efficiency C indicating the ratio of the amount of the amplified beam 104 propagating in the portion surrounded by the excitation region 110 is given by the following equation.

【0005】[0005]

【数1】 C=(1/(2COS2θ))・(2−1/(2COS2θ)) (1) このエネルギー結合効率Cは、平行光束の被増幅ビーム
の伝搬するレーザーモード体積と励起光源により励起さ
れる固体レーザー材料の励起体積との重なりの割合で、
図3に示される固体レーザー材料100内においてハッ
チング部分の占める割合に対応する。
[Number 1] C = (1 / (2COS 2 θ)) · (2-1 / (2COS 2 θ)) (1) The energy coupling efficiency C is a laser mode volume of propagation of the amplified beam of parallel light beams The ratio of overlap with the excitation volume of the solid-state laser material excited by the excitation light source,
This corresponds to the ratio occupied by hatched portions in the solid-state laser material 100 shown in FIG.

【0006】図4に内部反射角θに対するエネルギー結
合効率Cの計算結果を示す。図4より内部反射角が45
°のときエネルギー結合効率は100%となり、極めて
効率の良い増幅を行うことができるということが分か
る。内部反射角が45°の場合には、図3における入射
面106及び出射面108は固体レーザー材料100の
全反射面112a、112bに対して45°の傾きを有
し、固体レーザー材料100内の白抜きの部分がなくな
り全部ハッチングされた形になる。
FIG. 4 shows a calculation result of the energy coupling efficiency C with respect to the internal reflection angle θ. According to FIG. 4, the internal reflection angle is 45.
At 0 °, the energy coupling efficiency is 100%, indicating that extremely efficient amplification can be performed. When the internal reflection angle is 45 °, the incidence surface 106 and the emission surface 108 in FIG. 3 have an inclination of 45 ° with respect to the total reflection surfaces 112a and 112b of the solid-state laser material 100, and The white part disappears and the hatched shape.

【0007】しかし、固体レーザー材料100の屈折率
が小さい場合や、冷却剤(例えば、純水)によって固体
レーザー材料100を冷却する場合は、全反射条件を満
足するために内部反射角は45°より小さくしなければ
ならない。このように、内部反射角が45°より小さい
場合には、図3に示されるように、入射面106及び出
射面108は全反射面112a、112bに対して45
°より大きい傾きを有し、その結果、被増幅ビーム10
4の伝搬するレーザーモード体積と固体レーザー材料1
00内の励起領域110で囲まれた励起体積とが完全に
一致せず、図3の白抜きの部分が生じる。このため、エ
ネルギー結合効率は100%より低下し、固体レーザー
材料100内に蓄積されているエネルギーを完全に被増
幅ビーム104の増幅に寄与させることはできず、レー
ザー出力、総合効率の低下を招いたり、被増幅ビーム1
04が伝搬しない領域における蓄積エネルギーが熱とな
り、固体レーザー材料100自体が変形したり屈折率分
布が生じ、出力レーザービームの品質を低下させる欠点
があった。
However, when the solid-state laser material 100 has a small refractive index or when the solid-state laser material 100 is cooled by a coolant (for example, pure water), the internal reflection angle is 45 ° to satisfy the total reflection condition. Must be smaller. In this way, when the internal reflection angle is smaller than 45 °, as shown in FIG. 3, the entrance surface 106 and the exit surface 108 are 45 degrees away from the total reflection surfaces 112a and 112b.
Has a slope greater than 0 °, so that the amplified beam 10
4 propagating laser mode volume and solid laser material 1
The excitation volume surrounded by the excitation region 110 in 00 does not completely match, resulting in a white portion in FIG. For this reason, the energy coupling efficiency is lower than 100%, and the energy stored in the solid-state laser material 100 cannot be completely contributed to the amplification of the amplified beam 104, and the laser output and the overall efficiency are reduced. Or amplified beam 1
The stored energy in the region where the light does not propagate becomes heat, and the solid-state laser material 100 itself is deformed or a refractive index distribution is generated, so that the quality of the output laser beam is deteriorated.

【0008】[0008]

【発明が解決しようとする課題】従って、本発明の課題
は、内部反射角が45°より小さい場合にも100%の
エネルギー結合効率が得られるようにしたジグザグスラ
ブ型固体レーザー増幅器及び発振器を提供することにあ
る。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a zigzag slab type solid-state laser amplifier and an oscillator capable of obtaining 100% energy coupling efficiency even when the internal reflection angle is smaller than 45 °. Is to do.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するた
め、本発明のジグザグスラブ型固体レーザー増幅器は、
固体レーザー材料部を有し、前記固体レーザー材料部
は、当該固体レーザー材料部に入射された平行光束の被
増幅ビームの伝搬するレーザーモード体積と外部励起光
源により励起される前記固体レーザー材料部の励起体積
とが実質的に重なり合うように被増幅ビームを前記固体
レーザー材料部に入射し得る入射面構造を有することを
特徴とする。
In order to solve the above problems, a zigzag slab type solid-state laser amplifier of the present invention comprises:
A solid-state laser material portion, wherein the solid-state laser material portion is a laser mode volume in which a beam to be amplified of a parallel light beam incident on the solid-state laser material portion propagates and the solid-state laser material portion which is excited by an external excitation light source. The solid-state laser material portion is characterized by having an incident surface structure that allows the amplified beam to enter the solid-state laser material portion so that the excitation volume substantially overlaps the excitation volume.

【0010】また、上記課題を解決するため、ジグザグ
スラブ型固体レーザー発振器は、固体レーザー材料部を
有し、前記固体レーザー材料部は、当該固体レーザー材
料部に入射された平行光束の被増幅ビームの伝搬するレ
ーザーモード体積と外部励起光源により励起される前記
固体レーザー材料部の励起体積とが実質的に重なり合う
ように被増幅ビームを前記固体レーザー材料部に入射し
得る入射面構造を有することを特徴とする。
In order to solve the above-mentioned problems, a zigzag slab type solid-state laser oscillator has a solid-state laser material part, and the solid-state laser material part is an amplified beam of a parallel light beam incident on the solid-state laser material part. Having an incident surface structure capable of injecting the amplified beam into the solid-state laser material portion such that the laser mode volume to be propagated and the excitation volume of the solid-state laser material portion excited by the external excitation light source substantially overlap. Features.

【0011】[0011]

【発明の実施の形態】本発明の概念を先に説明すると、
本発明では、固体レーザー材料の入射面を、また好まし
くは出射面を平行光束の入射被増幅ビーム断面に合わせ
るか又はそれより大きく取り、且つ入射ビームが固体レ
ーザー材料内をむらなく伝搬できるようにする、即ち平
行光束の被増幅ビームの伝搬するレーザーモード体積と
励起手段により励起される固体レーザー材料の励起体積
とが完全に重なり合うようにすることにより内部反射角
が45°より小さい場合にも100%のエネルギー結合
効率を達成できるようにするものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The concept of the present invention will be described first.
In the present invention, the plane of incidence of the solid-state laser material, and preferably the plane of emission, is adapted to or larger than the cross-section of the incident beam to be amplified of the parallel beam, and the incident beam can be propagated evenly through the solid-state laser material. That is, even when the internal reflection angle is smaller than 45 °, the laser mode volume in which the amplified beam of the parallel light beam propagates and the excitation volume of the solid laser material excited by the excitation means are completely overlapped. % Energy coupling efficiency.

【0012】以下図面を参照して本発明をより詳細に説
明する。
Hereinafter, the present invention will be described in more detail with reference to the drawings.

【0013】図1は、本発明の好適な実施形態によるジ
グザグスラブ型固体レーザー増幅器又は発振器の概略構
成図である。図1において、図3に示される参照番号と
同一の参照番号により示される要素は図3のと同一の要
素を示し、その説明は繰り返さない。図1において、本
発明の好適な実施形態によるジグザグスラブ型固体レー
ザー増幅器又は発振器の固体レーザー材料10は、図3
の固体レーザー材料100と同じ材料、例えばNd:Y
AGから成り、この同じ材料から成る三角形のプリズム
型の入射部分12及び出射部分14を入出射端部のそれ
ぞれに新たに設けている。平行光束の被増幅ビーム16
は、入射部分12の入射面18から入射され、固体レー
ザー材料10内で全反射しながら増幅され、出射部分1
4の出射面20から出射される。
FIG. 1 is a schematic configuration diagram of a zigzag slab type solid-state laser amplifier or oscillator according to a preferred embodiment of the present invention. 1, elements denoted by the same reference numerals as those shown in FIG. 3 indicate the same elements as those in FIG. 3, and the description thereof will not be repeated. In FIG. 1, a solid laser material 10 of a zigzag slab type solid state laser amplifier or oscillator according to a preferred embodiment of the present invention is shown in FIG.
The same material as the solid-state laser material 100, for example, Nd: Y
A triangular prism-shaped input portion 12 and output portion 14 made of AG and made of the same material are newly provided at each of the input and output ends. Amplified beam 16 of parallel light beam
Are incident from the incident surface 18 of the incident portion 12, are amplified while being totally reflected in the solid-state laser material 10, and are output from the output portion 1.
4 is emitted from the emission surface 20.

【0014】図2に、寸法関係を見やすくするため、図
1に示される被増幅ビーム16のハッチングを除いた以
外図1と同じ構成図を示す。平行光束の被増幅ビーム1
6は固体レーザー材料10の下側全反射面22aに対し
て内部反射角θで入射するとする。図2に示される寸
法、位置の記号の意味は次のとおりである。
FIG. 2 shows the same configuration as FIG. 1 except that hatching of the amplified beam 16 shown in FIG. Amplified beam 1 of parallel light beam
6 is assumed to be incident on the lower total reflection surface 22a of the solid-state laser material 10 at an internal reflection angle θ. The meanings of the symbols of the dimensions and positions shown in FIG. 2 are as follows.

【0015】t:固体レーザー材料10の厚み θ:内部反射角 φ:被増幅ビーム16の入射方向と直交している入射面
18と全反射面22a及び22bとが成す角度で、内部
反射角θと余角の関係、即ち90°−θに等しい角度 d:平行光束の被増幅ビーム16の厚み p:平行光束の被増幅ビーム16の厚み方向dにおける
上側の最も外側を通る光24と上側全反射面22bとが
最初に交わる位置 q:平行光束の被増幅ビーム16の厚み方向dにおける
上側の最も外側を通る光24と下側全反射面22aとが
最初に交わる位置 r:平行光束の被増幅ビーム16の厚み方向dにおける
下側の最も外側を通る光26と下側全反射面22aとが
最初に交わる位置 u:入射面18の上側全反射面22b側の上端位置 v:入射面18の下側全反射面22a側の下端位置 w:上側全反射面22bをp点から入射面18側に延長
して入射面18と交わる点 g:p−w間の距離 e:w−u間の長さ f:w−v間の長さ
T: thickness of the solid-state laser material 10 θ: internal reflection angle φ: angle between the incident surface 18 orthogonal to the incident direction of the amplified beam 16 and the total reflection surfaces 22a and 22b, and the internal reflection angle θ D: the thickness of the amplified beam 16 of the parallel light flux, p: the light 24 passing through the uppermost outermost side in the thickness direction d of the amplified beam 16 of the parallel light flux, and the entire upper side. The position where the reflecting surface 22b first intersects q: The position where the light 24 passing through the uppermost outermost surface in the thickness direction d of the amplified beam 16 of the parallel light beam first intersects the lower total reflection surface 22a r: The position of the parallel light beam The position where the light 26 passing through the lowermost outermost side in the thickness direction d of the amplified beam 16 and the lower total reflection surface 22a first intersect u: the upper end position of the incident surface 18 on the upper total reflection surface 22b side v: the incident surface 18 Lower total reflection surface 2 Lower end position on a side w: Point at which upper total reflection surface 22b extends from point p to incidence surface 18 and intersects with incidence surface 18 g: Distance between p-w e: Length between w-u f: w Length between -v

【0016】図2から分かるように、被増幅ビーム16
が固体レーザー材料10内をむらなく伝搬する、即ち平
行光束の被増幅ビーム16の伝搬するレーザーモード体
積と励起光源102により励起される固体レーザー材料
10の励起体積(固体レーザー材料10のうちの励起領
域110で囲まれた部分)とが完全に重なり合うための
被増幅ビーム16の厚みdは
As can be seen from FIG. 2, the amplified beam 16
Propagates evenly in the solid-state laser material 10, that is, the laser mode volume in which the amplified beam 16 of the parallel light beam propagates and the excitation volume of the solid-state laser material 10 excited by the excitation light source 102 (excitation of the solid-state laser material 10). The thickness d of the amplified beam 16 for completely overlapping the portion surrounded by the region 110) is

【数2】 d=2t・cosθ (2) と与えられる。内部反射角θの値に関わらず、(2)式
を満足するビームを用いれば100%のエネルギー結合
効率を達成できる。前述したように、θは45°より小
さいのでビームの厚みdは√2tより大きい。一方、θ
が45°より小さいので、φは45°より大きくなり、
そのため固体レーザー材料10の入射端面を斜めにカッ
トした入射面のビーム厚みd方向の長さは√2tより短
くなる。従って、上記の厚みdを有するビームを入射さ
せる入射面は固体レーザー材料10の入射端面を単に斜
めにカットしただけでは実現できない。そこで、本発明
では入射部分として固体レーザー材料10の上側全反射
面22bより上側に突き出た構造を用いている。
## EQU2 ## d = 2t · cos θ (2) Irrespective of the value of the internal reflection angle θ, 100% energy coupling efficiency can be achieved by using a beam satisfying the expression (2). As described above, since θ is smaller than 45 °, the beam thickness d is larger than √2t. On the other hand, θ
Is smaller than 45 °, φ is larger than 45 °,
Therefore, the length in the beam thickness d direction of the incident surface of the solid-state laser material 10 obtained by obliquely cutting the incident end surface is shorter than √2t. Therefore, the incident surface on which the beam having the above-mentioned thickness d is incident cannot be realized by simply cutting the incident end surface of the solid-state laser material 10 obliquely. Therefore, in the present invention, a structure protruding above the upper total reflection surface 22b of the solid-state laser material 10 is used as an incident portion.

【0017】その入射部分である三角形のプリズム型の
入射部分12の寸法は、(2)式を満足する被増幅ビー
ム16の全てが固体レーザー材料10中に入射されその
中を伝搬できるようにするために以下の式を満足しなけ
ればならない。
The size of the triangular prism-shaped incident portion 12, which is the incident portion, is such that all the amplified beams 16 satisfying the expression (2) can be incident on the solid-state laser material 10 and propagate therethrough. Therefore, the following equation must be satisfied.

【0018】第1の条件は、固体レーザー材料10にお
けるビームの入射面18を平面にするため、即ち被増幅
ビーム16を入射面18に対して垂直に入射させるため
の条件で、次式で表される。
The first condition is a condition for making the incident surface 18 of the beam in the solid-state laser material 10 flat, that is, for causing the amplified beam 16 to be perpendicularly incident on the incident surface 18. Is done.

【0019】[0019]

【数3】 φ=90°−θ (3) 第2の条件は、ビーム厚みdをもつ被増幅ビーム16を
受け入れる固体レーザー材料10の入射面18を確保す
るための条件で、入射面18のビーム厚みdの方向の寸
法e+fは原理的にはビームの厚みdだけあればよい。
但し、実際には被増幅ビーム16の入射位置ずれ等が多
少生じたり、回折が生じたりするのでそれより大きい寸
法を有するのが好ましい。従って、第2の条件は次式で
示される。
== 90 ° -θ (3) The second condition is a condition for securing the incident surface 18 of the solid-state laser material 10 that receives the amplified beam 16 having the beam thickness d. The dimension e + f in the direction of the beam thickness d only needs to be the beam thickness d in principle.
However, in practice, it is preferable to have a larger dimension because the incident position of the amplified beam 16 is slightly shifted or diffraction occurs. Therefore, the second condition is expressed by the following equation.

【0020】[0020]

【数4】 e+f≧d (4) 第3の条件は、固体レーザー材料内で折り返った入射ビ
ームが固体レーザー材料10の全反射面に折り返るため
の条件で、換言すると、平行光束の被増幅ビーム16の
厚み方向dにおける下側の最も外側を通る光26が下側
全反射面22aのr点で全反射し、その全反射した光が
次に上側全反射面22bのp点で全反射し、更にその全
反射した光が平行光束の被増幅ビーム16の厚み方向d
における上側の最も外側を通る光24と重なり合うよう
にして下側全反射面22aのq点に向かうように、被増
幅ビーム16を入射面18から受け入れ且つ固体レーザ
ー材料10内で伝搬させる条件である。従って、この条
件は、gの長さで表せば、入射面18のv点がr点に一
致したときのgの長さ以上であることになる。
E + f ≧ d (4) The third condition is a condition for the incident beam turned back in the solid-state laser material to be turned back to the total reflection surface of the solid-state laser material 10, in other words, the condition of the parallel light beam. Light 26 passing through the lowermost outermost side in the thickness direction d of the amplified beam 16 is totally reflected at point r of the lower total reflection surface 22a, and the totally reflected light is then totally reflected at point p of the upper total reflection surface 22b. The light that has been reflected, and the light that has been totally reflected is the thickness direction d of the amplified beam 16 of the parallel light flux
Are conditions for receiving the amplified beam 16 from the incident surface 18 and propagating in the solid-state laser material 10 so as to overlap with the light 24 passing through the uppermost outermost surface and to reach the point q of the lower total reflection surface 22a. . Therefore, this condition is equal to or greater than the length of g when the point v on the incident surface 18 coincides with the point r in terms of the length of g.

【0021】[0021]

【数5】 g≧t(1/tanθ−1/tan(90°−θ)) (5) 上記の3つの条件を満たせば、入射面18のv点は平行
光束の被増幅ビーム16の厚み方向dにおける下側の最
も外側を通る光26上にあるかそれより下側に位置し、
u点は平行光束の被増幅ビーム16の厚み方向dにおけ
る上側の最も外側を通る光24上にあるかそれより上側
に位置するので、被増幅ビーム16の全てが必ず固体レ
ーザー材料10内に入射され、入射後に固体レーザー材
料10内でむらなく伝搬することになる。なお、図2に
示される実施形態においては線分u−pにより表される
上側側面は平面(線分u−pでは直線)であるが、入射
後の平行光束の被増幅ビーム16の上側の最も外側を通
る光24が固体レーザー材料10内を伝搬できればいず
れの形状でも良い。更に、図2に示される実施形態にお
いては線分v−rにより表される下側側面は下側全反射
面22aを延伸させた平面(線分v−rでは直線)であ
るが、入射後の平行光束の被増幅ビーム16の下側の最
も外側を通る光26が固体レーザー材料10内を伝搬で
きれば、v点がr点に一致することを含めていずれの形
状でも良い。三角形のプリズム型の入射部分12の図2
における断面形状は、上記3つの条件を満たしたp−u
−wにより表される形を取ればよい。
G ≧ t (1 / tan θ−1 / tan (90 ° −θ)) (5) If the above three conditions are satisfied, the point v on the incident surface 18 is the thickness of the amplified beam 16 of the parallel light flux. Located on or below the lowermost outermost light 26 in direction d;
Since the point u is located on or above the light 24 passing through the uppermost outermost side in the thickness direction d of the amplified beam 16 of the parallel light flux, all of the amplified beam 16 always enters the solid-state laser material 10. Then, the light propagates evenly in the solid-state laser material 10 after the incidence. In the embodiment shown in FIG. 2, the upper side surface represented by the line segment up is a plane (a straight line in the line segment up), but the upper side surface of the amplified beam 16 of the parallel light beam after the incidence. Any shape may be used as long as the light 24 passing the outermost can propagate through the solid-state laser material 10. Further, in the embodiment shown in FIG. 2, the lower side surface represented by the line segment vr is a plane (a straight line in the line segment vr) obtained by extending the lower total reflection surface 22a. As long as the light 26 passing through the lowermost outermost side of the amplified beam 16 of the parallel light beam can propagate through the solid-state laser material 10, any shape may be used, including that the point v coincides with the point r. FIG. 2 of the triangular prism-shaped entrance part 12
The cross-sectional shape of pu satisfying the above three conditions is
What is necessary is just to take the form represented by -w.

【0022】被増幅ビーム16が固体レーザー材料10
内をむらなく伝搬するためには上記のような三角形のプ
リズム型の入射部分12及び上記のような下側側面(図
2の断面形状の線分v−r)を有すればよいが、このよ
うにして固体レーザー材料10内で増幅されたビーム1
6を全部出射させるには、出射部分14及びそれと反対
側の上側側面(図2の断面形状の線分v′−r′の部
分)が、入射部分12及び上記下側側面(図2の断面形
状の線分v−r)と同様の構造を取ればよいことは当業
者には明らかであろう。三角形のプリズム型の出射部分
14も入射部分12の上記3つの条件を満たした構造で
あればよい。また、図2において、u′を出射面20の
下側全反射面側22aの下端位置、v′を出射面20の
上側全反射面22b側の上端位置、p′を平行光束の被
増幅ビーム16が出射する際にその厚み方向における下
側の最も外側を通る光30と下側全反射面22aとが最
後に交わる位置、r′を平行光束の被増幅ビーム16が
出射する際に厚み方向における上側の最も外側を通る光
32と上側全反射面22bとが最後に交わる位置とする
と、線分u′−p′により表される下側側面は平面(線
分u′−p′では直線)であるが、出射する際の平行光
束の被増幅ビーム16の上側の最も外側を通る光30が
固体レーザー材料10内を伝搬できればいずれの形状で
も良く、また線分v′−r′により表される上側側面は
上側全反射面22bを延伸させた平面(線分v′−r′
では直線)であるが、出射する際の平行光束の被増幅ビ
ーム16の上側の最も外側を通る光32が固体レーザー
材料10内を伝搬できれば、v′点がr′点に一致する
ことを含めていずれの形状でも良い。
The beam to be amplified 16 is the solid-state laser material 10
In order to propagate the light evenly in the inside, it is only necessary to have the above-described triangular prism-shaped incident portion 12 and the lower side surface (the line segment v-r of the cross-sectional shape in FIG. 2) as described above. Beam 1 thus amplified in solid-state laser material 10
In order to emit all of the light, the outgoing portion 14 and the upper side surface opposite to the outgoing portion (portion of the line segment v′-r ′ in the cross-sectional shape of FIG. 2) are formed by the incident portion 12 and the lower side surface (the cross-sectional portion in FIG. 2). It will be apparent to those skilled in the art that a structure similar to the shape line segment vr) may be employed. The triangular prism-shaped emission portion 14 may also have a structure that satisfies the above three conditions of the incidence portion 12. In FIG. 2, u 'is the lower end position of the lower total reflection surface 22a on the exit surface 20, v' is the upper end position of the upper total reflection surface 22b of the exit surface 20, and p 'is the amplified beam of the parallel light flux. The position where light 30 passing through the lowermost outermost part in the thickness direction and the lower total reflection surface 22a intersect last when the light 16 is emitted, and r 'is the thickness direction when the amplified beam 16 of the parallel light flux is emitted Assuming that the light 32 passing through the uppermost outermost surface and the upper total reflection surface 22b intersect at the end, the lower side surface represented by the line segment u'-p 'is a flat surface (a straight line in the line segment u'-p'). However, any shape may be used as long as the light 30 passing through the uppermost outer side of the amplified beam 16 of the parallel light beam when emitted can propagate through the solid-state laser material 10, and may be represented by a line segment v'-r '. The upper side surface is formed by extending the upper total reflection surface 22b. Plane (line segment v'-r '
However, if the light 32 passing through the uppermost outermost side of the amplified beam 16 of the parallel light beam when emitted can propagate through the solid-state laser material 10, the point v 'coincides with the point r'. Any shape may be used.

【0023】なお、図2に示される構成では、出射面2
0は、下側全反射面22a側に向いているが、上側全反
射面22b側に向けてもよい。
In the structure shown in FIG.
0 is directed toward the lower total reflection surface 22a, but may be directed toward the upper total reflection surface 22b.

【0024】また、本発明においては、固体レーザー材
料10の材料は上記の材料に限定されず、ジグザグスラ
ブ型固体レーザー増幅器あるいは発振器の固体レーザー
材料に用いることができるいずれの材料でもよい。
In the present invention, the material of the solid-state laser material 10 is not limited to the above-mentioned materials, but may be any material that can be used as a solid-state laser material for a zigzag slab-type solid-state laser amplifier or an oscillator.

【0025】更に、平行光束の被増幅ビーム16の断面
において厚みd方向に対して直交する方向、即ち幅と、
それに対応する固体レーザー材料10の入射面の幅との
関係は従来のジグザグスラブ型固体レーザー増幅器及び
発振器の場合と同じで固体レーザー材料10の幅が被増
幅ビーム16の幅以上あればよいことは明らかである。
Further, a direction orthogonal to the thickness d direction in the cross section of the amplified beam 16 of the parallel light flux, that is, the width,
The corresponding relationship with the width of the incident surface of the solid-state laser material 10 is the same as in the case of the conventional zigzag slab type solid-state laser amplifier and oscillator, and it is sufficient that the width of the solid-state laser material 10 is not less than the width of the amplified beam 16. it is obvious.

【0026】上記実施形態においては固体レーザー材料
10内での被増幅ビーム16の増幅について説明した
が、この構成がジグザグスラブ型固体レーザー発振器に
も用いられることは当業者には明らかであろう。
In the above embodiment, the amplification of the amplified beam 16 in the solid-state laser material 10 has been described. However, it will be apparent to those skilled in the art that this configuration is also used for a zigzag slab type solid-state laser oscillator.

【0027】本発明は以上説明したように構成されてい
るので、内部反射角が45°以下のあらゆる内部反射角
に対しても、また被増幅ビームの断面がジグザグスラブ
型固体レーザー材料の入出射面に完全に一致していない
場合に対しても、被増幅ビームの全てが固体レーザー材
料内に入射され且つその中をむらなく伝搬するので、1
00%のエネルギー結合効率を達成することができる。
従って、固体レーザー材料内に蓄積されているエネルギ
ーを完全に被増幅ビームの増幅に寄与させることが可能
になり、レーザー出力、総合効率を向上させることがで
きる。同時に、被増幅ビームの増幅に寄与しない部分が
全くなくなることにより、被増幅ビームが伝搬しない領
域におけるエネルギーに起因する熱問題による出力レー
ザービームの品質の低下を軽減できる。また、内部反射
角θを小さくできることにより固体レーザー材料のエッ
ジ部分(図2におけるv及びv′点近傍部分)を極めて
緩やかに(即ちφを大きく)できるので大幅に寄生発振
を抑制することができる。更に、本発明の好適一局面に
おいては、固体レーザー材料の入射面における被増幅ビ
ームの厚み方向の長さを被増幅ビームの厚みより長くす
ることができるので、上記エッジ部分を面取りすること
ができ材料自体の機械的強度をも高く取ることができ
る。
Since the present invention is constructed as described above, the cross section of the beam to be amplified can be adjusted so that the cross section of the beam to be amplified enters and exits the zigzag slab type solid-state laser material. Even if not perfectly coincident with the plane, all of the amplified beam will be incident on the solid state laser material and propagate evenly through it,
An energy coupling efficiency of 00% can be achieved.
Therefore, the energy stored in the solid-state laser material can be completely contributed to the amplification of the amplified beam, and the laser output and the overall efficiency can be improved. At the same time, since there is no portion that does not contribute to the amplification of the amplified beam, a decrease in the quality of the output laser beam due to a heat problem due to energy in a region where the amplified beam does not propagate can be reduced. In addition, since the internal reflection angle θ can be reduced, the edge portion (the portion near the points v and v ′ in FIG. 2) of the solid-state laser material can be made very gentle (that is, φ is increased), so that parasitic oscillation can be greatly suppressed. . Furthermore, in a preferred aspect of the present invention, the length in the thickness direction of the amplified beam on the incident surface of the solid-state laser material can be longer than the thickness of the amplified beam, so that the edge portion can be chamfered. The material itself can have high mechanical strength.

【0028】つまり、本発明は、レーザー動作特性の効
率を特徴づける主要なパラメーターであるエネルギー結
合効率を簡単な構成で100%にできるものである。従
って、従来よりも簡便に小型で、効率良く高出力を得る
ことができるとともに、好適実施形態においては固体レ
ーザー材料自体の機械的強度の向上も期待できるので、
高繰り返し、高出力、高効率、高ビーム品質固体レーザ
ーに適している。
That is, according to the present invention, the energy coupling efficiency, which is a main parameter characterizing the efficiency of the laser operating characteristics, can be made 100% with a simple configuration. Therefore, since it is possible to obtain a high output efficiently and compactly more easily than in the past, and to improve the mechanical strength of the solid-state laser material itself in the preferred embodiment,
Suitable for high repetition, high power, high efficiency, high beam quality solid state laser.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の好適な実施形態によるジグザグスラブ
型固体レーザー増幅器又は発振器の概略構成図である。
FIG. 1 is a schematic configuration diagram of a zigzag slab type solid-state laser amplifier or oscillator according to a preferred embodiment of the present invention.

【図2】寸法関係を見やすくするため、図1に示される
被増幅ビーム16のハッチングを除いた以外図1と同じ
構成図である。
FIG. 2 is the same configuration diagram as FIG. 1 except that hatching of an amplified beam 16 shown in FIG.

【図3】代表的な従来例としてのジグザグスラブ型固体
レーザー増幅器又は発振器の構成図である。
FIG. 3 is a configuration diagram of a zigzag slab type solid-state laser amplifier or oscillator as a typical conventional example.

【図4】内部反射角θに対するエネルギー結合効率Cの
計算結果を示す図である。
FIG. 4 is a diagram showing a calculation result of an energy coupling efficiency C with respect to an internal reflection angle θ.

【符号の説明】[Explanation of symbols]

10 固体レーザー材料 12 入射部分 14 出射部分 16 被増幅ビーム 18 入射面 20 出射面 22a、22b 全反射面 102 励起光源 110 励起領域 DESCRIPTION OF SYMBOLS 10 Solid-state laser material 12 Incident part 14 Outgoing part 16 Amplified beam 18 Incident surface 20 Exit surface 22a, 22b Total reflection surface 102 Excitation light source 110 Excitation area

───────────────────────────────────────────────────── フロントページの続き (72)発明者 有澤 孝 茨城県那珂郡東海村白方字白根2番地の4 日本原子力研究所東海研究所内 Fターム(参考) 5F072 AB02 AK03 JJ02 KK18 PP01 PP07  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Takashi Arisawa Inventor Takashi Arisawa 2-4 Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki Prefecture F-term in the Tokai Research Institute of Japan Atomic Energy Research Institute (reference) 5F072 AB02 AK03 JJ02 KK18 PP01 PP07

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 固体レーザー材料部を有するジグザグス
ラブ型固体レーザー増幅器において、 前記固体レーザー材料部は、当該固体レーザー材料部に
入射された平行光束の被増幅ビームの伝搬するレーザー
モード体積と外部励起光源により励起される前記固体レ
ーザー材料部の励起体積とが実質的に重なり合うように
被増幅ビームを前記固体レーザー材料部に入射し得る入
射面構造を有することを特徴とするジグザグスラブ型固
体レーザー増幅器。
1. A zigzag slab-type solid-state laser amplifier having a solid-state laser material part, wherein the solid-state laser material part comprises a laser mode volume through which an amplified beam of a parallel beam incident on the solid-state laser material part propagates and an external pump. A zigzag slab type solid-state laser amplifier having an incident surface structure that allows an amplified beam to be incident on the solid-state laser material part so that an excitation volume of the solid-state laser material part excited by a light source substantially overlaps with the solid-state laser material part. .
【請求項2】 前記固体レーザー材料部は、 所定の厚みと、 当該厚み方向に直交し互いに対向している第1及び第2
の全反射面と、 当該第1及び第2の全反射面で前記被増幅ビームを内部
反射角で全反射させる当該内部反射角と、 前記第1の全反射面に対して実質的に前記内部反射角で
入射される平行光束の被増幅ビームの入射方向に対して
実質的に直交する入射面であって、前記平行光束の被増
幅ビームの厚みと実質的に同じ又はそれより大きい寸法
を有する入射面とを有し、 前記平行光束の被増幅ビームのうちの厚み方向における
最も外側の光が前記第2の全反射面と交わる位置と前記
第2の全反射面を前記入射面へ延伸し当該入射面と交わ
る位置との距離は、前記内部反射角と前記所定の厚みと
で定まる所定の長さ以上を有し、 前記入射面が、前記平行光束の被増幅ビームの全厚みを
実質的に含むよう配置され、 前記固体レーザー材料部の前記入射面と前記第1及び第
2の全反射面との間の形状は、前記入射面から入射され
た後の前記平行光束の被増幅ビームが前記固体レーザー
材料部内を伝搬する形状を有することを特徴とする請求
項1記載のジグザグスラブ型固体レーザー増幅器。
2. The solid-state laser material section has a predetermined thickness, and first and second perpendicular to the thickness direction and opposed to each other.
A total reflection surface, an internal reflection angle for totally reflecting the amplified beam at the first and second total reflection surfaces at an internal reflection angle, and the internal reflection angle substantially relative to the first total reflection surface. An incident surface substantially orthogonal to the incident direction of the amplified beam of the parallel light beam incident at a reflection angle, and having a dimension substantially equal to or greater than the thickness of the amplified beam of the parallel light beam; A position where the outermost light in the thickness direction of the amplified beam of the parallel light beam intersects with the second total reflection surface and extends the second total reflection surface to the incident surface. The distance from the position intersecting with the incident surface has a predetermined length or more determined by the internal reflection angle and the predetermined thickness, and the incident surface substantially covers the entire thickness of the amplified beam of the parallel light flux. The solid laser material portion is arranged so as to include The shape between the surface and the first and second total reflection surfaces has a shape in which the amplified beam of the parallel light beam after being incident from the incident surface propagates through the solid-state laser material portion. The zigzag slab type solid-state laser amplifier according to claim 1, wherein
【請求項3】 前記固体レーザー材料部は、前記固体レ
ーザー材料部から出射される前記平行光束の被増幅ビー
ムの出射方向に対して実質的に直交する出射面であっ
て、前記平行光束の被増幅ビームの厚みと実質的に同じ
又はそれより大きい寸法を有する出射面を更に有し、 前記平行光束の被増幅ビームのうちの厚み方向における
最も外側の光が前記第1及び第2の全反射面のうちの一
方の全反射面と交わる位置と当該一方の全反射面を前記
出射面へ延伸し当該出射面と交わる位置との距離は、前
記内部反射角と前記所定の厚みとで定まる所定の長さ以
上を有し、 前記出射面が、前記平行光束の被増幅ビームの全厚みを
実質的に含むよう配置され、 前記固体レーザー材料部の前記出射面と前記第1及び第
2の全反射面との間の形状は、前記平行光束の被増幅ビ
ームが前記出射面から出射されるまで前記固体レーザー
材料部内を伝搬する形状を有することを特徴とする請求
項2記載のジグザグスラブ型固体レーザー増幅器。
3. The solid-state laser material portion is an emission surface substantially orthogonal to an emission direction of an amplified beam of the parallel light beam emitted from the solid-state laser material portion, and is provided with the parallel light beam. An output surface having a dimension substantially equal to or larger than the thickness of the amplified beam, wherein the outermost light in the thickness direction of the amplified beam of the parallel light flux is the first and second total reflections; A distance between a position intersecting one of the surfaces and the one total reflection surface and a position intersecting the one total reflection surface to the emission surface and intersecting the emission surface is determined by the internal reflection angle and the predetermined thickness. The emission surface is disposed so as to substantially include the entire thickness of the amplified beam of the parallel light beam, and the emission surface of the solid-state laser material portion and the first and second total surfaces are arranged. The shape between the reflective surface and 3. The zigzag slab type solid-state laser amplifier according to claim 2, wherein the zigzag slab type solid-state laser amplifier has a shape in which the amplified beam of the row light beam propagates in the solid-state laser material portion until the beam is emitted from the emission surface.
【請求項4】 固体レーザー材料部を有するジグザグス
ラブ型固体レーザー発振器において、 前記固体レーザー材料部は、当該固体レーザー材料部に
入射された平行光束の被増幅ビームの伝搬するレーザー
モード体積と外部励起光源により励起される前記固体レ
ーザー材料部の励起体積とが実質的に重なり合うように
被増幅ビームを前記固体レーザー材料部に入射し得る入
射面構造を有することを特徴とするジグザグスラブ型固
体レーザー発振器。
4. A zigzag slab type solid-state laser oscillator having a solid-state laser material portion, wherein the solid-state laser material portion includes a laser mode volume through which an amplified beam of a parallel light beam incident on the solid-state laser material portion propagates and an external excitation. A zigzag slab type solid-state laser oscillator having an incident surface structure capable of causing an amplified beam to enter the solid-state laser material portion so that an excitation volume of the solid-state laser material portion excited by a light source substantially overlaps with the solid-state laser material portion. .
【請求項5】 前記固体レーザー材料部は、 所定の厚みと、 当該厚み方向に直交し互いに対向している第1及び第2
の全反射面と、 当該第1及び第2の全反射面で前記被増幅ビームを内部
反射角で全反射させる当該内部反射角と、 前記第1の全反射面に対して実質的に前記内部反射角で
入射される平行光束の被増幅ビームの入射方向に対して
実質的に直交する入射面であって、前記平行光束の被増
幅ビームの厚みと実質的に同じ又はそれより大きい寸法
を有する入射面とを有し、 前記平行光束の被増幅ビームのうちの厚み方向における
最も外側の光が前記第2の全反射面と交わる位置と前記
第2の全反射面を前記入射面へ延伸し当該入射面と交わ
る位置との距離は、前記内部反射角と前記所定の厚みと
で定まる所定の長さ以上を有し、 前記入射面が、前記平行光束の被増幅ビームの全厚みを
実質的に含むよう配置され、 前記固体レーザー材料部の前記入射面と前記第1及び第
2の全反射面との間の形状は、前記入射面から入射され
た後の前記平行光束の被増幅ビームが前記固体レーザー
材料部内を伝搬する形状を有することを特徴とする請求
項3記載のジグザグスラブ型固体レーザー発振器。
5. The solid-state laser material section has a predetermined thickness, and first and second sections orthogonal to each other in the thickness direction and opposed to each other.
A total reflection surface, an internal reflection angle for totally reflecting the amplified beam at the first and second total reflection surfaces at an internal reflection angle, and the internal reflection angle substantially relative to the first total reflection surface. An incident surface substantially orthogonal to the incident direction of the amplified beam of the parallel light beam incident at a reflection angle, and having a dimension substantially equal to or greater than the thickness of the amplified beam of the parallel light beam; A position where the outermost light in the thickness direction of the amplified beam of the parallel light beam intersects with the second total reflection surface and extends the second total reflection surface to the incident surface. The distance from the position intersecting with the incident surface has a predetermined length or more determined by the internal reflection angle and the predetermined thickness, and the incident surface substantially covers the entire thickness of the amplified beam of the parallel light flux. The solid laser material portion is arranged so as to include The shape between the surface and the first and second total reflection surfaces has a shape in which the amplified beam of the parallel light beam after being incident from the incident surface propagates through the solid-state laser material portion. The zigzag slab type solid-state laser oscillator according to claim 3, wherein
【請求項6】 前記固体レーザー材料部は、前記固体レ
ーザー材料部から出射される前記平行光束の被増幅ビー
ムの出射方向に対して実質的に直交する出射面であっ
て、前記平行光束の被増幅ビームの厚みと実質的に同じ
又はそれより大きい寸法を有する出射面を更に有し、 前記平行光束の被増幅ビームのうちの厚み方向における
最も外側の光が前記第1及び第2の全反射面のうちの一
方の全反射面と交わる位置と当該一方の全反射面を前記
出射面へ延伸し当該出射面と交わる位置との距離は、前
記内部反射角と前記所定の厚みとで定まる所定の長さ以
上を有し、 前記出射面が、前記平行光束の被増幅ビームの全厚みを
実質的に含むよう配置され、 前記固体レーザー材料部の前記出射面と前記第1及び第
2の全反射面との間の形状は、前記平行光束の被増幅ビ
ームが前記出射面から出射されるまで前記固体レーザー
材料部内を伝搬する形状を有することを特徴とする請求
項5記載のジグザグスラブ型固体レーザー発振器。
6. The solid-state laser material portion is an emission surface substantially orthogonal to an emission direction of an amplified beam of the parallel light beam emitted from the solid-state laser material portion, and is provided with the parallel light beam. An output surface having a dimension substantially equal to or larger than the thickness of the amplified beam, wherein the outermost light in the thickness direction of the amplified beam of the parallel light flux is the first and second total reflections; A distance between a position intersecting one of the surfaces and the one total reflection surface and a position intersecting the one total reflection surface to the emission surface and intersecting the emission surface is determined by the internal reflection angle and the predetermined thickness. The emission surface is disposed so as to substantially include the entire thickness of the amplified beam of the parallel light beam, and the emission surface of the solid-state laser material portion and the first and second total surfaces are arranged. The shape between the reflective surface and 6. The zigzag slab type solid-state laser oscillator according to claim 5, wherein the zigzag slab type solid-state laser oscillator has a shape in which the amplified beam of the row light beam propagates in the solid-state laser material portion until the amplified beam is emitted from the emission surface.
JP33977998A 1998-11-30 1998-11-30 Zigzag slab type solid-state laser amplifier and oscillator Expired - Fee Related JP3640819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33977998A JP3640819B2 (en) 1998-11-30 1998-11-30 Zigzag slab type solid-state laser amplifier and oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33977998A JP3640819B2 (en) 1998-11-30 1998-11-30 Zigzag slab type solid-state laser amplifier and oscillator

Publications (2)

Publication Number Publication Date
JP2000164954A true JP2000164954A (en) 2000-06-16
JP3640819B2 JP3640819B2 (en) 2005-04-20

Family

ID=18330739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33977998A Expired - Fee Related JP3640819B2 (en) 1998-11-30 1998-11-30 Zigzag slab type solid-state laser amplifier and oscillator

Country Status (1)

Country Link
JP (1) JP3640819B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004098001A2 (en) * 2003-04-29 2004-11-11 Raytheon Company Zigzag slab laser amplifier with integral reflective surface and method
CN100399651C (en) * 2006-07-26 2008-07-02 中国科学院上海光学精密机械研究所 Slab laser for realizing Z-shaped light path by reflecting glass

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004098001A2 (en) * 2003-04-29 2004-11-11 Raytheon Company Zigzag slab laser amplifier with integral reflective surface and method
WO2004098001A3 (en) * 2003-04-29 2005-02-03 Raytheon Co Zigzag slab laser amplifier with integral reflective surface and method
US6967766B2 (en) 2003-04-29 2005-11-22 Raytheon Company Zigzag slab laser amplifier with integral reflective surface and method
CN100399651C (en) * 2006-07-26 2008-07-02 中国科学院上海光学精密机械研究所 Slab laser for realizing Z-shaped light path by reflecting glass

Also Published As

Publication number Publication date
JP3640819B2 (en) 2005-04-20

Similar Documents

Publication Publication Date Title
US9030732B2 (en) Suppression of amplified spontaneous emission (ASE) within laser planar waveguide devices
US20110176574A1 (en) Solid-state laser device
JPWO2009028078A1 (en) Solid state laser element
JP3822636B2 (en) Multi-pass resonator with longitudinal pumping arrangement
JP3121761B2 (en) Surface-emitting lasers with improved pumping efficiency
US4644555A (en) Solid-state laser device comprising a flash lamp used in oscillation and amplification in common
US7408972B2 (en) Optically pumped semiconductor laser device
JP2000164954A (en) Zigzag slab type solid state laser amplifier and oscillator
US7050476B2 (en) Waveguide laser resonator
JP2011029670A (en) Laser amplifier system
JP2004536460A (en) Laser device
US7505499B2 (en) Slab laser amplifier with parasitic oscillation suppression
KR20240034788A (en) Laser pumping device and laser pumping system including geometric concentrator and thermal insulation
CN107851953B (en) planar waveguide laser device
JPH0563264A (en) Semiconductor laser end pumped solid-state laser device
US20040218254A1 (en) Zigzag slab laser amplifier with integral reflective surface and method
US6768763B1 (en) Resonator system with at least two folding elements
JPH0387080A (en) Inlet and outlet for laser medium
JP2516698B2 (en) Slab type solid-state laser oscillator
JP2823924B2 (en) Laser device
US20230268708A1 (en) High-efficiency and directional non-resonant laser using scattering cavity and method of manufacturing the same
JP4197560B2 (en) Solid state laser equipment
JP2566053B2 (en) Semiconductor laser pumped solid-state laser device
JPS6140073A (en) Solid laser oscillator
JP2576794B2 (en) Laser diode pumped solid-state laser oscillator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050119

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees