JP2000163468A - Senior house service management system - Google Patents
Senior house service management systemInfo
- Publication number
- JP2000163468A JP2000163468A JP33853898A JP33853898A JP2000163468A JP 2000163468 A JP2000163468 A JP 2000163468A JP 33853898 A JP33853898 A JP 33853898A JP 33853898 A JP33853898 A JP 33853898A JP 2000163468 A JP2000163468 A JP 2000163468A
- Authority
- JP
- Japan
- Prior art keywords
- age
- final
- occupancy
- resident
- health
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000036541 health Effects 0.000 claims abstract description 58
- 230000007704 transition Effects 0.000 claims abstract description 7
- 230000000474 nursing effect Effects 0.000 claims description 12
- 230000008859 change Effects 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 description 27
- 238000007726 management method Methods 0.000 description 26
- 238000010586 diagram Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000009825 accumulation Methods 0.000 description 3
- 230000032683 aging Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H10/00—ICT specially adapted for the handling or processing of patient-related medical or healthcare data
- G16H10/60—ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/20—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the management or administration of healthcare resources or facilities, e.g. managing hospital staff or surgery rooms
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Medical Informatics (AREA)
- Epidemiology (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- General Business, Economics & Management (AREA)
- Business, Economics & Management (AREA)
- Biomedical Technology (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Pathology (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、要看護前の高齢者
を入居の対象とするシニア住宅サービス管理システムに
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a senior housing service management system for elderly persons who need to move in before nursing is required.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】従来か
らある老人ホームとは別に、都市整備公団などにより高
齢者向けのシニア住宅が計画されている。このシニア住
宅は、月々の家賃支払いの心配をしなくても入居できる
ようにするもので、終身年金保険の年金で家賃をまかな
うことを前提とするものである。そして、入居時に提携
介護施設への入居予約、損害保険会社の介護費用保険へ
の加入などを義務付けすることにより、要介護時に対処
できるようにしている。2. Description of the Related Art Apart from conventional nursing homes, senior housing for the elderly has been planned by the Urban Development Corporation. This senior housing will allow you to move in without having to worry about paying monthly rent, and is based on the assumption that you will be able to cover your rent with a lifetime annuity pension. In addition, by making an appointment with a nursing care facility at the time of occupancy, and joining a non-life insurance company with nursing care insurance, it is possible to cope with the need for nursing care.
【0003】高齢化社会に向け、上記のようなシニア住
宅の需要が高くなることを予想すると、シニア住宅を如
何に効率よく運営するかが非常に重要になる。そのため
シニア住宅向けのサービス・管理に好適なシステムが求
められているが、このようなシステムがまだ整っていな
いのが現状である。[0003] In anticipation of an increase in the demand for senior housing as described above toward an aging society, it is very important how to efficiently operate senior housing. Therefore, a system suitable for service and management for senior housing is required, but such a system is not yet established.
【0004】[0004]
【課題を解決するための手段】本発明は、上記課題を解
決するものであって、シニア住宅の入居者の変動を予測
しサービス、管理を支援できるようにするものである。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and aims at predicting a change in a resident of a senior house and supporting services and management.
【0005】そのために本発明は、要看護前の高齢者を
入居の対象とするシニア住宅サービス管理システムであ
って、平均入居最終年齢及び入居者の健康指数を求める
ための健康情報に応じた係数を設定する設定テーブル
と、各入居者の健康情報から前記設定テーブルを参照す
ることにより健康指数を求め前記平均入居最終年齢に基
づき各入居者について入居最終年齢を予測計算する入居
最終年齢計算手段と、前記予測計算した入居最終年齢か
ら入居者数の推移を求めてサービス・管理情報を出力す
る出力手段とを備えたことを特徴とするものである。[0005] Therefore, the present invention is a senior housing service management system for elderly people who need to move in before nursing, and a coefficient according to health information for obtaining an average occupant final age and a resident's health index. A final setting age calculating means for calculating a health index by referring to the setting table from the health information of each resident to determine a health index for each resident based on the average final occupying age, and And output means for outputting the service / management information by calculating the transition of the number of residents from the estimated final occupancy age.
【0006】また、前記健康指数は、少なくとも入居者
の性別、年齢、生活環境、入居条件別に設定され、ある
いは入居者の健康情報に性別、年齢、生活環境、入居条
件を考慮して求められることを特徴とするものである。
さらには、前記予測計算した入居最終年齢と発生した入
居最終年齢との差を前記指数を求める係数、平均入居最
終年齢の学習情報として蓄積する蓄積手段を備えたこと
を特徴とするものである。The health index is set at least for each of the resident's gender, age, living environment, and occupancy conditions, or is obtained by considering resident's health information in terms of gender, age, living environment, and occupancy conditions. It is characterized by the following.
Further, the present invention is characterized in that a storage means is provided for storing the difference between the predicted and calculated final occupancy age and the generated final occupancy age as a coefficient for obtaining the index and learning information of the average final occupancy age.
【0007】[0007]
【発明の実施の形態】以下、本発明の実施の形態を図面
を参照しつつ説明する。図1は本発明に係るシニア住宅
サービス管理システムの実施の形態を示す図、図2はテ
ーブルの構成例を示す図、図3は入居者管理ファイルの
構成例を示す図である。図中、1はデータ処理装置、2
は入力装置、3は出力装置、4は入居者管理ファイル、
5は平均最終年齢テーブル、6は指数算定テーブル、7
は規模別サービステーブル、8は学習データファイル、
11は入出力処理部、12は入居者管理ファイル作成処
理部、13は健康指標計算部、14は入居最終年齢計算
部、15は入居期間計算部、16はサービス業務計算
部、17は学習データ蓄積処理部を示す。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an embodiment of a senior housing service management system according to the present invention, FIG. 2 is a diagram showing a configuration example of a table, and FIG. 3 is a diagram showing a configuration example of a resident management file. In the figure, 1 is a data processing device, 2
Is an input device, 3 is an output device, 4 is a resident management file,
5 is the average final age table, 6 is the index calculation table, 7
Is a service table by size, 8 is a learning data file,
11 is an input / output processing unit, 12 is a resident management file creation processing unit, 13 is a health index calculation unit, 14 is a resident final age calculation unit, 15 is a occupancy period calculation unit, 16 is a service operation calculation unit, and 17 is learning data. 4 shows an accumulation processing unit.
【0008】図1において、入力装置1は、対象とする
シニア住宅のサービス・管理に関する各種データの入
力、入居者データの入力、演算処理の指示入力などを行
うキーボードやマウス、その他のポインティングデバイ
スである。出力装置2は、入力装置1からの入力内容や
入力のためのメニュー、処理内容などの表示を行うCR
Tディスプレイその他の表示装置、プリンタ、XYプロ
ッタその他の印刷装置である。In FIG. 1, an input device 1 includes a keyboard, a mouse, and other pointing devices for inputting various data relating to services and management of a target senior house, inputting resident data, inputting instructions for arithmetic processing, and the like. is there. The output device 2 is a CR that displays input contents from the input device 1, a menu for input, and processing contents.
T display and other display devices, printers, XY plotters and other printing devices.
【0009】データ処理装置1は、入力装置1から入力
された各種のデータ、指示に基づきデータの処理を行う
ものであり、入力装置1及び出力装置2との間の入出力
処理を行う入出力処理部11、入力されたデータの処理
を行う各種処理部として、入居者管理ファイル作成処理
部12、健康指標計算部13、入居最終年齢計算部1
4、入居期間計算部15、サービス業務計算部16、学
習データ蓄積処理部17を有する。The data processing device 1 processes data based on various data and instructions input from the input device 1, and performs input / output processing between the input device 1 and the output device 2. Processing unit 11, resident management file creation processing unit 12, health index calculation unit 13, resident final age calculation unit 1 as various processing units for processing input data
4, a occupancy period calculation unit 15, a service operation calculation unit 16, and a learning data accumulation processing unit 17.
【0010】入居者管理ファイル4は、入居者データ、
演算結果のデータ、実績データなどを格納する例えば図
3に示すようなファイルである。平均最終年齢テーブル
5は、図2(A)に示すような性別で分けた入居可能な
最終の年齢(最終年齢)として平均入居最終年齢、例え
ば介護が必要になり提携介護施設へ移らなければならな
くなる要介護平均年齢を設定するテーブルである。指数
算定テーブル6は、例えば図2(B)に示す自立歩行、
車椅子、通院のような入居者の健康情報に対応して係数
α1、α2、α3、………(≦1)を設定するテーブル
であり、これらの係数は、図2(A)に示す平均入居最
終年齢から各入居者別に入居最終年齢を予測計算するた
めに用いる。規模別サービステーブル7は、シニア住宅
の規模、入居者の数や入居条件などに対応するサービス
体勢、費用収益、入居者補充に関する情報を設定するも
のであり、この情報に基づきサービス・管理する事業体
における収支計算を行う。学習データファイル8は、入
居者毎に予測計算した入居最終年齢と実際に発生した入
居最終年齢との差を蓄積するものである。The resident management file 4 includes resident data,
For example, a file as shown in FIG. 3 for storing data of calculation results, result data, and the like. The average final age table 5 is the final age at which the user can enter (the final age) divided by gender as shown in FIG. 2 (A). It is a table for setting an average age for nursing care that disappears. The index calculation table 6 includes, for example, an independent walking shown in FIG.
This is a table for setting coefficients α1, α2, α3,... (≦ 1) in accordance with the resident's health information such as wheelchairs and outpatients. These coefficients are the average occupancy shown in FIG. This is used to predict and calculate the final occupancy age for each resident from the final age. The size-based service table 7 is used to set information on the service structure, cost income, and resident replenishment corresponding to the size of the senior house, the number of occupants, occupancy conditions, and the like. Calculate the balance in the body. The learning data file 8 accumulates the difference between the final occupancy age calculated and predicted for each occupant and the actual occupancy final age.
【0011】次に、データ処理装置1における各処理部
について説明する。入居者管理ファイル作成処理部12
は、例えば図3に示す入居者管理ファイル4を作成する
ものである。図3に示す入居者管理ファイル4は、入居
者番号(氏名)、性別、年齢、健康情報、さらには入居
前後の条件などの入力装置2から入力される情報と、健
康指数、入居最終年齢、期間などの各計算部で予測計算
される情報の項目などからなる。健康情報は、図2
(B)に示す自立歩行、車椅子、通院などであり、入居
前後の条件は、例えば入居前であれば、家族構成、居住
地域(地元、つまりシニア住宅の近くか否か、遠方
か)、交際関係など入居者の入居する前までの生活環境
や入居に至る条件などであり、入居後であれば、夫婦2
人の入居か単身入居かなどである。健康指数は、健康情
報から求められる入居者の係数、入居最終年齢は、予測
計算された入居者の入居可能な最終の年齢、期間は、予
測計算された入居最終年齢までの入居期間である。Next, each processing unit in the data processing device 1 will be described. Resident management file creation processing unit 12
Creates a resident management file 4 shown in FIG. 3, for example. The resident management file 4 shown in FIG. 3 includes information input from the input device 2 such as a resident number (name), gender, age, health information, and conditions before and after occupancy, a health index, a final occupancy age, It consists of items of information that are predicted and calculated by each calculation unit such as a period. Health information, Figure 2
(B) are independent walking, wheelchair, outpatient, etc. The conditions before and after entering the house are, for example, before entering the house, the family structure, the area of residence (local, that is, near or far from a senior house, distant), dating Relationships such as the living environment before the tenants move in and the conditions leading up to the move, etc.
For example, whether a person is moving in or alone. The health index is the coefficient of the resident obtained from the health information, the final occupancy is the predicted final calculated age of the resident, and the period is the predicted calculated occupancy period up to the final occupancy age.
【0012】健康指数計算部13は、入力装置1から入
力された性別、年齢、健康情報、入居前後の条件に基づ
き図2(B)に示す指数算定テーブル6から係数α1、
α2、α3、………を抽出することにより各入居者の健
康指数を求めるものである。したがって、図2(B)に
示す指数算定テーブル6では、少なくとも性別、年齢毎
に設定され、さらには、入居前後の条件毎に係数が設定
される。各入居者の最終入居年齢は、平均余命と同様男
か女か(性別)により、年齢により差が生じ、また、入
居後にも家族と日常的に交流できる環境にある入居者か
どうか、夫婦で入居するか一人で入居するか、付き合い
の極めて少ない入居者かなどにより差が生じてくる。し
たがって、健康指数は、これらの入居者により差が生じ
る入居最終年齢を平均入居最終年齢から予測計算するも
のである。The health index calculator 13 calculates a coefficient α1, a coefficient α1 from the index calculation table 6 shown in FIG. 2B based on gender, age, health information, and conditions before and after the occupancy input from the input device 1.
The health index of each resident is obtained by extracting α2, α3,.... Therefore, in the index calculation table 6 shown in FIG. 2 (B), the index is set at least for each gender and age, and a coefficient is set for each condition before and after moving in. As with the life expectancy, the final occupancy age of each occupant varies depending on whether it is male or female (gender), and the age of the occupant is different. There is a difference depending on whether the tenant is moving in, living alone, or having a very little relationship. Therefore, the health index is to predict and calculate the final occupancy age at which there is a difference between these tenants from the average final occupancy age.
【0013】入居最終年齢計算部14は、図2(A)に
示した平均最終年齢テーブル5の平均入居最終年齢と入
居者の健康情報などに応じた健康指数に基づき入居者毎
に入居最終年齢を予測計算するものであり、平均最終年
齢テーブル5の平均入居最終年齢に健康指数計算部13
で求めた健康指数を乗じ、これを入居最終年齢とする。
入居期間計算部15は、入居最終年齢計算部14で求め
た入居者別の入居最終年齢と入居時の年齢との差を計算
するものであり、要介護時まで入居可能な場合には要介
護時の年齢まで何年入居するか求められる。The final occupancy calculation unit 14 calculates the final occupancy of each occupant based on the average occupancy final age of the average final ages table 5 shown in FIG. 2A and a health index corresponding to the health information of the occupants. Is calculated, and the health index calculating unit 13 is added to the average occupancy final age of the average final age table 5.
Multiply by the health index obtained in step 2 and use this as the final age of occupancy.
The occupancy period calculation unit 15 calculates the difference between the occupancy final age for each occupant obtained by the occupancy final age calculation unit 14 and the age at the time of occupancy. You will be asked how many years to move up to the age of the time.
【0014】サービス業務計算部16は、入居期間計算
部15により求めた各入居者の入居期間から各年の入居
者数の推移を求めて入居者の変動を予測し、規模別サー
ビステーブル16を参照して要員、日用品や備品の調
達、飲食の提供量、その他サービス体勢、費用収益、入
居者補充などに関する情報を求めるものである。The service operation calculation unit 16 calculates the transition of the number of occupants in each year from the occupancy period of each occupant obtained by the occupancy period calculation unit 15 and predicts the change of the occupants. It refers to information on personnel, procurement of daily necessities and equipment, supply of food and drinks, other services, cost income, replenishment of residents, and the like.
【0015】学習データ蓄積処理部17は、シニア住宅
を実際に運営した場合において、退去者が発生したとき
実績としてその退去者の入居最終年齢が入居者データと
して入力されると、入居最終年齢計算部14により予測
計算された入居最終年齢との差、つまり計算値との誤差
を求め、これを予測計算を行った平均入居最終年齢、健
康情報に応じた係数の修正を行うための学習データとし
て、学習データファイル8に蓄積するものである。The learning data accumulation processing section 17 calculates the final occupancy age when the last occupancy of the deceased is input as resident data as a record when a departed person is actually operated when the senior house is actually operated. The difference from the final occupancy age calculated by the unit 14, that is, the difference from the calculated value, is obtained, and this is used as learning data for correcting the coefficient according to the average occupancy final age and the health information obtained by performing the prediction calculation. , Stored in the learning data file 8.
【0016】図4は入居者変動予測を行う処理の例を説
明するための図、図5は実績に基づき健康指数の学習を
行う処理の例を説明するための図、図6は健康指数の学
習に用いる情報を蓄積するテーブルの構成例を示す図で
ある。FIG. 4 is a diagram for explaining an example of a process for predicting occupant fluctuation, FIG. 5 is a diagram for explaining an example of a process for learning a health index based on actual results, and FIG. FIG. 4 is a diagram illustrating a configuration example of a table for storing information used for learning.
【0017】入居者データに基づき各年の入居者の変動
を予測する処理は、図4に示すようにまず、各入居者に
ついてその氏名、性別、年齢、健康情報、生活環境、入
居前後の条件などの入居者データを入力し(ステップS
11)、入居者データから指数算定テーブル6を参照し
て各入居者の健康指数を求める(ステップS12)。次
に、各入居者について健康指数と平均入居最終年齢(要
介護平均年齢)から入居者の入居最終年齢を予測計算し
(ステップS13)、その入居最終年齢と入居時の年齢
との差を入居期間として予測計算する(ステップS1
4)。そして、各年毎に、入居者数の推移を予測計算す
る(ステップS15)。このように入居者データに基づ
き入居者数の推移を予測計算することにより、将来の各
年毎の空き予測が可能になり、空き予測に応じて各年の
入居者の補充予測数を加えることにより、シニア住宅を
継続して運営する場合の入居者の変動、サービス・管理
する事業体における収支計算を行うことができる。As shown in FIG. 4, the process of predicting the change of the resident in each year based on the resident data is as follows. First, the name, gender, age, health information, living environment, and conditions before and after the occupancy of each occupant Enter resident data such as (Step S
11) The health index of each resident is obtained from the resident data by referring to the index calculation table 6 (step S12). Next, for each occupant, the occupant's final occupancy is predicted and calculated from the health index and the average occupancy final age (mean age required for nursing care) (step S13), and the difference between the occupancy final age and the age at the time of occupancy is entered. Forecast calculation as a period (Step S1
4). Then, the transition of the number of residents is predicted and calculated for each year (step S15). By predicting and calculating the transition of the number of occupants based on the occupant data in this manner, it is possible to predict the vacancy of each year in the future, and to add the predicted number of occupants of each year according to the vacancy prediction. Accordingly, it is possible to calculate the fluctuation of the resident when the senior housing is continuously operated, and to calculate the income and expenditure in the business entity that services and manages the resident.
【0018】また、上記のような処理を行い運営するこ
とにより入居最終年齢を予測計算した各入居者におい
て、実際に退去することとなった場合、予測計算した入
居最終年齢との誤差が生じる。この誤差は、健康指数の
設定精度、あるいは平均入居最終年齢の設定精度や変動
に基づくものと考えられる。そこで、図5に示すように
健康指数を求めるための健康情報に対応する係数α1、
α2、α3、………、平均入居最終年齢の設定を修正す
るための学習データを蓄積する。まず、退去者があるか
否かを調べ(ステップS21)、退去者が発生した場合
には、退去者の年齢と予測計算した入居最終年齢との差
を計算し(ステップS22)、その差を退去者の該当す
る入居者データの健康情報に対応する項目に加算すると
共に(ステップS23)、その発生頻度に1を加える
(ステップS24)。そのテーブルの構成例を示したの
が図6である。In addition, if each of the occupants who predicted and calculated the final occupancy by actually performing the above-mentioned processing and operated actually leaves, there will be an error from the predicted and calculated final occupancy age. This error is considered to be based on the setting accuracy of the health index, or the setting accuracy or fluctuation of the average occupancy final age. Therefore, as shown in FIG. 5, a coefficient α1 corresponding to health information for obtaining a health index,
α2, α3,..., accumulate learning data for correcting the setting of the average occupancy final age. First, it is checked whether or not there is a departed person (step S21). If a departed person is found, the difference between the age of the departed person and the estimated final arrival age is calculated (step S22), and the difference is calculated. It is added to the item corresponding to the health information of the resident data corresponding to the departed person (step S23), and 1 is added to the occurrence frequency (step S24). FIG. 6 shows a configuration example of the table.
【0019】いま、健康情報が自立で係数α1の値を有
する退去者が発生したとすると、例えば図6のテーブル
では、次のようなデータ蓄積を行う。まず、退去者の年
齢と予測計算した入居最終年齢との差を求め、その差の
±に応じ誤差値の加減算を行って頻度に1を加える。ま
た、+側には、退去者の年齢が予測計算した入居最終年
齢より大きいときにその差を加算して頻度に1を加え、
−側には、退去者の年齢が予測計算した入居最終年齢よ
り小さいときにその差を加算して頻度に1を加える。こ
のようなテーブルにより各健康情報毎にデータを蓄積す
ると、平均的な誤差や誤差のバラツキの情報を得ること
ができ、健康指数の設定値を修正する情報として利用す
ることができる。平均入居最終年齢についても同様にし
てデータを蓄積し、設定値を修正する情報として利用す
ることができる。Assuming that a person who leaves the health information independently and has a value of the coefficient α1 has occurred, for example, the following data is stored in the table of FIG. First, a difference between the age of the departed person and the predicted final occupancy age is calculated, and an error value is added or subtracted according to ± of the difference, and 1 is added to the frequency. On the + side, when the age of the departed person is greater than the predicted final age of entry, the difference is added and 1 is added to the frequency.
On the negative side, when the age of the departed person is smaller than the predicted final arrival age, the difference is added and 1 is added to the frequency. By accumulating data for each piece of health information using such a table, it is possible to obtain information on average errors and variations in errors, and use the information as information for correcting the set value of the health index. Data on the average occupancy final age can be similarly stored and used as information for correcting the set value.
【0020】なお、本発明は、上記実施の形態に限定さ
れるものではなく、種々の変形が可能である。例えば上
記実施の形態では、要介護年齢を入居最終年齢として入
居者のサービス・管理を行うようにしたが、入居最終年
齢を要介護者も含めて死亡年齢まで延長して入居者のサ
ービス・管理を行うようにするものであってもよいこと
は勿論である。また、本発明は、入居者データに基づき
入居者数の変動を予測して入居者のサービス・管理を行
うようにしたが、シニア住宅の計画の段階で、規模、サ
ービス体勢、収支など種々の運営シミューレーションを
行うのに適用しても、日常の運営における管理に適用し
てもよいし、あらゆる場面で適用することが可能であ
る。したがって、健康情報の項目やサービス業務の内容
については、上記実施の形態で示したものだけでなくそ
れぞれの場面に応じて選定されることはいうまでもな
い。It should be noted that the present invention is not limited to the above embodiment, and various modifications are possible. For example, in the above-described embodiment, the service and management of the resident are performed with the age required for nursing care as the final age of occupation. Of course. In addition, according to the present invention, the service and management of the resident are performed by predicting the change in the number of resident based on the resident data. The present invention may be applied to perform operation simulation, may be applied to management in daily operation, or may be applied to any occasion. Therefore, it goes without saying that the items of the health information and the contents of the service work are selected not only according to the above-described embodiment but also according to each situation.
【0021】[0021]
【発明の効果】以上の説明から明らかなように、本発明
によれば、要看護前の高齢者を入居の対象とするシニア
住宅サービス管理システムであって、平均入居最終年齢
及び健康情報に応じて平均入居最終年齢を各入居者別に
修正するための健康指数を設定する設定テーブルと、各
入居者の健康情報に基づき設定テーブルを参照すること
により各入居者について入居最終年齢を予測計算する入
居最終年齢計算手段と、予測計算した入居最終年齢から
入居者数の推移を求めてサービス・管理情報を出力する
出力手段とを備えたので、入居者データに基づき入居者
数の変動を予測し、入居者数の変動に応じたサービスメ
ニューの提供その他のサービス・管理を行うことができ
る。また、健康指数として、少なくとも入居者の性別、
年齢、生活環境、入居条件別に設定し、あるいは入居者
の健康情報に性別、年齢、生活環境、入居条件を考慮し
て設定することにより、各入居者の様々な条件に応じた
精度の高い入居最終年齢を予測することができる。さら
には、予測計算した入居最終年齢と発生した入居最終年
齢との差を健康指数を求める係数、平均入居最終年齢の
学習情報として蓄積する蓄積手段を備えることにより、
実績を積み上げて予測精度を高め、シニア住宅の事業計
画、立案に有用な支援ツールを提供し、サービス・管理
の効率を向上させることができる。As is apparent from the above description, according to the present invention, there is provided a senior housing service management system for the elderly who are not required for nursing care, and which is based on the average final occupancy age and health information. A setting table that sets a health index to correct the average occupancy final age for each occupant and a occupancy that predicts the occupancy final age for each occupant by referring to the setting table based on the health information of each occupant Since there is provided a final age calculating means and an output means for outputting the service / management information by calculating the transition of the number of occupants from the estimated final occupancy, the fluctuation of the number of occupants is predicted based on the occupant data, The service menu can be provided according to the change in the number of residents, and other services and management can be performed. In addition, as a health index, at least the gender of the resident,
Precise occupancy according to various conditions of each resident by setting by age, living environment, occupancy condition, or by setting gender, age, living environment, occupancy condition in resident's health information The final age can be predicted. Furthermore, by providing a storage means for storing a difference between the predicted calculated final occupancy age and the generated final occupancy age as a coefficient for obtaining a health index, as learning information of the average final occupancy age,
By accumulating results, it is possible to improve forecast accuracy, provide useful support tools for business planning and planning of senior housing, and improve service and management efficiency.
【図1】 本発明に係るシニア住宅サービス管理システ
ムの実施の形態を示す図である。FIG. 1 is a diagram showing an embodiment of a senior housing service management system according to the present invention.
【図2】 テーブルの構成例を示す図である。FIG. 2 is a diagram illustrating a configuration example of a table.
【図3】 入居者管理ファイルの構成例を示す図であ
る。FIG. 3 is a diagram illustrating a configuration example of a resident management file.
【図4】 入居者変動予測を行う処理の例を説明するた
めの図である。FIG. 4 is a diagram for explaining an example of a process for performing resident change prediction.
【図5】 実績に基づき健康指数の学習を行う処理の例
を説明するための図である。FIG. 5 is a diagram for explaining an example of processing for learning a health index based on actual results.
【図6】 健康指数の学習に用いる情報を蓄積するテー
ブルの構成例を示す図である。FIG. 6 is a diagram illustrating a configuration example of a table for storing information used for learning a health index.
1…データ処理装置、2…入力装置、3…出力装置、4
…入居者管理ファイル、5…平均最終年齢テーブル、6
…指数算定テーブル、7…規模別サービステーブル、8
…学習データファイル、11…入出力処理部、12…入
居者管理ファイル作成処理部、13…健康指標計算部、
14…入居最終年齢計算部、15…入居期間計算部、1
6…サービス業務計算部、17…学習データ蓄積処理部DESCRIPTION OF SYMBOLS 1 ... Data processing device, 2 ... Input device, 3 ... Output device, 4
... tenant management file, 5 ... average final age table, 6
… Index calculation table, 7… Service table by size, 8
... learning data file, 11 ... input / output processing unit, 12 ... resident management file creation processing unit, 13 ... health index calculation unit,
14: moving-in final age calculation unit, 15: moving-in period calculation unit, 1
6 ... Service operation calculation unit, 17 ... Learning data storage processing unit
───────────────────────────────────────────────────── フロントページの続き (72)発明者 成瀬 毅 東京都港区芝浦一丁目2番3号 清水建設 株式会社内 (72)発明者 原藤 光 東京都港区芝浦一丁目2番3号 清水建設 株式会社内 Fターム(参考) 5B049 BB41 BB51 CC11 EE31 EE41 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takeshi Naruse 1-3-2 Shibaura, Minato-ku, Tokyo Shimizu Construction Co., Ltd. (72) Inventor Hikaru Harato 1-2-3 Shibaura, Minato-ku Tokyo Co., Ltd. F-term (reference) 5B049 BB41 BB51 CC11 EE31 EE41
Claims (4)
ニア住宅サービス管理システムであって、平均入居最終
年齢及び入居者の健康指数を求めるための健康情報に応
じた係数を設定する設定テーブルと、各入居者の健康情
報から前記設定テーブルを参照することにより健康指数
を求め前記平均入居最終年齢に基づき各入居者について
入居最終年齢を予測計算する入居最終年齢計算手段と、
前記予測計算した入居最終年齢から入居者数の推移を求
めてサービス・管理情報を出力する出力手段とを備えた
ことを特徴とするシニア住宅サービス管理システム。1. A senior housing service management system for elderly people who need to move in before nursing is required, wherein a setting is made to set a coefficient in accordance with health information for obtaining an average occupant final age and a resident's health index. A table, a final occupancy age calculating means for predicting and calculating a final occupancy age for each occupant based on the average occupancy final age by obtaining a health index by referring to the setting table from the health information of each occupant,
Output means for obtaining service / management information by calculating a change in the number of residents from the predicted final occupancy final age.
別、年齢、生活環境、入居条件別に求められることを特
徴とする請求項1記載のシニア住宅サービス管理システ
ム。2. The senior housing service management system according to claim 1, wherein the health index is obtained at least for each of the resident's sex, age, living environment, and occupancy conditions.
別、年齢、生活環境、入居条件を考慮して求められるこ
とを特徴とする請求項1記載のシニア住宅サービス管理
システム。3. The senior housing service management system according to claim 1, wherein the health index is obtained in consideration of gender, age, living environment, and occupancy conditions of the resident's health information.
ニア住宅サービス管理システムであって、平均入居最終
年齢及び健康情報に応じて前記平均入居最終年齢を各入
居者別に修正するための指数を設定する設定テーブル
と、前記設定テーブルを参照することにより各入居者に
ついて入居最終年齢を予測計算する入居最終年齢計算手
段と、前記予測計算した入居最終年齢から入居者数の推
移を求めてサービス・管理情報を出力する出力手段と、
前記予測計算した入居最終年齢と発生した入居最終年齢
との差を前記指数を求める係数、前記平均入居最終年齢
の学習情報として蓄積する蓄積手段とを備えたことを特
徴とするシニア住宅サービス管理システム。4. A senior housing service management system for the elderly who is required to move in before nursing is required, wherein the average final moving age is corrected for each occupant according to the average final moving age and health information. A setting table for setting the index, a final occupancy age calculating means for predicting and calculating the final occupancy for each resident by referring to the setting table, and obtaining the transition of the number of occupants from the predicted and calculated final occupancy. Output means for outputting service / management information;
A senior housing service management system, comprising: a coefficient for obtaining the index, which is a difference between the predicted calculated final occupancy age and the generated final occupancy age, and accumulating means for accumulating learning information on the average final occupancy age. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33853898A JP2000163468A (en) | 1998-11-30 | 1998-11-30 | Senior house service management system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33853898A JP2000163468A (en) | 1998-11-30 | 1998-11-30 | Senior house service management system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000163468A true JP2000163468A (en) | 2000-06-16 |
Family
ID=18319120
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33853898A Pending JP2000163468A (en) | 1998-11-30 | 1998-11-30 | Senior house service management system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000163468A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007287069A (en) * | 2006-04-20 | 2007-11-01 | Samuel:Kk | Pay nursing home residense right acquisition system, its method and its program |
JP2010092102A (en) * | 2008-10-03 | 2010-04-22 | Koji Ishibashi | Information presentation method, information presentation program, computer readable recording medium, and information presentation device |
JP2010094917A (en) * | 2008-10-17 | 2010-04-30 | Koji Ishibashi | Crime compensation presentation sheet |
-
1998
- 1998-11-30 JP JP33853898A patent/JP2000163468A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007287069A (en) * | 2006-04-20 | 2007-11-01 | Samuel:Kk | Pay nursing home residense right acquisition system, its method and its program |
JP2010092102A (en) * | 2008-10-03 | 2010-04-22 | Koji Ishibashi | Information presentation method, information presentation program, computer readable recording medium, and information presentation device |
JP2010094917A (en) * | 2008-10-17 | 2010-04-30 | Koji Ishibashi | Crime compensation presentation sheet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Parker et al. | A consumer preference approach to the planning of rural primary health-care facilities | |
McHugh | Special features: health policy: hospital nurse staffing and public health emergency preparedness: implications for policy | |
Gabrel | An overview of nursing home facilities: data from the 1997 National Nursing Home Survey | |
Castle et al. | Influence of nurse aide absenteeism on nursing home quality | |
Wieland et al. | Five-year survival in a Program of All-inclusive Care for Elderly compared with alternative institutional and home-and community-based care | |
Anderson et al. | The impact of assistive technologies on formal and informal home care | |
US20090024491A1 (en) | System and method to calculate procurement of assets | |
Waitzkin et al. | Safety-net institutions buffer the impact of Medicaid managed care: a multi-method assessment in a rural state | |
Fan et al. | The economic burden of health care, funeral, and burial expenditures at the end of life | |
Konetzka et al. | Outcomes of Medicaid home‐and community‐based long‐term services relative to nursing home care among dual eligibles | |
Amico et al. | Community health center efficiency: the role of grant revenues in health center efficiency | |
Shroff et al. | Siting efficiency of long-term health care facilities | |
Lin et al. | Capacity planning for publicly funded community based long-term care services | |
Khan et al. | Improving the performance of reception and OPD by using multi-server queuing model in COVID-19 Pandemic | |
JP2000163468A (en) | Senior house service management system | |
Gambaro et al. | ICU capacity expansion under uncertainty in the early stages of a pandemic | |
Harrington et al. | Home and community-based services: Public policies to improve access, costs and quality | |
JP2006146763A (en) | Care-need certificated person number prediction system | |
Ansah et al. | Modeling to inform long-term care policy and planning for an aging society | |
Liu et al. | A mathematical model for medium-term home health care planning problem | |
CN114923497A (en) | Method, device, equipment and storage medium for planning railway trip path | |
Pooley et al. | Contacting your GP when the surgery is closed: issues of location and access | |
Slade et al. | Are There Enough Inpatient Psychiatric Beds? | |
Zwanziger et al. | Expanding the CNS role to the community | |
Golinowska et al. | The development of long-term care in post-socialist member states of the EU |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050831 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051027 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060118 |