JP2000162465A - Cross talk preventing device for optical communication device - Google Patents

Cross talk preventing device for optical communication device

Info

Publication number
JP2000162465A
JP2000162465A JP10333828A JP33382898A JP2000162465A JP 2000162465 A JP2000162465 A JP 2000162465A JP 10333828 A JP10333828 A JP 10333828A JP 33382898 A JP33382898 A JP 33382898A JP 2000162465 A JP2000162465 A JP 2000162465A
Authority
JP
Japan
Prior art keywords
light
mirror
transmission
light flux
polarized light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10333828A
Other languages
Japanese (ja)
Inventor
Masakazu Yamagata
正和 山縣
Shunichiro Wakamiya
俊一郎 若宮
Tatsuo Goto
達夫 後藤
Mochiyume Takayama
抱夢 高山
Yoichi Kojima
洋一 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Precision Co Ltd
Original Assignee
Asahi Seimitsu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Seimitsu KK filed Critical Asahi Seimitsu KK
Priority to JP10333828A priority Critical patent/JP2000162465A/en
Priority to US09/354,732 priority patent/US6701093B1/en
Publication of JP2000162465A publication Critical patent/JP2000162465A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)
  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a cross talk between transmitted light and received light when a polarized light separating face and a light flux dividing face are arranged adjacently by providing a polarized light separating mirror and a light flux dividing mirror in a transmission/receiving part. SOLUTION: In a transmission/receiving part 30, a polarized light separating mirror 60 and a light flux dividing mirror 70 surrounded by air are arranged. In the polarized light separating mirror 60, a polarized light separating face PBS constructed of a polarized light separating film is formed on a transparent board. The light flux dividing mirror 70 is formed out of a light flux dividing surface BS on the transparent board by means of a light flux dividing film. Light flux from a laser light source 32 is incident on the polarized light separating mirror 60 and reflected by the polarized light separating face PBS, so that light flux of S polarized light rays alone is projected via a second focal optical system 40, a polarizing mirror 20, and a telescopic optical system. Light flux from the opposed machine passes through the polarized light separating mirror 60 so as to reach the light flux separating mirror 70. The light flux is divided via the light flux dividing face BS, and the divided light flux converges on a position detection element 37 and a light receiving element 36.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は、送受信を同一の光学系で行う送
受信一体型光通信装置に関し、特にそのクロストークを
防止する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transmission / reception integrated optical communication apparatus for performing transmission / reception using the same optical system, and more particularly to an apparatus for preventing crosstalk.

【0002】[0002]

【従来技術及びその問題点】図3は、本発明の対象とす
る送受信一体型の光通信装置の一例を示している。この
光通信装置は、望遠鏡光学系10、光束偏向手段20、
及び送受信部30を備えている。望遠鏡光学系10は、
送信光の投光と、受信光の受信に共通に使用されるもの
で、図示例では反射望遠鏡からなっている。光束偏向手
段20は、望遠鏡光学系10と送受信部30との間に位
置し、望遠鏡光学系10から送受信部30に至る受信光
と、送受信部30から望遠鏡光学系10に至る送信光の
方向を調節する。
2. Description of the Related Art FIG. 3 shows an example of a transmission / reception integrated optical communication apparatus to which the present invention is applied. This optical communication device includes a telescope optical system 10, a light beam deflecting unit 20,
And a transmission / reception unit 30. The telescope optical system 10
It is commonly used for projecting transmission light and receiving reception light, and in the example shown in the drawing, comprises a reflection telescope. The light beam deflecting unit 20 is located between the telescope optical system 10 and the transmission / reception unit 30, and determines the direction of the reception light from the telescope optical system 10 to the transmission / reception unit 30 and the direction of the transmission light from the transmission / reception unit 30 to the telescope optical system 10. Adjust.

【0003】送受信部30は、変調器31により送信情
報に応じて変調される、S偏光反射条件で設置された半
導体レーザ光源32と、この半導体レーザ光源32から
の直線偏光光束が入射するS偏光反射P偏光透過の偏光
ビームスプリッタ33とを有し、偏光ビームスプリッタ
33で反射したS偏光の直線偏光は、λ/4板34を介
して光束偏向手段20に入射する。送受信部30には、
別の光送信機(対向機)からの信号光を受光するため
に、偏光ビームスプリッタ33の透過光路上に、ビーム
スプリッタ35が設けられ、このビームスプリッタ35
での分割光路上に、信号用の受光素子36と、位置検出
素子37とがそれぞれ設けられている。すなわち、対向
機からの受信光は、λ/4板34を透過してP偏光の直
線偏光となり、偏光ビームスプリッタ33を透過してビ
ームスプリッタ35に至り、受光素子36と位置検出素
子37の双方に入射する。受光素子36で受信された受
信光は、信号処理回路38によって情報として取り出さ
れる。偏光ビームスプリッタ33とビームスプリッタ3
5はそれぞれ、一対のプリズムの接着面に偏光分離面と
光束分割面を形成してなっている。
[0003] A transmitting / receiving section 30 is provided with a semiconductor laser light source 32 which is modulated in accordance with transmission information by a modulator 31 and is provided under S-polarized light reflection conditions, and an S-polarized light beam from which a linearly polarized light beam from the semiconductor laser light source 32 is incident. And a polarization beam splitter 33 that transmits the reflected P polarized light. The transmitting and receiving unit 30 includes:
In order to receive the signal light from another optical transmitter (opposite device), a beam splitter 35 is provided on the transmission optical path of the polarization beam splitter 33, and this beam splitter 35 is provided.
The light receiving element 36 for signal and the position detecting element 37 are provided on the divided optical path in the above. That is, the received light from the opposing device is transmitted through the λ / 4 plate 34 to be linearly polarized light of P polarization, transmitted through the polarization beam splitter 33 and reaches the beam splitter 35, and is transmitted to both the light receiving element 36 and the position detecting element 37. Incident on. The received light received by the light receiving element 36 is extracted as information by the signal processing circuit 38. Polarizing beam splitter 33 and beam splitter 3
5 has a polarization splitting surface and a light beam splitting surface formed on a bonding surface of a pair of prisms.

【0004】以上の送受信一体型光通信装置は、通常、
同一構成の装置を半導体レーザ光源32からのレーザ光
束の到達範囲に対向させて設置し、お互いに変調器31
による変調信号を受光素子36で受光して利用する。
[0004] The above-mentioned transmission / reception integrated optical communication apparatus is usually
A device having the same configuration is installed so as to face the reach of the laser beam from the semiconductor laser light source 32, and the modulators 31
Is used by receiving the modulated signal by the light receiving element 36.

【0005】光束偏向手段20は、一対の光通信装置か
らの送受信光の平行性を維持するものであり、例えば、
直交二方向に駆動される偏向ミラーから構成される。こ
の偏向ミラーの回動部には、コイルと磁石からなる電磁
駆動装置が備えられ、この電磁駆動装置が、位置検出素
子37の出力によって駆動される。すなわち、位置検出
素子37は、送受信部30に入力する受信光の受信位置
(変化)を検出し、その出力を制御回路21及びXY駆
動系22を介してフィードバックして偏向ミラー20を
XYの二次元方向に駆動し、受信光を常時送受信部30
の正しい位置に入射させ、送信機の射出光と受信機の受
信光との平行性を維持する。
[0005] The light beam deflecting means 20 is for maintaining the parallelism of the transmitted and received light from the pair of optical communication devices.
It comprises a deflecting mirror driven in two orthogonal directions. The rotating portion of the deflecting mirror is provided with an electromagnetic driving device including a coil and a magnet, and the electromagnetic driving device is driven by the output of the position detecting element 37. That is, the position detection element 37 detects the reception position (change) of the reception light input to the transmission / reception unit 30 and feeds back its output via the control circuit 21 and the XY drive system 22 to move the deflecting mirror 20 to the XY position. The transmission / reception unit 30 is driven in the three-dimensional
To maintain the parallelism between the emitted light of the transmitter and the received light of the receiver.

【0006】この送受信一体型光通信装置は、図3の概
念的構成では、半導体レーザ光源32からの送信光と、
信号用の受光素子36と位置検出素子37への受信光と
のクロストークが生じるおそれはない。しかし、実際の
装置構成では、偏光ビームスプリッタ33による偏光分
離が100%完全ではないこと(完全な偏光分離膜の構
成は事実上不可能で、数%の漏れ光(迷光)が避けられ
ないこと)、偏光ビームスプリッタ33とビームスプリ
ッタ35での入出射面での反射が避けられないこと、偏
光ビームスプリッタ33とビームスプリッタ35とを近
接して設置する可能性が高いこと、等の理由により、送
信光が受信側の受光素子や位置検出素子に入射するクロ
ストークが生じる可能性がある。
[0006] In the conceptual configuration of FIG. 3, the transmission / reception integrated optical communication device includes a transmission light from a semiconductor laser light source 32,
There is no risk of crosstalk between the signal light receiving element 36 and the received light to the position detecting element 37. However, in the actual device configuration, the polarization separation by the polarization beam splitter 33 is not 100% complete (a complete polarization separation film configuration is practically impossible, and leakage light (stray light) of several% cannot be avoided. ), Reflection on the input / output surface of the polarizing beam splitter 33 and the beam splitter 35 is unavoidable, and there is a high possibility that the polarizing beam splitter 33 and the beam splitter 35 are installed close to each other. There is a possibility that crosstalk in which the transmitted light is incident on the light receiving element or the position detecting element on the receiving side may occur.

【0007】[0007]

【発明の目的】本発明は従って、偏光分離面と光束分割
面とを隣接して設置する場合において、送信光と受信光
のクロストークの問題を解決できる送受信一体型光通信
装置を得ることを目的とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a transmission / reception integrated optical communication device which can solve the problem of crosstalk between transmitted light and received light when the polarization splitting surface and the light beam splitting surface are installed adjacent to each other. Aim.

【0008】[0008]

【発明の概要】本発明は、光束の入出射面での反射の問
題は、偏光分離面として一対のプリズムを接着した偏光
ビームスプリッタ、光束分割面として同じく一対のプリ
ズムを接着したビームスプリッタを用いているために生
じ、これを周囲が空気の偏光分離ミラー、光束分割ミラ
ーから構成すれば、プリズムに光が入出射する場合のよ
うな反射の問題を回避できるとの着眼によってなされた
ものである。
SUMMARY OF THE INVENTION In the present invention, the problem of reflection of a light beam on the input / output surface is solved by using a polarizing beam splitter in which a pair of prisms are bonded as a polarization splitting surface and a beam splitter in which a pair of prisms are bonded as a light beam splitting surface. This is because it is possible to avoid the problem of reflection such as the case where light enters and exits the prism if the surroundings are constituted by a polarization splitting mirror and a beam splitting mirror of air. .

【0009】すなわち、本発明は、送信情報に応じて変
調されるレーザ光源を含む送信部と、変調レーザ光を受
光する受光素子と位置検出素子を含む受信部と、送信部
からの送信光と受信部への受信光を分離する偏光分離手
段とを有する送受信部;送信光を投光し、受信光を受光
する送受信系に共通の望遠光学系;及びこの望遠光学系
と送受信部の間に位置し、位置検出素子の出力に応じて
駆動される光束偏向手段;を有する送受信一体型光通信
装置において、送受信部に、レーザ光源からの送信光を
光束偏向手段に向けて反射させる一方、望遠鏡から入射
する受信光を透過させる偏光分離面を有する偏光分離ミ
ラーと、該偏光分離面を透過した受信光を上記受光素子
と位置検出素子とに分割して与える光束分割面を有する
光束分割ミラーとを設けたことを特徴としている。
That is, the present invention provides a transmitting section including a laser light source modulated in accordance with transmission information, a receiving section including a light receiving element for receiving modulated laser light and a position detecting element, and a transmitting light from the transmitting section. A transmission / reception unit having polarization separation means for separating the reception light to the reception unit; a telephoto optical system common to the transmission / reception system for projecting the transmission light and receiving the reception light; and between the telephoto optical system and the transmission / reception unit. A transmitting / receiving integrated optical communication device having a light beam deflecting means positioned and driven in accordance with the output of the position detecting element, wherein the transmitting / receiving unit reflects the transmission light from the laser light source toward the light beam deflecting means while using a telescope. A polarization splitting mirror having a polarization splitting surface that transmits received light incident thereon, and a light beam splitting mirror having a light beam splitting surface that splits the received light transmitted through the polarization splitting surface into the light receiving element and the position detecting element. It is characterized by providing.

【0010】[0010]

【発明の実施の形態】図1は、本発明による送受信一体
型光通信装置の送受信部の第一の実施形態を示すもの
で、図3の従来装置と同一の構成要素には同一の符号を
付している。本実施形態では、偏向ミラー20と、送受
信部30との間に、第二アフォーカル光学系40が配置
されている。この第二アフォーカル光学系40は、偏向
ミラー20側から送受信部30側に順に、正レンズ群4
0Aと負レンズ群40Bを有する。アフォーカル光学系
は、一組の物点と像点が無限遠にあり、入射光が略平行
であるとき出射光も略平行となるような光学系であり、
物体側から30側に光束径を縮径する。この縮径比(倍
率)は、望遠鏡光学系(第一アフォーカル光学系)10
のそれを1:4(4倍)程度、第二アフォーカル光学系
40のそれを1:2(2倍程度)とすることができる。
FIG. 1 shows a first embodiment of a transmission / reception section of a transmission / reception integrated optical communication apparatus according to the present invention. The same components as those of the conventional apparatus of FIG. It is attached. In the present embodiment, a second afocal optical system 40 is arranged between the deflecting mirror 20 and the transmission / reception unit 30. The second afocal optical system 40 includes the positive lens group 4 in order from the deflection mirror 20 side to the transmission / reception section 30 side.
0A and a negative lens group 40B. An afocal optical system is an optical system in which a set of object points and an image point are at infinity, and when incident light is substantially parallel, outgoing light is also substantially parallel,
The beam diameter is reduced from the object side to the 30 side. This diameter reduction ratio (magnification) is determined by the telescope optical system (first afocal optical system) 10
Of the second afocal optical system 40 can be made 1: 2 (about 2 times).

【0011】送受信部30には、周囲が空気(空間)の
偏光分離ミラー60と光束分割ミラー70が位置してい
る。これらは、図3の従来装置におけるプリズム接着形
の偏光ビームスプリッタ33と同じくプリズム接着形の
ビームスプリッタ35に代わるものである。偏光分離ミ
ラー60は、透明基板(平行平面板)上に偏光分離膜に
より偏光分離面PBSを形成したものであり、この偏光
分離面PBSは、半導体レーザ光源32の光軸32Xと
第2アフォーカル光学系40の光軸40Xにそれぞれ4
5゜をなして配置されている。光束分割ミラー70は、
同様に透明基板(平行平面板)上に光束分割膜により光
束分割面BSを形成したもので、この光束分割面BS
は、第二アフォーカル光学系40の光軸40X(受光素
子36系の光軸36X)と位置検出素子37系の光軸3
7Xに対してそれぞれ45゜をなして配置されている。
In the transmitting / receiving section 30, a polarization splitting mirror 60 and a light beam splitting mirror 70 whose surroundings are air (space) are located. These replace the prism-bonded beam splitter 35 in the same manner as the prism-bonded polarization beam splitter 33 in the conventional apparatus shown in FIG. The polarization separation mirror 60 is formed by forming a polarization separation surface PBS on a transparent substrate (parallel plane plate) using a polarization separation film. The polarization separation surface PBS is connected to the optical axis 32X of the semiconductor laser light source 32 and the second afocal point. 4 on the optical axis 40X of the optical system 40
They are arranged at 5 mm. The light beam splitting mirror 70
Similarly, a light beam splitting surface BS is formed on a transparent substrate (parallel flat plate) by a light beam splitting film.
Are the optical axis 40X of the second afocal optical system 40 (the optical axis 36X of the light receiving element 36) and the optical axis 3 of the position detecting element 37 system.
Each of them is arranged at an angle of 45 ° with respect to 7X.

【0012】半導体レーザ光源32の光軸32X上に
は、半導体レーザ光源32からの光束を平行光束とする
コリメータレンズ51が配設され、受光素子36の光軸
36X上には、受信平行光束を受光素子36に結像させ
る集光レンズ52とバンドパスフィルタ54が配置さ
れ、位置検出素子37の光軸37X上には、受信平行光
束を位置検出素子37に結像させる集光レンズ53とバ
ンドパスフィルタ55が配置されている。受光素子36
と位置検出素子37の位置は、交換することができる。
On the optical axis 32X of the semiconductor laser light source 32, there is provided a collimator lens 51 for converting a light beam from the semiconductor laser light source 32 into a parallel light beam. A condensing lens 52 for forming an image on the light receiving element 36 and a band-pass filter 54 are arranged. On the optical axis 37X of the position detecting element 37, a condensing lens 53 and a band for forming an image of the received parallel light beam on the position detecting element 37 are provided. A pass filter 55 is provided. Light receiving element 36
And the position of the position detecting element 37 can be exchanged.

【0013】半導体レーザ光源32と偏光分離ミラー6
0の偏光分離面PBSは、S偏光反射条件で設置されて
いる。半導体レーザ光源32から出射され、コリメータ
レンズ51で平行光束とされた後、偏光分離ミラー60
の偏光分離面PBSで反射するS偏光光束は、第二アフ
ォーカル光学系40、偏向ミラー20、及び望遠鏡光学
系10を介して相手側の光通信装置に投光される。ま
た、受信光に着目すると、望遠光学系10、光束偏向手
段20、第二アフォーカル光学系40を介して送受信部
30の偏光分離ミラー60のP光束分割面BSを透過す
る受信光束は平行光束であり、偏光分離面PBSの角度
依存性の問題を回避できる。なお、λ/4板34は、対
向機間の偏光面を90゜回転させるためのものである。
Semiconductor laser light source 32 and polarization split mirror 6
The 0 polarization separation plane PBS is installed under the S polarization reflection condition. After being emitted from the semiconductor laser light source 32 and converted into a parallel light beam by the collimator lens 51, the polarization splitting mirror 60
The S-polarized light beam reflected by the polarization separation surface PBS is projected to the optical communication device on the other side through the second afocal optical system 40, the deflecting mirror 20, and the telescope optical system 10. Focusing on the received light, the received light transmitted through the P-beam splitting surface BS of the polarization separation mirror 60 of the transmission / reception unit 30 via the telephoto optical system 10, the light beam deflecting means 20, and the second afocal optical system 40 is a parallel light beam. Therefore, the problem of the angle dependence of the polarization separation surface PBS can be avoided. The λ / 4 plate 34 is for rotating the polarization plane between the opposing devices by 90 °.

【0014】上記構成の本送受信一体型光通信装置は、
従来装置と同様に、同一構成の装置を半導体レーザ光源
32からのレーザ光束の到達範囲に対向させて設置し、
お互いに変調器31による変調信号を受光素子36で受
光して利用する。このとき、半導体レーザ光源32から
のレーザ光束は、偏光分離ミラー60に入射して偏光分
離面PBSで反射しS偏光光束だけが第二アフォーカル
光学系40、偏向ミラー20、望遠鏡光学系10を介し
て投光される。また、対向機からの光束は、望遠鏡光学
系10、第二アフォーカル光学系40、偏向ミラー20
を介して偏光分離ミラー60に至り、偏光分離面PBS
を透過して光束分割ミラー70に至る。そして、光束分
割ミラー70では、光束分割面BSを介して光束が分割
され、この分割光束が位置検出素子37と受光素子36
に集光されることになる。
The transmission / reception integrated optical communication device having the above-described configuration is:
Similar to the conventional device, a device having the same configuration is installed facing the reach of the laser beam from the semiconductor laser light source 32,
The modulated signals from the modulator 31 are mutually received by the light receiving element 36 and used. At this time, the laser beam from the semiconductor laser light source 32 enters the polarization separation mirror 60 and is reflected by the polarization separation surface PBS, and only the S-polarized light beam passes through the second afocal optical system 40, the deflection mirror 20, and the telescope optical system 10. It is projected through. The light beam from the opposing device is transmitted to the telescope optical system 10, the second afocal optical system 40, and the deflecting mirror 20.
Through the polarization separation mirror 60, and the polarization separation surface PBS
And reaches the light beam splitting mirror 70. In the light beam splitting mirror 70, the light beam is split via the light beam splitting surface BS, and the split light beam is split into the position detecting element 37 and the light receiving element 36.
Will be collected.

【0015】以上の偏光分離ミラー60による偏光分
離、及び光束分割ミラー70による光束分割は、周囲が
空気(空間)のミラーによって行われるため、接着プリ
ズムの入出射面における反射に起因するクロストークの
問題が生じない。すなわち、SN比の高い信号が得られ
る。
The polarization splitting by the polarization splitting mirror 60 and the light splitting by the light splitting mirror 70 are performed by an air (space) mirror in the surroundings. No problem. That is, a signal having a high SN ratio can be obtained.

【0016】なお、偏光分離ミラー60、光束分割ミラ
ー70は、その裏面反射の影響を少なくするために、図
2に示すように、楔状にしてもよい。
The polarization splitting mirror 60 and the light beam splitting mirror 70 may be formed in a wedge shape as shown in FIG. 2 in order to reduce the influence of the back surface reflection.

【0017】[0017]

【発明の効果】本発明によれば、送受信一体型光通信装
置において、クロストークの問題を回避することができ
る。
According to the present invention, the problem of crosstalk can be avoided in an optical communication device integrated with transmission and reception.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の送受信一体型光通信装置の送受信部の
一実施形態を示す断面図である。
FIG. 1 is a cross-sectional view illustrating an embodiment of a transmission / reception unit of a transmission / reception integrated optical communication device according to the present invention.

【図2】本発明の送受信一体型光通信装置の送受信部の
別の実施形態を示す断面図である。
FIG. 2 is a cross-sectional view showing another embodiment of the transmission / reception unit of the integrated transmission / reception optical communication device of the present invention.

【図3】従来の送受信一体型光通信装置の一例を示す系
統図である。
FIG. 3 is a system diagram showing an example of a conventional transmission / reception integrated optical communication device.

【符号の説明】[Explanation of symbols]

10 望遠光学系(第一アフォーカル光学系) 20 光束偏向手段 30 送受信部 31 変調器 32 半導体レーザ光源 36 受光素子 37 位置検出素子 38 信号処理回路 40 第二アフォーカル光学系 60 偏光分離ミラー 70 光束分割ミラー PBS 偏光分離面 BS 光束分割面 Reference Signs List 10 telephoto optical system (first afocal optical system) 20 light beam deflecting means 30 transmitting / receiving unit 31 modulator 32 semiconductor laser light source 36 light receiving element 37 position detecting element 38 signal processing circuit 40 second afocal optical system 60 polarization separating mirror 70 light beam Split mirror PBS Polarization splitting surface BS Beam splitting surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 後藤 達夫 東京都練馬区東大泉2丁目5番2号 旭精 密株式会社内 (72)発明者 高山 抱夢 東京都練馬区東大泉2丁目5番2号 旭精 密株式会社内 (72)発明者 小島 洋一 東京都練馬区東大泉2丁目5番2号 旭精 密株式会社内 Fターム(参考) 2H087 KA22 LA21 LA25 LA26 PA01 PA02 PA17 PB01 PB02 QA02 QA06 QA14 QA22 QA39 QA41 5K002 AA05 AA07 BA02 BA13 BA21 CA21 FA04 9A001 BB04  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tatsuo Goto 2-5-2 Higashi-Oizumi, Nerima-ku, Tokyo Asahi Seimitsu Co., Ltd. (72) Inventor Yume Takayama 2-5-Higashi-Oizumi, Nerima-ku, Tokyo No. 2 Asahi Seimitsu Co., Ltd. (72) Inventor Yoichi Kojima 2-5-2 Higashi Oizumi, Nerima-ku, Tokyo Asahi Seimitsu Co., Ltd. F-term (reference) 2H087 KA22 LA21 LA25 LA26 PA01 PA02 PA17 PB01 PB02 QA02 QA06 QA14 QA22 QA39 QA41 5K002 AA05 AA07 BA02 BA13 BA21 CA21 FA04 9A001 BB04

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 送信情報に応じて変調されるレーザ光源
を含む送信部と、変調レーザ光を受光する受光素子と位
置検出素子を含む受信部と、上記送信部からの送信光と
上記受信部への受信光を分離する偏光分離手段とを有す
る送受信部;送信光を投光し、受信光を受光する送受信
系に共通の望遠光学系;及びこの望遠光学系と送受信部
の間に位置し、上記位置検出素子の出力に応じて駆動さ
れる光束偏向手段;を有する光通信装置において、 上記送受信部は、上記レーザ光源からの送信光を光束偏
向手段に向けて反射させる一方、望遠鏡から入射する受
信光を透過させる偏光分離面を有する偏光分離ミラー
と、該偏光分離面を透過した受信光を上記受光素子と位
置検出素子とに分割して与える光束分割面を有する光束
分割ミラーとを有することを特徴とする光通信装置のク
ロストーク防止装置。
A transmitting section including a laser light source modulated in accordance with transmission information; a receiving section including a light receiving element for receiving modulated laser light; and a position detecting element; transmitting light from the transmitting section; and the receiving section. A transmission / reception unit having polarization separation means for separating the reception light into the transmission / reception unit; a telephoto optical system common to the transmission / reception system for projecting the transmission light and receiving the reception light; and being located between the telephoto optical system and the transmission / reception unit. An optical communication device comprising: a light beam deflecting device driven in accordance with an output of the position detecting element; wherein the transmitting / receiving unit reflects transmission light from the laser light source toward the light beam deflecting device, and receives light from a telescope. And a light beam splitting mirror having a light beam splitting surface for splitting the received light beam transmitted through the polarized light splitting surface into the light receiving element and the position detecting element. This Crosstalk preventing device of an optical communication apparatus according to claim.
JP10333828A 1998-07-17 1998-11-25 Cross talk preventing device for optical communication device Pending JP2000162465A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10333828A JP2000162465A (en) 1998-11-25 1998-11-25 Cross talk preventing device for optical communication device
US09/354,732 US6701093B1 (en) 1998-07-17 1999-07-16 Integral transmitter-receiver optical communication apparatus and a crosstalk preventive device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10333828A JP2000162465A (en) 1998-11-25 1998-11-25 Cross talk preventing device for optical communication device

Publications (1)

Publication Number Publication Date
JP2000162465A true JP2000162465A (en) 2000-06-16

Family

ID=18270404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10333828A Pending JP2000162465A (en) 1998-07-17 1998-11-25 Cross talk preventing device for optical communication device

Country Status (1)

Country Link
JP (1) JP2000162465A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019186595A (en) * 2018-04-02 2019-10-24 株式会社島津製作所 Photoreceiver for optical communication device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019186595A (en) * 2018-04-02 2019-10-24 株式会社島津製作所 Photoreceiver for optical communication device

Similar Documents

Publication Publication Date Title
US5155623A (en) Arrangement for imaging multiple arrays of light beams
CN107422486B (en) Stereoscopic image device
JP2000101515A (en) Transmission/reception integrated optical communication equipment
US6411749B2 (en) In-line fiber optic polarization combiner/divider
RU2204155C2 (en) Optical insulator
JPH1068908A (en) Optical device
CN209895095U (en) Polarization beam splitter prism and 3D projection light modulation system
KR20000067242A (en) Reflection type projector
CN100420980C (en) Wavelength-selective polarization conversion element
JP2000162465A (en) Cross talk preventing device for optical communication device
JP3339014B2 (en) Integrated transmission and reception optical communication device
JPH05145496A (en) Two-way optical transmitter
US20230048432A1 (en) Polarization splitting device, polarization splitting structure and projection device
KR101472893B1 (en) A stereoscopic image projection device
JPH0949965A (en) Focal position detector
JP2000162543A (en) Crosstalk preventing device for optical communication device
JP3339016B2 (en) Integrated transmission and reception optical communication device
KR20040087034A (en) Reflective type lighting optical system
JP2000101517A (en) Transmission/reception integrated optical communication equipment
JP3362308B2 (en) Integrated transmission and reception optical communication device
JP3339015B2 (en) Integrated transmission and reception optical communication device
CA1318162C (en) Arrangement for imaging multiple arrays of light beams
CN217425840U (en) Display device and electronic equipment with same
CN212135099U (en) Light complex blocking device
JP2017134400A (en) Optical receiver module