JP2000155003A - Distance gauge - Google Patents

Distance gauge

Info

Publication number
JP2000155003A
JP2000155003A JP10374922A JP37492298A JP2000155003A JP 2000155003 A JP2000155003 A JP 2000155003A JP 10374922 A JP10374922 A JP 10374922A JP 37492298 A JP37492298 A JP 37492298A JP 2000155003 A JP2000155003 A JP 2000155003A
Authority
JP
Japan
Prior art keywords
conductor
short
parallel
permanent magnet
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10374922A
Other languages
Japanese (ja)
Inventor
Naomasa Oshie
直正 押柄
Masayuki Miki
正之 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIBEKKUSU KK
Levex Corp
Original Assignee
RIBEKKUSU KK
Levex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIBEKKUSU KK, Levex Corp filed Critical RIBEKKUSU KK
Priority to JP10374922A priority Critical patent/JP2000155003A/en
Publication of JP2000155003A publication Critical patent/JP2000155003A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To measure an absolute distance without any influence by an environmental change even in measurement of a long distance by freely rolling/sliding a short circuit conductor from the outside by means of a magnet for generating a short circuit in an optional position between parallel conductors. SOLUTION: In measurement of a height of a liquid level 5 in a container 36, for example, parallel conductors 34-1, 34-2 and a rotational short circuit conductor 17 are put inside a protection cover, and a permanent magnet 4 is fixed inside a float 31 constructed to move upward/downward according to the vertical movement of the liquid lever 5. When a liquid level moves upward/downward, the permanent magnet 4 moves upward/downward according to the vertical movement of the float 31, and consequently, the parallel conductors 34-1, 34-2 moved upward/downward are short- circuited with each other by the short circuit conductor 1. A high frequency pulse is impressed to the ends of the parallel conductors 34-1, 34-2 from an amplifier 1, and a time required for transmission of this pulse impressed and reflected by the short circuit part is measured. By multiplying the transmission time by a voltage propagation speed inside the conductor, a distance to impedance mismatching, that is, a height of the liquid lever 5 of the position of the float 31 can be measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は自動倉庫の搬送台車の位
置計測、コンテナキャリアの位置計測、天井走行クレー
ンの位置計測、シリンダロッドの位置検出、タンク内液
面高さ計測器等長距離位置計測に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the measurement of the position of a transport trolley in an automatic warehouse, the position measurement of a container carrier, the position measurement of an overhead traveling crane, the position detection of a cylinder rod, and a long-distance position such as a liquid level measuring device in a tank. Regarding measurement.

【0002】[0002]

【従来の技術】従来の長距離位置計測はレーザ光の反射
を利用した測量とか、回転検出器を内蔵したリールにワ
イヤを巻付けワイヤの巻取り回数と巻取り角度を位置に
換算する方法とか、回転計をピニオンに固定し、これを
ラックに噛み合わせてピニオンの回転数及び角度を計測
して距離に換算する方法等があった。
2. Description of the Related Art Conventional long-distance position measurement includes measurement using reflection of a laser beam, a method of winding a wire around a reel having a built-in rotation detector, and converting the number of windings and the winding angle of the wire into a position. There has been a method in which a tachometer is fixed to a pinion, and the pinion is engaged with a rack to measure the number of rotations and the angle of the pinion and convert it into a distance.

【0003】[0003]

【発明が解決しようとする課題】従来の距離計測器は例
えば、レーダ測定法では太陽光とか雨のような天候に測
定精度が左右され、ワイヤとローラを用いた測定方法で
は一回転当りの巻取り半径の変化とか乱巻によって一回
転当りのワイヤ巻取り量が変化し、ラックとピニオンを
用いた計測ではバックラッシ等によってピニオン回転回
数が変化して誤差が発生すると共に、回転数計測が一回
転毎の同じ信号の繰返し(インクリメンタル)のため、
計測装置を電源停止後再復帰するには原点合わせが必要
となり、ファクトリーオートメーション分野等では確実
性に欠けるという問題があった。
In a conventional distance measuring device, for example, in a radar measuring method, the measuring accuracy is affected by weather such as sunlight or rain, and in a measuring method using a wire and a roller, a winding per rotation is used. A change in the take-up radius or turbulent winding changes the amount of wire wound per revolution.In measurement using a rack and a pinion, the number of pinion rotations changes due to backlash etc., and an error occurs. Because of the repetition (incremental) of the same signal every time,
In order to return the measuring device after the power is turned off, it is necessary to adjust the origin, which is a problem in the field of factory automation.

【0004】本発明は計測距離が長距離計測であっても
アブソリュート(インクリメンタルでない)で得られる
こと、雨とか気温等の環境変化で測定精度が著しく低下
しないような物理特性に基づいた計測器を提供すること
を目的としている。
[0004] The present invention provides a measuring instrument based on physical characteristics that can be obtained absolutely (not incrementally) even if the measurement distance is a long distance measurement, and that the measurement accuracy does not significantly decrease due to environmental changes such as rain or temperature. It is intended to provide.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明の距離計測器では導体を伝搬する電圧の伝搬
速度が外部環境の変化に対して安定していることに着目
し、この通過時間を計測することで距離を測定する。
To achieve the above object, the distance measuring apparatus of the present invention focuses on the fact that the propagation speed of a voltage propagating through a conductor is stable with respect to changes in the external environment. Measure distance by measuring time.

【0006】導体の材質によって導体を伝搬する電圧の
伝搬速度は異なるが、通常非常に高速であり、銅線のよ
うに電圧の伝搬速度が1mを約5ns(ナノ秒)で伝達
する導体では、1cmの分解能を得るには0.05ns
以上の分解能を持つ高速カウンタが必要になる。
[0006] The propagation speed of a voltage propagating through a conductor varies depending on the material of the conductor, but it is usually very high. In a conductor such as a copper wire, which transmits a voltage of 1 m in about 5 ns (nanoseconds), 0.05 ns for 1 cm resolution
A high-speed counter having the above resolution is required.

【0007】本発明では、再現性の高い距離測定を行う
ための距離測定原理と、計測距離を的確に定める機械的
手段と、このような高速現象を確実に計測する電気的手
段を提供する。
The present invention provides a distance measuring principle for performing distance measurement with high reproducibility, mechanical means for accurately determining a measured distance, and electric means for reliably measuring such a high-speed phenomenon.

【0008】[0008]

【作用】平行導体(34)を図1の等価回路のように等
価インダクタンスL、等価抵抗R、等価容量Cの等分布
状態とみなし、この平行導体の1端に印加パルスを印加
すると電圧は平行導体内を伝搬し、反対端末まで達した
後反射して再度印加部へ返ってくる。
The parallel conductor (34) is regarded as having an equivalent distribution of equivalent inductance L, equivalent resistance R and equivalent capacitance C as shown in the equivalent circuit of FIG. 1, and when an applied pulse is applied to one end of the parallel conductor, the voltage becomes parallel. The light propagates through the conductor, reaches the opposite terminal, is reflected, and returns to the application section again.

【0009】この反射による電圧の変化は反対端末の接
続状態により異なり、また導体途中に図2の短絡または
図3の断線等によってインピーダンス不整合が発生した
場合は、このインピーダンス不整合部分で反射が発生す
る。
The change in voltage due to the reflection differs depending on the connection state of the opposite terminal. If an impedance mismatch occurs due to a short circuit in FIG. 2 or a disconnection in FIG. appear.

【0010】初期に返ってくる反射波を一次反射波
(2)とし、印加部で電圧が逆転して再反射する反射波
を二次反射波(23)としたとき、印加パルスを加えた
端末に一次反射波が返ってくるまでの時間は、導体内の
電圧の伝搬速度で定まり外部環境変化による影響は小さ
い。
A terminal to which an applied pulse is applied, when the reflected wave returned at the initial stage is a primary reflected wave (2) and the reflected wave whose voltage is reversed at the application section and re-reflected is a secondary reflected wave (23). The time required for the primary reflected wave to return is determined by the propagation speed of the voltage in the conductor, and is less affected by changes in the external environment.

【0011】機械的に外部からインピーダンス不整合を
発生させるには平行導体間を短絡する一部が磁性体の機
構物(短絡用導体)を配置し、この機構物の外部に永久
磁石(4)を配置し、この永久磁石を動かすことで短絡
部の移動を行わせる。
In order to mechanically cause impedance mismatch from the outside, a mechanical part (short-circuiting conductor) which is short-circuited between the parallel conductors is disposed, and a permanent magnet (4) is provided outside the mechanical part. Is arranged, and by moving the permanent magnet, the short-circuit portion is moved.

【0012】パルス印加から一次反射波(2)が返って
くるまでの非常に短い時間を、高分解能で計測するには
高性能の超高速カウンタが必要となるため、ここでは簡
便で信頼性の高い時間計測用の高速アナログ回路を提供
する。
To measure a very short time from the application of the pulse to the return of the primary reflected wave (2) with high resolution, a high-performance ultra-high-speed counter is required. Provide a high-speed analog circuit for high time measurement.

【0013】またパルス印加時の電圧の立上がり時間そ
のものが測定距離の計測に影響するため、この誤差を予
め除去する機械的処理も提供する。
Further, since the rise time of the voltage itself upon application of the pulse affects the measurement of the measurement distance, a mechanical process for removing this error in advance is also provided.

【0014】[0014]

【実施例】最長測定距離(Lt)が100mで、導体を
伝搬する電圧の伝搬速度Veが5ns(ナノ秒)/1m
の条件で、特殊な加工がされていない平行導体を仮定し
て本発明の距離計測器の構成を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The longest measurement distance (Lt) is 100 m and the propagation speed Ve of a voltage propagating through a conductor is 5 ns (nanosecond) / 1 m.
The configuration of the distance measuring instrument of the present invention is shown on the assumption that a parallel conductor that has not been specially processed is provided under the condition (1).

【0015】図4に示すようにセンサ全長を計る場合の
T1=Ttは、Ltの往復距離(2×100m)にVe
(5ns/m)を乗じた1μs(μ秒)となり、平行導
体のインピーダンスが特に大きくなく、反射波の2次反
射波がTtより短い時間で終わる場合はTp=Ttと
し、T=Tt+Tp=2×Ttと設定する。
As shown in FIG. 4, T1 = Tt when measuring the entire length of the sensor is obtained by adding Ve to the reciprocating distance of Lt (2 × 100 m).
(5 ns / m), which is 1 μs (μ second). When the impedance of the parallel conductor is not particularly large and the secondary reflected wave of the reflected wave ends in a shorter time than Tt, Tp = Tt, and T = Tt + Tp = 2. × Tt.

【0016】従ってTは2×Ttで2μs(マイクロ
秒)となり、印加パルスの印加周波数Fは1秒をTで除
した500KH(キロヘルツ)とする。
Therefore, T is 2 × Tt, which is 2 μs (microsecond), and the applied frequency F of the applied pulse is 500 KH (kilohertz) obtained by dividing one second by T.

【0017】途中にインピーダンス不整合部分がない
と、一次反射波は1μs後に発生し、導体の長さは1μ
sを電圧の伝搬速度Ve(5ns/m)で除して200
mとなるが、通過時間は往復なのでこれを2で割った1
00mが平行導体の距離として求められる。
If there is no impedance mismatch in the middle, the primary reflected wave is generated after 1 μs, and the length of the conductor is 1 μm.
s divided by the voltage propagation velocity Ve (5 ns / m) to obtain 200
m, but since the transit time is round-trip, this is divided by 2 and 1
00 m is obtained as the distance between the parallel conductors.

【0018】途中L1の位置にインピーダンス不整合部
分があると、T1後に一次反射波が発生し、インピーダ
ンス不整合部までの距離T1をVeで除した値の二分の
一が測定距離となる。
If there is an impedance mismatching part at the position L1 on the way, a primary reflected wave is generated after T1, and half the value obtained by dividing the distance T1 to the impedance mismatching part by Ve is the measurement distance.

【0019】次にこのようにして得られた時間を高分解
能で測定するために、微小な時間変化を取出す必要が有
り、ここでは時間を電圧に置き換える方法を用いるた
め、この変換方法を示す。
Next, in order to measure the time obtained in this way with high resolution, it is necessary to take out a minute change in time. Here, a method of replacing time with voltage is used, so this conversion method will be described.

【0020】図5に示す不整合発生器位置の計測方法を
実現するため、図7の電気ブロック図を用いて説明す
る。
The method for measuring the position of the mismatch generator shown in FIG. 5 will be described with reference to the electric block diagram of FIG.

【0021】パルス発生器(27)で形成されたFヘル
ツの周波数のパルスを波形整形器(25)で形の整った
矩形波形にした後、分配器(32)に送り平行導体(3
4)への印加パルス(3)に用いる。
The pulse having the frequency of F hertz formed by the pulse generator (27) is formed into a well-formed rectangular waveform by the waveform shaper (25), and then sent to the distributor (32) to be transmitted to the parallel conductor (3).
Used for pulse (3) applied to 4).

【0022】平行導体(34)から返ってきた反射波は
分配器(32)を介してパルス増幅器(27)へ送ら
れ、この信号と基準電圧発生器より得られた信号をコン
パレータ(8)で比較し、この電圧が一致した瞬間基準
電圧の出力を停止し、基準電圧が出力していた時間T1
と基準電圧の積を基準周期Tで除して平均電圧(33)
を求め、この平均電圧(33)は、印加パルス印加後か
ら電圧伝搬がインピーダンス不整合発生器(30)に達
し、ここで反射して返ってくるまでの時間に比例するた
めこの平均電圧を求めることで、パルス印加部から平行
導体(34)途中に置かれたインピーダンス不整合発生
器までの距離を計測することができる。
The reflected wave returned from the parallel conductor (34) is sent to a pulse amplifier (27) via a distributor (32), and this signal and a signal obtained from a reference voltage generator are compared by a comparator (8). The output of the reference voltage is stopped at the instant when the voltages match, and the time T1 during which the reference voltage was output is T1.
Divided by the reference period T to calculate the average voltage (33)
The average voltage (33) is proportional to the time from when the applied pulse is applied to the time when the voltage propagation reaches the impedance mismatch generator (30), where it is reflected and returned. This makes it possible to measure the distance from the pulse applying unit to the impedance mismatch generator placed in the middle of the parallel conductor (34).

【0023】同様に、図6に示すようにセンサケーブル
(13)の全長をLM、電圧立上がりまでのロス時間に
相当する距離を助走距離とし、この助走距離をL0、セ
ンサケーブル(13)端末からインピーダンス不整合発
生器(30)までの距離をL1、基準電圧をしきい値
(9)E0とし、印加パルスを印加すると同時にノコギ
リ波発生器からノコギリ波(24)電圧を発生させ、コ
ンパレータ(8)で一次反射波(2)E1がしきい値
(9)E0を越えた時、これをトリガーとしてノコギリ
波の昇圧を停止保存し、この電圧を測定することでセン
サケーブルのパルス印加端末からインピーダンス発生器
までの距離を測定する。
Similarly, as shown in FIG. 6, the total length of the sensor cable (13) is LM, the distance corresponding to the loss time until the voltage rises is the approach distance, this approach distance is L0, and the sensor cable (13) terminal is The distance to the impedance mismatch generator (30) is L1, the reference voltage is a threshold (9) E0, and the sawtooth wave generator generates a sawtooth wave (24) voltage at the same time as applying an applied pulse. ), When the primary reflected wave (2) E1 exceeds the threshold value (9) E0, this is used as a trigger to stop and save the boosting of the sawtooth wave, and measure this voltage to measure the impedance from the pulse application terminal of the sensor cable. Measure the distance to the generator.

【0024】ここでインピーダンス不整合を発生させる
手法は、図3に示すように抵抗変化を利用して平行導体
(34)間を短絡する方法を用いる。
Here, as a method of generating the impedance mismatch, a method of short-circuiting between the parallel conductors (34) using a resistance change as shown in FIG. 3 is used.

【0025】図8および図9に外部から平行導体間に自
由に短絡を発生させるための機械的手段の例を示す。
FIGS. 8 and 9 show examples of mechanical means for freely generating a short circuit between parallel conductors from the outside.

【0026】図8AではカバーB内に平行導線を2本走
らせ、ここに鉄とかNiのような磁性金属の球を入れ、
外部に自由に滑合する永久磁石(4)を内蔵したカバー
Aを配し、カバーAがカバーB上を滑動すると、内部の
磁性金属も転動して、短絡部が移動する例を示す。
In FIG. 8A, two parallel conductors are run inside the cover B, and a sphere of a magnetic metal such as iron or Ni is put therein.
An example is shown in which a cover A containing a permanent magnet (4) that freely slides outside is provided, and when the cover A slides on the cover B, the internal magnetic metal also rolls and the short-circuit portion moves.

【0027】同様に、図8BはカバーB内で自由に動く
短絡用の円筒状の磁性金属を入れ、カバーBの外部に自
由に滑合する永久磁石(4)を内蔵したカバーAを配
し、カバーAがカバーB上を滑動すると内部の磁性金属
も転動して平行導体上の短絡部が移動する例を示す。
Similarly, FIG. 8B shows a cover A containing a short-circuited cylindrical magnetic metal that freely moves in the cover B and a permanent magnet (4) that slides freely outside the cover B. When the cover A slides on the cover B, the internal magnetic metal rolls and the short-circuit portion on the parallel conductor moves.

【0028】図8Cでは内部に空間を持つように形成し
た2本の平行導体を配し、この中に磁性金属を内蔵し、
平行導体の外周を絶縁体で覆い、その外部に永久磁石を
内蔵したスライダを配し、スライダが滑動すると平行導
体内の短絡用の磁性金属が引き付けられ、平行導体間の
短絡を発生させる例を示す。
In FIG. 8C, two parallel conductors formed so as to have a space inside are arranged, and a magnetic metal is built therein.
An example in which the outer circumference of a parallel conductor is covered with an insulator, and a slider with a built-in permanent magnet is arranged outside the slider, and when the slider slides, the short-circuiting magnetic metal in the parallel conductor is attracted, causing a short circuit between the parallel conductors. Show.

【0029】図9では容器内の液体表面高さを測定する
ため容器に垂直に保護カバー(6)を入れ、この中に平
行導線(34)と転動が可能な短絡用磁性金属を入れ、
この保護カバーに滑合する状態でフロート(31)を形
成し、このフロート内部に永久磁石(4)を固定し、液
体表面の上下でフロートが上下するように構成する。
In FIG. 9, in order to measure the liquid surface height in the container, a protective cover (6) is inserted vertically into the container, and a parallel conducting wire (34) and a short-circuiting magnetic metal capable of rolling are inserted therein.
A float (31) is formed so as to slide on the protective cover, and a permanent magnet (4) is fixed inside the float, so that the float moves up and down above and below the liquid surface.

【0030】ここで液面が上下するとフロートの上下に
合わせて永久磁石が上下し、導体保護カバー内の磁性金
属が上下して平行導体間を短絡させる。
Here, when the liquid level goes up and down, the permanent magnet goes up and down in accordance with the up and down of the float, and the magnetic metal in the conductor protection cover goes up and down to short-circuit between the parallel conductors.

【0031】ここでアンプ(1)から平行導体(34)
端末に高周波矩形パルスを印加し、導体内の電圧伝搬が
短絡部で反射し、この一次反射波(2)が、印加パルス
印加開始直後から印加端に返ってくるまでの時間を計測
し、この伝達時間に導体内の電圧伝搬速度を乗ずること
で平行導体端の印加位置からインピーダンス不整合発生
器(2)までの距離を計測できるためフロートの位置が
計測出来、結果として液面の高さを計測することができ
る。
Here, the parallel conductor (34) from the amplifier (1)
A high-frequency rectangular pulse is applied to the terminal, and the voltage propagation in the conductor is reflected at the short-circuit portion, and the time from when the applied pulse (2) returns to the application end immediately after the application of the applied pulse is measured. By multiplying the propagation time by the voltage propagation speed in the conductor, the distance from the application position of the parallel conductor end to the impedance mismatch generator (2) can be measured, so that the float position can be measured, and as a result, the liquid level can be measured. Can be measured.

【0032】図10ではシリンダ用ロッドの位置を測定
するため、ロッドおよびピストン内に円筒穴を形成し、
シリンダヘッド部に固定した保護カバー(6)をこの円
筒穴に平行に入れ、保護カバー内には平行導線(34)
と転動が可能な短絡用磁性金属を入れ、保護カバーとロ
ッド内の円筒穴との間には隙間を持たせ、シリンダヘッ
ドカバー側のピストン端に永久磁石(4)を固定し、ロ
ッドの伸縮で永久磁石が動くように構成する。
In FIG. 10, a cylindrical hole is formed in the rod and piston to measure the position of the cylinder rod.
A protective cover (6) fixed to the cylinder head is inserted in parallel with the cylindrical hole, and a parallel conducting wire (34) is set in the protective cover.
And a magnetic metal for short-circuiting that can be rolled in. A gap is provided between the protective cover and the cylindrical hole in the rod, and a permanent magnet (4) is fixed to the piston end on the cylinder head cover side, and the rod expands and contracts. So that the permanent magnet moves.

【0033】ここでシリンダロッドが伸縮すると永久磁
石が動き、導体保護カバー内の磁性金属が動いて平行導
体間を短絡させる。
Here, when the cylinder rod expands and contracts, the permanent magnet moves, and the magnetic metal in the conductor protection cover moves to short-circuit the parallel conductors.

【0034】ここでアンプ(1)から平行導体(34)
端末に高周波矩形パルスを印加し、導体内の電圧伝搬が
短絡部で反射し、この一次反射波(2)が、印加パルス
印加開始直後から印加端に返ってくるまでの時間を計測
し、この伝達時間に導体内の電圧伝搬速度を乗ずること
で平行導体端の印加位置から短絡までの距離を計測でき
るためシリンダロッド位置が判る。
Here, the parallel conductor (34) from the amplifier (1)
A high-frequency rectangular pulse is applied to the terminal, and the voltage propagation in the conductor is reflected at the short-circuit portion, and the time from when the applied pulse (2) returns to the application end immediately after the application of the applied pulse is measured. By multiplying the transmission time by the voltage propagation speed in the conductor, the distance from the application position of the parallel conductor end to the short circuit can be measured, so that the cylinder rod position is known.

【0035】[0035]

【発明の効果】電磁波を利用した長距離計測装置として
レーダがあるが、本発明はレーダのように開放された空
間ではなく、平行導体という閉鎖された空間で反射を利
用して距離を測定するため平行導体(34)を自由に屈
曲させることも可能であり、また平行導体内の電圧の伝
搬速度を計測の基準にしているため外乱に対して乱れが
少なく、また電圧の伝搬速度が既知の導体ということで
絶対位置計測(アブソリュート)ができる。
A radar is a long-distance measuring device using electromagnetic waves, but the present invention measures a distance using reflection in a closed space such as a parallel conductor, not in an open space like a radar. Therefore, it is possible to freely bend the parallel conductor (34). Moreover, since the propagation speed of the voltage in the parallel conductor is used as a reference for measurement, there is little disturbance due to disturbance, and the propagation speed of the voltage is known. Absolute position measurement (absolute) is possible because it is a conductor.

【0036】超音波の反射を利用した距離計測器もある
が、測定の基準になっているのは空気中の音速のため、
温度の影響を受け易いだけでなく、伝搬速度が遅いため
高速移動体の計測には向かない。
There is a distance measuring device utilizing the reflection of ultrasonic waves, but the measurement is based on the speed of sound in the air.
In addition to being easily affected by temperature, it is not suitable for measurement of a high-speed moving object due to a low propagation speed.

【0037】また時間を高速カウンタを利用しないで電
圧に変換できるため、短距離の超高速時間処理即ち距離
測定が可能となり、可撓性の導体を用いれば曲りとか曲
率をもつ形状に対しても距離測定が可能なため、従来無
かった新たなファクトリーオートメーション用途での距
離測定が可能となった。
Further, since time can be converted into voltage without using a high-speed counter, ultra-high-speed processing of short distances, that is, distance measurement becomes possible, and even if a flexible conductor is used, even a shape having a bend or curvature can be obtained. Because distance measurement is possible, distance measurement for new factory automation applications that was not available before has become possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】等分布状態とみなした平行導体の等価回路Fig. 1 Equivalent circuit of parallel conductors assumed to be in equal distribution

【図2】不整合状態:短絡時の等価回路FIG. 2 Mismatch state: equivalent circuit at short circuit

【図3】不整合発生状態の概略図FIG. 3 is a schematic diagram of a state in which a mismatch has occurred;

【図4】反射波形状と不整合発生器の位置FIG. 4 shows the shape of the reflected wave and the position of the mismatch generator.

【図5】不整合発生器の位置と平均電圧FIG. 5: Mismatch generator position and average voltage

【図6】ノコギリ波を用いた検出距離出力方法FIG. 6 is a detection distance output method using a sawtooth wave.

【図7】距離検出器ブロック図FIG. 7 is a block diagram of a distance detector.

【図8】短絡方法FIG. 8 Short-circuit method

【図9】液面計の液体表面高さの計測FIG. 9: Measurement of liquid surface height by liquid level gauge

【図10】シリンダロッド位置検出器FIG. 10 is a cylinder rod position detector

【符号の説明】[Explanation of symbols]

1 アンプ 2 一次反射波 3 印加パルス 4 永久磁石 5 液体表面 6 カバーまたは保護カバー 7 基準電圧発生器 8 コンパレータ 9 しきい値 10 助走距離 11 シリンダチューブ 12 スライダ 13 センサケーブル 14 測定距離 15 断線 16 短絡 17 短絡用導体 18 低域フィルタ 19 等価インダクタンス 20 等価抵抗 21 等価容量 22 トリガー 23 二次反射波 24 ノコギリ波 25 波形整形器 26 パルス増幅器 27 パルス発生器 28 ピストン 29 不整合 30 不整合発生器 31 フロート 32 分配器 33 平均電圧 34 平行導体 34−1 平行導体A 34−2 平行導体B 37 ポート 38 容器 39 ロッドまたはシリンダロッド Reference Signs List 1 amplifier 2 primary reflected wave 3 applied pulse 4 permanent magnet 5 liquid surface 6 cover or protective cover 7 reference voltage generator 8 comparator 9 threshold 10 approaching distance 11 cylinder tube 12 slider 13 sensor cable 14 measuring distance 15 disconnection 16 short circuit 17 Short-circuit conductor 18 Low-pass filter 19 Equivalent inductance 20 Equivalent resistance 21 Equivalent capacitance 22 Trigger 23 Secondary reflected wave 24 Sawtooth wave 25 Waveform shaper 26 Pulse amplifier 27 Pulse generator 28 Piston 29 Mismatch 30 Mismatch generator 31 Float 32 Distributor 33 Average voltage 34 Parallel conductor 34-1 Parallel conductor A 34-2 Parallel conductor B 37 Port 38 Container 39 Rod or cylinder rod

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 導体内の電圧の伝搬速度が既知で、イ
ンピーダンスが等分布状態とみなされる平行導体(3
4)において、平行導体(34)の任意の目的位置に、
平行導体(34)に短絡用導体(17)を短絡させてイ
ンピーダンス不整合を起こさせるインピーダンス不整合
発生器(30)を持ち、平行導体(34)端末に高周波
矩形パルスを印加し導体内の電圧伝搬がインピーダンス
不整合発生器(30)によって反射され、この一次反射
波(2)が印加パルス(3)の印加開始直後から印加端
(平行導体の片端末)に返ってくるまでの往復に要する
時間を計測し、この伝達時間に平行導体内の電圧伝搬速
度を乗ずることで、平行導体(34)端の印加位置から
インピーダンス不整合発生器(30)設置位置までの距
離を計測するように構成した距離測定器において、短絡
用導体を磁性金属で構成し、この短絡用導体(17)を
外部から永久磁石(4)または電磁石で自由に転動また
は滑動させ平行導体の任意の位置に短絡を発生させて、
位置計測を行えるように構成した距離測定器。
A parallel conductor (3) whose propagation speed of a voltage in a conductor is known and whose impedance is considered to be in a uniform distribution state.
In 4), at any desired position of the parallel conductor (34),
It has an impedance mismatch generator (30) for short-circuiting the short-circuit conductor (17) to the parallel conductor (34) to cause impedance mismatch, and applies a high-frequency rectangular pulse to the terminal of the parallel conductor (34) to apply a voltage in the conductor. The propagation is reflected by the impedance mismatch generator (30), and the primary reflected wave (2) is required for reciprocation from immediately after the application of the applied pulse (3) to returning to the application end (one end of the parallel conductor). By measuring the time and multiplying the transmission time by the voltage propagation speed in the parallel conductor, the distance from the application position of the end of the parallel conductor (34) to the position where the impedance mismatch generator (30) is installed is measured. In this distance measuring device, the short-circuiting conductor is made of a magnetic metal, and the short-circuiting conductor (17) is freely rolled or slid from the outside with a permanent magnet (4) or an electromagnet to be parallel-conductive. Any by generating a short circuit at the position of,
A distance measuring device configured to perform position measurement.
【請求項2】 請求項1の距離測定器において保護カ
バーに覆われたセンサケーブル部(13)および自由に
移動できる磁性金属を液体容器(36)内に垂直に設置
し、保護カバー外周に保護カバーに滑合するように液体
より比重の軽いフロート(31)を設置し、このフロー
トには永久磁石(4)を挿入し、液体表面が上下動する
とフロート(31)も上下動し、この動きに合わせて保
護カバー内の短絡用の磁性金属(17)が上下動し、液
体表面高さに相当する任意の位置で平行導体間を短絡さ
せて液体表面高さを計測するように構成した液体表面高
さ計測器。
2. The distance measuring device according to claim 1, wherein the sensor cable portion (13) covered by the protective cover and the freely movable magnetic metal are vertically installed in the liquid container (36) and protected on the outer periphery of the protective cover. A float (31) having a lower specific gravity than the liquid is installed so as to slide on the cover, and a permanent magnet (4) is inserted into this float. When the liquid surface moves up and down, the float (31) also moves up and down, and this movement The liquid metal configured to measure the liquid surface height by moving the magnetic metal for short circuit (17) in the protective cover up and down in accordance with the time, and short-circuiting the parallel conductors at an arbitrary position corresponding to the liquid surface height. Surface height measuring instrument.
【請求項3】 シリンダのシリンダロッド(37)お
よびピストン(28)の中央に円筒の穴を穿ち、この穴
にシリンダヘッドカバー側に固定された保護カバーをシ
リンダロッド(37)に平行に挿入し、この保護カバー
内に2本の平行導体(34)と自由に移動できる短絡用
磁性金属(17)を入れ、この平行導体はアンプと接続
され、永久磁石(4)をシリンダヘッド側ピストン端面
に保護カバーに接触しないように挿入してピストンに固
定し、請求項1の距離測定原理に基づいて、シリンダロ
ッド(37)が伸縮するとこれに固定されたピストンお
よび永久磁石が移動し、保護カバー内の短絡用磁性金属
(17)は永久磁石に引き付けられ、永久磁石(4)の
動きに合わせて移動して平行導体の短絡を行わせること
で平行導体間のインピーダンス不整合を発生させ、シリ
ンダロッド位置が計測できるように構成したシリンダロ
ッド位置検出器。
3. A cylindrical hole is formed in the center of the cylinder rod (37) and the piston (28) of the cylinder, and a protective cover fixed to the cylinder head cover side is inserted into the hole in parallel with the cylinder rod (37). In this protective cover, two parallel conductors (34) and a freely movable short-circuiting magnetic metal (17) are placed, and the parallel conductors are connected to an amplifier to protect the permanent magnet (4) on the end face of the piston on the cylinder head side. When the cylinder rod (37) expands and contracts based on the distance measuring principle according to claim 1, the piston and the permanent magnet fixed to the cylinder move and the piston and the permanent magnet move to prevent the cover from coming into contact with the cover. The short-circuiting magnetic metal (17) is attracted to the permanent magnet, and moves in accordance with the movement of the permanent magnet (4) to cause a short-circuit of the parallel conductors, thereby causing an impedance between the parallel conductors. -A cylinder rod position detector that generates a dance mismatch and can measure the cylinder rod position.
JP10374922A 1998-11-18 1998-11-18 Distance gauge Pending JP2000155003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10374922A JP2000155003A (en) 1998-11-18 1998-11-18 Distance gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10374922A JP2000155003A (en) 1998-11-18 1998-11-18 Distance gauge

Publications (1)

Publication Number Publication Date
JP2000155003A true JP2000155003A (en) 2000-06-06

Family

ID=18504661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10374922A Pending JP2000155003A (en) 1998-11-18 1998-11-18 Distance gauge

Country Status (1)

Country Link
JP (1) JP2000155003A (en)

Similar Documents

Publication Publication Date Title
US3853005A (en) Interface measuring apparatus
US5017867A (en) Magnetostrictive linear position detector with reflection termination
US6229476B1 (en) Liquid level meter
CN201787917U (en) High-accuracy magnetic displacement transducer
JP6297042B2 (en) Extended stroke position sensor
CN108120901A (en) A kind of cable fault localization method and device
JP2000131004A (en) Distance measuring apparatus
US3296862A (en) Fluid level measuring apparatus
CN110081806A (en) A kind of magnetostrictive displacement sensor device, system and calibration method
CN103630066A (en) High-speed displacement and speed measuring device and method
EP0611953B1 (en) Length measuring apparatus
JP2000155003A (en) Distance gauge
CA2290266A1 (en) Liquid level meter
Kirkcaldy et al. Time synchronized distributed acoustic sensing of partial discharge at the oil-pressboard interface
SU578609A1 (en) Method of measuring the parameters of moving electroconductive articles
JP2000121308A (en) Range finder
RU2222786C1 (en) Procedure measuring level of liquid with use of magnetostrictive level gauge and magnetostrictive level gauge
Marshall et al. A capacitance depth gauge for thin liquid films
KR20130106559A (en) Displacement sensor and compensation of measurement errors thereof
CN216816712U (en) Laser reflection induction type underwater vehicle speed measurement system
TWM630874U (en) Time domain guided wave radar material liquid level measuring apparatus
RU2327103C2 (en) Method of ferromagnetic items length and speed measurement
Paophan et al. Applications of a high frequency current transformer and air-core inductive devices for detecting a partial discharge location in a cable
SU717656A1 (en) Method of determining shock compression parameters of conducting plate
GB2098731A (en) Determining linear measurement