JP2000154822A - Dynamic pressure bearing device and deflecting scanner - Google Patents

Dynamic pressure bearing device and deflecting scanner

Info

Publication number
JP2000154822A
JP2000154822A JP34357698A JP34357698A JP2000154822A JP 2000154822 A JP2000154822 A JP 2000154822A JP 34357698 A JP34357698 A JP 34357698A JP 34357698 A JP34357698 A JP 34357698A JP 2000154822 A JP2000154822 A JP 2000154822A
Authority
JP
Japan
Prior art keywords
dynamic pressure
pressure generating
sleeve
bearing
spindle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34357698A
Other languages
Japanese (ja)
Inventor
Masayoshi Asami
政義 浅見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP34357698A priority Critical patent/JP2000154822A/en
Publication of JP2000154822A publication Critical patent/JP2000154822A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To avoid a gall at the time of decrease of rigidity of a bearing due to decrease of viscosity of oil by forming herringbone shaped dynamic pressure generating grooves which consist of a pair of the inclining groove parts on either one of a spindle and a sleeve engaged freely to rotate with each other, and by providing a circumferential groove communicating to inclining groove parts on a central part of the dynamic pressure generating grooves. SOLUTION: A spindle 2 for integratedly rotating with a rotating polygon mirror is rotatively fitted into a sleeve 3, and the sleeve 3 is fitted into a boss part of an outer cylinder. A space of 3 to 10 μm of a bearing is formed between the sleeve 3 and the spindle 2, and oil in the space flows by rotation of the spindle 2 to journal the spindle 2 in a non-contact state in a radial direction by the dynamic pressure. Two herringbone shaped dynamic pressure generating grooves 22b are formed on an outer circumferential surface (an outer diameter part) of the spindle 2. A circumferential groove 31 is formed on a central part of the dynamic pressure generating grooves 22b, and a pair of inclining groove parts arranged above and below which are composed of the herringbone shaped dynamic pressure generating grooves 22b is formed by communicating to the central part intersected with the grooves in a V-shape, and thereby producing a stably annular groove. When the spindle 2 is sopped or rotated at a low speed, and an exothermic action of bearing is generated, the spindle 2 inclines, and then abrasive powders generated by contact with the sleeve 3 are collected in the central part by pumping actions of the grooves.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レーザビームプリ
ンタやレーザファクシミリ等の画像形成装置等に用いら
れる動圧軸受装置および偏向走査装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dynamic pressure bearing device and a deflection scanning device used for an image forming apparatus such as a laser beam printer and a laser facsimile.

【0002】[0002]

【従来の技術】レーザビームプリンタやレーザファクシ
ミリ等の画像形成装置に用いられる偏向走査装置は、高
速回転する回転多面鏡によってレーザビーム(レーザ
光)等の光ビームを反射させてこれを偏向走査し、得ら
れた走査光を回転ドラム上の感光体に結像させて静電潜
像を形成する。次いで、感光体の静電潜像を現像装置に
よってトナー像に顕像化し、これを記録紙等の記録媒体
に転写して定着装置へ送り、記録媒体上のトナーを加熱
定着させることで印刷(プリント)が行なわれる。
2. Description of the Related Art A deflection scanning device used in an image forming apparatus such as a laser beam printer or a laser facsimile reflects a light beam such as a laser beam (laser beam) by a rotating polygon mirror rotating at a high speed, and deflects and scans the beam. Then, the obtained scanning light is imaged on a photoreceptor on a rotating drum to form an electrostatic latent image. Next, the electrostatic latent image on the photoreceptor is visualized into a toner image by a developing device, transferred to a recording medium such as recording paper, sent to a fixing device, and printed by heating and fixing the toner on the recording medium ( Print) is performed.

【0003】レーザビームプリンタ等の偏向走査装置に
おいては、近年さらなる小型化・低コスト化が要求され
ており、加えて回転多面鏡を回転自在に支持する軸受に
は回転変動の少ないことや低騒音および高い回転精度等
が必要である。これらの要求に対応するために、流体の
動圧によって回転体を軸支する動圧軸受装置が注目され
ている。
[0003] In recent years, further miniaturization and cost reduction have been demanded for deflection scanning devices such as laser beam printers. In addition, bearings for rotatably supporting a rotating polygon mirror have little rotation fluctuation and low noise. And high rotational accuracy. In order to meet these demands, attention has been paid to a dynamic pressure bearing device that supports a rotating body by dynamic pressure of a fluid.

【0004】動圧軸受装置は、互いに回転自在に嵌合す
るスリーブと軸の少なくとも一方に動圧発生溝を形成
し、スリーブと軸の間の微小間隙の流体をスリーブと軸
の相対運動によるポンプ作用によって流動させて軸荷重
を支承するように構成されている。このような動圧軸受
装置を使用するモータは、例えば作動流体に気体を用い
たものでは特開平2−180311号公報等に開示され
ており、オイル等の液体を用いたものでは特開平2−1
54808号公報等に開示されている。
[0004] In the dynamic bearing device, a dynamic pressure generating groove is formed in at least one of a sleeve and a shaft rotatably fitted to each other, and a fluid in a minute gap between the sleeve and the shaft is pumped by relative motion of the sleeve and the shaft. It is constituted to flow by action and to support an axial load. A motor using such a hydrodynamic bearing device is disclosed in, for example, Japanese Patent Application Laid-Open No. 2-180311 using a gas as a working fluid, and disclosed in Japanese Patent Application Laid-Open No. Hei 2-180311 using a liquid such as oil. 1
No. 54808, for example.

【0005】図5は、一従来例による偏向走査装置の主
要部を示すもので、これは、回転多面鏡101と一体的
に回転する軸102と、これを回転自在に嵌合させたス
リーブ103を有し、スリーブ103は外筒104のボ
ス部に嵌着され、外筒104は固定板105に立設支持
されている。固定板105は、軸102の下端をスラス
ト方向に支持するスラスト板106を備えており、軸1
02の上端部にはフランジ107が固着されている。回
転多面鏡101はフランジ107の上面に支持されて軸
102とともに回転するように構成されている。
FIG. 5 shows a main part of a conventional deflection scanning apparatus, which comprises a shaft 102 which rotates integrally with a rotary polygon mirror 101, and a sleeve 103 in which the shaft 102 is rotatably fitted. The sleeve 103 is fitted to the boss of the outer cylinder 104, and the outer cylinder 104 is supported upright on the fixed plate 105. The fixed plate 105 includes a thrust plate 106 that supports the lower end of the shaft 102 in the thrust direction.
A flange 107 is fixed to an upper end portion of the reference numeral 02. The rotary polygon mirror 101 is supported on the upper surface of the flange 107 and is configured to rotate with the shaft 102.

【0006】フランジ107の外周部の下面には、ロー
タマグネット108を保持するヨーク109が固着され
ており、ロータマグネット108は、外筒104のボス
部の外周面に固定されたステータコイル110に対向す
るように配設されている。図示しない駆動回路から供給
される駆動電流によってステータコイル110が励磁さ
れると、ロータマグネット108が軸102および回転
多面鏡101とともに高速回転する。
A yoke 109 for holding a rotor magnet 108 is fixed to a lower surface of an outer peripheral portion of the flange 107, and the rotor magnet 108 faces a stator coil 110 fixed to an outer peripheral surface of a boss portion of the outer cylinder 104. It is arranged to be. When the stator coil 110 is excited by a drive current supplied from a drive circuit (not shown), the rotor magnet 108 rotates at high speed together with the shaft 102 and the rotating polygon mirror 101.

【0007】スリーブ103は、軸102の回転によっ
て軸102との間に流体膜を形成し、該流体膜の動圧に
よって軸102を非接触で回転自在に支持する動圧軸受
装置を構成する。軸102の外周面には、軸102の下
端から上向きに順次間隔を置いて、第1の動圧発生溝1
02aと、第2の動圧発生溝102bと、作動流体(オ
イル)を導くためのスパイラル状の潤滑溝102cがそ
れぞれ形成されている。また、スラスト板106の上面
にも、軸102の下端と対向する部位に動圧スラスト軸
受を構成する溝(図示せず)が設けられている。
[0007] The sleeve 103 forms a fluid film between the shaft 102 and the shaft 102 by rotation of the shaft 102, and constitutes a dynamic pressure bearing device that rotatably supports the shaft 102 in a non-contact manner by the dynamic pressure of the fluid film. On the outer peripheral surface of the shaft 102, the first dynamic pressure generating grooves 1 are sequentially spaced upward from the lower end of the shaft 102.
02a, a second dynamic pressure generating groove 102b, and a spiral lubricating groove 102c for guiding a working fluid (oil) are formed. Further, a groove (not shown) constituting a dynamic pressure thrust bearing is provided on a portion of the upper surface of the thrust plate 106 facing the lower end of the shaft 102.

【0008】軸102の回転とともにオイルが動圧発生
溝102a,102bの中央部に吸い込まれ、高圧領域
を発生させる。この高圧領域によって軸102とスリー
ブ103がラジアル方向に非接触な状態で支持される。
このように非接触で回転するため、例えば金属接触を伴
なう滑り軸受に比べて低騒音および高い回転精度等のす
ぐれた軸受特性を得られるばかりでなく、組立部品点数
の点からも転がり軸受等に比べて小型化・低コスト化で
きるという利点を有する。
[0008] With the rotation of the shaft 102, oil is sucked into the center of the dynamic pressure generating grooves 102a and 102b to generate a high pressure region. The shaft 102 and the sleeve 103 are supported in a radially non-contact state by the high pressure region.
Because of this non-contact rotation, rolling bearings can be obtained in addition to excellent bearing characteristics such as low noise and high rotational accuracy compared to, for example, sliding bearings with metal contact. There is an advantage that size and cost can be reduced as compared with the above.

【0009】軸102の回転中は前述のように流体膜の
動圧によってスリーブ103に対して非接触に維持され
るが、モータの起動時や停止時には充分な動圧が発生し
ておらず、スリーブ103と軸102が接触して摩耗す
る。このような摩耗を低減するために、特開平6−28
0858号公報に開示されているように、ヘリングボー
ン状の動圧発生溝の形状を工夫して、作動流体を出来る
だけ中央部に保持するように構成したものも開発されて
いる。
While the shaft 102 rotates, the sleeve 103 is maintained in a non-contact state by the dynamic pressure of the fluid film as described above. However, when the motor is started or stopped, sufficient dynamic pressure is not generated. The sleeve 103 and the shaft 102 come into contact and wear. In order to reduce such wear, Japanese Patent Laid-Open Publication No.
As disclosed in Japanese Patent Application Laid-Open No. 0858, there has been developed a device in which the shape of the herringbone-shaped dynamic pressure generating groove is devised so that the working fluid is held at the central portion as much as possible.

【0010】[0010]

【発明が解決しようとする課題】しかしながら上記従来
の技術によれば、動圧軸受の停止時や起動時等の低速回
転時に限らず、作動流体がオイルの場合は、高速回転で
の軸受発熱によるオイル粘度の低下が軸受剛性の低下を
招き、軸が傾いてスリーブと接触する。特にレーザビー
ムプリンタ等の回転多面鏡を回転駆動するモータにおい
ては、頻繁に起動停止を繰り返すため、そのたびに軸受
の摩耗が進行し、摩耗によって生じた摩耗粉はヘリング
ボーン状の動圧発生溝の中央部に集まってゆき、この部
分に摩耗粉の凝着体が形成される。
However, according to the above-mentioned prior art, when the working fluid is oil, not only during the low-speed rotation such as when the dynamic pressure bearing is stopped or started, but also when the working fluid is oil, the heat generated by the bearing at the high-speed rotation is generated. A decrease in oil viscosity causes a decrease in bearing rigidity, and the shaft is inclined and comes into contact with the sleeve. Particularly, in a motor for rotating a rotary polygon mirror such as a laser beam printer, the starting and stopping are repeated frequently, so that the wear of the bearing progresses each time, and the abrasion powder generated by the abrasion is reduced to a herringbone-shaped dynamic pressure generating groove. Gather at the central portion of the surface of the substrate, where an agglomerate of wear powder is formed.

【0011】この摩耗粉の凝着体の大きさが軸とスリー
ブ間の微少隙間より大きくなると軸受のかじりを引き起
こす。また特開平6−280858号公報に記載された
構成では、作動流体が空気の場合には摩耗低減効果が期
待出来ず、一度摩耗粉が出来てしまうと従来の軸受と同
様にヘリングボーン状の動圧発生溝の中央部に凝着体が
出来て最終的には軸受かじりを引き起こすという問題が
あった。
If the size of the agglomerates of the abrasion powder is larger than the minute gap between the shaft and the sleeve, the galling of the bearing is caused. Further, in the configuration described in JP-A-6-280858, when the working fluid is air, a wear reduction effect cannot be expected, and once wear powder is formed, a herringbone-shaped dynamic force is generated as in a conventional bearing. There is a problem that an adhesive is formed at the center of the pressure generating groove and eventually causes a bearing galling.

【0012】本発明は上記従来の技術の有する未解決の
課題に鑑みてなされたものであり、モータの停止時や起
動時等の低速回転時、あるいは作動流体がオイルの場合
の高速回転での軸受発熱によるオイル粘度の低下に基づ
く軸受剛性低下時に、軸が傾いてスリーブと接触し、摩
耗粉が生成された場合でも、軸受のかじり等を効果的に
回避して軸受性能を維持できる安価で長期安定性に優れ
た動圧軸受装置および偏向走査装置を提供することを目
的とする。
The present invention has been made in view of the above-mentioned unsolved problems of the prior art, and is intended for use in low-speed rotation such as when the motor is stopped or started, or in high-speed rotation when the working fluid is oil. When bearing rigidity decreases due to oil viscosity decrease due to bearing heat generation, even if the shaft tilts and comes into contact with the sleeve to generate abrasion powder, inexpensive to effectively prevent bearing galling etc. and maintain bearing performance It is an object of the present invention to provide a dynamic pressure bearing device and a deflection scanning device excellent in long-term stability.

【0013】[0013]

【課題を解決するための手段】上記の目的を達成するた
めに本発明の動圧軸受装置は、互いに回転自在に嵌合す
る軸およびスリーブを有し、前記軸および前記スリーブ
のうちの少なくとも一方が一対の傾斜溝部からなるヘリ
ングボーン状の動圧発生溝を備えており、該ヘリングボ
ーン状の動圧発生溝の中央部に、各傾斜溝部と連通する
円周溝が設けられていることを特徴とする。
In order to achieve the above object, a dynamic pressure bearing device according to the present invention has a shaft and a sleeve rotatably fitted to each other, and at least one of the shaft and the sleeve. Is provided with a herringbone-shaped dynamic pressure generating groove composed of a pair of inclined grooves, and a circumferential groove communicating with each inclined groove is provided at a central portion of the herringbone-shaped dynamic pressure generating groove. Features.

【0014】ヘリングボーン状の動圧発生溝の一対の傾
斜溝部の間に環状ランド部が設けられており、該環状ラ
ンド部の両端に、各傾斜溝部に連通する一対の円周溝が
設けられていてもよい。
An annular land is provided between a pair of inclined grooves of the herringbone-shaped dynamic pressure generating groove, and a pair of circumferential grooves communicating with each inclined groove are provided at both ends of the annular land. May be.

【0015】円周溝の深さが、各傾斜溝部の深さと略等
しいとよい。
Preferably, the depth of the circumferential groove is substantially equal to the depth of each inclined groove.

【0016】[0016]

【作用】モータの停止時や起動時等の低速回転時、ある
いは高速回転中であっても、軸受発熱等によって昇温し
たオイル等の粘度低下のために軸受剛性が低下して軸が
傾き、スリーブと接触する。このようにスリーブと軸が
接触して回転すると、摩耗粉が発生し、これらが大径の
凝着体となれば軸受かじりを引き起こす。そこで、動圧
発生溝の摩耗粉が集まる中央部に円周溝を設けて、この
部分の軸受間隙を局部的に拡大しておくことで、摩耗粉
の凝着を防ぐ。
[Function] Even when the motor is rotating at a low speed, such as when the motor is stopped or started, or during a high-speed rotation, the bearing rigidity is reduced due to a decrease in the viscosity of oil or the like that has been heated due to heat generation of the bearing, causing the shaft to tilt, Contact with sleeve. When the sleeve and the shaft come into contact with each other and rotate as described above, abrasion powder is generated, and if these become large-diameter cohesive bodies, they cause galling of the bearing. Therefore, a circumferential groove is provided in a central portion of the dynamic pressure generating groove where the wear powder gathers, and the bearing gap in this portion is locally enlarged to prevent the adhesion of the wear powder.

【0017】また、摩耗粉が凝着しても、凝着体の外径
寸法が円周溝における軸受間隙より小さければ軸受かじ
りを起さない。
Further, even if the abrasion powder adheres, no bearing galling occurs if the outer diameter of the adhered body is smaller than the bearing gap in the circumferential groove.

【0018】ヘリングボーン状の動圧発生溝の中央部に
簡単な溝加工を施すだけで、軸受かじりを効果的に回避
して、長期間安定した軸受性能を維持する安価な動圧軸
受装置を実現できる。
An inexpensive hydrodynamic bearing device that effectively avoids galling of the bearing and maintains stable bearing performance for a long period of time by simply forming a simple groove in the center of the herringbone-shaped hydrodynamic groove. realizable.

【0019】このような動圧軸受装置を回転多面鏡の軸
受部に用いることで、偏向走査装置の低価格化と長期安
定性の向上に貢献できる。
By using such a dynamic pressure bearing device for the bearing of a rotary polygon mirror, it is possible to contribute to lowering the cost and improving long-term stability of the deflection scanning device.

【0020】[0020]

【発明の実施の形態】本発明の実施の形態を図面に基づ
いて説明する。
Embodiments of the present invention will be described with reference to the drawings.

【0021】図1は一実施の形態による偏向走査装置の
主要部を示す。これは、反射面1aを有する回転多面鏡
1と、該回転多面鏡1と一体的に回転する軸2とこれを
回転自在に嵌合させるスリーブ3を備えた軸受部(動圧
流体軸受)を有し、スリーブ3は外筒4のボス部に嵌着
され、固定板5は軸2の下端2aをスラスト方向に支持
するスラスト板6を備えている。軸2の上端部にはフラ
ンジ7が嵌着され、回転多面鏡1はフランジ7の上面に
載置され、弾性リング8aと押さえリング8bとCリン
グ8cからなる弾性押圧機構8によってフランジ7と一
体的に結合され、軸2とともに回転するように構成され
ている。
FIG. 1 shows a main part of a deflection scanning apparatus according to one embodiment. This comprises a rotating polygon mirror 1 having a reflecting surface 1a, a shaft 2 rotating integrally with the rotating polygon mirror 1, and a bearing unit (dynamic fluid bearing) provided with a sleeve 3 for rotatably fitting the shaft. The sleeve 3 is fitted to the boss of the outer cylinder 4, and the fixed plate 5 has a thrust plate 6 that supports the lower end 2 a of the shaft 2 in the thrust direction. A flange 7 is fitted to the upper end of the shaft 2, the rotary polygon mirror 1 is mounted on the upper surface of the flange 7, and is integrated with the flange 7 by an elastic pressing mechanism 8 including an elastic ring 8a, a holding ring 8b, and a C ring 8c. And are configured to rotate with the shaft 2.

【0022】フランジ7の外周部の下面には、ロータマ
グネット9を保持するヨーク9aが固着されており、ロ
ータマグネット9は、外筒4のボス部の外周面に固定さ
れたステータコイル10に対向して駆動手段であるモー
タを構成する。図示しない駆動回路から供給された駆動
電流によってステータコイル10が励磁されると、ロー
タマグネット9が軸2および回転多面鏡1とともに高速
回転する。
A yoke 9a for holding a rotor magnet 9 is fixed to a lower surface of an outer peripheral portion of the flange 7, and the rotor magnet 9 faces a stator coil 10 fixed to an outer peripheral surface of a boss portion of the outer cylinder 4. Thus, a motor as a driving unit is configured. When the stator coil 10 is excited by a drive current supplied from a drive circuit (not shown), the rotor magnet 9 rotates at high speed together with the shaft 2 and the rotary polygon mirror 1.

【0023】スリーブ3と軸2との間には間隙寸法3〜
10μmの軸受間隙Aが形成され、作動流体であるオイ
ルが充填されている。軸2の回転によって軸受間隙Aの
オイルを流動させ、その動圧によって軸2を非接触でラ
ジアル方向に軸支する。軸2の外周面(外径部)には、
2つのヘリングボーン状の動圧発生溝2bが形成されて
いる。また、スラスト板6の上面に対向する軸2の下端
2aは球面状であり、スラスト板6とともにピボット軸
受を構成している。
The gap size between the sleeve 3 and the shaft 2 is 3 to
A bearing gap A of 10 μm is formed, and is filled with oil as a working fluid. The rotation of the shaft 2 causes the oil in the bearing gap A to flow, and the dynamic pressure supports the shaft 2 in the radial direction in a non-contact manner. On the outer peripheral surface (outer diameter portion) of the shaft 2,
Two herringbone-shaped dynamic pressure generating grooves 2b are formed. The lower end 2a of the shaft 2 facing the upper surface of the thrust plate 6 is spherical, and forms a pivot bearing together with the thrust plate 6.

【0024】軸2とスリーブ3の間の軸受間隙Aの間隙
寸法は、前述のように3〜10μm程度であり、動圧発
生溝2bの深さは、前記軸受間隙の間隙寸法と同等また
はこれよりやや大きめにとるのが一般的である(図2参
照)。
The gap size of the bearing gap A between the shaft 2 and the sleeve 3 is about 3 to 10 μm as described above, and the depth of the dynamic pressure generating groove 2b is equal to or smaller than the gap size of the bearing gap. Generally, it is generally slightly larger (see FIG. 2).

【0025】各ヘリングボーン状の動圧発生溝2bの中
央部には円周溝11が設けられている。円周溝11は、
図1の(b)に拡大して示すように、各ヘリングボーン
状の動圧発生溝2bを構成する上下一対の傾斜溝部が交
差する中央部にこれらと連通するように形成された環状
溝である。
A circumferential groove 11 is provided at the center of each herringbone-shaped dynamic pressure generating groove 2b. The circumferential groove 11 is
As shown in FIG. 1B in an enlarged manner, an annular groove is formed at a central portion where a pair of upper and lower inclined grooves constituting each herringbone-shaped dynamic pressure generating groove 2b intersect with each other. is there.

【0026】軸2の停止時や低速回転時、および作動流
体がオイルの場合の高速回転での軸受発熱によるオイル
粘度低下による軸受剛性低下時には、軸2が傾き、スリ
ーブ3との接触により摩耗粉が発生する。このような軸
受接触により生成された摩耗粉は、ヘリングボーン状の
動圧発生溝2bによるポンピング作用によって中央部に
集められる。
When the shaft 2 is stopped or rotating at a low speed, or when the working fluid is oil, when the bearing stiffness is reduced due to a decrease in oil viscosity due to heat generation of the bearing at a high rotation speed, the shaft 2 is tilted, and the abrasion powder is generated due to contact with the sleeve 3. Occurs. Abrasion powder generated by such bearing contact is collected at the center by the pumping action of the herringbone-shaped dynamic pressure generating groove 2b.

【0027】軸受の回転・停止を繰り返す耐久試験を行
なったところ、初期に生成される摩耗粉の粒径は0.1
〜0.3μm程度であり、これが凝着により粒径が大き
く成長しなければ、軸受損失のわずかな増加以外は軸受
特性上なんら問題はない。しかしながら、例えば作動流
体が空気等の場合には、特に高湿環境下において、ヘリ
ングボーン状の動圧発生溝における圧力上昇による結露
の影響で摩耗粉の凝着が起こり、また、作動流体がオイ
ル等の場合には、オイルそのものが媒体となり、徐々に
大きな摩耗粉の凝着体を形成する。
When a durability test in which the rotation and stop of the bearing were repeated was performed, the particle size of the initially generated wear powder was 0.1%.
If the particle size does not grow large due to adhesion, there is no problem in bearing characteristics except for a slight increase in bearing loss. However, for example, when the working fluid is air or the like, especially in a high-humidity environment, adhesion of wear powder occurs due to dew condensation due to pressure increase in the herringbone-shaped dynamic pressure generating groove, and the working fluid is oil. In such a case, the oil itself becomes a medium, and gradually forms a large agglomerate of wear powder.

【0028】ここで従来例のように円周溝がなく、動圧
発生溝の中央部においても断面が図2に示す形状であれ
ば、周方向に圧力分布の起伏があるため、集められた摩
耗粉は頻繁に混合され、特に動圧発生溝2bのランド部
と溝の境界のエッジ付近において凝着が進んでゆき、凝
着体の寸法が軸受間隙以上になると軸受のかじりを引き
起こす。
Here, if there is no circumferential groove as in the conventional example, and if the cross section also has the shape shown in FIG. 2 at the center of the dynamic pressure generating groove, there is undulation of the pressure distribution in the circumferential direction. The abrasion powder is frequently mixed, and the adhesion proceeds particularly in the vicinity of the boundary between the land portion and the groove of the dynamic pressure generating groove 2b, and if the size of the adhered body becomes larger than the bearing gap, the galling of the bearing is caused.

【0029】動圧発生溝2bの中央部に設けられた円周
溝11は、摩耗粉の集まる部分の間隙寸法を拡大して摩
耗粉の凝着を防ぐものである。詳しく説明すると、動圧
発生溝2bの中央部では、実質的な間隙寸法が軸受間隙
と円周溝11の深さとの和となり、また周方向の圧力分
布もなくなるため、摩耗粉の凝着が起こりにくいばかり
でなく、たとえ軸受間隙以上の摩耗粉の凝着体が生成さ
れたとしても、その寸法が軸受間隙と円周溝11の深さ
の和より小さければ軸受のかじりが発生することがな
い。
The circumferential groove 11 provided at the center of the dynamic pressure generating groove 2b is for increasing the gap size of a portion where the wear powder gathers to prevent the adhesion of the wear powder. More specifically, at the central portion of the dynamic pressure generating groove 2b, the substantial gap size is the sum of the bearing gap and the depth of the circumferential groove 11, and the pressure distribution in the circumferential direction is also eliminated. Not only is it difficult to occur, but even if an agglomerate of abrasion powder larger than the bearing gap is generated, if the size is smaller than the sum of the bearing gap and the depth of the circumferential groove 11, the galling of the bearing may occur. Absent.

【0030】本実施の形態によれば、ヘリングボーン状
の動圧発生溝の中央部に簡単な溝加工を施すだけで、軸
受かじり等を効果的に回避して、長期間安定した軸受性
能を維持する安価な動圧軸受装置を実現できる。
According to the present embodiment, the bearing can be effectively prevented from galling, etc., and stable bearing performance can be maintained for a long period of time by simply performing simple groove machining at the center of the herringbone-shaped dynamic pressure generating groove. An inexpensive hydrodynamic bearing device to be maintained can be realized.

【0031】このような動圧軸受装置を用いることで、
偏向走査装置の低価格化と長期安定性の向上に貢献でき
る。
By using such a dynamic pressure bearing device,
This can contribute to lowering the cost of the deflection scanning device and improving long-term stability.

【0032】ヘリングボーン状の動圧発生溝を形成する
方法は、本実施の形態のように軸の外径側に形成する場
合にはエッチングや印刷により、またスリーブの内径側
に形成する場合には例えば特開昭54−84155号公
報に開示された方法を用いて塑性加工により行なうのが
一般的である。円周溝は、ヘリングボーン状の動圧発生
溝と略等しい深さであれば上記の方法を用いて動圧発生
溝と同一工程で加工することが可能であり、コストアッ
プはほとんどない。
The method of forming a herringbone-shaped dynamic pressure generating groove is as follows: when forming the groove on the outer diameter side of the shaft as in this embodiment, by etching or printing, and when forming the groove on the inner diameter side of the sleeve. Is generally performed by plastic working using the method disclosed in, for example, JP-A-54-84155. If the circumferential groove has a depth substantially equal to that of the herringbone-shaped dynamic pressure generating groove, the circumferential groove can be processed in the same step as the dynamic pressure generating groove by using the above method, and there is almost no increase in cost.

【0033】図3は一変形例を示す。ヘリングボーン状
の動圧発生溝の形状としては図1の装置のように中央部
で傾斜溝部が交わる「くの字」形状のものと、図3に示
すような中央部で傾斜溝部が交わらない「ハの字」形状
のものがある。
FIG. 3 shows a modification. As for the shape of the herringbone-shaped dynamic pressure generating groove, the shape of the "L" shape in which the inclined grooves intersect at the center as in the apparatus of FIG. 1 does not intersect with the inclined groove at the center as shown in FIG. There is a "C" shape.

【0034】「ハの字」形状の場合には、各動圧発生溝
22bの中央の環状ランド部22cの両端にそれぞれの
円周溝31を設け、各動圧発生溝22bに対して円周溝
31を一対づつ設ける。作動流体が空気等の場合は粘性
が小さくて軸受剛性を確保しにくいため「くの字」形状
よりも軸受剛性の高い「ハの字」形状の溝が多く採用さ
れる。
In the case of the "C" shape, respective circumferential grooves 31 are provided at both ends of the center annular land portion 22c of each dynamic pressure generating groove 22b, and the circumferential grooves 31 are provided with respect to each dynamic pressure generating groove 22b. A pair of grooves 31 is provided. When the working fluid is air or the like, the viscosity is small and it is difficult to secure the bearing rigidity. Therefore, a “C” -shaped groove having higher bearing rigidity than the “C” shape is often used.

【0035】しかしながら、安定性の点では一般的に
「くの字」形状の方がすぐれているため、「ハの字」形
状の動圧発生溝の使用には注意が必要となる。例えば、
図3のように円周溝31を2つに分けずにひとつの溝と
してしまうと軸受中央部に大きなエアポケットが形成さ
れることになり、不安定な振動の原因となってしまう。
However, since the "C" shape is generally superior in terms of stability, care must be taken when using a "C" shaped dynamic pressure generating groove. For example,
If the circumferential groove 31 is not divided into two but one as shown in FIG. 3, a large air pocket is formed at the center of the bearing, which causes unstable vibration.

【0036】そこで、本変形例のように一対の円周溝を
各ヘリングボーン状の動圧発生溝の中央の環状ランド部
の両端に設ければ、軸受の安定性を損なうことなく大き
な軸受剛性を確保することが可能となる。
Therefore, if a pair of circumferential grooves are provided at both ends of the center annular land portion of each herringbone-shaped dynamic pressure generating groove as in this modification, a large bearing rigidity can be obtained without impairing the stability of the bearing. Can be secured.

【0037】これまでの説明ではすべて軸の外径側にヘ
リングボーン状の動圧発生溝を形成し、軸が回転するタ
イプの動圧軸受であったが、スリーブが回転するもので
も、あるいは、スリーブの内径側にヘリングボーン状の
動圧発生溝を形成して軸またはスリーブが回転するもの
でも同様に適用可能である。
In the description so far, a herringbone-shaped dynamic pressure generating groove is formed on the outer diameter side of the shaft, and the dynamic pressure bearing is of a type in which the shaft rotates. A herringbone-shaped dynamic pressure generating groove formed on the inner diameter side of the sleeve to rotate the shaft or the sleeve is also applicable.

【0038】図4は偏向走査装置全体を示すもので、こ
れは、レーザ光等の光ビーム(光束)を発生する光源5
1と、前記光ビームを回転多面鏡1の反射面1aに線状
に集光させるシリンドリカルレンズ51aとを有し、前
記光ビームを回転多面鏡1の回転によって偏向走査し、
結像手段である結像レンズ系52を経て回転ドラム上の
感光体53に結像させる。結像レンズ系52は球面レン
ズ52a、トーリックレンズ52b等を有し、感光体5
3に結像する点像の走査速度等を補正するいわゆるfθ
機能を有する。
FIG. 4 shows the entire deflection scanning device, which is a light source 5 for generating a light beam (light flux) such as a laser beam.
1 and a cylindrical lens 51a for linearly condensing the light beam on the reflection surface 1a of the rotary polygon mirror 1, and deflects and scans the light beam by the rotation of the rotary polygon mirror 1.
An image is formed on a photoreceptor 53 on a rotating drum via an image forming lens system 52 as image forming means. The imaging lens system 52 has a spherical lens 52a, a toric lens 52b, and the like.
So-called fθ for correcting the scanning speed of the point image formed on the image No. 3
Has functions.

【0039】前記モータによって回転多面鏡1が回転す
ると、その反射面1aは、回転多面鏡1の軸線まわりに
等速で回転する。前述のように光源51から発生され、
シリンドリカルレンズ51aによって集光される光ビー
ムの光路と回転多面鏡1の反射面1aの法線とがなす
角、すなわち該反射面1aに対する光ビームの入射角
は、回転多面鏡1の回転とともに経時的に変化し、同様
に反射角も変化するため、感光体53上で光ビームが集
光されてできる点像は回転ドラムの軸方向(主走査方
向)に移動(走査)する。
When the rotary polygon mirror 1 is rotated by the motor, its reflection surface 1a rotates at a constant speed around the axis of the rotary polygon mirror 1. Generated from the light source 51 as described above,
The angle between the optical path of the light beam condensed by the cylindrical lens 51a and the normal to the reflecting surface 1a of the rotating polygon mirror 1, that is, the angle of incidence of the light beam on the reflecting surface 1a, changes with time as the rotating polygon mirror 1 rotates. And the reflection angle also changes, so that the point image formed by condensing the light beam on the photoconductor 53 moves (scans) in the axial direction (main scanning direction) of the rotating drum.

【0040】結像レンズ系52は、回転多面鏡1におい
て反射された光ビームを感光体53上で所定のスポット
形状の点像に集光するとともに、該点像の主走査方向へ
の走査速度を等速に保つように設計されたものである。
The imaging lens system 52 focuses the light beam reflected by the rotary polygon mirror 1 on the photosensitive member 53 into a point image having a predetermined spot shape, and scans the point image in the main scanning direction. Is designed to keep the speed constant.

【0041】感光体53に結像する点像は、回転多面鏡
1の回転による主走査と、感光体53を有する回転ドラ
ムがその軸まわりに回転することによる副走査に伴なっ
て、静電潜像を形成する。
The point image formed on the photoreceptor 53 is formed by the main scanning by the rotation of the rotary polygon mirror 1 and the sub-scanning by the rotation of the rotating drum having the photoreceptor 53 around its axis. Form a latent image.

【0042】感光体53の周辺には、感光体53の表面
を一様に帯電するための帯電装置、感光体53の表面に
形成される静電潜像をトナー像に顕像化するための現像
装置、前記トナー像を記録紙に転写する転写装置(いず
れも不図示)等が配置されており、光源51から発生す
る光ビームによる記録情報が記録紙等にプリントされ
る。
Around the photosensitive member 53, a charging device for uniformly charging the surface of the photosensitive member 53, and a charging device for visualizing an electrostatic latent image formed on the surface of the photosensitive member 53 into a toner image. A developing device, a transfer device (not shown) for transferring the toner image to recording paper, and the like are arranged, and recording information by a light beam generated from the light source 51 is printed on recording paper or the like.

【0043】検出ミラー54は、感光体53の表面にお
ける記録情報の書き込み開始位置に入射する光ビームの
光路よりも主走査方向上流側において光ビームを反射し
て、フォトダイオード等を有する受光素子55の受光面
に導入する。受光素子55はその受光面が前記光ビーム
によって照射されたときに、走査開始位置(書き出し位
置)を検出するための走査開始信号を出力する。
The detection mirror 54 reflects the light beam on the upstream side in the main scanning direction from the optical path of the light beam incident on the recording information write start position on the surface of the photoreceptor 53, and receives a light receiving element 55 having a photodiode or the like. To the light receiving surface of The light receiving element 55 outputs a scanning start signal for detecting a scanning start position (write start position) when the light receiving surface is irradiated with the light beam.

【0044】光源51は、ホストコンピュータからの情
報を処理する処理回路から与えられる信号に対応した光
ビームを発生する。光源51に与えられる信号は、感光
体53に書き込むべき情報に対応しており、処理回路
は、感光体53の表面において結像する点像が作る軌跡
である一走査線に対応する情報を表す信号を一単位とし
て光源51に与える。この情報信号は、受光素子55か
ら与えられる走査開始信号に同期して送信される。
The light source 51 generates a light beam corresponding to a signal given from a processing circuit for processing information from a host computer. The signal given to the light source 51 corresponds to information to be written on the photoconductor 53, and the processing circuit represents information corresponding to one scanning line which is a locus formed by a point image formed on the surface of the photoconductor 53. The signal is given to the light source 51 as one unit. This information signal is transmitted in synchronization with a scanning start signal given from the light receiving element 55.

【0045】なお、回転多面鏡1、結像レンズ系52等
は光学箱50に収容され、光源51等は光学箱50の側
壁に取り付けられる。光学箱50に回転多面鏡1、結像
レンズ系52等を組み付けたうえで、光学箱50の上部
開口に図示しないふたを装着する。
The rotary polygon mirror 1, the imaging lens system 52 and the like are housed in an optical box 50, and the light source 51 and the like are mounted on the side wall of the optical box 50. After assembling the rotary polygon mirror 1 and the imaging lens system 52 into the optical box 50, a lid (not shown) is attached to the upper opening of the optical box 50.

【0046】[0046]

【発明の効果】本発明は上述のとおり構成されているの
で、次に記載するような効果を奏する。
Since the present invention is configured as described above, the following effects can be obtained.

【0047】停止時や低速回転時および高速回転中に軸
とスリーブが接触して回転しても、軸受かじり等を発生
するのを効果的に回避できる。これによって、低速駆動
から高速駆動まで極めて広い適用範囲を有し、しかも安
価で長期安定性にすぐれた高性能な動圧軸受装置を実現
できる。
Even when the shaft and the sleeve come into contact with each other and rotate during stop, low-speed rotation, or high-speed rotation, it is possible to effectively prevent occurrence of bearing galling and the like. As a result, a high-performance hydrodynamic bearing device having an extremely wide application range from low-speed driving to high-speed driving, and being inexpensive and having excellent long-term stability can be realized.

【0048】このような動圧軸受装置を回転多面鏡の軸
受部に用いることで、偏向走査装置の高性能化と低価格
化に大きく貢献できる。
By using such a dynamic pressure bearing device for the bearing of a rotary polygon mirror, it is possible to greatly contribute to higher performance and lower cost of the deflection scanning device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一実施の形態による偏向走査装置を示すもので
(a)はその模式断面図、(b)は軸とスリーブの一部
分を示す拡大図である。
1A and 1B show a deflection scanning device according to an embodiment, wherein FIG. 1A is a schematic cross-sectional view thereof, and FIG. 1B is an enlarged view showing a shaft and a part of a sleeve.

【図2】軸とスリーブの嵌合状態を示す断面図である。FIG. 2 is a sectional view showing a fitted state of a shaft and a sleeve.

【図3】一変形例の一部分を拡大して示す拡大図であ
る。
FIG. 3 is an enlarged view showing a part of a modification in an enlarged manner.

【図4】偏向走査装置全体を説明する図である。FIG. 4 is a diagram illustrating the entire deflection scanning device.

【図5】一従来例を示す模式断面図である。FIG. 5 is a schematic sectional view showing one conventional example.

【符号の説明】[Explanation of symbols]

1 回転多面鏡 2 軸 2b,22b ヘリングボーン状の動圧発生溝 3 スリーブ 4 外筒 5 固定板 6 スラスト板 9 ロータマグネット 10 ステータコイル 11,31 円周溝 Reference Signs List 1 rotating polygon mirror 2 shaft 2b, 22b herringbone-shaped dynamic pressure generating groove 3 sleeve 4 outer cylinder 5 fixing plate 6 thrust plate 9 rotor magnet 10 stator coil 11, 31 circumferential groove

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 互いに回転自在に嵌合する軸およびスリ
ーブを有し、前記軸および前記スリーブのうちの少なく
とも一方が一対の傾斜溝部からなるヘリングボーン状の
動圧発生溝を備えており、該ヘリングボーン状の動圧発
生溝の中央部に、各傾斜溝部と連通する円周溝が設けら
れていることを特徴とする動圧軸受装置。
A shaft and a sleeve which are rotatably fitted to each other, and at least one of the shaft and the sleeve has a herringbone-shaped dynamic pressure generating groove comprising a pair of inclined grooves; A hydrodynamic bearing device, wherein a circumferential groove communicating with each inclined groove portion is provided at a central portion of the herringbone-shaped dynamic pressure generating groove.
【請求項2】 ヘリングボーン状の動圧発生溝の一対の
傾斜溝部の間に環状ランド部が設けられており、該環状
ランド部の両端に、各傾斜溝部に連通する一対の円周溝
が設けられていることを特徴とする請求項1記載の動圧
軸受装置。
2. An annular land is provided between a pair of inclined grooves of a herringbone-shaped dynamic pressure generating groove, and a pair of circumferential grooves communicating with each inclined groove are provided at both ends of the annular land. The dynamic pressure bearing device according to claim 1, wherein the dynamic pressure bearing device is provided.
【請求項3】 円周溝の深さが、各傾斜溝部の深さと略
等しいことを特徴とする請求項1または2記載の動圧軸
受装置。
3. The hydrodynamic bearing device according to claim 1, wherein the depth of the circumferential groove is substantially equal to the depth of each inclined groove portion.
【請求項4】 請求項1ないし3いずれか1項記載の動
圧軸受装置によって回転自在に支持された回転多面鏡
と、その走査光を感光体に結像させる結像手段を有する
偏向走査装置。
4. A deflection scanning device comprising a rotary polygon mirror rotatably supported by the dynamic pressure bearing device according to claim 1, and an image forming means for forming an image of the scanning light on a photosensitive member. .
JP34357698A 1998-11-17 1998-11-17 Dynamic pressure bearing device and deflecting scanner Pending JP2000154822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34357698A JP2000154822A (en) 1998-11-17 1998-11-17 Dynamic pressure bearing device and deflecting scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34357698A JP2000154822A (en) 1998-11-17 1998-11-17 Dynamic pressure bearing device and deflecting scanner

Publications (1)

Publication Number Publication Date
JP2000154822A true JP2000154822A (en) 2000-06-06

Family

ID=18362598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34357698A Pending JP2000154822A (en) 1998-11-17 1998-11-17 Dynamic pressure bearing device and deflecting scanner

Country Status (1)

Country Link
JP (1) JP2000154822A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130272634A1 (en) * 2011-01-31 2013-10-17 Ntn Corporation Fluid dynamic bearing device
JP2014163903A (en) * 2013-02-27 2014-09-08 Nsk Ltd Encoder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130272634A1 (en) * 2011-01-31 2013-10-17 Ntn Corporation Fluid dynamic bearing device
US8864381B2 (en) * 2011-01-31 2014-10-21 Ntn Corporation Fluid dynamic bearing device
JP2014163903A (en) * 2013-02-27 2014-09-08 Nsk Ltd Encoder

Similar Documents

Publication Publication Date Title
US5532729A (en) Scanner motor with ceramic sleeve bearing
JP2000154822A (en) Dynamic pressure bearing device and deflecting scanner
JP2001003076A (en) Kinetic pressure bearing apparatus and deflection scanning apparatus having same
JP2000121986A (en) Hydrodynamic bearing device and deflection scanner using the same
JPH11182536A (en) Dynamic pressure fluid bearing and deflection scanning device
US6704038B2 (en) Light deflecting apparatus
JP4474064B2 (en) Drive motor
JP2000056251A (en) Dynamic pressure oil baring and deflection scanner using the same
JP2006221001A (en) Deflection scanner
JP2000056252A (en) Dynamic pressure bearing device and optical deflecting scanner using the device
JP4560192B2 (en) Hydrodynamic bearing device, brushless motor, and deflection scanning device
JP4467751B2 (en) Hydrodynamic bearing device and deflection scanning device
JP2002106549A (en) Dynamic pressure bearing device, rotation device and deflection scanning device
JP2001117042A (en) Optical deflecting scanner
JP3472071B2 (en) Deflection scanning device
JP2000028952A (en) Dynamic pressure bearing device and deflecting scanner using the device
JP2000235161A (en) Rotation driving device and light deflection type scanner using it
JP2000147416A (en) Optical deflecting scanner
JP2001166246A (en) Optical deflecting device and writing optical device
JPH1123994A (en) Scanning optical device
JP2000055053A (en) Dynamic pressure bearing device and deviated scanning device using it
JPS62266515A (en) Rotary mechanism for optical scanning polygon mirror
JPH112776A (en) Deflection scanner
JPH1172738A (en) Scanning optical device
JP2000206440A (en) Dynamic pressure bearing device and light deflecting scanning device using the same