JP2000154464A - Water repellent polymer material and its production - Google Patents

Water repellent polymer material and its production

Info

Publication number
JP2000154464A
JP2000154464A JP33131398A JP33131398A JP2000154464A JP 2000154464 A JP2000154464 A JP 2000154464A JP 33131398 A JP33131398 A JP 33131398A JP 33131398 A JP33131398 A JP 33131398A JP 2000154464 A JP2000154464 A JP 2000154464A
Authority
JP
Japan
Prior art keywords
polymer material
water
repellent
silk
molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33131398A
Other languages
Japanese (ja)
Other versions
JP3044302B1 (en
Inventor
Takayuki Arai
孝之 新居
Masuhiro Tsukada
益裕 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Natl Inst Of Sericultural & En
National Institute of Sericultural and Entomological Science
Original Assignee
Natl Inst Of Sericultural & En
National Institute of Sericultural and Entomological Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Natl Inst Of Sericultural & En, National Institute of Sericultural and Entomological Science filed Critical Natl Inst Of Sericultural & En
Priority to JP33131398A priority Critical patent/JP3044302B1/en
Application granted granted Critical
Publication of JP3044302B1 publication Critical patent/JP3044302B1/en
Publication of JP2000154464A publication Critical patent/JP2000154464A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a water repellent polymer material not causing the degradation of feeling, excellent in durability, water repellency and abrasive resistance and capable of preventing the deterioration of the material when being treated, and also to provide a method for producing the same material. SOLUTION: This polymer material having water repellent function is obtained by the acylation reaction of a polymer material with a long-chain dibasic acid anhydride having one double bond in a molecule so as to introduce a long-chain acyl group into reaction sites of the polymer material. The above anhydride is expressed by the formula [wherein, (n) is an integer of 10-19] and is used in a dissolved state in an organic solvent. The water repellent polymer is expressed by the formula S-NHCO-CH2-CH(COOH)-CH2-CH=CH- CnH2n+1 [where in, S is a molecule of the polymer material; (n) is an integer of 10-19] or the formula S'-OCO-CH2-CH(COOH)-CH2CH=CH-CnH2n+1 [wherein, S' is a molecule of the polymer material; (n) is an integer of 10-19].

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、撥水性高分子素材
およびその製造方法に関するものであり、更に詳細には
改質処理時、すなわち化学修飾反応時に高分子素材の材
質を劣化することが無く、また、風合い感の低下がな
く、かつ、耐久性と持続性に優れた撥水性を有すると共
に良好な耐摩耗性を備えた撥水性高分子素材およびその
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water-repellent polymer material and a method for producing the same, and more particularly, to a polymer material which is not degraded during a modification treatment, that is, during a chemical modification reaction. Further, the present invention relates to a water-repellent polymer material which does not decrease the feeling of feeling, has excellent durability and durability, and has good wear resistance, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、良好な染色性と特徴ある風合い感
を持つ絹繊維は、古くから衣料素材として利用されてき
た。絹繊維は伝統的に和装用素材として用いられてきた
が、近年、生活様式が変わり、行動的な衣料素材が次第
に好まれるようになったため、和装用素材としての絹繊
維の利用は減少する傾向にある。絹繊維素材の需要を拡
大するためには、伝統的に用いられてきた和装分野の素
材はもとより、洋装分野の素材として利用開発すること
が求められている。例えば、シャツ、ブラウス製品、な
らびに上衣、帽子等のカジュアル分野の素材として利用
するための技術開発が重要である。そのためには、天然
の絹繊維が持つ優れた実用機能特性を失うことなく、絹
繊維を化学加工して、本来持ち合わせていない、例えば
形態安定性、耐熱性、撥水・撥油性等の諸機能を付与す
ることで改質した絹繊維およびその繊維製品を得ること
が必要である。形態安定性、耐熱性、撥水・撥油性等の
諸機能を絹繊維に付与しようとすると、化学加工の際に
生じる素材劣化の問題があり、また、製品の風合い感を
損なうことが多いので、こうした問題のない加工が望ま
れる。この点は、羊毛繊維や他の蛋白質繊維についても
いえることである。
2. Description of the Related Art Conventionally, silk fibers having good dyeing properties and characteristic texture have been used as clothing materials for a long time. Silk fiber has traditionally been used as a kimono material, but in recent years the lifestyle has changed and behavioral clothing materials have become increasingly preferred, and the use of silk fiber as a kimono material has been decreasing. It is in. In order to increase the demand for silk fiber materials, it is required to use and develop not only traditionally used materials in the Japanese clothing field but also materials in the Western clothing field. For example, it is important to develop technology for use as a material in the casual field such as shirts, blouse products, upper garments and hats. For this purpose, silk fibers are chemically processed without losing the excellent practical functional characteristics of natural silk fibers, and various functions such as form stability, heat resistance, water repellency, oil repellency, etc. that are not originally possessed It is necessary to obtain a silk fiber and its fiber product which have been modified by imparting the same. Attempts to impart various functions such as form stability, heat resistance, water repellency, oil repellency, etc. to silk fibers have the problem of material deterioration during chemical processing, and often impair the feel of the product. Processing without such problems is desired. This is also true for wool fibers and other protein fibers.

【0003】絹繊維や羊毛繊維等の蛋白質繊維は、その
表面が強い親水性を示すために用途に制約があるが、こ
の表面に撥水性機能を付与することができれば、衣料素
材、非衣料素材として利用できる可能性が広がる。この
ように蛋白質繊維の表面に撥水性機能を発現させる技術
が確立できれば、衣料分野はもとより医用分野などの先
端素材としても利用できる機能性に富む素材が提供でき
る。
[0003] Protein fibers such as silk fibers and wool fibers have limited applications because their surfaces exhibit strong hydrophilicity. However, if a water-repellent function can be imparted to this surface, clothing materials and non-clothing materials are used. The possibility of being used as is expanded. Thus, if a technique for expressing the water-repellent function on the surface of the protein fiber can be established, a highly functional material that can be used as an advanced material not only in the clothing field but also in the medical field can be provided.

【0004】また、絹繊維や、絹繊維/ポリエステル繊
維、または絹繊維/羊毛繊維等の絹繊維複合素材の表面
は、汚れが付き易く、かつ洗濯時の汚れが落ち難い等の
問題があるため、シャツやブラウス等のカジュアル用途
にこれらの絹繊維や絹繊維複合素材を用いる場合には、
イージー・ケア(洗濯の後にアイロン掛け不要など、手
数のかからないものをイージー・ケアと呼ぶ)の点で多
くの制約があった。
Further, the surface of silk fiber or a silk fiber composite material such as silk fiber / polyester fiber or silk fiber / wool fiber has a problem that dirt easily adheres and dirt during washing is difficult to remove. When using these silk fibers or silk fiber composite materials for casual applications such as shirts and blouses,
There were many restrictions in terms of easy care (things that do not take time, such as the need for ironing after washing, are called easy care).

【0005】絹繊維の実用機能性の欠点を補い、衣料素
材としての性能を改善する技術が種々提案されている。
例えば、特開平3−213572号公報には、水溶性エ
ポキシ化合物で先ず絹繊維織物を処理し、更にパーフル
オロアルキル基とポリオキシエチレン基とを同一分子中
に有する撥水・撥油加工剤と帯電防止剤を含む処理液で
処理し、次いで熱処理することにより絹繊維に防汚機能
を付与する方法が提案されている。しかしながら、この
方法では、絹繊維に撥水・撥油性を付与するために行う
加工過程、すなわち、エポキシ化合物による加工反応、
更にそれに引き続く防汚加工、および熱処理等の複数の
処理を繰り返し行っているので、絹繊維に物理的ならび
に化学的な変化を繰り返し与えることになって、繊維の
微細構造の変化が起こり、素材劣化や微細構造の破壊の
危険性が高い。更に、この公開公報記載の方法において
用いられている撥水・撥油加工溶液には、帯電防止用加
工剤として20g/L程度の高濃度の非イオン化合物が
含まれているので、仕上げ加工後の絹繊維の表面には若
干親水性が付与されてしまい、目的とする防汚加工の効
果が得られ難いという問題がある。また、撥水・撥油加
工剤は、絹繊維の内部に浸透することなく、繊維表面で
3次元的に架橋結合して樹脂化するため、加工剤の付着
量が多いと絹繊維が固くなり絹繊維本来の風合い特性が
失われるという問題もある。
[0005] Various techniques have been proposed for compensating for the drawbacks of the practical functionality of silk fibers and improving the performance as clothing materials.
For example, JP-A-3-213572 discloses that a silk fiber fabric is first treated with a water-soluble epoxy compound, and a water- and oil-repellent agent having a perfluoroalkyl group and a polyoxyethylene group in the same molecule. There has been proposed a method of imparting an antifouling function to silk fibers by treating with a treatment solution containing an antistatic agent and then performing heat treatment. However, in this method, a processing step performed to impart water / oil repellency to the silk fiber, that is, a processing reaction using an epoxy compound,
Furthermore, since a plurality of subsequent processes such as antifouling processing and heat treatment are repeatedly performed, the physical and chemical changes are repeatedly given to the silk fibers, and the fine structure of the fibers changes, resulting in deterioration of the material. And the risk of microstructure destruction is high. Furthermore, since the water-repellent / oil-repellent processing solution used in the method described in this publication contains a high-concentration nonionic compound of about 20 g / L as an antistatic processing agent, There is a problem that the surface of the silk fiber is slightly hydrophilic, and it is difficult to obtain the desired effect of the antifouling treatment. In addition, since the water-repellent and oil-repellent finishing agent does not penetrate into the interior of the silk fiber and cross-links three-dimensionally on the fiber surface to form a resin, the silk fiber becomes hard if the amount of the processing agent attached is large. There is also a problem that the original feeling characteristics of silk fibers are lost.

【0006】また、絹繊維のような蛋白質繊維の表面に
撥水性を付与する方法としては、高重合エポキシ変性シ
リコーンとベースポリマーとからなるエマルジョン型繊
維処理剤により樹脂加工して、シリコーンを繊維試料表
面に導入する技術が知られている。即ち、この技術は、
濃度3〜30g/Lのこれらのエマルジョン型繊維処理
剤溶液中に絹織物を浸漬・パッディング(処理液中に織
物等を通過させ、ローラーで絞り、処理液をよくしみ込
ませること)し、取り出して搾液し、乾燥することで加
工を完了させる技術である。かかる方法によると繊維製
品に柔軟仕上げを行うことができ、柔軟性、平滑性、風
合い等に優れた製品とすることができるものの、加工効
果を上げるために加工剤濃度を高めると、繊維表面への
被覆樹脂量が増加し、風合い、柔軟性、光沢等が劣悪と
なり、その結果繊維製品が固くなる。さらには、蛋白質
繊維が本来有するしなやかで吸湿性に富んだ特性が損な
われ、衣料素材としての価値が半減するという問題もあ
る。
As a method for imparting water repellency to the surface of a protein fiber such as a silk fiber, a resin is processed with an emulsion type fiber treating agent comprising a highly polymerized epoxy-modified silicone and a base polymer, and the silicone is used as a fiber sample. Techniques for introducing to surfaces are known. That is, this technology
The silk fabric is immersed and padded in the emulsion type fiber treating agent solution having a concentration of 3 to 30 g / L (the fabric and the like are passed through the treating solution, squeezed by a roller, and the treating solution is sufficiently impregnated) and taken out. Squeezing and drying to complete processing. According to such a method, a soft finish can be performed on a fiber product, and a product having excellent flexibility, smoothness, texture, etc. can be obtained. , The texture, flexibility, gloss and the like become poor, and as a result, the fiber product becomes hard. Furthermore, there is also a problem that the supple and hygroscopic properties inherent to protein fibers are impaired, and the value as a clothing material is reduced by half.

【0007】特開平10−77579号公報には、撥水
性繊維製品の製造方法が開示されており、繊維製品に、
スルフォン化フェノールホルムアルデヒド低縮合物およ
び尿素樹脂を含有する溶液で浸漬処理を施した後、ポリ
フルオロアルキル基含有アクリル共重合体とアミノプラ
スト樹脂との混合液を付与し、熱処理を施す方法が記載
されている。また、特開平10−77580号公報に
は、耐黄変・撥水性繊維製品の製造方法が開示されてお
り、この方法によれば、繊維製品に、アルキルジフェニ
ルエーテル化合物含有溶液で浸漬処理を施した後、ポリ
フルオロアルキル基含有アクリル共重合体とアミノプラ
スト樹脂および/または多官能ブロックイソシアネート
基含有ウレタン樹脂との混合液を付与し、熱処理を施す
ことにより繊維製品に耐黄変性と撥水性が付与できる。
これらの従来法は、繊維製品表面に撥水性を付与する試
薬、ポリフルオロアルキル基含有アクリル共重合体を高
分子樹脂に埋め込んで繊維製品表面に被覆する技術に関
するものである。しかし、撥水性を増強させるためにこ
うした加工薬剤を多く用いると、繊維製品がかたくな
り、繊維製品本来の材質が劣化し、また、撥水性有効成
分が機械的に樹脂に埋め込まれているだけなので耐久性
に問題があり、さらに、加工時に繊維製品の風合い感が
失われるという問題もあった。
Japanese Patent Application Laid-Open No. H10-77579 discloses a method for producing a water-repellent fiber product.
A method is described in which, after performing immersion treatment with a solution containing a sulfonated phenol formaldehyde low-condensate and a urea resin, a mixed liquid of a polyfluoroalkyl group-containing acrylic copolymer and an aminoplast resin is applied, and a heat treatment is performed. ing. Japanese Patent Application Laid-Open No. Hei 10-77580 discloses a method for producing a yellowing-resistant and water-repellent fiber product. According to this method, a textile product is subjected to a dipping treatment with a solution containing an alkyldiphenyl ether compound. Thereafter, a mixture of the polyfluoroalkyl group-containing acrylic copolymer and the aminoplast resin and / or the polyfunctional blocked isocyanate group-containing urethane resin is applied, and heat treatment is applied to impart yellowing resistance and water repellency to the textile product. it can.
These conventional methods relate to a technique of embedding a polyfluoroalkyl group-containing acrylic copolymer, a reagent for imparting water repellency to a fiber product surface, in a polymer resin and coating the fiber product surface. However, if these processing agents are used in many cases to enhance the water repellency, the fiber product becomes harder, the original material of the fiber product deteriorates, and the water repellent active ingredient is only mechanically embedded in the resin. There is a problem in durability, and there is also a problem that the texture of the textile product is lost during processing.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記問題を
解決するものであり、分子内に一つの二重結合を持つ長
鎖二塩基酸無水物を高分子素材とアシル化反応させるこ
とにより、処理時に高分子素材が劣化することなく、ま
た、風合い感の低下が起こらず、かつ、耐久性と持続性
に優れた撥水性および耐摩耗性を持つ撥水性高分子素材
を製造する方法を提供することならびに得られた撥水性
高分子素材を提供することを課題とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems, and provides an acylation reaction of a long-chain dibasic acid anhydride having one double bond in a molecule with a polymer material. A method for producing a water-repellent polymer material that does not deteriorate during processing, does not cause a reduction in texture, and has excellent water repellency and abrasion resistance with excellent durability and durability. It is an object of the present invention to provide a water-repellent polymer material obtained.

【0009】[0009]

【課題を解決するための手段】本発明者らは、昆虫生体
高分子と化学結合するアシル化剤の化学反応性について
鋭意検討を進めてきた。その際に、有機溶媒に溶解させ
た二塩基酸無水物と高分子素材との化学反応性を詳細に
検討した結果、分子内に一つの二重結合を持つ長鎖二塩
基酸無水物をN,N−ジメチルホルムアミド(以下、D
MFと略記することもある)等の有機溶媒に溶解し、こ
の溶液中で高分子素材を化学処理することにより、処理
時において高分子素材の劣化が起こらず、また、優れた
撥水性と耐摩耗性を有し、しかも本来持つ優れた風合い
感を損なうことのない撥水性高分子素材を製造できるこ
とを見出し、本発明を完成するに至った。
Means for Solving the Problems The present inventors have intensively studied the chemical reactivity of an acylating agent chemically bonded to an insect biopolymer. At this time, as a result of a detailed study of the chemical reactivity between the dibasic acid anhydride dissolved in the organic solvent and the polymer material, a long-chain dibasic anhydride having one double bond in the molecule was converted to N , N-dimethylformamide (hereinafter referred to as D
By dissolving the polymer material in an organic solvent such as MF, which is sometimes abbreviated as MF), and chemically treating the polymer material in this solution, the polymer material does not deteriorate during the treatment, and has excellent water repellency and resistance. The present inventors have found that a water-repellent polymer material having abrasion properties and not impairing the original excellent feeling of texture can be produced, and the present invention has been completed.

【0010】本発明においては、高分子素材と分子内に
一つの二重結合を持つ長鎖二塩基酸無水物とをアシル化
反応させ、高分子素材に長鎖の炭化水素であるアルキル
基を導入することで撥水性機能その他の種々の機能を持
つ高分子素材を製造しようとするものである。
In the present invention, a polymer material is subjected to an acylation reaction with a long-chain dibasic acid anhydride having one double bond in the molecule, and an alkyl group, which is a long-chain hydrocarbon, is added to the polymer material. By introducing the polymer material, a polymer material having a water-repellent function and other various functions is manufactured.

【0011】本発明で用い得る高分子素材は、下記の一
般式(I):
The polymer material which can be used in the present invention has the following general formula (I):

【0012】[0012]

【化3】 (但し、式中nは10〜19の整数である)で表される
分子内に一つの二重結合を持つ長鎖二塩基酸無水物がD
MF等の有機溶媒中に溶解された系内で該素材を加熱す
る際に、該素材と長鎖二塩基酸無水物との間にアシル化
反応が起こるような反応部位を有する素材である。
Embedded image (Where n is an integer of 10 to 19) is a long-chain dibasic anhydride having one double bond in the molecule represented by D
A material having a reaction site where an acylation reaction occurs between the material and a long-chain dibasic acid anhydride when the material is heated in a system dissolved in an organic solvent such as MF.

【0013】[0013]

【発明の実施の形態】本発明で利用できるアシル化剤で
ある長鎖二塩基酸無水物は、上記したように、下記の一
般式(I):
BEST MODE FOR CARRYING OUT THE INVENTION As described above, a long-chain dibasic acid anhydride which is an acylating agent that can be used in the present invention has the following general formula (I):

【0014】[0014]

【化4】 (但し、式中nは10〜19の整数である)で表され、
分子内に二重結合を一つ有する長鎖のアシル基を持つ化
合物である。
Embedded image (Where n is an integer of 10 to 19),
A compound having a long-chain acyl group having one double bond in the molecule.

【0015】分子内に二重結合を一つ有する長鎖二塩基
酸無水物としては、式(I)においてnが10以上の整
数であり、nの値が大きいもの程好ましく用いられる。
nの値の小さい化合物は、アルキル基鎖が短いために高
分子素材に浸透し易い性質を示すが、その反面、高分子
素材の反応部位との化学反応性は高くなく、反応しても
撥水効果が充分でない。nの値が10程度まで増加する
と化学反応性は増加し、その結果、高分子素材に撥水性
等の諸機能を効果的に付与できる。従って、本発明にお
ける好ましい長鎖二塩基酸無水物としては、nの値が1
0以上であり、しかも高分子素材との化学反応性が低下
しない範囲であれば、いずれの二塩基酸無水物も利用で
き、特に制約はない。nの値が20に近付くとアルキル
基が長くなり過ぎ、二塩基酸無水物が高分子素材に浸透
し難くなり、反応効率が低下する。したがって、反応効
率が低下しない範囲の長鎖二塩基酸無水物であればいず
れのものであっても利用でき、好ましくはnの値が19
以下のものであればよい。本発明で利用できる好ましい
長鎖二塩基酸無水物としては、例えば次のアシル化剤が
ある。 アシル化反応の際に利用できる有機溶媒は、本発明で用
いる長鎖二塩基酸無水物を溶解できるものであれば、任
意の溶媒でよい。このようなものとしては、例えば、D
MF、ジメチルスルホキシド(以下、DMSOと略記す
ることもある)、テトラヒドロフラン、ピリジン等が挙
げられる。本発明においては、例えば、DMF、DMS
O等の使用が特に好ましい。
As the long-chain dibasic acid anhydride having one double bond in the molecule, n is preferably an integer of 10 or more in Formula (I), and the larger the value of n, the more preferably used.
Compounds having a small value of n exhibit a property of easily penetrating into a polymer material due to a short alkyl group chain, but on the other hand, have low chemical reactivity with a reaction site of the polymer material and are repelled even when reacted. Water effect is not enough. When the value of n increases to about 10, the chemical reactivity increases, and as a result, various functions such as water repellency can be effectively imparted to the polymer material. Therefore, the preferred long-chain dibasic acid anhydride in the present invention has a value of n of 1
Any dibasic acid anhydride can be used as long as it is 0 or more and the chemical reactivity with the polymer material is not reduced, and there is no particular limitation. When the value of n approaches 20, the length of the alkyl group becomes too long, so that the dibasic acid anhydride hardly penetrates into the polymer material, and the reaction efficiency decreases. Therefore, any long-chain dibasic acid anhydride can be used as long as the reaction efficiency does not decrease, and preferably, the value of n is 19
The following may be used. Preferred long-chain dibasic acid anhydrides usable in the present invention include, for example, the following acylating agents. The organic solvent that can be used in the acylation reaction may be any solvent that can dissolve the long-chain dibasic acid anhydride used in the present invention. As such, for example, D
MF, dimethyl sulfoxide (hereinafter sometimes abbreviated as DMSO), tetrahydrofuran, pyridine and the like. In the present invention, for example, DMF, DMS
The use of O or the like is particularly preferred.

【0016】高分子素材に対する化学修飾加工は、通常
60〜90℃の加熱下で行う。好ましい反応温度は70
〜85℃である。反応温度が60℃未満であると反応効
率が良くないし、反応温度が90℃を超えると長鎖二塩
基酸無水物あるいは高分子素材の構造安定性が低下する
等の問題がある。有機溶媒中における長鎖二塩基酸無水
物濃度は5〜30%であればよい。濃度が5%未満であ
ると反応効率が低下する問題があり、30%を超えると
有機溶媒への長鎖二塩基酸無水物の溶解量が次第に減
り、かつ反応温度を上げ反応時間を延長させても反応効
率が上がらず、効率面で問題がある。高い温度、例えば
75℃以上の温度で化学修飾加工する場合、溶媒が次第
に蒸発し、これに伴って加工薬剤の二塩基酸無水物の濃
度が変化するので、高分子素材との化学反応性が変わっ
てしまうことが懸念される。そのため、化学修飾加工は
逆流冷却器を付けたナス型フラスコ、三角フラスコなど
のような装置内で行うことが望ましい。
The chemical modification of the polymer material is usually performed under heating at 60 to 90 ° C. The preferred reaction temperature is 70
8585 ° C. If the reaction temperature is lower than 60 ° C., the reaction efficiency is not good. If the reaction temperature is higher than 90 ° C., there is a problem that the long chain dibasic acid anhydride or the structural stability of the polymer material is lowered. The concentration of the long-chain dibasic anhydride in the organic solvent may be 5 to 30%. If the concentration is less than 5%, there is a problem that the reaction efficiency is reduced. If the concentration is more than 30%, the amount of the long-chain dibasic acid anhydride dissolved in the organic solvent is gradually reduced, and the reaction temperature is increased to extend the reaction time. However, the reaction efficiency does not increase and there is a problem in efficiency. When performing chemical modification processing at a high temperature, for example, at a temperature of 75 ° C. or higher, the solvent gradually evaporates, and the concentration of the dibasic acid anhydride of the processing agent changes accordingly. There is concern that it will change. Therefore, it is desirable to perform the chemical modification processing in an apparatus such as an eggplant-shaped flask or an Erlenmeyer flask equipped with a backflow cooler.

【0017】アシル化反応終了後、改質高分子素材を有
機溶媒溶液から取り出し、脱液した後有機溶媒で洗浄
し、次いで長鎖二塩基酸無水物に良溶媒として作用する
水溶性有機溶媒で洗浄し、最後に水洗し、乾燥する。こ
の場合の脱液直後に用いる有機溶媒としては、好ましく
は、前記したアシル化反応時の各種有機溶媒が挙げら
れ、また、水溶性有機溶媒としては、好ましくは、メタ
ノール、エタノール、プロパノール等の低級アルコール
やアセトン、メチルエチルケトン等のケトンが挙げられ
る。
After completion of the acylation reaction, the modified polymer material is taken out of the organic solvent solution, drained, washed with an organic solvent, and then dissolved in a long-chain dibasic acid anhydride with a water-soluble organic solvent acting as a good solvent. Wash, finally rinse with water and dry. In this case, as the organic solvent used immediately after the removal of liquid, preferably, various organic solvents at the time of the above-mentioned acylation reaction are mentioned, and as the water-soluble organic solvent, preferably, a lower solvent such as methanol, ethanol, and propanol is used. Examples thereof include ketones such as alcohol, acetone, and methyl ethyl ketone.

【0018】本発明において撥水性機能を付与できる高
分子素材としては、絹蛋白質、羊毛ケラチン、コラーゲ
ン、ポリビニールアルコール、あるいはセルロースなど
が例示できる。これら素材の形態としては、繊維状、膜
状、粉末状、塊状など素材がとり得るあらゆる形態のも
のを用いることが可能である。
In the present invention, examples of the polymer material that can impart a water repellent function include silk protein, wool keratin, collagen, polyvinyl alcohol, and cellulose. As the form of these materials, any form that the material can take, such as fibrous, film-like, powder-like, and lump-like forms, can be used.

【0019】これらの素材のうち、絹蛋白質の繊維とし
ては、例えば家蚕絹糸、クワコ絹糸、野蚕絹糸としての
柞蚕絹糸、エリ蚕絹糸、ムガ蚕絹糸等が挙げられる。絹
蛋白質膜をつくるには、まず、前記絹繊維を濃厚な中性
塩溶液に浸漬し、加熱して溶解したものをセルロース製
透析膜に入れ純水と置換する。次いで、こうして調製し
た絹フィブロイン水溶液をポリエチレン膜上に広げ室温
で送風乾燥することで水溶解性の絹フィブロイン膜が得
られる。絹蛋白質の膜状試料の場合、撥水性加工のため
の化学修飾に先だって、膜状試料の水に対する不溶化処
理を行うことが望ましい。50v/v%のメタノール水
溶液中に絹蛋白質膜を1〜2時間浸漬処理した後取り出
し、室温で乾燥させることで、蛋白質分子間の凝集密度
が増し、分子間に水素結合が形成され、水不溶化され
る。この絹蛋白質膜は、(1)熟蚕のカイコ体内から取
り出した絹糸腺内の液状絹フィブロインを水に溶解させ
た絹フィブロイン水溶液、あるいは(2)臭化リチウム
などの中性塩水溶液に絹フィブロイン繊維を浸漬し、5
0℃以上に加熱して溶解した後、セルロース透析チュー
ブに入れて純水と置換して得られる絹フィブロイン水溶
液を、ポリエチレン膜上に広げて蒸発乾固することで得
られる。本発明によれば、前記長鎖二塩基酸無水物によ
り、かかる絹蛋白質の繊維、膜等に撥水性を付与するこ
とができる。
Among these materials, silk protein fibers include, for example, silkworm silk, mulberry silk, tussah silk, Eri silkworm, and helmet silk as wild silk. In order to prepare a silk protein membrane, the silk fiber is first immersed in a concentrated neutral salt solution, heated and dissolved in a cellulose dialysis membrane, and replaced with pure water. Subsequently, the aqueous solution of silk fibroin thus prepared is spread on a polyethylene membrane and blown dry at room temperature to obtain a water-soluble silk fibroin membrane. In the case of a silk protein film sample, it is desirable to perform a water insolubilization treatment on the film sample prior to chemical modification for water repellency processing. The silk protein membrane is immersed in a 50 v / v% methanol aqueous solution for 1-2 hours, taken out, and dried at room temperature to increase the aggregation density between protein molecules, form hydrogen bonds between the molecules, and insolubilize water. Is done. This silk protein membrane can be prepared by adding (1) a silk fibroin aqueous solution obtained by dissolving liquid silk fibroin in a silk gland taken out from the silkworm body of a mature silkworm into water, or (2) a silk fibroin solution into a neutral salt aqueous solution such as lithium bromide. Soak the fiber, 5
After heating and dissolving at 0 ° C. or higher, silk fibroin aqueous solution obtained by placing in a cellulose dialysis tube and replacing with pure water is spread on a polyethylene membrane and evaporated to dryness. According to the present invention, the long-chain dibasic acid anhydride can impart water repellency to fibers, films, and the like of such silk proteins.

【0020】本発明はまた、羊毛、モヘア等の獣毛繊維
に対しても適用できる。さらに、生体中で結合組織を形
成する蛋白質で、皮膚、血管、骨、歯、腱などの多くの
組織内に分布するコラーゲンの化学修飾も可能である。
コラーゲンは、免疫活性を有し、血小板凝集反応を誘起
し、これを起点とする血栓形成に関与する生体高分子で
あるが、前記長鎖二塩基酸無水物による処理で、従来知
られている上記のコラーゲンの機能特性に加えて、優れ
た撥水特性を新たに付与することが可能となり、コラー
ゲンの機能特性を更に多様なものにすることが可能とな
る。
The present invention is also applicable to animal hair fibers such as wool and mohair. Furthermore, it is possible to chemically modify collagen that is distributed in many tissues such as skin, blood vessels, bones, teeth, and tendons with proteins that form connective tissues in a living body.
Collagen is a biological macromolecule that has immunological activity, induces a platelet aggregation reaction, and participates in thrombus formation originating therefrom, and is conventionally known by treatment with the long-chain dibasic acid anhydride. In addition to the above-mentioned functional properties of collagen, it is possible to newly impart excellent water-repellent properties, and it is possible to further enhance the functional properties of collagen.

【0021】ポリビニールアルコール(以下、PVAと
略記)には分子側鎖に水酸基があるので、この部位がア
シル化反応の拠点となる。また、天然セルロース製の木
綿繊維等への撥水加工も同じように可能である。セルロ
ース分子中に、アシル化反応の拠点となる水酸基が含ま
れているためである。
Since polyvinyl alcohol (hereinafter abbreviated as PVA) has a hydroxyl group in a molecular side chain, this site becomes a base of the acylation reaction. Water repellent treatment of natural cellulose cotton fiber or the like is also possible. This is because a hydroxyl group serving as a base of the acylation reaction is contained in the cellulose molecule.

【0022】本発明で用いる長鎖二塩基酸無水物は、高
分子素材のリジン、アルギニン、あるいはヒスチジン残
基等の塩基性アミノ酸側鎖と反応し、S−NHCO−C
2−CH(COOH)−CH2−CH=CH−Cn2n+1
(Sは高分子素材の分子であり、nは前記定義の通りで
ある)のように素材にアシル基を導入できる。また、長
鎖二塩基酸無水物は、高分子素材のチロシン、スレオニ
ン残基等のフェノール性水酸基、セリン残基の水酸基、
あるいはポリビニールアルコール等の水酸基、さらには
セルロース分子の水酸基とも反応し、S'−OCO−C
2−CH(COOH)−CH2CH=CH−Cn
2n+1(S'は高分子素材の分子であり、nは前記定義の
通りである)のように素材にアシル基を導入できる。長
鎖二塩基酸無水物は、塩基性アミノ酸側鎖とアシル化反
応した方が、水酸基とアシル化反応した場合よりも安定
性は高く、該高分子素材との結合力は大きい。
The long-chain dibasic acid anhydride used in the present invention reacts with a basic amino acid side chain such as lysine, arginine or histidine residue of a polymer material to form S-NHCO-C
H 2 -CH (COOH) -CH 2 -CH = CH-C n H 2n + 1
(S is a molecule of a polymer material, and n is as defined above), and an acyl group can be introduced into the material. In addition, long-chain dibasic acid anhydride, tyrosine of polymer material, phenolic hydroxyl group such as threonine residue, hydroxyl group of serine residue,
Alternatively, it reacts with a hydroxyl group of polyvinyl alcohol or the like, and further with a hydroxyl group of a cellulose molecule to form S'-OCO-C
H 2 -CH (COOH) -CH 2 CH = CH-C n H
An acyl group can be introduced into the material as in 2n + 1 (S 'is a molecule of a polymer material, and n is as defined above). The long-chain dibasic acid anhydride undergoes an acylation reaction with a basic amino acid side chain, has higher stability than the case of an acylation reaction with a hydroxyl group, and has a higher bonding force with the polymer material.

【0023】高分子素材に強い撥水機能を付与するに
は、長鎖二塩基酸無水物を用い、試薬濃度を上げ、反応
温度、反応時間などを制御することにより、加工効率を
上げるようにするとよい。撥水性は、このように加工効
率を制御して、使用用途により適宜変えることができ
る。
In order to impart a strong water repellent function to a polymer material, a long-chain dibasic acid anhydride is used, the concentration of the reagent is increased, and the reaction temperature and the reaction time are controlled so as to increase the processing efficiency. Good to do. The water repellency can be appropriately changed depending on the intended use by controlling the processing efficiency in this way.

【0024】本発明で用いるアシル化剤は高分子素材の
塩基性アミノ酸側鎖あるいは水酸基とアシル化反応す
る。アシル化剤として、n−オクタデシルこはく酸無水
物(以下、Cn=15と略記することもある)を例にし
て、以下、その使用量について説明する。アシル化反応
が生じる反応拠点の総量は高分子素材に固有のものであ
るため、Cn=15による反応量は高分子素材の反応拠
点総数の制約を受け、無制限にアシル化反応が進行する
ことはない。絹繊維に比べて反応拠点を多く含む羊毛繊
維を例にして説明する。羊毛繊維を構成するリジン、ア
ルギニン、ヒスチジン等の塩基性アミノ酸残基の総量は
1.468×10-3mol/g、セリン、チロシン、ス
レオニン等の水酸基を含むアミノ酸残基の総量は8.4
6×10-4mol/gであるため、反応拠点の総量は
2.314×10-3mol/gとなる。Cn=15を用
いて撥水加工を行った場合、考えられ得るすべての反応
拠点が反応すると仮定すると、重量増加率は76.4%
と試算される。なお、ここでは、含量が極微小なトリプ
トファンは考慮しないことにした。以下の実施例に示す
表2から明らかなように、反応温度75℃、反応時間7
時間で73.2%の重量増加率が得られていることは、
すべての反応拠点がアシル化反応にかかわっていること
を示している。重量増加率は、試薬濃度、反応温度、反
応時間あるいは加工溶媒の種類により自由に制御するこ
とが可能である。
The acylating agent used in the present invention undergoes an acylation reaction with a basic amino acid side chain or a hydroxyl group of a polymer material. As an acylating agent, n-octadecylsuccinic anhydride (hereinafter sometimes abbreviated as Cn = 15) will be described as an example, and the amount of the acylating agent will be described below. Since the total amount of reaction sites where the acylation reaction occurs is specific to the polymer material, the reaction amount based on Cn = 15 is limited by the total number of the reaction sites of the polymer material, and the acylation reaction does not proceed indefinitely. Absent. Description will be made by taking wool fiber containing more reaction sites as an example than silk fiber as an example. The total amount of basic amino acid residues such as lysine, arginine and histidine constituting wool fiber is 1.468 × 10 −3 mol / g, and the total amount of amino acid residues including hydroxyl groups such as serine, tyrosine and threonine is 8.4.
Since it is 6 × 10 −4 mol / g, the total amount of the reaction sites is 2.314 × 10 −3 mol / g. Assuming that all possible reaction sites react when the water repellent treatment is performed using Cn = 15, the weight increase rate is 76.4%.
Is estimated. Here, tryptophan having a very small content was not considered. As is clear from Table 2 shown in the following examples, the reaction temperature was 75 ° C. and the reaction time was 7 hours.
The 73.2% weight gain over time was obtained
This indicates that all reaction sites are involved in the acylation reaction. The weight increase rate can be freely controlled by the reagent concentration, the reaction temperature, the reaction time or the type of the processing solvent.

【0025】[0025]

【実施例】次に、本発明を実施例および比較例により更
に詳細に説明する。本発明は、これらの例により限定さ
れるものではない。アシル化処理で撥水性を付与した高
分子素材の機能評価は次の方法により行った。
Next, the present invention will be described in more detail with reference to Examples and Comparative Examples. The present invention is not limited by these examples. The function evaluation of the polymer material to which water repellency was imparted by the acylation treatment was performed by the following method.

【0026】撥水性能の程度は、絹織物に残存する微量
の油脂成分の影響を受けやすいので、その評価に当たっ
てはこの影響を排除する必要があり、次の方法で油脂成
分のアセトン抽出を行った。即ち、撥水加工後の絹織物
表面の油脂成分を除去するため、ソックスレー抽出器に
アセトンを溶媒として撥水加工済試料を投入し、冷却器
を取り付け、アセトンの沸点温度である56℃で30分
間抽出処理した。アセトン抽出処理後、純水で洗浄し、
次いで105℃で2時間乾燥したものを撥水性の試験試
料とした。これらの試料について、以下のようにして、
接触角、剛軟度、屈曲摩耗強度を測定すると共に、撥油
性試験を行い、また、撥水加工前後での機械的特性を測
定した。
Since the degree of water repellency is easily affected by a trace amount of oils and fats remaining in the silk fabric, it is necessary to eliminate this influence in the evaluation, and acetone extraction of the oils and fats is performed by the following method. Was. That is, in order to remove oil and fat components on the surface of the silk fabric after the water-repellent treatment, a water-repellent sample was put into a Soxhlet extractor using acetone as a solvent, and a cooler was attached. Extracted for minutes. After acetone extraction, wash with pure water,
Next, what was dried at 105 ° C. for 2 hours was used as a water-repellent test sample. For these samples,
The contact angle, the softness and the flexural wear strength were measured, an oil repellency test was performed, and the mechanical properties before and after the water repellent treatment were measured.

【0027】接触角:接触角測定装置(協和界面科学
(株)製、FACE型式CAS)を用い、絹織物のたて
糸を構成する単繊維を取り出し、糸に力を加えた状態
で、微細な水滴を噴霧し、数珠状に水玉が繊維表面に付
着した部位を倍率36倍の光学顕微鏡で撮影し、水玉の
付着部位を拡大して印画紙に焼き付け、作図的に接触角
を評価した。なお、比較のために、市販の撥水加工剤
(住友スリーエム株式会社製、フッ素樹脂系繊維保護剤
スコッチガード(商品名)、以下、単にスコッチガード
と称す)を噴霧した単繊維を用いて、接触角を同様の方
法により評価した。接触角の大きい程、撥水性に富むこ
とを示す。
Contact angle: Using a contact angle measuring device (FACE model CAS, manufactured by Kyowa Interface Science Co., Ltd.), a single fiber constituting a warp yarn of a silk fabric is taken out, and fine water droplets are applied to the yarn while applying a force to the yarn. Was sprayed, and the area where the polka dots were attached to the fiber surface in a bead shape was photographed with an optical microscope with a magnification of 36 times, and the area where the polka dots were attached was enlarged and baked on photographic paper, and the contact angle was evaluated by drawing. For comparison, using a single fiber sprayed with a commercially available water-repellent agent (manufactured by Sumitomo 3M Limited, fluororesin fiber protective agent Scotchguard (trade name), hereinafter simply referred to as Scotchguard), The contact angle was evaluated by the same method. The larger the contact angle, the higher the water repellency.

【0028】剛軟度:JISL1079(1966)で
規定されているカンチレバー法により、2cm×15c
mのサイズの試料片を水平に送り出し、45°の斜面に
達するまでの送り出し長さを測定した。測定は、試料の
織物からよこ糸方向に5枚ずつ試料片を切り出し、その
表側および裏側より測定し、平均値をmm単位で示し
た。数値は、大きい程硬く、小さい程軟らかいことを示
す。
Bending resistance: 2 cm × 15 c by the cantilever method specified in JISL1079 (1966).
A sample piece having a size of m was fed horizontally, and the feeding length until reaching a 45 ° slope was measured. The measurement was performed by cutting out five sample pieces from the woven fabric of the sample in the weft direction, measuring from the front side and the back side, and showing the average value in mm. Numerical values indicate that the larger the hardness, the harder the smaller the value.

【0029】屈曲摩耗強度:JISL1096(199
0)で規定されているA−2法(屈曲法)に従って、絹
織物のたて糸方向ならびによこ糸方向から2.5×20
cmの試験片を5枚ずつ切り出し、これをそれぞれ二つ
折りとしてバーを挟むように試験装置に取り付けた。
2.5cmの距離を1分間当たり125回往復摩擦する
条件で試験を行い、試験片が切断した時の摩擦回数を計
測した。絹織物のたて糸方向、およびよこ糸方向に切り
出した5枚の試験片の屈曲摩耗強度を測定し、測定値の
平均値を屈曲摩耗強度とした。
Flexural wear strength: JIS L1096 (199
According to the A-2 method (bending method) defined in 0), the silk fabric is 2.5 × 20 from the warp direction and the weft direction.
5 cm test pieces were cut out, each of which was folded in two and attached to a test apparatus so as to sandwich a bar.
The test was performed under the condition of reciprocating 125 times per minute at a distance of 2.5 cm, and the number of times of friction when the test piece was cut was measured. The flexural wear strength of five test pieces cut out in the warp and weft directions of the silk fabric was measured, and the average of the measured values was defined as flexural wear strength.

【0030】撥油性:AATCCTM118(197
2)に基づいて試料織物の撥油性機能を評価した。すな
わち、下記の標準液から選んだ任意の標準液をスポイト
で一滴宛、試料織物上の3箇所にそっと置き、3分後に
液滴が崩れずに保たれているか否かを判定する。試料に
吸い込まれたり、液滴の形が崩れたりした場合は、下記
判定基準の撥油性の欄に記載の番号の小さい標準液で順
次、同様の操作を行う。きれいな液滴の形を保っている
最も大きい標準液の番号を撥油性の評価値とする。AA
TCCTM118(1972)における撥油性評価用の
標準液、表面張力(dyn/cm)および撥油性の評価基準の番
号を下記に示す。
Oil repellency: AATCCTM118 (197
The oil repellency function of the sample fabric was evaluated based on 2). That is, an arbitrary standard solution selected from the following standard solutions is gently placed at three places on the sample fabric by dropping one drop with a dropper, and after three minutes, it is determined whether or not the droplet is kept without collapsing. When the liquid is sucked into the sample or the shape of the liquid droplet is lost, the same operation is sequentially performed with the standard liquids having the smaller numbers described in the oil repellency column of the following criteria. The number of the largest standard solution that maintains a clean droplet form is used as the evaluation value of the oil repellency. AA
The standard liquid for oil repellency evaluation, the surface tension (dyn / cm) and the number of the evaluation standard for oil repellency in TCCTM118 (1972) are shown below.

【0031】 機械的特性:撥水加工前後で繊維状試料の機械的特性が
どのように変わったかを調べるため、機械的特性を評価
した。(株)島津製作所製インストロンを用い、試料長
100mm、引張速度10mm/分、チャートフルスケ
ール250gで、繊維が破断する時の強度(gf)、伸
度(%)、および切断に要するエネルギー(gf−m
m)を測定した。測定繰り返し数は10回とした。
[0031] Mechanical properties: The mechanical properties were evaluated in order to examine how the mechanical properties of the fibrous sample changed before and after the water-repellent treatment. Using an Instron manufactured by Shimadzu Corporation with a sample length of 100 mm, a tensile speed of 10 mm / min, and a chart full scale of 250 g, the strength (gf) at break of fiber, elongation (%), and energy required for cutting ( gf-m
m) was measured. The number of measurement repetitions was set to 10 times.

【0032】実施例1:家蚕絹織物への加工 JIS染色堅ろう度試験(JISL0803準拠)の1
4目付の家蚕絹羽二重(以下、絹織物と略記する)に次
の方法で撥水機能を付与した。浸漬浴として、100m
LのDMFに20gのn−オクタデシルこはく酸無水物
(東京化成工業株式会社製、Lot No.FIG0
1、Cn=15と略記することもある)を溶解して得た
20%n−オクタデシルこはく酸無水物溶液を用いた。
絹織物重量に対して20倍(浴比1:20)のDMFを
逆流冷却器付き100mLナス型フラスコに入れ、絹織
物がDMF中に完全に浸漬するように留意しながら、ウ
ォーターバスを用いて80℃で7時間反応させることで
撥水性絹織物を製造した。反応終了後、試料を取り出
し、DMFで洗浄し、続いて55℃のアセトンで洗浄す
ることで未反応試薬を除去した。最後に水で洗浄し、乾
燥後重量を測定した。このようにして重量増加率15.
4%の試料を得た。
Example 1: Processing into Bombyx mori silk fabric 1 of JIS dye fastness test (based on JIS L0803)
A water-repellent function was imparted to the silkworm silk, double-layered silkworm (hereinafter abbreviated as silk fabric), with the following method. 100m as immersion bath
20 g of n-octadecyl succinic anhydride (Lot No. FIG. 0, manufactured by Tokyo Chemical Industry Co., Ltd.) in DMF of L.
1, sometimes abbreviated as Cn = 15), and used was a 20% n-octadecylsuccinic anhydride solution.
DMF 20 times the weight of the silk fabric (bath ratio 1:20) was placed in a 100 mL eggplant-shaped flask with a backflow cooler, and the silk fabric was completely immersed in the DMF using a water bath. A water-repellent silk fabric was produced by reacting at 80 ° C. for 7 hours. After the reaction was completed, the sample was taken out, washed with DMF, and then washed with acetone at 55 ° C. to remove unreacted reagent. Finally, it was washed with water, dried and weighed. 14. Weight gain 15.
A 4% sample was obtained.

【0033】比較例1:絹織物への加工 実施例1のn−オクタデシルこはく酸無水物(Cn=1
5)の代わりにドデセニルこはく酸無水物(和光純薬工
業株式会社製、040−16251、LotNo.LE
E7584、以下、Cn=9と略記することもある)を
用い、実施例1と同様の条件下で絹織物への加工を行
い、重量増加率が13.2%の試料を得た。
Comparative Example 1 Processing into Silk Fabric n-octadecylsuccinic anhydride of Example 1 (Cn = 1
Dodecenyl succinic anhydride (040-16251, Lot No. LE, manufactured by Wako Pure Chemical Industries, Ltd.) instead of 5)
E7584 (hereinafter sometimes abbreviated as Cn = 9), and processed into a silk fabric under the same conditions as in Example 1 to obtain a sample having a weight increase rate of 13.2%.

【0034】比較例2:スコッチガード加工 比較例1で用いた絹織物に対し、市販の撥水加工剤(前
記「スコッチガード」)を絹織物がしっとりするまでス
プレーし、完全に風乾させて撥水性絹織物を得た。
Comparative Example 2: Scotch guard processing A commercially available water-repellent agent ("Scotch guard") was sprayed on the silk fabric used in Comparative Example 1 until the silk fabric was moistened, completely air-dried, and repelled. An aqueous silk fabric was obtained.

【0035】上記実施例1および比較例1で得られたア
シル化処理した絹織物ならびに比較例2の撥水加工絹織
物のそれぞれの表面に重量12mgの水滴を付着させ、
一定時間毎に各絹織物表面での水滴の吸着、しみ込みを
目視により観測した。得られた結果を表1に示す。
Water droplets weighing 12 mg were attached to the surfaces of the acylated silk fabrics obtained in Example 1 and Comparative Example 1 and the water-repellent silk fabric of Comparative Example 2, respectively.
At regular intervals, the adsorption and penetration of water droplets on the surface of each silk fabric were visually observed. Table 1 shows the obtained results.

【0036】[0036]

【表1】 表1中、++:水滴状態が維持され、しみ込みがないこ
と、+:水滴状ではあるが、一部しみ込んでいること、
−:水滴状ではなくなり、全てしみ込んでいることを示
す。
[Table 1] In Table 1, ++: the state of water droplets is maintained and there is no permeation; +: that it is in the form of water droplets but partially permeates;
-: It is no longer water-drop-like, indicating that all of the water has penetrated.

【0037】表1から明らかなように、長鎖二塩基酸無
水物(Cn=15)を用いてアシル化処理した本発明の
改質絹織物は、良好で持久性のある安定した撥水性を示
し、Cn=9を用いて処理した絹織物および市販品のス
コッチガードで撥水化処理した絹織物よりも優れた撥水
効果が得られた。
As apparent from Table 1, the modified silk fabric of the present invention, which has been acylated using a long-chain dibasic acid anhydride (Cn = 15), has good and durable stable water repellency. As shown, a water repellent effect superior to the silk fabric treated with Cn = 9 and the silk fabric treated with water repellency by a commercially available Scotchguard was obtained.

【0038】実施例2:羊毛繊維、家蚕絹繊維への加工 n−オクタデシルこはく酸無水物(Cn=15)を用
い、実施例1と同様にして、羊毛繊維および家蚕絹繊維
(以下、単に絹繊維と称す)へのアシル化処理を行い、
重量増加率35.4%および12.8%の試料を得た。
Example 2: Processing into wool fiber and silkworm silk fiber Wool fiber and silkworm silk fiber (hereinafter simply referred to as silk) in the same manner as in Example 1 using n-octadecylsuccinic anhydride (Cn = 15). Acylation treatment).
Samples with 35.4% and 12.8% weight gain were obtained.

【0039】実施例3 実施例1で用いたCn=15の代わりにCn=10を用
いて、実施例1と同様の条件で絹織物に撥水加工を施し
た。得られた絹織物の重量増加率は16.5%であっ
た。
Example 3 A silk fabric was subjected to a water-repellent treatment under the same conditions as in Example 1 except that Cn = 10 was used instead of Cn = 15 used in Example 1. The weight increase rate of the obtained silk fabric was 16.5%.

【0040】実施例4 実施例1で用いたDMFの代わりにDMSOを用い、ア
シル化剤としてCn=15を用い、75℃で絹繊維およ
び羊毛繊維への撥水加工を行った。得られた試料の重量
増加率と反応時間との関係を調べ、この結果を以下に示
す。
Example 4 Silk fibers and wool fibers were subjected to water repellency at 75 ° C. using DMSO instead of DMF used in Example 1 and using Cn = 15 as an acylating agent. The relationship between the weight increase rate of the obtained sample and the reaction time was examined, and the results are shown below.

【0041】[0041]

【表2】 表2から明らかなように、DMFの代わりにDMSOを
用いた場合、同一の反応温度、反応時間で得られる重量
増加率はDMSOの方が大きな値を示す。10%以下の
重量増加率の試料を得るには、DMFを用いる方が有利
である。
[Table 2] As is clear from Table 2, when DMSO is used instead of DMF, the weight gain obtained at the same reaction temperature and reaction time shows a larger value in DMSO. To obtain a sample having a weight gain of 10% or less, it is more advantageous to use DMF.

【0042】実施例5:蛋白質膜への加工 家蚕絹フィブロイン膜と柞蚕絹フィブロイン膜(本実施
例中では、以下、単に絹フィブロイン膜と略記すること
もある)に次の方法で撥水加工を行った。まずそれぞれ
の絹フィブロイン膜を水不溶化させるため、この絹フィ
ブロイン膜を50v/v%のメタノール水溶液に1時間
浸漬処理し、メタノール水溶液から取り出した後、室温
で軽く乾燥させた。105℃で2時間乾燥させた後、試
料重量を秤量した。次に、化学反応性に乏しい絹フィブ
ロイン膜表面の構造をこわし反応を促進させ易くするた
め、次のようにして溶媒置換を行った。即ち、55℃、
1MのLiSCN(チオシアン酸リチウム)水溶液に家
蚕絹フィブロイン膜と柞蚕絹フィブロイン膜を別々に1
0分間浸漬した。絹フィブロイン膜を取り出して100
%メタノールで膜表面に付着したLiSCNを除去した
後、この絹フィブロイン膜の水不溶化のために50v/
v%のメタノール水溶液に25分浸漬し、続いて100
%DMFで軽く洗った後、DMFに25分浸漬し、次い
で20%のCn=15を含むDMF中で80℃で7時
間、絹フィブロイン膜に撥水機能を付与するため反応さ
せた。反応終了後、絹フィブロイン膜をDMF、55℃
のアセトン、引き続き水で洗浄し、室温で軽く乾燥し
た。次いで、105℃で2時間乾燥することで、Cn=
15の導入された撥水性絹フィブロイン膜を得た。かく
して得られた家蚕絹フィブロイン膜、柞蚕絹フィブロイ
ン膜の重量増加率は、それぞれ29.9%、25.8%
であった。
Example 5 Processing into a Protein Membrane A water-repellent treatment was applied to a silkworm silk fibroin membrane and a tussah silk fibroin membrane (hereinafter sometimes simply referred to as a silk fibroin membrane in this example) by the following method. went. First, in order to make each silk fibroin film insoluble in water, the silk fibroin film was immersed in a 50 v / v% methanol aqueous solution for 1 hour, taken out from the methanol aqueous solution, and then lightly dried at room temperature. After drying at 105 ° C. for 2 hours, the sample weight was weighed. Next, in order to break the structure of the surface of the silk fibroin film having poor chemical reactivity and facilitate the reaction, the solvent was replaced as follows. That is, 55 ° C,
A silkworm silk fibroin membrane and a tussah silk fibroin membrane were separately placed in a 1 M aqueous solution of LiSCN (lithium thiocyanate).
Dipped for 0 minutes. Take out the silk fibroin membrane and add 100
% Methanol was used to remove LiSCN attached to the membrane surface, and then the silk fibroin membrane was subjected to 50 v /
v% methanol aqueous solution for 25 minutes, then 100%
After washing lightly with% DMF, the membrane was immersed in DMF for 25 minutes, and then reacted in DMF containing 20% Cn = 15 at 80 ° C. for 7 hours to impart a water repellent function to the silk fibroin membrane. After completion of the reaction, the silk fibroin membrane was placed in DMF at 55 ° C.
Acetone and then with water, and lightly dried at room temperature. Next, by drying at 105 ° C. for 2 hours, Cn =
Fifteen introduced water-repellent silk fibroin membranes were obtained. The weight increase rates of the thus-obtained silkworm silk fibroin membrane and tussah silk fibroin membrane were 29.9% and 25.8%, respectively.
Met.

【0043】かくして得られた撥水加工膜および未処理
膜の表面にマイクロピペットで水を50μL(0.05
mL)滴下して、一定の時間経過毎に水滴の状態を目視
で観察した。未処理の絹フィブロイン膜では、水滴は膜
表面を溶解し膜内に吸収され、膜が一部溶解してしまっ
たが、加工膜は3時間経過後でも水滴が付着したままで
吸収されることはなかった。
Water was applied to the surfaces of the water-repellent film and the untreated film thus obtained with a micropipette by 50 μL (0.05 μL).
mL), and the state of the water drop was visually observed every predetermined time. In the untreated silk fibroin membrane, water droplets dissolved on the membrane surface and were absorbed into the membrane, and the membrane was partially dissolved, but the processed membrane was absorbed with water droplets attached even after 3 hours. There was no.

【0044】実施例6:絹織物への加工 20%のCn=15を含んだDMF中に絹織物を浸漬
し、75℃で該絹織物へのアシル化反応を行った。DM
F中、75℃で30、45、60分反応させることで、
重量増加率がそれぞれ1.5、4.0、5.2%の化学
修飾絹織物を得た。また、Cn=15の代わりに対照と
してCn=9を含んだDMF中、75℃で60、90、
120分反応させることで、重量増加率がそれぞれ3.
1、4.5、5.6%の化学修飾絹織物を得た。これら
の処理済み絹織物に対し、実施例5と同様にして50μ
Lの水を滴下し、水滴の状態、水のしみ込み方を目視で
観察した。得られた結果を表3に示す。
Example 6 Processing into Silk Fabric The silk fabric was immersed in DMF containing 20% of Cn = 15, and an acylation reaction to the silk fabric was performed at 75 ° C. DM
By reacting at 75 ° C. for 30, 45, 60 minutes in F,
Chemically modified silk fabrics having weight increase rates of 1.5, 4.0 and 5.2%, respectively, were obtained. Also, in DMF containing Cn = 9 as a control instead of Cn = 15, 60, 90, at 75 ° C.
By reacting for 120 minutes, the rate of weight increase is 3.
1, 4.5, 5.6% of chemically modified silk fabric was obtained. 50 μm of these treated silk fabrics was obtained in the same manner as in Example 5.
L of water was added dropwise, and the state of the water droplets and how water soaked were visually observed. Table 3 shows the obtained results.

【0045】[0045]

【表3】 表3中、++:水滴状態が維持され、しみ込みがないこ
と、+:水滴状ではあるが、一部しみ込んでいること、
−:水滴状ではなくなり、全てしみ込んでいることを示
す。
[Table 3] In Table 3, ++: the state of water droplets is maintained and there is no permeation. +: It is in the form of water droplets but partially permeates.
-: It is no longer water-drop-like, indicating that all of the water has penetrated.

【0046】表3から明らかなように、アシル化剤の二
塩基酸無水物の鎖長が短いCn=9を用いて加工を行っ
た場合、水滴を絹織物表面にのせた後1分程度で中程度
の撥水効果が見られるに過ぎないが、2分後には撥水効
果が失せていることがわかる。しかし、鎖長が十分に長
いCn=15を用いて加工を行った場合には、撥水効果
は水滴をのせた後も長時間持続する。
As is evident from Table 3, when processing was carried out using Cn = 9 having a short chain length of the dibasic anhydride of the acylating agent, it took about one minute after the water droplet was placed on the surface of the silk fabric. It can be seen that only a moderate water repellent effect is observed, but the water repellent effect is lost after 2 minutes. However, when processing is performed using Cn = 15 having a sufficiently long chain length, the water-repellent effect lasts for a long time even after a water droplet is placed.

【0047】実施例7:絹織物、絹繊維、羊毛繊維、木
綿繊維への加工 20%のドデセニルこはく酸無水物(Cn=9)を含ん
だDMFを4本の200mLナス型フラスコに入れ、次
いでそれぞれのナス型フラスコに絹織物、絹繊維、羊毛
繊維、木綿繊維を入れ、75℃で時間を変えて反応させ
た(但し、セルロース繊維製品である木綿繊維の場合
は、80℃、7時間で反応させた)。反応後、DMFで
まず洗浄し、続いて55℃のアセトンで洗浄し、未反応
のCn=9を除去した。最後に水で洗った後、乾燥し、
試料の乾燥重量を測定し、試料の重量増加率を求めた。
得られた結果を表4に示す。
Example 7 Processing into Silk Fabric, Silk Fiber, Wool Fiber, and Cotton Fiber DMF containing 20% dodecenylsuccinic anhydride (Cn = 9) was placed in four 200 mL eggplant-shaped flasks, and then Silk fabric, silk fiber, wool fiber, and cotton fiber were put into each eggplant-shaped flask and reacted at 75 ° C. for various times (however, in the case of cotton fiber which is a cellulose fiber product, 80 ° C., 7 hours). Reacted). After the reaction, it was washed first with DMF and then with acetone at 55 ° C. to remove unreacted Cn = 9. Finally, after washing with water, dry
The dry weight of the sample was measured to determine the rate of weight increase of the sample.
Table 4 shows the obtained results.

【0048】[0048]

【表4】 表4から明らかなように、Cn=15を用いることで撥
水加工が可能な天然素材は絹織物、絹繊維、羊毛繊維、
木綿繊維である。Cn=9の代わりにCn=15を用い
て加工すると、同一温度、同一処理時間における重量増
加率を比べた場合、Cn=15を用いた方が重量増加率
はいずれも高い値になった。これは、長鎖の二塩基酸無
水物の化学反応性が高まることを示唆している。従っ
て、上記のように撥水加工した絹織物、絹繊維、羊毛繊
維および木綿繊維は、Cn=15を用いると重量増加率
は低い値であってもCn=9に比べて優れた撥水性を示
した。
[Table 4] As is clear from Table 4, natural materials that can be water-repellent by using Cn = 15 include silk fabrics, silk fibers, wool fibers,
It is cotton fiber. When processing was performed using Cn = 15 instead of Cn = 9, when the weight increase rate at the same temperature and the same processing time was compared, the weight increase rate using Cn = 15 was all higher. This suggests that the chemical reactivity of the long-chain dibasic acid anhydride is increased. Therefore, the silk fabric, silk fiber, wool fiber and cotton fiber which have been subjected to the water repellent treatment as described above have excellent water repellency as compared with Cn = 9 even when the weight increase rate is low when Cn = 15 is used. Indicated.

【0049】実施例8:種々の高分子素材膜への加工 コラーゲン、キトサン、PVAの膜状試料に次のように
して撥水加工を施した。
Example 8 Processing into Various Polymer Material Films A film sample of collagen, chitosan, or PVA was subjected to a water-repellent treatment as follows.

【0050】コラーゲン膜は、株式会社高研の組織培養
用のコラーゲン水溶液(pH3.0、濃度0.3)をポ
リエチレン膜上に広げ、室温で乾燥固化させることで調
製した。キトサン膜は、キトサン(ナカライテスク株式
会社、Lot No.MOT3327)を濃度が1.5
%となるように蟻酸溶液に溶解し、ポリエチレン膜上に
広げ、室温で乾燥固化させることで調製した。PVA膜
は、PVA(和光純薬工業株式会社製、重合度約200
0、Lot No.TSJ0964)を水に溶解して
1.0%のPVA水溶液を調製し、この水溶液をポリエ
チレン膜上に広げ、25℃で蒸発乾固させることで調製
した。これらの3種類の試料膜は、いずれも不溶化処理
することなく以下のような撥水加工を施した。
The collagen membrane was prepared by spreading a collagen aqueous solution (pH 3.0, concentration 0.3) for tissue culture of Koken Co., Ltd. on a polyethylene membrane and drying and solidifying it at room temperature. The chitosan film was made of chitosan (Nacalai Tesque, Ltd., Lot No. MOT3327) at a concentration of 1.5.
%, Dissolved in a formic acid solution, spread on a polyethylene membrane, and dried and solidified at room temperature. The PVA film is made of PVA (manufactured by Wako Pure Chemical Industries, Ltd .;
0, Lot No. TSJ0964) was dissolved in water to prepare a 1.0% PVA aqueous solution, and the aqueous solution was spread on a polyethylene membrane, and evaporated to dryness at 25 ° C. to prepare a solution. These three types of sample films were subjected to the following water-repellent treatment without any insolubilization treatment.

【0051】20%のn−オクタデシルこはく酸無水物
(Cn=15)を含んだDMF中に、上記コラーゲン
膜、PVA膜、およびキトサン膜の各試料を、それぞ
れ、入れ、80℃で7時間処理することで撥水加工を行
った。反応後、DMFで洗浄し、次いで55℃のアセト
ンで洗浄し、未反応Cn=15を除去した。乾燥後、1
05℃で2時間試料を乾燥させ、試料の重量増加率を求
めた。得られた結果を表5に示す。なお、撥水性能につ
いては目視により次ぎの3段階評価を行った。++:よ
く撥水する。+:撥水が一部認められる。−:撥水性が
認められない。
Each of the collagen membrane, the PVA membrane and the chitosan membrane was placed in DMF containing 20% of n-octadecylsuccinic anhydride (Cn = 15) and treated at 80 ° C. for 7 hours. Water-repellent treatment. After the reaction, it was washed with DMF and then with acetone at 55 ° C. to remove unreacted Cn = 15. After drying, 1
The sample was dried at 05 ° C for 2 hours, and the rate of weight increase of the sample was determined. Table 5 shows the obtained results. In addition, the following three-level evaluation was performed about the water repellency by visual observation. ++: Good water repellency. +: Some water repellency is observed. -: No water repellency was observed.

【0052】[0052]

【表5】 水溶性ビニルポリマーであるPVAへ撥水性機能を付与
するための処理は、水系ではなくDMFなどの有機溶媒
中で行うので、処理に先だってPVAの水不溶化処理を
行う必要はない。表5から明らかなように、PVAとC
n=15との化学反応性は極めて高く、得られた膜の撥
水性は顕著である。また、コラーゲンとの化学反応性は
絹蛋白質の場合とほぼ同等の値となり、その膜の撥水性
も良好である。なお、表5中のコラーゲン膜およびPV
A膜の重量増加率に関し、実施例1における絹織物への
重量増加率よりも高い値をとっている。この違いは、分
子が引き揃い微細構造的に繊維構造をとる絹織物よりも
繊維構造を取らないコラーゲン膜およびPVA膜へのC
n=15の浸透量が多いため、試料分子とのアシル化反
応が多く生じたためであろう。キトサン膜へは撥水加工
ができなかった。
[Table 5] Since the treatment for imparting the water-repellent function to PVA, which is a water-soluble vinyl polymer, is performed not in an aqueous system but in an organic solvent such as DMF, it is not necessary to perform a water insolubilization treatment of PVA prior to the treatment. As is clear from Table 5, PVA and C
The chemical reactivity with n = 15 is extremely high, and the water repellency of the obtained film is remarkable. In addition, the chemical reactivity with collagen is almost the same as that of silk protein, and the water repellency of the film is good. The collagen membrane and PV in Table 5 were used.
Regarding the weight increase rate of the A film, the weight increase rate is higher than the weight increase rate of the silk fabric in Example 1. This difference is due to the fact that the C and C membranes on the collagen and PVA membranes do not have a fibrous structure than silk fabrics, which have a uniform molecular structure and a fibrous structure.
This is probably because the permeation amount of n = 15 was large and many acylation reactions with the sample molecules occurred. Water repellent treatment could not be applied to the chitosan film.

【0053】実施例9:加工処理した絹繊維、羊毛繊維
の機械的性質 ドデセニルこはく酸無水物(Cn=9)およびn−オク
タデシルこはく酸無水物(Cn=15)で、それぞれ撥
水加工処理した絹繊維と羊毛繊維との機械的特性(強
度、伸度、エネルギー)を調べた。得られた結果を表6
に示す。
Example 9: Mechanical properties of processed silk fiber and wool fiber Water-repellent treatment with dodecenylsuccinic anhydride (Cn = 9) and n-octadecylsuccinic anhydride (Cn = 15), respectively. The mechanical properties (strength, elongation, energy) of silk fiber and wool fiber were examined. Table 6 shows the obtained results.
Shown in

【0054】[0054]

【表6】 表6から明らかなように、絹繊維については、いずれの
無水物で化学修飾しても、強度と伸度特性に大きな差は
現れない。スコッチガードで処理した絹繊維の強度は対
照区に比べて低下した。また、撥水加工処理した羊毛繊
維の強度はいずれの無水物も僅かに増加する程度である
が、伸度はいずれの無水物でもかなり増加し、特に重量
増加率ほぼ34%の羊毛繊維では伸度が加工前に比べて
80%以上も増加した。
[Table 6] As is evident from Table 6, no significant difference in strength and elongation characteristics appears in the silk fibers, regardless of which anhydride is chemically modified. The strength of the silk fiber treated with Scotchguard decreased compared to the control. The strength of the wool fibers subjected to the water-repellent treatment is slightly increased in any of the anhydrides, but the elongation is considerably increased in any of the anhydrides. The degree increased by more than 80% as compared to before processing.

【0055】実施例10 実施例1と同様の方法で、Cn=9およびCn=15を
それぞれ用いて絹織物に撥水加工を行った。すなわち、
Cn=9を20%含むDMF中に絹織物を入れ、80℃
で1時間および3時間の間浸漬処理することで、それぞ
れ、重量増加率3.1、10.7%の絹織物を調製し
た。また、Cn=15を20%含むDMF中に絹織物を
入れ、80℃で30分および1時間の間浸漬処理するこ
とで、それぞれ、重量増加率1.5、10.8%の絹織
物を調製した。得られた撥水加工済み絹織物について、
撥水性、撥油性、風合い特性、および屈曲摩耗強度を測
定し、その結果を表7に示す。
Example 10 In the same manner as in Example 1, a silk fabric was subjected to water repellency treatment using Cn = 9 and Cn = 15, respectively. That is,
Put silk fabric in DMF containing 20% Cn = 9,
By immersion treatment for 1 hour and 3 hours, respectively, to prepare silk fabrics with a weight increase rate of 3.1 and 10.7%, respectively. Also, the silk fabric having a weight gain of 1.5 and 10.8% was added by placing the silk fabric in DMF containing 20% of Cn = 15 and immersing at 80 ° C. for 30 minutes and 1 hour, respectively. Prepared. About the obtained water-repellent finished silk fabric,
The water repellency, oil repellency, hand properties, and flex wear strength were measured, and the results are shown in Table 7.

【0056】[0056]

【表7】 表7中、++:水滴状態が維持され、しみ込みがないこ
と、+:水滴状ではあるが、一部しみ込んでいること、
−:水滴状ではなくなり、全てしみ込んでいることを示
す。
[Table 7] In Table 7, ++: the state of water droplets is maintained and there is no permeation. +: It is in the form of water droplets but partially permeates.
-: It is no longer water-drop-like, indicating that all of the water has penetrated.

【0057】表7から明らかなように、本発明の撥水性
絹織物は、スコッチガードで処理した絹織物の場合と同
様の優れた撥水性を示すが、撥油性には欠ける。これは
スコッチガードはフルオロアルキル基含有の加工薬剤を
含んでおり、このフッ素化合物が強い撥油効果を示すた
めであり、本発明における長鎖二塩基酸無水物は撥水性
機能には優れた効果を示すが、撥油性機能を付与する目
的の試薬でないためである。また、本発明の撥水加工処
理された絹織物の剛軟度は加工後も対照区およびスコッ
チガードの場合に比べて低い値となり、加工過程におけ
る風合い感の低下のないこと、また、本発明の撥水加工
処理された絹織物の屈曲摩耗強度は加工により増加して
いることが確認された。かくして、化学加工処理時の絹
織物素材劣化の問題を防止することが可能となった。
As is clear from Table 7, the water-repellent silk fabric of the present invention exhibits the same excellent water repellency as the silk fabric treated with Scotchguard, but lacks oil repellency. This is because Scotchguard contains a processing agent containing a fluoroalkyl group, and this fluorine compound exhibits a strong oil-repellent effect, and the long-chain dibasic anhydride in the present invention has an excellent water-repellent function. This is because it is not a reagent for the purpose of imparting an oil-repellent function. In addition, the bristles of the silk fabrics subjected to the water-repellent treatment of the present invention are lower than those of the control section and the Scotch guard even after the processing, and the feeling of feeling in the processing process is not reduced. It was confirmed that the bending wear strength of the silk fabric subjected to the water repellent treatment was increased by the processing. Thus, the problem of silk fabric material deterioration during chemical processing can be prevented.

【0058】[0058]

【発明の効果】本発明では、分子内に一つの二重結合を
持つ長鎖二塩基酸無水物をアシル化剤として用い、これ
を高分子素材と反応させることから、高分子素材の微細
構造に悪影響を与えることなく、加工時における素材の
劣化を防止し、高分子素材に優れた撥水性と耐摩耗性を
付与することができる。従来の樹脂加工と違って加工薬
剤が高分子素材の表面を被覆するタイプの加工ではな
く、高分子素材と化学結合することにより上記の優れた
撥水性等の機能を発現することとなるため、加工過程で
高分子素材の材質劣化等の問題がなく、風合い感を低下
させることはない。しかも、本発明により繊維に導入さ
れた長鎖アシル基は、高分子素材のアミノ基や水酸基と
化学結合していることから、容易に脱離することはな
い。そのため、長鎖アシル基を導入した高分子素材は、
製造後長時間経過しても撥水性および耐摩耗性は安定し
て維持できるという点で耐久性に優れたものとなる。
According to the present invention, a long-chain dibasic acid anhydride having one double bond in the molecule is used as an acylating agent and is reacted with a polymer material. The material can be prevented from deteriorating at the time of processing without giving any adverse effect to the polymer material, and excellent water repellency and wear resistance can be imparted to the polymer material. Unlike conventional resin processing, the processing chemical is not a type of processing that covers the surface of the polymer material, but because it exhibits the above-mentioned functions such as excellent water repellency by chemically bonding with the polymer material, There is no problem such as deterioration of the polymer material during the processing, and the feeling of texture is not reduced. Moreover, the long-chain acyl group introduced into the fiber according to the present invention is not easily removed since it is chemically bonded to the amino group or hydroxyl group of the polymer material. Therefore, polymer materials with long-chain acyl groups introduced,
The water repellency and the abrasion resistance can be stably maintained even after a long time has passed since the production, resulting in excellent durability.

【0059】撥水加工により高分子素材表面での界面エ
ネルギーを改質できるので、複合材料、電子材料、バイ
オ、海洋スポーツ分野等の様々な分野で応用できる。例
えば、絹糸にこの技術を応用したものは、撥水性に優
れ、病原菌の懸濁液が付着し難いため、手術時、雑菌に
よる感染の機会を減少させることができるので、手術用
縫合糸として利用できる。
Since the interfacial energy on the surface of the polymer material can be modified by the water-repellent treatment, it can be applied to various fields such as composite materials, electronic materials, biotechnology and marine sports. For example, a silk thread that applies this technology has excellent water repellency and hardly adheres to a suspension of pathogenic bacteria, which can reduce the chance of infection by various bacteria during surgery, so it is used as a surgical suture. it can.

【0060】また、衣料材料に応用した場合は、防汚機
能を活かした利用が可能となり、和装分野はもとより洋
装分野の材料としての利用が可能となる。
Further, when applied to clothing materials, it is possible to utilize it taking advantage of the antifouling function, and it is possible to use it as a material not only in the Japanese clothing field but also in the Western clothing field.

【0061】本発明の撥水性高分子素材は水と接触して
も長時間にわたり水をはじく性質があるので、船舶用ロ
ープ、ブイ係留ロープ、魚網などの水産資材、ならびに
土木分野では撥水および軟弱地盤改良用資材として利用
できる。
Since the water-repellent polymer material of the present invention has a property of repelling water for a long time even when it comes in contact with water, it is used in marine materials such as marine ropes, buoy mooring ropes, fish nets, and water-repellent materials in the field of civil engineering. It can be used as a soft ground improvement material.

【手続補正書】[Procedure amendment]

【提出日】平成11年12月22日(1999.12.
22)
[Submission date] December 22, 1999 (1999.12.
22)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【化1】 (但し、式中nは10〜19の整数である)で示される
長鎖二塩基酸無水物と塩基性アミノ酸側鎖を有する高分
子素材とアシル化反応させることにより改質された
下記一般式: S−NHCO−CH2−CH(COOH)−CH2CH=C
H−Cn2n+1 (但し、Sは該高分子素材の分子であり、nは10〜1
9の整数である)を有する 撥水性高分子素材。
Embedded image (Where, n in the formula is an integer of 10-19) was modified by reacting acylating a polymer material having a long-chain dibasic acid anhydride and a basic amino acid side chain represented by,
The following general formula: S-NHCO-CH 2 -CH (COOH) -CH 2 CH = C
H—C n H 2n + 1 (where S is a molecule of the polymer material, and n is 10 to 1)
Water-repellent polymer material having an integer of 9) .

【化2】 (但し、式中nは10〜19の整数である)で示される
長鎖二塩基酸無水物と、ポリビニルアルコールからなる
高分子素材とをアシル化反応させることにより改質され
た、下記一般式: S'−OCO−CH2−CH(COOH)−CH2CH=C
H−Cn2n+1 (但し、S'は該高分子素材の分子であり、nは10〜
19の整数である)を有する 撥水性高分子素材。
Embedded image (Where n is an integer of 10 to 19)
Consists of long-chain dibasic acid anhydride and polyvinyl alcohol
Modified by an acylation reaction with a polymer material
And the following general formula: S'-OCO-CH 2 -CH (COOH) -CH 2 CH = C
H-C n H 2n + 1 ( where, S 'is the molecule of the polymer material, n represents 10 to
A water-repellent polymer material having an integer of 19) .

【化3】 (但し、式中nは10〜19の整数である)で示される
長鎖二塩基酸無水物と塩基性アミノ酸側鎖を有する高分
子素材とを、有機溶媒中、60〜90℃でアシル化反応
させて、下記一般式: S−NHCO−CH2−CH(COOH)−CH2CH=C
H−Cn2n+1 (但し、Sは該高分子素材の分子であり、nは10〜1
9の整数である)を有する撥水性高分子素材を得ること
を特徴とする撥水性高分子素材の製造方法
Embedded image (Where n is an integer of 10 to 19)
High molecular weight with long-chain dibasic acid anhydride and basic amino acid side chains
Acylation reaction between the parent material and organic solvent at 60-90 ° C
The following general formula: S—NHCO—CH 2 —CH (COOH) —CH 2 CH = C
H—C n H 2n + 1 (where S is a molecule of the polymer material, and n is 10 to 1)
To obtain a water-repellent polymer material having an integer of 9)
A method for producing a water-repellent polymer material, comprising:

【化4】 (但し、式中nは10〜19の整数である)で示される
長鎖二塩基酸無水物とポリビニルアルコールまたはセル
ロースからなる高分子素材とを、有機溶媒中、60〜9
0℃でアシル化反応させて、下記一般式: S'−OCO−CH2−CH(COOH)−CH2CH=C
H−Cn2n+1 (但し、S'は該高分子素材の分子であり、nは10〜
19の整数である)を有する 撥水性高分子素材を得るこ
とを特徴とする撥水性高分子素材の製造方法。
Embedded image (Where n is an integer of 10 to 19) and a long-chain dibasic acid anhydride and polyvinyl alcohol or a cell
A polymer material consisting of loin is mixed with an organic solvent for 60 to 9
An acylation reaction is performed at 0 ° C. to obtain the following general formula: S′-OCO—CH 2 —CH (COOH) —CH 2 CHCHC
H-C n H 2n + 1 ( where, S 'is the molecule of the polymer material, n represents 10 to
A water-repellent polymer material having an integer of 19) .

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0012】[0012]

【化(但し、式中nは10〜19の整数である)で表される
分子内に一つの二重結合を持つ長鎖二塩基酸無水物がD
MF等の有機溶媒中に溶解された系内で該素材を加熱す
る際に、該素材と長鎖二塩基酸無水物との間にアシル化
反応が起こるような反応部位を有する素材である。
[Of 5] (Where n is an integer of 10 to 19) is a long-chain dibasic anhydride having one double bond in the molecule represented by D
A material having a reaction site where an acylation reaction occurs between the material and a long-chain dibasic acid anhydride when the material is heated in a system dissolved in an organic solvent such as MF.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0014】[0014]

【化(但し、式中nは10〜19の整数である)で表され、
分子内に二重結合を一つ有する長鎖のアシル基を持つ化
合物である。
[Omitted] (Where n is an integer of 10 to 19),
A compound having a long-chain acyl group having one double bond in the molecule.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // D06M 101:10 101:12 Fターム(参考) 4H020 BA07 4J031 CD09 4J100 AD02P CA01 CA31 HA11 HA57 HC30 4L033 AA02 AA03 AA05 AC03 BA18 CA02 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) // D06M 101: 10 101: 12 F term (reference) 4H020 BA07 4J031 CD09 4J100 AD02P CA01 CA31 HA11 HA57 HC30 4L033 AA02 AA03 AA05 AC03 BA18 CA02

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 分子内に一つの二重結合を持ち、下記の
一般式(I): 【化1】 (但し、式中nは10〜19の整数である)で示される
長鎖二塩基酸無水物を高分子素材とアシル化反応させる
ことにより改質された撥水性高分子素材。
1. A compound having one double bond in a molecule and having the following general formula (I): (Where n is an integer of 10 to 19), a water-repellent polymer material modified by subjecting a long-chain dibasic anhydride to an acylation reaction with the polymer material.
【請求項2】 前記長鎖二塩基酸無水物と高分子素材と
のアシル化反応時に該素材が劣化することが無く、ま
た、アシル化反応後の改質された撥水性高分子素材は、
風合い感の低下がなく、かつ、優れた撥水性および耐摩
耗性を有するものであることを特徴とする請求項1記載
の撥水性高分子素材。
2. The modified water-repellent polymer material after the acylation reaction does not deteriorate during the acylation reaction between the long-chain dibasic acid anhydride and the polymer material, and
2. The water-repellent polymer material according to claim 1, wherein the material does not decrease the feeling of feeling and has excellent water repellency and abrasion resistance.
【請求項3】 前記高分子素材は、絹蛋白質、羊毛ケラ
チン、コラーゲン、ポリビニールアルコール、またはセ
ルロースであり、その形状は膜状、繊維状、粉末状、ま
たは塊状であることを特徴とする請求項1または2記載
の撥水性高分子素材。
3. The method according to claim 1, wherein the polymer material is silk protein, wool keratin, collagen, polyvinyl alcohol, or cellulose, and the shape is a film, a fiber, a powder, or a lump. Item 3. The water-repellent polymer material according to Item 1 or 2.
【請求項4】 前記高分子素材が、塩基性アミノ酸側鎖
を有するものであって、前記撥水性高分子素材が、下記
一般式: S−NHCO−CH2−CH(COOH)−CH2−CH=
CH−Cn2n+1 (但し、Sは該高分子素材の分子であり、nは10〜1
9の整数である)を有することを特徴とする請求項1〜
3のいずれかに記載の撥水性高分子素材。
4. The polymer material having a basic amino acid side chain, wherein the water-repellent polymer material has the following general formula: S-NHCO—CH 2 —CH (COOH) —CH 2 — CH =
CH-C n H 2n + 1 ( where, S is a molecule of the polymer material, n represents 10 to 1
9 which is an integer of 9).
4. The water-repellent polymer material according to any one of 3.
【請求項5】 前記高分子素材が、水酸基を有するもの
であって、前記撥水性高分子素材が、下記一般式: S'−OCO−CH2−CH(COOH)−CH2CH=C
H−Cn2n+1 (但し、S'は該高分子素材の分子であり、nは10〜
19の整数である)を有することを特徴とする請求項1
〜3のいずれかに記載の撥水性高分子素材。
5. The polymer material having a hydroxyl group, wherein the water-repellent polymer material has the following general formula: S′-OCO—CH 2 —CH (COOH) —CH 2 CH = C
H-C n H 2n + 1 ( where, S 'is the molecule of the polymer material, n represents 10 to
2. The method of claim 1, wherein
4. The water-repellent polymer material according to any one of items 1 to 3.
【請求項6】 分子内に一つの二重結合を持ち、下記の
一般式(I): 【化2】 (但し、式中nは10〜19の整数である)で示される
長鎖二塩基酸無水物を高分子素材とアシル化反応させ
て、撥水性高分子素材を得ることを特徴とする撥水性高
分子素材の製造方法。
6. A compound having one double bond in the molecule and having the following general formula (I): (Where n is an integer of 10 to 19), and a long-chain dibasic acid anhydride is subjected to an acylation reaction with a polymer material to obtain a water-repellent polymer material. Manufacturing method of polymer material.
【請求項7】 前記高分子素材が塩基性アミノ酸側鎖を
有するものである場合、前記撥水性高分子素材が、下記
一般式: S−NHCO−CH2−CH(COOH)−CH2−CH=
CH−Cn2n+1 (但し、Sは該高分子素材の分子であり、nは10〜1
9の整数である)を有し、また、前記高分子素材が水酸
基を有するものである場合、前記撥水性高分子素材が、
下記一般式: S'−OCO−CH2−CH(COOH)−CH2CH=C
H−Cn2n+1 (但し、S'は該高分子素材の分子であり、nは10〜
19の整数である)を有することを特徴とする請求項6
記載の撥水性高分子素材の製造方法。
7. When the polymer material has a basic amino acid side chain, the water-repellent polymer material has the following general formula: S-NHCO—CH 2 —CH (COOH) —CH 2 —CH =
CH-C n H 2n + 1 ( where, S is a molecule of the polymer material, n represents 10 to 1
And an integer of 9), and when the polymer material has a hydroxyl group, the water-repellent polymer material has
The following general formula: S'-OCO-CH 2 -CH (COOH) -CH 2 CH = C
H-C n H 2n + 1 ( where, S 'is the molecule of the polymer material, n represents 10 to
7. An integer of 19).
A method for producing the water-repellent polymer material according to the above.
JP33131398A 1998-11-20 1998-11-20 Water repellent polymer material and method for producing the same Expired - Lifetime JP3044302B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33131398A JP3044302B1 (en) 1998-11-20 1998-11-20 Water repellent polymer material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33131398A JP3044302B1 (en) 1998-11-20 1998-11-20 Water repellent polymer material and method for producing the same

Publications (2)

Publication Number Publication Date
JP3044302B1 JP3044302B1 (en) 2000-05-22
JP2000154464A true JP2000154464A (en) 2000-06-06

Family

ID=18242296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33131398A Expired - Lifetime JP3044302B1 (en) 1998-11-20 1998-11-20 Water repellent polymer material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3044302B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225286A1 (en) * 2017-06-09 2018-12-13 花王株式会社 Water repellency-imparting fiber article
JP2019172720A (en) * 2018-03-27 2019-10-10 大日精化工業株式会社 Method for manufacturing water insoluble molding, and water insoluble molding

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6931210B2 (en) * 2016-02-24 2021-09-01 国立研究開発法人農業・食品産業技術総合研究機構 Insolubilizing free silk fibroin material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225286A1 (en) * 2017-06-09 2018-12-13 花王株式会社 Water repellency-imparting fiber article
CN110719741A (en) * 2017-06-09 2020-01-21 花王株式会社 Fiber article having water repellency
JPWO2018225286A1 (en) * 2017-06-09 2020-04-09 花王株式会社 Article made of water-repellent fiber
JP2019172720A (en) * 2018-03-27 2019-10-10 大日精化工業株式会社 Method for manufacturing water insoluble molding, and water insoluble molding

Also Published As

Publication number Publication date
JP3044302B1 (en) 2000-05-22

Similar Documents

Publication Publication Date Title
JP6480026B2 (en) Fabric and method for producing fabric from cultured cells
EP1068387A2 (en) Modified textile and other materials and methods for their preparation
DE60124143T2 (en) PROCESS FOR PRODUCING REGENERATED COLLAGEN FIBERS AND METHOD FOR THEIR FIXING
JP3828542B2 (en) Treatment method for imparting hygroscopicity / releasing properties to fibers
JP3880262B2 (en) Method for producing water-insolubilized regenerated collagen fiber
US6749642B1 (en) Regenerated collagen fiber reduced in odor and improved in suitability for setting, process for producing the same, and method of setting
WO1995019461A1 (en) Cloth of hollow fibers and method of manufacturing same
JPS63268721A (en) Method of ensuring water resistance of polymer by grafting polymer with fluorinated monomer and substance thereby
JP3044302B1 (en) Water repellent polymer material and method for producing the same
US6372674B1 (en) Wrinkle free-water resistant fabrics and garments
EP0319536A1 (en) Modified fibrous products and method for their manufacture.
JP4560352B2 (en) Natural leather water repellent treatment method
JP3696555B2 (en) Salted natural fiber and method for producing the same
JP5464424B2 (en) Flameproof fiber, flameproof fiber product, flameproof film, and method for producing the same
JP5214181B2 (en) Method for preventing shrinkage of animal hair fibers by hydrophobization treatment
JP2855189B2 (en) Process for producing modified protein fiber and modified protein fiber product and product thereof
KR100473500B1 (en) Method of producing for Water Vapor Permeable/Waterproof Finished textiles containing chitosan
JP3230200B2 (en) Method for producing modified protein fiber or its fiber product
JP2003003374A (en) Method for producing low wetting heat-generating animal hair protein-based fiber
US20020137414A1 (en) Wrinkle free-water resistant fabrics and garments and method
JPH08199481A (en) Production of wool-like acrylic fiber fabric having durable pill resistance
US20050005367A1 (en) Methods of fabric treatment
JP2852492B2 (en) Processing of cellulosic fabrics
JP2001181976A (en) Method for processing fiber material and fiber product
JPH1136174A (en) Filling of gel into hollow fiber

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000208

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

EXPY Cancellation because of completion of term