JP2000152420A - Control method for charging battery in hybrid vehicle - Google Patents

Control method for charging battery in hybrid vehicle

Info

Publication number
JP2000152420A
JP2000152420A JP10319383A JP31938398A JP2000152420A JP 2000152420 A JP2000152420 A JP 2000152420A JP 10319383 A JP10319383 A JP 10319383A JP 31938398 A JP31938398 A JP 31938398A JP 2000152420 A JP2000152420 A JP 2000152420A
Authority
JP
Japan
Prior art keywords
battery
soc
charge
power
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10319383A
Other languages
Japanese (ja)
Other versions
JP3728946B2 (en
Inventor
Katsuhiko Hirose
雄彦 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP31938398A priority Critical patent/JP3728946B2/en
Publication of JP2000152420A publication Critical patent/JP2000152420A/en
Application granted granted Critical
Publication of JP3728946B2 publication Critical patent/JP3728946B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control method for charging battery in a hybrid vehicle for enlarging the usage range of SOC of a battery and efficiently using the battery. SOLUTION: An early-stage target of a charged state of a battery is set and a mean charging/discharging amount determined by the running state of a vehicle for the battery is calculated, and an SOC corrected value is sought from this mean charging/discharging amount through a prescribed algorithm. The early-stage target value of SOC is compensated by the SOC corrected value to calculate a target SOC according to the running state. An engine, requiring power Pe for requiring the engine, is calculated from the target SOC and an actual SOC of the battery. In addition, the charging of battery by the engine power and the discharging of battery by the motor can be determined, and the control is carried out, so that the SOC of the battery is made matching with the target SOC.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ハイブリッド車に
おける電池の充電状態制御方法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved method for controlling a state of charge of a battery in a hybrid vehicle.

【0002】[0002]

【従来の技術】ハイブリッド車には、モータを駆動する
ための電力を供給する電源となる電池が搭載されてい
る。この電池には、充電状態(SOC)の許容範囲があ
り、SOCをこの範囲内に維持するよう制御する必要が
ある。従来は、SOC制御の目標となる目標SOCをほ
ぼ一定に保って制御していた。
2. Description of the Related Art A hybrid vehicle is equipped with a battery serving as a power supply for supplying electric power for driving a motor. This battery has an allowable range of state of charge (SOC), and it is necessary to control so that the SOC is maintained within this range. Conventionally, control has been performed while keeping the target SOC, which is the target of SOC control, substantially constant.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来のS
OC制御方法では、例えば降坂時のブレーキ制御により
回生される電力を電池に充電する必要があるため、上述
したSOCの目標値をあらかじめ低めに設定していた。
このため、電力の回生が行われない平地での電池のSO
Cの使用域が限定され、ハイブリッド車の走行にモータ
のパワーを使用して、燃費の向上を図ることが十分でき
ないという問題があった。
However, the conventional S
In the OC control method, for example, it is necessary to charge the battery with electric power regenerated by brake control during a downhill, so the above-described target value of the SOC is set to a lower value in advance.
For this reason, the battery SO on a flat ground where power regeneration is not performed
There is a problem that the use range of C is limited, and it is not possible to sufficiently improve the fuel efficiency by using the power of the motor for running the hybrid vehicle.

【0004】本発明は、上記従来の課題に鑑みなされた
ものであり、その目的は、電池のSOCの使用域を拡大
でき、電池を効率的に使用することができるハイブリッ
ド車における電池の充電状態制御方法を提供することに
ある。
The present invention has been made in view of the above-mentioned conventional problems, and has as its object to increase the SOC of a battery and to improve the state of charge of the battery in a hybrid vehicle in which the battery can be used efficiently. It is to provide a control method.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、ハイブリッド車における電池の充電状態
制御方法であって、電池の充電状態(SOC)の初期目
標値を設定し、電池の充電量及び放電量から平均充放電
量を求め、この平均充放電量に基づき初期目標値を修正
するためのSOC修正量を求め、SOC修正量により初
期目標値を修正して目標SOCを求め、目標SOCと実
際のSOCとから、エンジンパワーによる電池の充電量
またはモータによる電池の放電量である修正パワーを求
めることを特徴とする。
To achieve the above object, the present invention relates to a method for controlling the state of charge of a battery in a hybrid vehicle, comprising the steps of: setting an initial target value of the state of charge (SOC) of the battery; An average charge / discharge amount is obtained from the charge amount and the discharge amount of the battery, an SOC correction amount for correcting an initial target value is obtained based on the average charge / discharge amount, and an initial target value is corrected based on the SOC correction amount to obtain a target SOC. , A corrected power which is a charge amount of the battery by the engine power or a discharge amount of the battery by the motor is obtained from the target SOC and the actual SOC.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施の形態(以下
実施形態という)を、図面に従って説明する。
Embodiments of the present invention (hereinafter referred to as embodiments) will be described below with reference to the drawings.

【0007】本発明においては、ハイブリッド車の電池
の充放電状態からハイブリッド車の走行状態、例えば登
坂中であるかあるいは降坂中であるか等の判定を行い、
これに基づいて目標となる充電状態(目標SOC)を適
宜変更することが特徴となっている。
In the present invention, the running state of the hybrid vehicle, for example, whether the vehicle is uphill or downhill, is determined from the charge / discharge state of the battery of the hybrid vehicle.
The feature is that the target state of charge (target SOC) is appropriately changed based on this.

【0008】このようなSOCの制御方法としては、ま
ずSOCの初期目標値SOCtiを設定する。この初期
目標値SOCtiとしては、システムの平均値が設定さ
れる。ただし、十分な回生エネルギ受入れ量を確保する
ため、通常この値は、電池容量の半分をやや超えた値に
設定される。
As a method for controlling such an SOC, first, an initial target value SOCti of the SOC is set. The average value of the system is set as the initial target value SOCti. However, in order to secure a sufficient regenerative energy acceptance amount, this value is usually set to a value slightly exceeding half of the battery capacity.

【0009】次に電池の充電量及び放電量から平均充放
電量を求め、この平均充放電量に基づいてSOCの初期
目標値SOCtiを修正するためのSOC修正量SOC
tcを算出する。図1には、このSOCtcを求めるた
めのアルゴリズムの例が示される。図1において、電池
の放電量が増加すると所定のパターンでSOC修正量S
OCtcが増加し、充電量が増加すると所定のパターン
でSOCtcが減少する構成となっている。なお、SO
Ctcを求めるためのアルゴリズムは、図1に示された
例に限られるものではなく、電池特性やハイブリッド車
の走行特性等により適宜変更することが可能である。
Next, an average charge / discharge amount is obtained from the charge amount and the discharge amount of the battery, and an SOC correction amount SOC for correcting the initial target value SOCti of the SOC based on the average charge / discharge amount.
Calculate tc. FIG. 1 shows an example of an algorithm for obtaining the SOCtc. In FIG. 1, when the discharge amount of the battery increases, the SOC correction amount S in a predetermined pattern.
As the OCtc increases and the charge amount increases, the SOCtc decreases in a predetermined pattern. Note that SO
The algorithm for obtaining Ctc is not limited to the example shown in FIG. 1 and can be appropriately changed according to the battery characteristics, the running characteristics of the hybrid vehicle, and the like.

【0010】以上のようにして求めたSOC修正量SO
Ctcにより、SOCの目標値すなわち目標SOC(S
OCt)は以下のようにして求められる。
The SOC correction amount SO obtained as described above
The target value of the SOC, that is, the target SOC (S
OCt) is obtained as follows.

【0011】[0011]

【数1】 上記式(1)に示されるように、目標SOCであるSO
CtはSOCの初期目標値SOCtiとSOC修正量S
OCtcとの和として求められる。図1に示されるよう
に、例えば登坂時等で電池の放電量が増加した場合に
は、SOCtcの値が正の値となるので、SOCtの値
も増加する。これにより、ハイブリッド車に搭載された
エンジンのパワーによる電池の充電が行われる。このよ
うな制御により、エンジンの稼働時間は増加するが、そ
の先に予想される動力性能の低下すなわちモータによる
走行ができなくなる可能性を極力回避することができ
る。
(Equation 1) As shown in the above equation (1), the target SOC SO
Ct is an SOC initial target value SOCti and an SOC correction amount S
It is obtained as the sum with OCtc. As shown in FIG. 1, for example, when the discharge amount of the battery increases at the time of climbing a slope or the like, the value of SOCtc becomes a positive value, so the value of SOCt also increases. As a result, the battery is charged by the power of the engine mounted on the hybrid vehicle. By such control, the operating time of the engine is increased, but it is possible to avoid as much as possible the possibility that the power performance expected to be further down, that is, the motor cannot be run.

【0012】他方、降坂時等で電池の充電量が増えた場
合には、図1に示されるように、SOCtcの値が負と
なるため、SOCtの値も低くなる。このため、モータ
による走行が増え、燃費を向上させることができる。ま
た、この場合には電池のSOCが低く維持されるので、
回生電力の回収も十分行うことができる。
On the other hand, when the charge amount of the battery is increased, for example, on a downhill, as shown in FIG. 1, the value of SOCtc becomes negative, so that the value of SOCt also becomes low. For this reason, the travel by the motor increases, and the fuel efficiency can be improved. In this case, the SOC of the battery is kept low.
Recovery of regenerative power can also be performed sufficiently.

【0013】このように、走行条件を判定しながらSO
Ctを変えるので、最も燃費効率のよいSOCtを設定
できる。
As described above, while determining the running conditions, the SO
Since Ct is changed, SOCt with the highest fuel efficiency can be set.

【0014】次に、以上のようにして求めたSOCの目
標値であるSOCtにより、エンジンに要求される出力
であるエンジン要求パワーを求める。エンジン要求パワ
ーPeは以下の式によって算出される。
Next, the required engine power, which is the required output of the engine, is determined from the SOC target value SOCt determined as described above. The required engine power Pe is calculated by the following equation.

【0015】[0015]

【数2】 ここで車両要求パワーPvは、車両を走行させるために
要求されるパワーであり、登坂時、降坂時、平地走行時
等走行する場所に応じて変化する。また修正パワーPc
は、かかる車両の走行状態によって変動する電池の充放
電量から、前述のようにして求めたSOCtに、電池の
実際のSOCを一致させるために必要なパワーである。
実際の電池のSOCが、SOCtよりも大きい場合には
修正パワーPcは負の値となり、実際のSOCがSOC
tより小さい場合には修正パワーPcは正の値となる。
(Equation 2) Here, the vehicle required power Pv is the power required to make the vehicle travel, and changes according to the location where the vehicle travels, such as when climbing uphill, downhill, traveling on level ground, and the like. Correction power Pc
Is the power required to match the actual SOC of the battery to the SOCt determined as described above from the charge / discharge amount of the battery that varies depending on the running state of the vehicle.
When the actual battery SOC is larger than the SOCt, the corrected power Pc becomes a negative value, and the actual SOC becomes the SOC.
When it is smaller than t, the correction power Pc has a positive value.

【0016】図2には、この修正パワーPcを算出する
ためのアルゴリズムの例が示される。図2において、目
標SOC(SOCt)は、上記式(1)によって求めた
ものであり、電池の平均充放電量により変化する。この
ため、図2の原点は、SOCtの値に応じてSOC軸方
向に移動することになる。このようなSOCtに対し
て、図2の横軸に示された電池の実際のSOCが大きい
場合には、図2に示されるように、修正パワーPcが負
の値となる。また、SOCtよりも電池の実際のSOC
が小さい場合にはPcは正の値となる。ただし、いずれ
の場合においても所定の値以上には大きくならないよう
に制限が設定されている。これは、エンジンに無限のパ
ワーを要求したりモータで必要以上の電力を消費させな
いようにするためである。
FIG. 2 shows an example of an algorithm for calculating the corrected power Pc. In FIG. 2, the target SOC (SOCt) is obtained by the above equation (1), and changes according to the average charge / discharge amount of the battery. Therefore, the origin in FIG. 2 moves in the SOC axis direction according to the value of SOCt. When the actual SOC of the battery shown on the horizontal axis of FIG. 2 is larger than such SOCt, the corrected power Pc becomes a negative value as shown in FIG. Also, the actual SOC of the battery is better than SOCt.
Is small, Pc is a positive value. However, in any case, a limit is set so that the value does not become larger than a predetermined value. This is to prevent the engine from requesting infinite power or the motor from consuming more power than necessary.

【0017】以上より、例えば現在の車両の走行状態か
ら求められたSOCtよりも実際の電池のSOCが大き
い場合には、修正パワーPcが負となるため、その分だ
けエンジン要求パワーPeは車両要求パワーPvよりも
小さいな値となる。これにより、車両要求パワーPvと
エンジン要求パワーPeとの差の分すなわちPcだけモ
ータで走行パワーを供給し、電池に充電されたエネルギ
を放電して電池のSOCを下げることができる。他方、
SOCtよりも電池の実際のSOCが小さい場合には、
エンジン要求パワーPeは車両要求パワーPvよりも修
正パワーPcの分だけ大きくなる。これは、Pcに当た
る電力をエンジンにより電池へ充電し、電池のSOCを
SOCtまで上げるためである。このように、修正パワ
ーPcは、エンジンパワーによる電池の充電量またはモ
ータによる電池の放電量を決定するために使用される。
As described above, for example, when the actual battery SOC is larger than the SOCt obtained from the current running state of the vehicle, the corrected power Pc becomes negative. The value is smaller than the power Pv. As a result, the running power can be supplied by the motor by the difference between the vehicle required power Pv and the engine required power Pe, that is, Pc, and the energy charged in the battery can be discharged to lower the SOC of the battery. On the other hand,
If the actual SOC of the battery is smaller than SOCt,
The engine required power Pe is larger than the vehicle required power Pv by the correction power Pc. This is for charging the electric power corresponding to Pc to the battery by the engine and raising the SOC of the battery to SOCt. Thus, the corrected power Pc is used to determine the amount of battery charge by engine power or the amount of battery discharge by motor.

【0018】図3には、以上に述べた本発明に係るハイ
ブリッド車における電池の充電状態制御方法の動作のフ
ローが示される。図3において、まず車両要求パワーP
vが所定の方法により計算される(S1)。
FIG. 3 shows an operation flow of the above-described method for controlling the state of charge of a battery in a hybrid vehicle according to the present invention. In FIG. 3, first, the vehicle required power P
v is calculated by a predetermined method (S1).

【0019】また同時に、所定時間例えば10分間の電
池の充放電量が計算され、ここから平均充放電量が求め
られる(S2)。さらに、電池のSOCの初期目標値S
OCtiがセットされる(S3)。
At the same time, the charge / discharge amount of the battery for a predetermined time, for example, 10 minutes, is calculated, and the average charge / discharge amount is obtained therefrom (S2). Further, the initial target value S of the battery SOC
OCti is set (S3).

【0020】S2で求められた平均充放電量から、図1
のアルゴリズムに基づいてSOCtcが求められ、式
(1)によりSOCの目標値であるSOCtが計算され
る(S4)。このSOCtと、電池の実際のSOCとか
ら上述した修正パワーPcが図2のアルゴリズムによっ
て求められる(S5)。
From the average charge / discharge amount obtained in S2, FIG.
SOCtc is calculated based on the algorithm of (1), and SOCt, which is the target value of SOC, is calculated by equation (1) (S4). From the SOCt and the actual SOC of the battery, the above-described corrected power Pc is obtained by the algorithm of FIG. 2 (S5).

【0021】以上のようにして求められた車両要求パワ
ーPvと修正パワーPcとからエンジン要求パワーPe
が上述した式(2)により求められる(S6)。その
後、このエンジン要求パワーPeに基づいてエンジンパ
ワーによる電池の充電またはモータによる電池の放電が
それぞれ所定量行われ、電池のSOCが目標SOCであ
るSOCtとなるように制御される(S7)。
From the required vehicle power Pv and the corrected power Pc obtained as described above, the required engine power Pe is calculated.
Is obtained by the above equation (2) (S6). Thereafter, based on the required engine power Pe, the battery is charged by the engine power or the battery is discharged by the motor by a predetermined amount, and the SOC of the battery is controlled to reach the target SOC, SOCt (S7).

【0022】図4〜図6には、以上に述べた本発明に係
るハイブリッド車における電池の充電状態制御方法を実
際の電池に適用した場合の例が示される。
FIGS. 4 to 6 show examples in which the above-described method for controlling the state of charge of a battery in a hybrid vehicle according to the present invention is applied to an actual battery.

【0023】図4には、電池の実際の充放電量の変化の
様子が示される。この図4の充放電量から、電池の平均
充放電量を求めたものが図5に示される。さらに、この
平均充放電量に基づき、図1に示されたアルゴリズム及
び式(1)から目標SOC(SOCt)を求めたものが
図6に示される。
FIG. 4 shows how the actual charge / discharge amount of the battery changes. FIG. 5 shows the average charge / discharge amount of the battery obtained from the charge / discharge amount of FIG. Further, FIG. 6 shows the target SOC (SOCt) obtained from the algorithm shown in FIG. 1 and equation (1) based on the average charge / discharge amount.

【0024】以上のように、本発明では、目標SOCが
電池の平均充放電量に応じて適宜変更される。このた
め、ハイブリッド車の走行状態に応じたきめの細かい電
池の充電状態の制御を行うことができる。
As described above, in the present invention, the target SOC is appropriately changed according to the average charge / discharge amount of the battery. Therefore, it is possible to finely control the state of charge of the battery according to the running state of the hybrid vehicle.

【0025】[0025]

【発明の効果】以上説明したように、本発明によれば、
登坂時等の放電量の多い場合と、降坂時等の充電量が多
い場合と平地走行時等の車両の走行状態の変化に応じて
電池の目標SOCを適宜調整するので、電池容量の有効
利用を図ることができる。
As described above, according to the present invention,
The target SOC of the battery is appropriately adjusted according to a change in the traveling state of the vehicle such as when the amount of discharge is large when climbing a slope, when the amount of charge is large when descending a slope, and when traveling on level ground. It can be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係るハイブリッド車における電池の
充電状態制御方法において、目標SOCを修正するSO
C修正量を算出するためのアルゴリズムの例を示す図で
ある。
FIG. 1 is a diagram showing a method for controlling a state of charge of a battery in a hybrid vehicle according to the present invention;
FIG. 9 is a diagram illustrating an example of an algorithm for calculating a C correction amount.

【図2】 図1に示されたSOC修正量から求められる
目標SOCと電池の実際のSOCとから修正パワーを算
出するためのアルゴリズムの例を示す図である。
FIG. 2 is a diagram showing an example of an algorithm for calculating a correction power from a target SOC obtained from the SOC correction amount shown in FIG. 1 and an actual SOC of a battery.

【図3】 本発明に係るハイブリッド車における電池の
充電状態制御方法の動作のフロー図である。
FIG. 3 is a flowchart of an operation of a method for controlling a state of charge of a battery in a hybrid vehicle according to the present invention.

【図4】 電池の実際の充放電量の様子を示す図であ
る。
FIG. 4 is a diagram showing a state of an actual charge / discharge amount of a battery.

【図5】 図4に示された充放電量から求められた平均
充放電量を示す図である。
FIG. 5 is a view showing an average charge / discharge amount obtained from the charge / discharge amount shown in FIG. 4;

【図6】 図5に示された平均充放電量から本発明に係
るハイブリッド車における電池の充電状態制御方法によ
り求められた目標SOCを示す図である。
6 is a diagram showing a target SOC obtained from the average charge / discharge amount shown in FIG. 5 by the method of controlling the state of charge of a battery in a hybrid vehicle according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電池の充電状態(SOC)の初期目標値
を設定し、 電池の充電量及び放電量から平均充放電量を求め、 前記平均充放電量に基づき前記初期目標値を修正するた
めのSOC修正量を求め、 前記SOC修正量により前記初期目標値を修正して目標
SOCを求め、 前記目標SOCと実際のSOCとから、エンジンパワー
による電池の充電量またはモータによる電池の放電量で
ある修正パワーを求めることを特徴とするハイブリッド
車における電池の充電状態制御方法。
1. An initial target value of a state of charge (SOC) of a battery is set, an average charge / discharge amount is obtained from a charge amount and a discharge amount of the battery, and the initial target value is corrected based on the average charge / discharge amount. The target SOC is obtained by correcting the initial target value based on the SOC correction amount. The target SOC and the actual SOC are used to calculate the amount of battery charge by engine power or the amount of battery discharge by motor. A method for controlling the state of charge of a battery in a hybrid vehicle, wherein a method for obtaining a certain corrected power is provided.
JP31938398A 1998-11-10 1998-11-10 Battery charge state control method in hybrid vehicle Expired - Lifetime JP3728946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31938398A JP3728946B2 (en) 1998-11-10 1998-11-10 Battery charge state control method in hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31938398A JP3728946B2 (en) 1998-11-10 1998-11-10 Battery charge state control method in hybrid vehicle

Publications (2)

Publication Number Publication Date
JP2000152420A true JP2000152420A (en) 2000-05-30
JP3728946B2 JP3728946B2 (en) 2005-12-21

Family

ID=18109555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31938398A Expired - Lifetime JP3728946B2 (en) 1998-11-10 1998-11-10 Battery charge state control method in hybrid vehicle

Country Status (1)

Country Link
JP (1) JP3728946B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100440117B1 (en) * 2001-08-31 2004-07-12 현대자동차주식회사 Battery charge controlling method of hybrid vehicle
US6994360B2 (en) * 2003-09-22 2006-02-07 Ford Global Technologies, Llc Controller and control method for a hybrid electric vehicle powertrain
US7015676B2 (en) * 2002-03-18 2006-03-21 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Battery control apparatus
KR100962075B1 (en) 2008-09-24 2010-06-09 한국철도기술연구원 Battery pack charging method of series style hybrid propulsion system
JP2013518551A (en) * 2010-01-25 2013-05-20 マックスウェル テクノロジーズ インコーポレイテッド Energy storage system and method
DE112010006004T5 (en) 2010-11-17 2013-08-29 Toyota Jidosha Kabushiki Kaisha Charging and discharging control device and method
US20130274982A1 (en) * 2010-12-27 2013-10-17 Honda Motor Co., Ltd Generation control apparatus and generation control method
CN105527575A (en) * 2014-10-21 2016-04-27 快捷半导体(苏州)有限公司 Reported state-of-charge scaling
US9393876B2 (en) 2010-12-27 2016-07-19 Honda Motor Co., Ltd Generation control apparatus and generation control method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100440117B1 (en) * 2001-08-31 2004-07-12 현대자동차주식회사 Battery charge controlling method of hybrid vehicle
US7015676B2 (en) * 2002-03-18 2006-03-21 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Battery control apparatus
US6994360B2 (en) * 2003-09-22 2006-02-07 Ford Global Technologies, Llc Controller and control method for a hybrid electric vehicle powertrain
US7210546B2 (en) 2003-09-22 2007-05-01 Ford Global Technologies, Llc Controller and control method for a hybrid electric vehicle powertrain
US7398845B2 (en) 2003-09-22 2008-07-15 Ford Global Technologies, Llc Controller and control method for a hybrid electric vehicle powertrain
KR100962075B1 (en) 2008-09-24 2010-06-09 한국철도기술연구원 Battery pack charging method of series style hybrid propulsion system
US9272627B2 (en) 2010-01-25 2016-03-01 Maxwell Technologies, Inc. Energy storage systems and methods
JP2013518551A (en) * 2010-01-25 2013-05-20 マックスウェル テクノロジーズ インコーポレイテッド Energy storage system and method
DE112010006004T5 (en) 2010-11-17 2013-08-29 Toyota Jidosha Kabushiki Kaisha Charging and discharging control device and method
US8700248B2 (en) 2010-11-17 2014-04-15 Toyota Jidosha Kabushiki Kaisha Charge and discharge control apparatus and method
US20130274982A1 (en) * 2010-12-27 2013-10-17 Honda Motor Co., Ltd Generation control apparatus and generation control method
US8948948B2 (en) * 2010-12-27 2015-02-03 Honda Motor Co., Ltd Generation control apparatus and generation control method
US9393876B2 (en) 2010-12-27 2016-07-19 Honda Motor Co., Ltd Generation control apparatus and generation control method
CN105527575A (en) * 2014-10-21 2016-04-27 快捷半导体(苏州)有限公司 Reported state-of-charge scaling
US10371755B2 (en) 2014-10-21 2019-08-06 Fairchild Semiconductor Corporation Reported state-of-charge scaling
CN105527575B (en) * 2014-10-21 2019-10-29 快捷半导体(苏州)有限公司 For reporting the method and electronic equipment of the state-of-charge of bi-directional scaling

Also Published As

Publication number Publication date
JP3728946B2 (en) 2005-12-21

Similar Documents

Publication Publication Date Title
JP5223920B2 (en) Battery charge / discharge control device and hybrid vehicle equipped with the same
US9343920B2 (en) Storage capacity management system
JP6270009B2 (en) Vehicle power control device
JPH0998515A (en) Engine controller for hybrid vehicle
CN110091860B (en) Electric vehicle and method for controlling electric vehicle
JP5958868B2 (en) Power generation control device
US8151918B2 (en) Method for controlling energy in the traction chain of a hybrid vehicle and hybrid vehicle
US20040021448A1 (en) Method for regulating the generator voltage in a motor vehicle
JPH10295045A (en) Control apparatus for power generation of hybrid electric vehicle
WO2008026525A1 (en) Secondary battery control system and hybrid vehicle equipped with same
JP5720538B2 (en) Storage device control device
CN102923123A (en) Parallel hybrid electric vehicle power management system and adaptive power management method and program therefor
JP2004080909A (en) Apparatus for equalizing remaining capacity of combined battery pack
JP2007141558A (en) Charge/discharge control device of secondary battery
CN113022382B (en) Power distribution control method and system for fuel cell hybrid power system and vehicle
JP6122958B2 (en) Power generation control device and power generation control method
JP3728946B2 (en) Battery charge state control method in hybrid vehicle
JP2004166350A (en) Battery controller
KR101157413B1 (en) Series hybrid electric vehicle and method for controlling power of the same
JP4071223B2 (en) Power output device
JP6696358B2 (en) Control device for hybrid vehicle
JP6409272B2 (en) Charge state estimation device
JP7155930B2 (en) Hybrid vehicle control system
JP2001292533A (en) Battery management device for electric vehicle
JP3975937B2 (en) Battery charge control device and charge control method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041224

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050926

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081014

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

EXPY Cancellation because of completion of term