JP2000151003A - Three-mode frequency stabilized laser using square device - Google Patents

Three-mode frequency stabilized laser using square device

Info

Publication number
JP2000151003A
JP2000151003A JP35372598A JP35372598A JP2000151003A JP 2000151003 A JP2000151003 A JP 2000151003A JP 35372598 A JP35372598 A JP 35372598A JP 35372598 A JP35372598 A JP 35372598A JP 2000151003 A JP2000151003 A JP 2000151003A
Authority
JP
Japan
Prior art keywords
frequency
component
controlled
laser
laser tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35372598A
Other languages
Japanese (ja)
Inventor
Shiyuuko Yokoyama
修子 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP35372598A priority Critical patent/JP2000151003A/en
Publication of JP2000151003A publication Critical patent/JP2000151003A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate the use in a wide field with a device easy to obtain, by a method wherein low frequency component is picked up after an electric signal of a photo detector is squared with a square device, and resonator length of a laser tube is so controlled that a frequency of a sine wave contained in the low frequency component is made constant. SOLUTION: Polarized output light of a laser tube 1 outputting three or four line-spectrums are superposed by using a polarizer 2 and converted to electric signals with a photo detector 3. The spectrums are turned into two or three optical beats. When three optical beats are obtained, a control loop is closed. Signals of the photo detector 3 are amplified with an amplifier 4 and multiplied in a mixer 5, and five components are obtained. When the signals are made to pass a low-pass filter 6, a component having an angular frequency (ω1-ω2) and a DC component only are obtained. The DC component is eliminated, and the frequency (ω1-ω2) is converted to a voltage with a frequency-voltage converter 7. Current of a heater 9 is controlled with a power amplifier 8, and resonator length is so controlled that a value of the frequency (ω1-ω2) is made constant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高価で入手に手間の
かゝるVCOを用いることなく、またAPD(アバラン
シェホトダイオード)の不安定な非線形特性を用いると
いうこともなく、安価で簡単でかつ安定な方法で周波数
安定化を行う3モードレーザに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention does not use an expensive and cumbersome VCO and does not use the unstable nonlinear characteristics of an APD (avalanche photodiode). The present invention relates to a three-mode laser that performs frequency stabilization by a method.

【0002】[0002]

【従来の技術分野】直交3モードレーザは従来の周波数
安定化の手法、すなわち偏光強度安定化法やゼーマン周
波数安定化法では実現できるものではなく、周波数引き
寄せ現象を利用して始めて可能となる。そのためにVC
Oを局部発振器としてヘテロダイン技術を用いるか、検
知器の非線形特性を用いる手段があった。しかし、前者
は局部発振器のVCOが高価かつ入手困難という問題が
あり、後者は検知器の非線形性は仕様外のことで都合の
良い品物を得るためには選択が厳しいものとなる。
2. Description of the Related Art An orthogonal three-mode laser cannot be realized by a conventional frequency stabilization method, that is, a polarization intensity stabilization method or a Zeeman frequency stabilization method, and can be realized only by utilizing a frequency pulling phenomenon. VC for that
There have been means of using heterodyne technology with O as the local oscillator or using the non-linear characteristics of the detector. However, the former has a problem that the VCO of the local oscillator is expensive and difficult to obtain, and the latter has a severe selection in order to obtain a convenient product because the non-linearity of the detector is out of specification.

【0003】[0003]

【発明が解決しようとする課題】本発明は局部発振器と
してVCOを用いたり、検知器の非線形特性に頼ること
なしに、それらを用いた時に得られる信号と等価な信号
を、安価で確実(選択等を必要としない)な方法で得る
ことを課題とする。
SUMMARY OF THE INVENTION The present invention uses a VCO as a local oscillator and does not rely on the nonlinear characteristics of a detector, but provides a low-cost, reliable (selectable) signal equivalent to the signal obtained when using them. And the like).

【0004】[0004]

【課題を解決するための手段】レーザの縦モードの本数
が3本である場合、中央の1本から見た高周波側の1本
と、低周波側の1本の周波数間隔は、周波数引き寄せ現
象のために異なった値を持つ。これはこの3本の光スペ
クトルを適当な方位の偏光子で重ね光検知器で電気信号
にすると光の周波数差を周波数とする光ビートが得られ
るが、光スペクトルが3本の場合、光ビートスペクトル
は2本となり、前記の周波数間隔が異なると言うことは
2本の光ビートスペクトルの周波数は一致せず2本が分
離されるということを意味する。
When the number of longitudinal modes of a laser is three, the frequency interval between one high-frequency side and one low-frequency side viewed from the center one is a frequency attraction phenomenon. Have different values for This is because when these three optical spectra are superposed by polarizers of appropriate orientations and converted into electrical signals by a photodetector, an optical beat having a frequency equal to the frequency difference of the light is obtained. There are two spectra, and the difference in the frequency interval means that the frequencies of the two optical beat spectra do not match and the two are separated.

【0005】一般のHeNeレーザでは2本の光ビート
の周波数は平均で430MHz程度であり、分離の量は
数百KHzである。この数百KHzの分離量が周波数安
定化のための制御に必要な信号となる。
[0005] In a general HeNe laser, the frequency of two optical beats is about 430 MHz on average, and the amount of separation is several hundred KHz. This separation amount of several hundred KHz is a signal necessary for control for frequency stabilization.

【0006】この数百KHzの分離量を検知器の電気信
号の中から抽出して、その値が一定になるよう、レーザ
管の長さを制御すれば、3モードレーザの周波数安定化
レーザができる。
[0006] The amount of separation of several hundred KHz is extracted from the electric signal of the detector, and the length of the laser tube is controlled so that the value becomes constant. it can.

【0007】本発明においては、前記の光検知器の出力
電気信号の分離量すなわち該出力電気信号の2本の光ビ
ートスペクトルの周波数の差を求めるため、該出力電気
信号の自乗を行い、低周波成分を取り出すことにより制
御のための信号の抽出を行っている。
In the present invention, the output electric signal is squared to obtain the separation amount of the output electric signal of the photodetector, that is, the difference between the frequencies of the two optical beat spectra of the output electric signal. A signal for control is extracted by extracting a frequency component.

【0008】すなわち、今、2本の光ビートスペクトル
の高さは等しいとし、振動がそれぞれ、cos ω1
t,cos ω2tで表されるとすると、出力電気信号
の自乗Sは
That is, it is now assumed that the heights of the two optical beat spectra are equal, and the vibrations are respectively cos ω1
t, cos ω2t, the square S of the output electric signal is

【式1】のように表される。ω1、ω2はそれぞれスペ
クトルの角周波数である。
It is expressed as in Equation 1. ω1 and ω2 are the angular frequencies of the spectrum, respectively.

【式1】 の第1項は定数であり、最後の項以外は前述の通り40
0MHz〜800MHzの周波数を持つのでローパスの
特性を持ったフィルタで除去すると、該フィルタを通っ
た信号は
(Equation 1) The first term of is a constant, except for the last term, as described above.
Since it has a frequency of 0 MHz to 800 MHz, if it is removed by a filter having a low-pass characteristic, the signal passing through the filter becomes

【式2】 のようになる。(Equation 2) become that way.

【0009】ここで得られた信号SLの(ω1−ω2)
という角周波数が、周波数引き寄せ現象により、レーザ
共振器の長さの変化と共に変化する量であり、この量が
一定になるよう共振器の長さを制御すれば3モードレー
ザの周波数安定化ができることになる。
[0009] (ω1-ω2) of the signal SL obtained here.
Is an amount that changes with the change in the length of the laser resonator due to the frequency pulling phenomenon. By controlling the length of the resonator so that this amount is constant, the frequency of the three-mode laser can be stabilized. become.

【0010】[0010]

【発明の実施の形態】隣り合ったモードの偏光が直交
し、スペクトルの本数が実効的に3本になる条件を有す
るレーザはスペクトルの本数が共振器長の変化によって
4本と3本の間を移行するものと、3本と2本の間を移
行するものに別けられる。
BEST MODE FOR CARRYING OUT THE INVENTION A laser having a condition in which the polarizations of adjacent modes are orthogonal and the number of spectra is effectively three is such that the number of spectra is between four and three due to a change in the cavity length. And one that moves between three and two.

【図1】は前者を示したものである。実用的には4本と
3本の間を移行するものが高出力であることゝ、制御の
開始時点の決定が楽であることから大幅にすぐれてい
る。
FIG. 1 shows the former. Practically, the one that shifts between four and three lines has a high output. The ease of determining the start point of control is greatly improved.

【図1】の(a)は4本である時点、(b)は3本であ
る時点におけるスペクトルである。3本の時の低周波側
と中央のスペクトルの差の角周波数をω1高周波側と中
央のそれをω2とすると、検知器の出力である光ビート
のスペクトルは同図(c)のようなスペクトルとなり、
共振器長の変化と共にω1、ω2(ω1−ω2)共に変
化する。本発明においては3者のうち最も周波数の低い
(ω1−ω2)を利用する。そして、(ω1−ω2)の
値が一定になるようレーザの共振器長を制御する。
FIG. 1 (a) shows the spectrum at the time of four lines, and FIG. 1 (b) shows the spectrum at the time of three lines. Assuming that the angular frequency of the difference between the low frequency side and the center spectrum at the time of three lines is ω1 and the high frequency side and the center is ω2, the spectrum of the optical beat output from the detector is the spectrum shown in FIG. Becomes
Both ω1 and ω2 (ω1−ω2) change as the resonator length changes. In the present invention, the lowest frequency (ω1−ω2) among the three is used. Then, the laser cavity length is controlled so that the value of (ω1−ω2) becomes constant.

【0011】[0011]

【実施例】3本あるいは4本のスペクトルを出すレーザ
管1の出力光の偏光は適当な方位を有する偏光子2で重
ねられ光検知器3で電気信号に変換されるとスペクトル
が2本あるいは3本の光ビートとなる。この光ビートが
3本になる時点を選び制御のループを閉じる。検知器3
の信号は増幅器4で増幅されミキサ5で掛け算が行われ
ると(ω1+ω2)、2ω1、2ω2、(ω1−ω
2)、DCの成分が得られるが、ローパスフィルタ6を
通すと(ω1−ω2)という角周波数を持った成分とD
Cのみとなる。そこでDCを除去し、周波数−電圧変換
器7で周波数(ω1−ω2)を電圧に変換し電力増幅器
8の助けをかりてレーザ管に巻かれたヒータ9の電流を
制御し周波数(ω1−ω2)の値が一定になるように共
振器長を制御する。
BEST MODE FOR CARRYING OUT THE INVENTION Polarization of output light of a laser tube 1 which emits three or four spectra is superposed on a polarizer 2 having an appropriate direction, and when converted into an electric signal by a photodetector 3, two or more spectra are obtained. There are three light beats. The point at which the number of light beats becomes three is selected, and the control loop is closed. Detector 3
Are amplified by the amplifier 4 and multiplied by the mixer 5, (ω1 + ω2), 2ω1, 2ω2, (ω1−ω
2), a DC component is obtained, and when passing through a low-pass filter 6, a component having an angular frequency of (ω1−ω2) and D
C only. Therefore, the DC is removed, the frequency (ω1-ω2) is converted into a voltage by the frequency-voltage converter 7, and the current of the heater 9 wound around the laser tube is controlled with the help of the power amplifier 8 to control the frequency (ω1-ω2). ) Is controlled so that the value of ()) becomes constant.

【0012】[0012]

【発明の効果】3モードレーザの使用分野は広いが、そ
の周波数安定化は在来簡単ではなかった。本発明によれ
ば3モードレーザの信頼度の高い周波数安定化を、入手
の容易なデバイスを用いて行うことにより、広い分野に
おける3モードレーザの使用を容易にすることができ
る。
The field of use of the three-mode laser is wide, but its frequency stabilization has not been simple so far. According to the present invention, by using a readily available device to stabilize the frequency of a three-mode laser with high reliability, the use of the three-mode laser in a wide field can be facilitated.

【0013】[0013]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のレーザのスペクトルの説明図であ
る。
FIG. 1 is an explanatory diagram of a spectrum of a laser of the present invention.

【図2】 本発明の実施例である。FIG. 2 is an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1、 レーザ管 2、 偏光子 3、 光検知器 4、 増幅器 5、 ミキサ 6、 ローパスフィルタ 7、 周波数−電圧変換器 8、 電力増幅器 9、 ヒータ 1, laser tube 2, polarizer 3, photodetector 4, amplifier 5, mixer 6, low-pass filter 7, frequency-voltage converter 8, power amplifier 9, heater

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】隣り合った縦モード・スペクトルの偏光方
位が、直交しかつ全スペクトルの本数が実効的に3本に
なる条件を有するレーザ管の光を適当な方位を有する偏
光子を通過せしめた後、広帯域光検知器で検知し、該検
知器の電気信号を数百メガヘルツで動作する自乗器で自
乗を行ったのち、自乗の結果の低周波成分を取り出し該
成分に含まれる正弦波状の波形の周波数が一定となるご
とく前記レーザ管の共振器長を制御することを特徴とす
る3モード周波数安定化レーザ。
1. A method for passing light from a laser tube having a condition that the polarization directions of adjacent longitudinal mode spectra are orthogonal to each other and the number of all spectra is effectively three passes through a polarizer having an appropriate direction. After that, it is detected by a broadband photodetector, and the electric signal of the detector is squared by a squarer operating at several hundred megahertz. A three-mode frequency stabilized laser, wherein the resonator length of the laser tube is controlled so that the frequency of the waveform becomes constant.
JP35372598A 1998-11-06 1998-11-06 Three-mode frequency stabilized laser using square device Pending JP2000151003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35372598A JP2000151003A (en) 1998-11-06 1998-11-06 Three-mode frequency stabilized laser using square device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35372598A JP2000151003A (en) 1998-11-06 1998-11-06 Three-mode frequency stabilized laser using square device

Publications (1)

Publication Number Publication Date
JP2000151003A true JP2000151003A (en) 2000-05-30

Family

ID=18432806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35372598A Pending JP2000151003A (en) 1998-11-06 1998-11-06 Three-mode frequency stabilized laser using square device

Country Status (1)

Country Link
JP (1) JP2000151003A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102780149A (en) * 2012-07-25 2012-11-14 西安电子科技大学 Optical-fiber side surface coupled laser diode pumped solid-state laser and manufacture technology
CN102780150A (en) * 2012-07-25 2012-11-14 西安电子科技大学 Optical fiber coupling output laser diode pump solid-state laser and manufacture process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102780149A (en) * 2012-07-25 2012-11-14 西安电子科技大学 Optical-fiber side surface coupled laser diode pumped solid-state laser and manufacture technology
CN102780150A (en) * 2012-07-25 2012-11-14 西安电子科技大学 Optical fiber coupling output laser diode pump solid-state laser and manufacture process

Similar Documents

Publication Publication Date Title
US6727492B1 (en) Cavity ringdown spectroscopy system using differential heterodyne detection
Bernard et al. CO/sub 2/laser stabilization to 0.1-Hz level using external electrooptic modulation
JPH0672804B2 (en) Method and apparatus for dual modulation spectroscopy
Ye et al. Ultrastable optical frequency reference at 1.064/spl mu/m using a C/sub 2/HD molecular overtone transition
JPS61502647A (en) Char laser stabilization system
Nagourney et al. High resolution Ba+ monoion spectroscopy with frequency stabilized color-center laser
RU2408978C1 (en) Quantum frequency standard on gas cell with laser optical pumping
JP2000151003A (en) Three-mode frequency stabilized laser using square device
JP2744728B2 (en) Gas concentration measuring method and its measuring device
RU2445663C2 (en) Phase-sensitive method for frequency stabilisation of laser radiation and acoustooptic modulator for realising phase modulation of laser radiation
Hall et al. Precision spectroscopy and laser frequency control using FM sideband optical heterodyne techniques
Yokoyama et al. Frequency stabilization by frequency pulling for single‐mode oscillation of He–Ne laser at maximum intensity
JP3760239B2 (en) Optical signal generator with stabilized frequency difference between two continuous wave laser beams
JP2000223756A (en) 3-MODE OR SINGLE-MODE HIGH POWER HeNe LASER DEVICE WITH SIMPLE STRUCTURE
JPH1117265A (en) Single mode high power hene laser device with simple constitution
JP3064053B2 (en) Photoelectric conversion element frequency characteristic measuring method and photoelectric conversion element response characteristic measuring device
JP2798582B2 (en) Optical bandpass filter controller
RU2091937C1 (en) Method for measuring phase nonreciprocity in ring resonator of solid-state laser
du Burck et al. High-frequency modulation transfer technique for ultra-high resolution spectroscopy of I/sub 2
RU2410653C1 (en) Method to measure shift of laser frequency rake with self-synchronisation of modes
JPH08236851A (en) Stabilized gas laser using apd
KR950007488B1 (en) Starilization method and apparatus of laser frequency and power
JPH07260624A (en) Optical pulse tester
JPH09246631A (en) Single wavelength hene laser having maximum output
GB2227833A (en) Fibre-optic gyroscope