JP2000147477A - Liquid crystal display device as well as its production and drive method - Google Patents

Liquid crystal display device as well as its production and drive method

Info

Publication number
JP2000147477A
JP2000147477A JP31614798A JP31614798A JP2000147477A JP 2000147477 A JP2000147477 A JP 2000147477A JP 31614798 A JP31614798 A JP 31614798A JP 31614798 A JP31614798 A JP 31614798A JP 2000147477 A JP2000147477 A JP 2000147477A
Authority
JP
Japan
Prior art keywords
liquid crystal
display device
crystal display
electric field
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31614798A
Other languages
Japanese (ja)
Other versions
JP3148188B2 (en
Inventor
Hiroji Mimura
広二 三村
Shigeyoshi Suzuki
成嘉 鈴木
Hiroshi Hayama
浩 葉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP31614798A priority Critical patent/JP3148188B2/en
Publication of JP2000147477A publication Critical patent/JP2000147477A/en
Application granted granted Critical
Publication of JP3148188B2 publication Critical patent/JP3148188B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a liquid crystal display device capable of enhancing the light utilization rate within the same space and a drive method therefor. SOLUTION: This device is formed with a plurality of periodic structures where refractive indices are modulated within the same space. The respective periodic structures are the multilayered structures alternately laminated with the layers consisting of liquid crystal materials capable of controlling alignment directions by electric fields and the layers consisting of photosetting materials not capable of controlling the alignment directions by electric fields. The respective periodic structures include electrode pairs for selective reflecting and independent driving of different wavelength bands. This process for production has a stage for holding the mixture composed of the liquid crystal material and the photosetting material having optical anisotropy between substrates and aligning the mixture to the plural directions and a stage for producing the multiple and multilayered structures alternately laminated with the layers in which the photosetting materials are polymerized and the layers in which the photosetting materials are not polymerized by irradiating the substrates holding the mixture with plural beams of interference light. This drive method is a drive production method for the liquid crystal display device having the multilayered structures and independently drives the respective layers by impressing the electric field which is substantially unidirectional by changing the direction with lapse of time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、液晶表示装置並
びにその製造方法及び駆動方法に関するものである。
[0001] 1. Field of the Invention [0002] The present invention relates to a liquid crystal display device and a method of manufacturing and driving the same.

【0002】[0002]

【従来の技術】ノートパソコンやPDA(Personal Dig
ital Assistant)などの携帯用情報機器の需要が高ま
り、低消費電力で、薄型かつ軽量であることはもとよ
り、表示品位の高いカラー表示可能なディスプレイへの
要求が高まっている。これを実現するものとして、反射
型カラー液晶表示装置が盛んに研究開発されている。そ
の中でも、偏光素子やカラーフィルタを用いないブラッ
グ反射方式の体積ホログラム光学素子が注目されてい
る。このブラッグ反射方式の素子では、原理的にブラッ
グ条件を満たした波長の光をほぼ100%反射できるこ
とから、高明度、高色純度の表示が期待される。
2. Description of the Related Art Notebook computers and PDAs (Personal Dig)
The demand for portable information devices such as ital assistants) is increasing, and the demand for a display capable of color display with high display quality as well as low power consumption, thinness and light weight is increasing. To achieve this, a reflective color liquid crystal display device has been actively researched and developed. Among them, a Bragg reflection volume hologram optical element that does not use a polarizing element or a color filter has attracted attention. This Bragg reflection type element can reflect almost 100% of light having a wavelength that satisfies the Bragg condition in principle, so that a display with high brightness and high color purity is expected.

【0003】前述した体積ホログラム光学素子として、
例えば、特開平6―294952に記載された光学素子
が挙げられる。図7に特開平6―294952に記載さ
れた表示素子の概略図を示し、この図をもとにしてこの
光学素子の動作原理を説明する。電圧を印加しない場合
に入射光108が入射すると、液晶液滴105と高分子
材料106との屈折率差及び周期間隔によりブラッグ反
射が起こり、特定の波長帯域の光109を反射し、それ
以外の波長の光を透過110する。この状態を表示素子
の反射状態として利用する。次に、透明電極103と透
明電極104との間に電圧を印加すると、液晶液滴10
5の屈折率が変化し、液晶液滴105と高分子材料10
6との屈折率差が小さくなるにつれてブラッグ反射強度
が減少し、屈折率差が完全に無くなると入射光108が
全て透過する。この状態を表示素子の透過状態として利
用する。
As the above-mentioned volume hologram optical element,
For example, an optical element described in JP-A-6-294952 can be used. FIG. 7 is a schematic diagram of a display element described in Japanese Patent Application Laid-Open No. 6-294952, and the operation principle of this optical element will be described with reference to FIG. When the incident light 108 is incident when no voltage is applied, Bragg reflection occurs due to the refractive index difference and the periodic interval between the liquid crystal droplet 105 and the polymer material 106, and reflects light 109 in a specific wavelength band. The light having the wavelength is transmitted 110. This state is used as the reflection state of the display element. Next, when a voltage is applied between the transparent electrode 103 and the transparent electrode 104, the liquid crystal droplet 10
5, the liquid crystal droplet 105 and the polymer material 10 change.
6, the Bragg reflection intensity decreases as the difference in refractive index decreases, and when the difference in refractive index completely disappears, all the incident light 108 is transmitted. This state is used as the transmission state of the display element.

【0004】しかしながら、前記光学素子では、無印加
時の液晶が素子内でランダムな配向を示すため、液晶層
としての屈折率は液晶の異方性から算出される屈折率差
に較べて小さくなり、高分子材料との屈折率差で決まる
反射率が最大限に利用できていない問題がある。この解
決策として、特開平10−123561に記載されてい
る光学素子が挙げられる。
However, in the above-mentioned optical element, the liquid crystal exhibits a random orientation in the element when no voltage is applied, so that the refractive index of the liquid crystal layer becomes smaller than the refractive index difference calculated from the anisotropy of the liquid crystal. However, there is a problem that the reflectance determined by the refractive index difference from the polymer material cannot be used to the maximum. As a solution to this, there is an optical element described in JP-A-10-123561.

【0005】前記特開平10−123561の光学素子
は、図8及び図9に示すように、電界で制御可能な光学
異方性材料(21)と、電圧に依存しない光学異方性材
料(22)とが一定方向に配向し、交互に積層した多層
構造(20)である。この構造において、電圧を印加し
て電界で制御される光学異方性材料(23)を電界方向
に再配向させ、電界に依存しない光学異方性材料(2
4)と配向方向が直交した反射状態を形成すると、光学
異方性の屈折率差を最大限に利用できることから反射強
度も最大となり、前記課題を解決することができる。
As shown in FIGS. 8 and 9, the optical element disclosed in Japanese Patent Application Laid-Open No. H10-123561 includes an optically anisotropic material (21) that can be controlled by an electric field and an optically anisotropic material (22) that does not depend on voltage. ) Is a multilayer structure (20) oriented in a certain direction and alternately stacked. In this structure, the optically anisotropic material (23) controlled by an electric field by applying a voltage is reoriented in the direction of the electric field, and the optically anisotropic material (2) independent of the electric field is applied.
When the reflection state in which the orientation direction is orthogonal to that of 4) is formed, the difference in the refractive index of the optical anisotropy can be used to the maximum, so that the reflection intensity also becomes maximum, and the above problem can be solved.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記特
開平6―294952及び特開平10−123561に
記載されている素子構成では、同一空間内のある特定の
入射光を利用し、単色のブラッグ反射光しか得ることが
できないため、同一空間内での光利用効率が低いという
問題があった。
However, in the device configurations described in JP-A-6-294952 and JP-A-10-123561, monochromatic Bragg reflected light is utilized by utilizing certain incident light in the same space. However, there is a problem that the light use efficiency in the same space is low.

【0007】本発明は、前述した課題を解決するために
なされたもので、その目的は、同一空間内に異なる波長
の光を選択反射できる周期構造を複数具備するととも
に、これらの周期構造が独立に駆動できる構造を備え、
同一空間内での光利用効率を高めることができる液晶表
示装置を提供することにある。また、本発明の他の目的
は、前記構造を備えた液晶表示装置の製造方法及び駆動
方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and has as its object to provide a plurality of periodic structures capable of selectively reflecting light of different wavelengths in the same space, and these periodic structures are independent. Equipped with a structure that can be driven
It is an object of the present invention to provide a liquid crystal display device capable of improving light use efficiency in the same space. Another object of the present invention is to provide a manufacturing method and a driving method of a liquid crystal display device having the above structure.

【0008】[0008]

【課題を解決するための手段】本発明は、前記目的を達
成するため、下記(1)〜(5)に示す液晶表示装置、
(6)〜(11)に示す液晶表示装置の製造方法、及
び、(12)〜(15)に示す液晶表示装置の駆動方法
を提供する。
According to the present invention, there is provided a liquid crystal display device having the following features (1) to (5):
(6) A method for manufacturing a liquid crystal display device shown in (11) and a method for driving a liquid crystal display device shown in (12) to (15) are provided.

【0009】(1)同一空間内に屈折率が変調する周期
構造が複数形成され、それぞれの周期構造は、電界によ
り配向方向を制御できる液晶材料からなる層と、電界に
より配向方向を制御できない光硬化性材料からなる層と
が交互に積層した多層構造であり、かつ、各周期構造が
異なる波長帯を選択反射するためと独立に駆動するため
の電極対が具備されている液晶表示装置。
(1) A plurality of periodic structures whose refractive index is modulated are formed in the same space. Each periodic structure has a layer made of a liquid crystal material whose orientation can be controlled by an electric field, and a light whose orientation can not be controlled by an electric field. A liquid crystal display device having a multilayer structure in which layers made of a curable material are alternately stacked, and having an electrode pair for selectively reflecting different wavelength bands in each periodic structure and independently driving the same.

【0010】(2)液晶材料として誘電異方性が負の液
晶、光硬化性材料として光学異方性材料である液晶性モ
ノマーを用いた(1)の液晶表示装置。
(2) The liquid crystal display device according to (1), wherein a liquid crystal having a negative dielectric anisotropy is used as a liquid crystal material, and a liquid crystal monomer which is an optically anisotropic material is used as a photocurable material.

【0011】(3)液晶材料として印加電圧の周波数に
より誘電異方性が正又は負となる二周波液晶、光硬化性
材料として光学異方性材料である液晶性モノマーを用い
た(1)の液晶表示装置。
(3) A dual frequency liquid crystal whose dielectric anisotropy becomes positive or negative depending on the frequency of an applied voltage as a liquid crystal material, and a liquid crystal monomer which is an optically anisotropic material as a photocurable material. Liquid crystal display.

【0012】(4)同一空間内に2つの周期構造が形成
されており、周期構造間の配向方向が直交している
(1)〜(3)の液晶表示装置。
(4) The liquid crystal display device of (1) to (3), wherein two periodic structures are formed in the same space, and the orientation directions between the periodic structures are orthogonal.

【0013】(5)同一空間内に3つの周期構造が形成
されており、周期構造間の配向方向が60°異なってい
る(1)〜(3)の液晶表示装置。
(5) The liquid crystal display device according to any one of (1) to (3), wherein three periodic structures are formed in the same space, and the alignment directions between the periodic structures are different by 60 °.

【0014】(6)前記(1)〜(5)の液晶表示装置
の製造方法であって、液晶材料と光学異方性を有する光
硬化性材料との混合物を基板間に挟み込み複数方向に配
向させる工程と、前記挟み込んだ基板に複数の干渉光を
照射し、光硬化性材料が重合した層と重合しない層とが
交互に積層した多重の多層構造を製造する工程とを備え
ている液晶表示装置の製造方法。
(6) The method for manufacturing a liquid crystal display device according to any one of the above (1) to (5), wherein a mixture of a liquid crystal material and a photocurable material having optical anisotropy is sandwiched between substrates and oriented in a plurality of directions. And a step of irradiating the sandwiched substrate with a plurality of interference lights to produce a multilayer structure in which layers in which the photocurable material is polymerized and layers in which the photocurable material is not polymerized are alternately stacked. Device manufacturing method.

【0015】(7)4光束のレーザ光の内、入射面に対
して2光束はP偏光とし、この2光束が干渉し、残り2
光束はS偏光で干渉する(6)の液晶表示装置の製造方
法。
(7) Of the four light beams, two light beams are P-polarized with respect to the incident surface, and the two light beams interfere with each other, and the remaining two light beams interfere with each other.
(6) The method for manufacturing a liquid crystal display device according to (6), wherein the light beam interferes with S-polarized light.

【0016】(8)各偏光の入射角度が異なる(6)又
は(7)の液晶表示装置の製造方法。
(8) The method of manufacturing a liquid crystal display device according to (6) or (7), wherein the incident angles of the polarized lights are different.

【0017】(9)異なる単一波長を発振するレーザを
2つ用い、各レーザ光を2光束に分岐し、分岐した2光
束が干渉し、光硬化性材料を硬化する(6)の液晶表示
装置の製造方法。
(9) The liquid crystal display of (6), wherein two lasers oscillating different single wavelengths are used, each laser beam is split into two light beams, and the two split light beams interfere with each other to cure the photocurable material. Device manufacturing method.

【0018】(10)入射面に対して1つのレーザ光か
ら分岐された2光束の偏光がP偏光、残り2光束の偏光
がS偏光である(9)の液晶表示装置の製造方法。
(10) The method for manufacturing a liquid crystal display device according to (9), wherein the polarization of two light beams branched from one laser beam with respect to the incident surface is P-polarization, and the polarization of the remaining two light beams is S-polarization.

【0019】(11)1つのレーザ光から分岐された2
光束の交差角度がもう1つのレーザで作製される干渉縞
間隔と同一にならない角度である(9)又は(10)の
液晶表示装置の製造方法。
(11) 2 branched from one laser beam
The method of manufacturing a liquid crystal display device according to (9) or (10), wherein the crossing angle of the light flux is an angle that does not become the same as the interval between interference fringes produced by another laser.

【0020】(12)前記(1)〜(5)の液晶表示装
置の駆動方法であって、複数個の電極対に異なった電圧
を印加し、実質的に一方向の電界を生じさせる液晶表示
装置の駆動方法。
(12) The method for driving a liquid crystal display device according to any one of (1) to (5), wherein different voltages are applied to the plurality of electrode pairs to generate an electric field substantially in one direction. How to drive the device.

【0021】(13)前記(1)〜(5)の液晶表示装
置の駆動方法であって、複数個の電極対に異なった電圧
を一定時間印加し、実質的に一方向の電界を生じさせた
後、印加電圧の値を変化させ、実質的に一方向の電界を
前記電界とは異なる方向に一定時間生じさせる操作を繰
り返し、電圧印加時間の平均として、実質的に複数方向
の電界を生じさせる液晶表示装置の駆動方法。
(13) In the method of driving a liquid crystal display device according to any one of the above (1) to (5), different voltages are applied to a plurality of electrode pairs for a certain period of time to generate a substantially unidirectional electric field. After that, the operation of changing the value of the applied voltage and generating an electric field in a substantially one direction in a direction different from the electric field for a certain period of time is repeated, and an electric field in a plurality of directions is generated substantially as an average of the voltage application time. Of driving a liquid crystal display device to be driven.

【0022】(14)電極対の数が4つである(12)
は(13)の液晶表示装置の駆動方法。
(14) The number of electrode pairs is four (12)
Is a driving method of the liquid crystal display device according to (13).

【0023】(15)質的な複数の方向が直交する2方
向である(13)又は(14)の液晶表示装置の駆動方
法。
(15) The method for driving a liquid crystal display device according to (13) or (14), wherein the plurality of qualitative directions are two directions orthogonal to each other.

【0024】本発明において開示される発明のうち代表
的なものの概略を以下に簡単に説明する。本発明の液晶
表示装置は、同一空間内に屈折率変調が可変な周期構造
が複数形成され、それぞれの周期構造は、電界により配
向方向を制御できる液晶材料からなる層と、電界により
配向方向を制御できない光学異方性を有する光硬化性材
料からなる層とが交互に積層した多層構造であり、か
つ、独立に駆動することが可能であり、かつ、各周期構
造が異なる波長帯を選択反射するためと独立に駆動する
ための電極対が複数具備されている。
The outline of a typical invention disclosed in the present invention will be briefly described below. In the liquid crystal display device of the present invention, a plurality of periodic structures with variable refractive index modulation are formed in the same space, and each periodic structure has a layer made of a liquid crystal material whose orientation can be controlled by an electric field, and It has a multilayer structure in which layers of photocurable materials having optical anisotropy that cannot be controlled are alternately stacked, and can be driven independently, and each periodic structure selectively reflects different wavelength bands. And a plurality of electrode pairs for driving independently of each other.

【0025】前記電極対は、表示領域内で一方向の均一
電界を得るために、複数対の電極を使用することが好ま
しい。この場合、電極対は、図1(b)に示すように2
対(37、38)のものを用いてもよいが、電極対の数
は多い方がよい。しかし、あまり多くすると表示装置の
作製等が煩雑になるので、例えば図1(c)に示すよう
に4対の電極(39)を用いることが望ましい。目的は
全く異なるが、電極に囲まれた部分の液晶を回転させる
ために、このような電極によって実質的に一方向の電界
を生じさせ、その方向を時間ごとに変えることが、O pl
us E, vol.20,No.10, P.1145 (1988)に述べられてい
る。すなわち、このような4対の電極に図1(c)に示
すような規則的に異なった電圧を印加すると、その電界
の重ね合わせにより、実質的に一方向の電界を生じさせ
ることができる。このとき電極の断面は、図1(d)に
示すように完全な壁にし、基板と平行な方向に実質的に
均一な電極を生じさせてもよいし、図1(e)に示すよ
うにどちらか一方の基板のみに電極を作成してもよい。
また、図1(f)のように上下基板に電極を作成し、基
板に対して傾斜した電界が生じるようにしてもよい。
It is preferable that the electrode pairs use a plurality of pairs of electrodes in order to obtain a uniform electric field in one direction in the display area. In this case, as shown in FIG.
Although a pair (37, 38) may be used, the number of electrode pairs is preferably large. However, if the number is too large, the production of the display device and the like become complicated, so it is desirable to use, for example, four pairs of electrodes (39) as shown in FIG. Although the purpose is quite different, it is possible to rotate the liquid crystal in the portion surrounded by the electrodes by generating an electric field in substantially one direction by such electrodes, and to change the direction with time, O pl
us E, vol. 20, No. 10, P. 1145 (1988). That is, when different voltages are regularly applied to the four pairs of electrodes as shown in FIG. 1C, an electric field in substantially one direction can be generated by superposition of the electric fields. At this time, the cross section of the electrode may be a complete wall as shown in FIG. 1 (d) to produce a substantially uniform electrode in a direction parallel to the substrate, or as shown in FIG. 1 (e). The electrodes may be formed only on one of the substrates.
Alternatively, electrodes may be formed on the upper and lower substrates as shown in FIG. 1 (f) so that an electric field inclined with respect to the substrate is generated.

【0026】本発明の液晶表示装置におけるそれぞれの
周期構造は、電界で配向方向を制御できる液晶材料の層
と、電界で配向方向を制御できない光学異方性を有する
光硬化性材料の層との屈折率差によりブラッグ反射を生
じさせるものであり、周期構造ごとに設けてある電極対
により独立に屈折率差を変えることができ、各周期構造
の屈折率周期により異なる波長帯を反射することができ
る。そして、各周期構造は、異なる入射光を利用してい
ることから、同一空間内での光利用効率を高めることが
できる。
Each periodic structure in the liquid crystal display device of the present invention is composed of a layer of a liquid crystal material whose orientation can be controlled by an electric field and a layer of a photocurable material having optical anisotropy whose orientation can not be controlled by an electric field. Bragg reflection is caused by the refractive index difference, and the refractive index difference can be changed independently by the electrode pair provided for each periodic structure, and different wavelength bands can be reflected by the refractive index period of each periodic structure. it can. And since each periodic structure uses different incident light, the light use efficiency in the same space can be improved.

【0027】本発明における液晶表示装置の製造方法
は、液晶材料と光学異方性を有する光硬化性材料との混
合物を基板間に挟み込み複数方向に配向させる工程と、
前記挟み込んだ基板に複数の干渉光を照射し、光硬化性
材料が周期的に重合した層と重合しない層とが交互に積
層した多層構造を製造する工程とを備えていることを特
徴とする。
The method for manufacturing a liquid crystal display device according to the present invention comprises the steps of sandwiching a mixture of a liquid crystal material and a photocurable material having optical anisotropy between substrates and aligning the mixture in a plurality of directions;
Irradiating the sandwiched substrate with a plurality of interference lights to produce a multilayer structure in which a layer in which the photocurable material is periodically polymerized and a layer in which the photocurable material is not polymerized are alternately stacked. .

【0028】前記手法によれば、液晶材料と光学異方性
を有する光硬化性材料との混合物を基板間に挟み込み、
少なくともこの混合物を複数方向に配向させる工程と、
前記挟み込んだ基板に複数の干渉光を照射し、光硬化性
材料を重合させる工程とを交互に又は同時に行なうこと
によって、電界により配向方向を制御できる液晶材料層
と電界に依存せずに配向した光硬化性材料層とが交互に
積層され、かつ、液晶層と光硬化性材料層の配向方向が
概ね一致し、かつ、その配向方向が複数存在する多重の
多層構造を作製することができる。
According to the above method, a mixture of a liquid crystal material and a photocurable material having optical anisotropy is sandwiched between substrates.
Orienting the mixture in at least multiple directions,
By irradiating the sandwiched substrate with a plurality of interference lights and alternately or simultaneously with the step of polymerizing the photocurable material, the liquid crystal material layer whose alignment direction can be controlled by an electric field and the liquid crystal material layer are aligned independently of the electric field. A photo-curable material layer is alternately laminated, a liquid crystal layer and a photo-curable material layer have almost the same alignment direction, and a multi-layered structure having a plurality of alignment directions can be manufactured.

【0029】ここで、電界で配向方向を制御できる液晶
材料としては、誘電異方性が負の液晶を用いるか、ある
いは印加電圧の周波数により誘電異方性が正又は負とな
る二周波液晶を用いればよく、電界に依存せず配向して
いる光学異方性材料としては、感光性を有する液晶性モ
ノマーを用いればよい。
Here, as the liquid crystal material whose orientation direction can be controlled by an electric field, a liquid crystal having a negative dielectric anisotropy or a dual-frequency liquid crystal having a positive or negative dielectric anisotropy depending on the frequency of an applied voltage is used. A liquid crystalline monomer having photosensitivity may be used as the optically anisotropic material oriented without depending on the electric field.

【0030】混合物を複数方向に配向させる工程及び光
硬化性材料を重合させる工程としては、各電極対に電界
を印加して混合物を電界方向に配向させ、その状態を保
持して干渉光を照射して光硬化性材料を重合させる工程
を、順次電界を用いて混合物の配向方向を変化させなが
ら複数回繰り返せばよい。また、複数回のラビング処理
を行い、混合物を複数方向に配向させ、かつ、偏光方向
の異なる複数の干渉光を順次又は同時に混合物に照射し
て光硬化性材料を重合させる工程を行ってもよい。光硬
化性材料を重合させる光源としては、単一波長を発振す
るレーザを複数に分岐して干渉光を作成してもよく、異
なる波長を発振するレーザを複数用いて干渉光を作成し
てもよい。
In the step of orienting the mixture in a plurality of directions and the step of polymerizing the photocurable material, an electric field is applied to each electrode pair to orient the mixture in the direction of the electric field. The step of polymerizing the photocurable material may be repeated a plurality of times while sequentially changing the orientation direction of the mixture using an electric field. In addition, a step of performing rubbing treatment a plurality of times, orienting the mixture in a plurality of directions, and irradiating the mixture with a plurality of interference lights having different polarization directions sequentially or simultaneously to polymerize the photocurable material may be performed. . As a light source for polymerizing the photocurable material, a laser that oscillates a single wavelength may be branched into a plurality of pieces to create interference light, or an interference light may be created using a plurality of lasers that oscillate different wavelengths. Good.

【0031】次に、本発明の液晶表示装置の動作原理を
説明する。図1に示すように、第1の周期での液晶材料
31と光学異方性を有する光硬化性材料32の異常光軸
が同じ方向を向いており、第2の周期の液晶材料33と
光学異方性を有する光硬化性材料34の異常光軸は、第
1の周期構造の異常光軸と直交する方向に配向してい
る。それぞれの周期構造を駆動するために、図1(c)
に示すような電極対39が具備されており、電圧が印加
していない状態では、液晶材料と光硬化性材料との屈折
率差が一致しているため、ブラッグ反射が起こらず、入
射光は全て透過する透過状態となる。
Next, the operation principle of the liquid crystal display device of the present invention will be described. As shown in FIG. 1, the extraordinary optical axes of the liquid crystal material 31 and the photocurable material 32 having optical anisotropy in the first cycle are in the same direction, and the liquid crystal material 33 in the second cycle is The extraordinary optical axis of the photocurable material having anisotropy is oriented in a direction orthogonal to the extraordinary optical axis of the first periodic structure. In order to drive each periodic structure, FIG.
In the state where no voltage is applied, the refractive index difference between the liquid crystal material and the photocurable material is the same, so that Bragg reflection does not occur, and the incident light is It becomes a transmission state in which all light is transmitted.

【0032】ここで、例えば4対の電極に図1(c)の
ような比率で電圧を一定時間印加すると、実質的に一方
向の電界が液晶31の長軸方向に生じる。誘電異方性が
負の液晶を用いれば、液晶はその長軸が電界に対し垂直
方向に向くように回転する。このとき基板に平行な回転
を防ぐには、液晶33の長軸方向に実質的に一方向とな
る電界が生じるように、別の一定時間、第二の電圧を図
1(c)の電圧の比率で90°回転した方向に印加すれ
ばよい。さらにこの90°方向の違う電圧が液晶31の
フレデリクス転移の電圧以下の電圧であれば、液晶33
が回転することはない。
Here, when a voltage is applied to the four pairs of electrodes at a ratio as shown in FIG. 1C for a certain period of time, a substantially unidirectional electric field is generated in the major axis direction of the liquid crystal 31. When a liquid crystal having a negative dielectric anisotropy is used, the liquid crystal rotates so that its major axis is directed perpendicular to the electric field. At this time, in order to prevent the rotation parallel to the substrate, the second voltage is changed to the voltage of FIG. 1C for another predetermined time so that an electric field substantially unidirectional in the major axis direction of the liquid crystal 33 is generated. What is necessary is just to apply in the direction rotated 90 degrees by the ratio. Further, if the different voltage in the 90 ° direction is equal to or lower than the voltage of the Freedericksz transition of the liquid crystal 31, the liquid crystal 33
Does not rotate.

【0033】以上のような電圧を液晶の応答時間以内の
周期で交互に印加すれば、液晶31のみを基板と垂直方
向に回転させることができ、その結果、第1周期の液晶
のみが応答し、屈折率の差が生じてブラッグ条件を満た
すことになり、この周期に対応した反射光のみが生じ
る。
If the above voltages are alternately applied in a cycle within the response time of the liquid crystal, only the liquid crystal 31 can be rotated in the direction perpendicular to the substrate. As a result, only the liquid crystal in the first cycle responds. A difference in the refractive index occurs, satisfying the Bragg condition, and only reflected light corresponding to this period is generated.

【0034】これは、1つの電極対に図2に示すような
横方向の電界を印加し、その電界方向に配向している液
晶材料のみを電界方向に再配向させた結果、光硬化性材
料との間で屈折率差が生じるのでブラッグ反射が起こ
り、第1の反射状態を形成したことと等価である。この
際、もう1つの周期における液晶材料の配向方向は電界
方向と直交しているので、該液晶材料は電界方向に再配
向せず、この周期構造からのブラッグ反射は起こらな
い。液晶33も回転させたい場合は、第二の電圧をフレ
デリクス転移以上の電圧にすればよく、この電界によっ
て液晶31の基板に垂直な面内での回転は影響を受けな
い。このときは、第2の反射状態を形成できる。ここで
反射される波長は、第1の反射状態の波長とは周期構造
の周期間隔が異なるために異なる。このように同一空間
内に複数形成された周期構造を独立に駆動することがで
き、かつ、異なる波長を選択反射できることから、同一
空間内での光利用効率を高めることができる。
This is because a lateral electric field as shown in FIG. 2 is applied to one electrode pair, and only the liquid crystal material oriented in the electric field direction is re-oriented in the electric field direction. Since a refractive index difference is generated between the first and second states, Bragg reflection occurs, which is equivalent to the formation of the first reflection state. At this time, since the alignment direction of the liquid crystal material in another cycle is orthogonal to the direction of the electric field, the liquid crystal material does not reorient in the direction of the electric field, and Bragg reflection from this periodic structure does not occur. When it is desired to rotate the liquid crystal 33, the second voltage may be set to a voltage higher than the Freedericksz transition, and the rotation of the liquid crystal 31 in a plane perpendicular to the substrate is not affected by this electric field. At this time, the second reflection state can be formed. The wavelength reflected here is different from the wavelength in the first reflection state because the periodic interval of the periodic structure is different. Since a plurality of periodic structures formed in the same space can be driven independently and different wavelengths can be selectively reflected, the light use efficiency in the same space can be improved.

【0035】[0035]

【発明の実施の形態】以下、図面を参照しながら本発明
の実施形態を説明する。図1は本発明の第1の実施形態
における液晶表示装置の構成を示す図であり、(a)は
装置構成の概略を示す断面図、(b)は装置の平面図、
(c)は望ましい電極構造の一例を示す平面図、
(d)、(e)、(f)は望ましい電極構造の3種類の
断面図である。図1において、31は第1の周期構造に
おける液晶材料、32は第1の周期構造における光硬化
性材料、33は第2の周期構造における液晶材料、34
は第2の周期構造における光硬化性材料、35、36は
液晶材料と光硬化性材料との混合物を挟み込む基板、3
7は第1の周期構造に電界を印加するための電極対、3
8は第2の周期構造に電界を印加するための電極対であ
る。また、39は実質的に一方向の電界を生じさせるこ
とができる電極対である。
Embodiments of the present invention will be described below with reference to the drawings. 1A and 1B are diagrams illustrating a configuration of a liquid crystal display device according to a first embodiment of the present invention, in which FIG. 1A is a cross-sectional view schematically illustrating the configuration of the device, FIG.
(C) is a plan view showing an example of a desirable electrode structure,
(D), (e), and (f) are three types of cross-sectional views of a desirable electrode structure. In FIG. 1, 31 is a liquid crystal material in the first periodic structure, 32 is a photocurable material in the first periodic structure, 33 is a liquid crystal material in the second periodic structure, 34
Is a photocurable material in the second periodic structure; 35 and 36 are substrates sandwiching a mixture of a liquid crystal material and a photocurable material;
7 is an electrode pair for applying an electric field to the first periodic structure,
Reference numeral 8 denotes an electrode pair for applying an electric field to the second periodic structure. Reference numeral 39 denotes an electrode pair capable of generating an electric field substantially in one direction.

【0036】本実施形態における表示装置の電極対37
及び38並びに39は、基板35、36に対して平行に
電界を印加できるようになっており、電極対37と電極
対38の電界方向は画素の中心付近で直交するようにな
っている。電極対37は第1の周期構造の液晶材料を駆
動させ、電極対38は第2の周期構造の液晶材料を駆動
させるために設けられている。
The electrode pair 37 of the display device according to the present embodiment.
, 38 and 39 can apply an electric field in parallel to the substrates 35 and 36, and the direction of the electric field between the electrode pair 37 and the electrode pair 38 is orthogonal to the vicinity of the center of the pixel. The electrode pair 37 is provided for driving a liquid crystal material having a first periodic structure, and the electrode pair 38 is provided for driving a liquid crystal material having a second periodic structure.

【0037】両基板35及び36には、それぞれポリイ
ミド配向膜が設けられており、液晶及び液晶性モノマー
の配向方向が電極対37による電界方向に対して平行な
方向と直交した方向になるようにラビング処理を施し、
アンチパラレルとなるように約10μmの間隔で貼り合
わされてある。そこに、誘電異方性が負の液晶と、光照
射により重合し、かつ液晶と同様に配向性を有する光硬
化性液晶性モノマーとを混合したものが注入されてい
る。
A polyimide alignment film is provided on each of the substrates 35 and 36 so that the alignment direction of the liquid crystal and the liquid crystalline monomer is perpendicular to the direction parallel to the electric field direction by the electrode pair 37. Rubbing treatment,
They are bonded at an interval of about 10 μm so as to be anti-parallel. A mixture of a liquid crystal having a negative dielectric anisotropy and a photocurable liquid crystalline monomer polymerized by light irradiation and having the same orientation as the liquid crystal is injected therein.

【0038】注入された液晶及び液晶性モノマーは、前
記ラビング処理の効果により、電極対37による電界方
向とそれに直交する方向の2方向に配向している。そこ
に後述する干渉光を表示装置に照射すると、干渉による
定在波の腹の部分で液晶性モノマーが配向した状態で重
合し、液晶性モノマーが重合した層と液晶性モノマーが
重合していない層(すなわち、液晶材料層)とが交互に
積層した第1の周期構造が形成される。この際、液晶性
モノマーが全て重合しないようにする。すなわち、重合
を完了させるのに必要な照射量の多くとも1/2以下の
照射量を照射する。
The injected liquid crystal and liquid crystalline monomer are oriented in two directions, that is, the direction of the electric field by the electrode pair 37 and the direction perpendicular thereto, due to the effect of the rubbing treatment. When the display device is irradiated with interference light described later, the liquid crystal monomer is polymerized in a state where the liquid crystal monomer is oriented at the antinode of the standing wave due to the interference, and the liquid crystal monomer polymerized layer and the liquid crystal monomer are not polymerized. A first periodic structure in which layers (ie, liquid crystal material layers) are alternately stacked is formed. At this time, all liquid crystal monomers are not polymerized. That is, the irradiation amount is at most 1 / or less of the irradiation amount necessary for completing the polymerization.

【0039】前記操作により第1の周期構造が形成され
た後、定在波の周期間隔をレーザの入射角度により変え
て、あるいは波長の異なるレーザを用いて、前記と同様
に表示装置に干渉光を照射すると、配向した状態で液晶
性モノマーが重合し、第2の周期構造が形成される。こ
れらの操作の結果、同一空間内に2つの周期構造を作製
することができ、2つの周期構造の配向方向は直交して
いる。
After the first periodic structure is formed by the above-described operation, the interference light is applied to the display device in the same manner as described above by changing the periodic interval of the standing wave according to the incident angle of the laser or using a laser having a different wavelength. Is irradiated, the liquid crystalline monomer is polymerized in the aligned state, and a second periodic structure is formed. As a result of these operations, two periodic structures can be produced in the same space, and the orientation directions of the two periodic structures are orthogonal.

【0040】本実施形態1の表示装置において、電圧を
印加しない状態では、それぞれの周期構造における液晶
と液晶性モノマーが配向しているので屈折率差がなく、
かつ第1と第2の周期構造の間には周期性がないのでブ
ラッグ反射による反射光は観測されず、透明状態であ
る。ところが、電極対37に電圧を印加すると、第1の
周期構造の液晶材料31が電界方向に再配向し、ブラッ
グ反射による青の反射光を観測できる効果が生じる。こ
の際、第2の周期構造の液晶材料33は、電界方向と配
向方向が直交していることから電界によって再配向する
ことはなく、ブラッグ反射は起こらない。また、電極対
38に電圧を印加すると、第2の周期構造の液晶材料3
3が電界方向に再配向し、第2の周期構造の液晶材料及
び液晶性モノマーとの屈折率が生じるので、ブラッグ反
射による緑の反射光を観測できる効果が生じる。
In the display device of the first embodiment, when no voltage is applied, there is no difference in the refractive index because the liquid crystal and the liquid crystalline monomer in each periodic structure are oriented.
Further, since there is no periodicity between the first and second periodic structures, reflected light due to Bragg reflection is not observed, and the structure is in a transparent state. However, when a voltage is applied to the electrode pair 37, the liquid crystal material 31 having the first periodic structure is reoriented in the direction of the electric field, and an effect of observing blue reflected light due to Bragg reflection occurs. At this time, the liquid crystal material 33 having the second periodic structure does not reorient due to the electric field since the direction of the electric field is orthogonal to the orientation direction, and does not cause Bragg reflection. When a voltage is applied to the electrode pair 38, the liquid crystal material 3 having the second periodic structure
3 is re-oriented in the direction of the electric field, and a refractive index is generated between the liquid crystal material and the liquid crystalline monomer having the second periodic structure, so that an effect of observing green reflected light due to Bragg reflection occurs.

【0041】本発明における第2の実施形態の液晶表示
装置は、前記第1の実施形態で示した両基板35及び3
6に液晶と光硬化性液晶性モノマーとの混合物が狭持さ
れ、電極対39が具備されたものである。前記第1の実
施形態との違いは、電極対39により、画素内の広い範
囲にわたり、実質的に一方向の電界を任意の時間印加す
ることができる点にある。また、直交する電界を時間的
に分けて液晶に印加する点にある。
The liquid crystal display device according to the second embodiment of the present invention comprises the two substrates 35 and 3 shown in the first embodiment.
6, a mixture of a liquid crystal and a photocurable liquid crystalline monomer is sandwiched, and an electrode pair 39 is provided. The difference from the first embodiment is that the electrode pair 39 can apply an electric field in substantially one direction over a wide range in a pixel for an arbitrary time. Another feature is that orthogonal electric fields are applied to the liquid crystal in a time-division manner.

【0042】第1の実施形態と同様に、両基板35、3
6には、それぞれポリイミド配向膜が設けられており、
液晶及び液晶性モノマーの配向方向が矢印40の方向に
対して平行な方向と直交した方向になるようにラビング
処理を施し、アンチパラレルとなるように約10μmの
間隔で貼り合わされてある。そこに、誘電異方性が負の
液晶と、光照射により重合し、かつ液晶と同様に配向性
を有する光硬化性液晶性モノマーとを混合したものが注
入されている。
As in the first embodiment, both substrates 35, 3
6 are provided with polyimide alignment films, respectively.
Rubbing is performed so that the orientation direction of the liquid crystal and the liquid crystalline monomer is orthogonal to the direction parallel to the direction of the arrow 40, and the substrates are bonded at an interval of about 10 μm so as to be antiparallel. A mixture of a liquid crystal having a negative dielectric anisotropy and a photocurable liquid crystalline monomer polymerized by light irradiation and having the same orientation as the liquid crystal is injected therein.

【0043】注入された液晶及び液晶性モノマーは、前
記ラビング処理の効果により、矢印40の方向とそれに
直交する方向の2方向に配向している。そこに後述する
干渉光を表示装置に照射すると、干渉による定在波の腹
の部分で液晶性モノマーが配向した状態で重合し、液晶
性モノマーが重合した層と液晶性モノマーが重合してい
ない層(すなわち、液晶材料層)とが交互に積層した第
1の周期構造が形成される。この際、液晶性モノマーが
全て重合しないようにする。すなわち、重合を完了させ
るのに必要な照射量の多くとも1/2以下の照射量を照
射する。
The injected liquid crystal and liquid crystalline monomer are oriented in two directions, the direction of the arrow 40 and the direction orthogonal to the direction, due to the effect of the rubbing treatment. When the display device is irradiated with interference light described later, the liquid crystal monomer is polymerized in a state where the liquid crystal monomer is oriented at the antinode of the standing wave due to the interference, and the liquid crystal monomer polymerized layer and the liquid crystal monomer are not polymerized. A first periodic structure in which layers (ie, liquid crystal material layers) are alternately stacked is formed. At this time, all liquid crystal monomers are not polymerized. That is, the irradiation amount is at most 1 / or less of the irradiation amount necessary for completing the polymerization.

【0044】前記操作により第1の周期構造が形成され
た後、定在波の周期間隔をレーザの入射角度により変え
て、あるいは波長の異なるレーザを用いて、前記と同様
に表示装置に干渉光を照射すると、配向した状態で液晶
性モノマーが重合し、第2の周期構造が形成される。こ
れらの操作の結果、同一空間内に2つの周期構造を作製
することができ、2つの周期構造の配向方向は直交して
いる。
After the first periodic structure is formed by the above-described operation, the interference light is applied to the display device in the same manner as described above by changing the periodic interval of the standing wave according to the incident angle of the laser or using a laser having a different wavelength. Is irradiated, the liquid crystalline monomer is polymerized in the aligned state, and a second periodic structure is formed. As a result of these operations, two periodic structures can be produced in the same space, and the orientation directions of the two periodic structures are orthogonal.

【0045】本実施形態2の表示装置において、電圧を
印加しない状態では、それぞれの周期構造における液晶
と液晶性モノマーが配向しているので屈折率差がなく、
かつ第1と第2の周期構造の間には周期性がないのでブ
ラッグ反射による反射光は観測されず、透明状態であ
る。ところが、液晶の応答速度より速い周期で、半周期
に相当する時間、電極対39に図1(c)にあるような
比率で電圧を印加し、次の半周期の際、第二の電圧を図
1(c)の比率で90°回転した方向に、その大きさを
液晶のフレデリクス転移以下に設定して印加すると、第
1の周期構造の液晶材料31が電界方向に再配向し、ブ
ラッグ反射による青の反射光を観測できる効果が生じ
る。この際、第2の周期構造の液晶材料33は、電界方
向と配向方向が直交していることから電界によって再配
向することはなく、ブラッグ反射は起こらない。さら
に、第二の電圧の大きさをフレデリクス転移以上の大き
さにすると、液晶材料33の再配向も起こり、ブラッグ
反射による緑の反射光も観測できる。
In the display device of the second embodiment, when no voltage is applied, the liquid crystal and the liquid crystalline monomer in each periodic structure are oriented, so that there is no difference in refractive index.
Further, since there is no periodicity between the first and second periodic structures, reflected light due to Bragg reflection is not observed, and the structure is in a transparent state. However, a voltage is applied to the electrode pair 39 in a cycle faster than the response speed of the liquid crystal and for a time corresponding to a half cycle at a ratio as shown in FIG. 1C, and in the next half cycle, the second voltage is applied. When the magnitude is set to be equal to or less than the Freedericksz transition of the liquid crystal in a direction rotated by 90 ° in the ratio of FIG. 1C, the liquid crystal material 31 having the first periodic structure is re-oriented in the direction of the electric field, and the Bragg reflection occurs. The effect of observing the blue reflected light due to is produced. At this time, the liquid crystal material 33 having the second periodic structure does not reorient due to the electric field since the direction of the electric field is orthogonal to the orientation direction, and does not cause Bragg reflection. Furthermore, when the magnitude of the second voltage is equal to or larger than the Freedericksz transition, realignment of the liquid crystal material 33 occurs, and green reflected light due to Bragg reflection can be observed.

【0046】本発明における第3の実施形態の液晶表示
装置は、前記第1の実施形態で示した両基板35及び3
6に液晶と光硬化性液晶性モノマーとの混合物が狭持さ
れ、電極対39が具備されたものである。前記第1の実
施形態との違いは、液晶として、印加電圧の周波数によ
り誘電異方性が正又は負となる二周波液晶を用いること
と、両基板35、36にラビング処理を施さないことに
ある。
The liquid crystal display device according to the third embodiment of the present invention comprises the two substrates 35 and 3 shown in the first embodiment.
6, a mixture of a liquid crystal and a photocurable liquid crystalline monomer is sandwiched, and an electrode pair 39 is provided. The difference from the first embodiment is that a two-frequency liquid crystal whose dielectric anisotropy is positive or negative depending on the frequency of an applied voltage is used as the liquid crystal, and that no rubbing treatment is performed on both substrates 35 and 36. is there.

【0047】本実施形態3の表示装置の製造において
は、電極対39に図1(c)にあるような比率で、実質
的に矢印40の方向に、液晶の誘電率異方性が正になる
周波数の電界を印加する。このとき、注入された液晶及
び液晶性モノマーが電界方向に配向し、液晶の異常光軸
が電界方向に向くことになる。その状態を保持し、後述
する干渉光を表示装置に照射すると、前記第1の実施形
態と同様に、配向した液晶性モノマーが重合した層と液
晶材料層とが交互に積層した第1の周期構造が形成され
ることになる。この際、液晶性モノマーが全て重合しな
いようにする。すなわち、重合を完了させるのに必要な
照射量の多くとも1/2以下の照射量を照射する。
In the manufacture of the display device according to the third embodiment, the dielectric anisotropy of the liquid crystal is positively applied to the electrode pair 39 at a ratio as shown in FIG. An electric field of a certain frequency is applied. At this time, the injected liquid crystal and liquid crystalline monomer are oriented in the direction of the electric field, and the extraordinary optical axis of the liquid crystal is oriented in the direction of the electric field. In this state, when the display device is irradiated with interference light, which will be described later, as in the first embodiment, the first period in which the layer in which the aligned liquid crystalline monomer is polymerized and the liquid crystal material layer are alternately stacked is formed. A structure will be formed. At this time, all liquid crystal monomers are not polymerized. That is, the irradiation amount is at most 1 / or less of the irradiation amount necessary for completing the polymerization.

【0048】前記操作により第1の周期構造が形成され
た後、電極対39に前記と同様に、図1(c)の比率を
90°回転させ、実質的に矢印40と垂直の方向に、液
晶の誘電率異方性が正になる周波数の電界を印加する
と、液晶の異常光軸とまだ重合していない液晶性モノマ
ーがその電界方向に再び配向すし、その状態で表示装置
に干渉光を照射すると、第2の周期構造を形成できる。
これらの操作の結果、同一空間内に2つの周期構造を作
製することができ、かつ2つの周期構造の配向方向は直
交している。この方法で作製した第3の実施形態の表示
装置は、前記第1の実施形態の表示装置と同様の効果を
奏する。
After the first periodic structure is formed by the above-described operation, the electrode pair 39 is rotated by 90 ° in the same manner as described above in the ratio of FIG. When an electric field at a frequency at which the dielectric anisotropy of the liquid crystal becomes positive is applied, the extraordinary optical axis of the liquid crystal and the liquid crystalline monomer that has not yet been polymerized are oriented again in the direction of the electric field, and in that state interference light is applied to the display. Upon irradiation, a second periodic structure can be formed.
As a result of these operations, two periodic structures can be produced in the same space, and the orientation directions of the two periodic structures are orthogonal. The display device according to the third embodiment manufactured by this method has the same effect as the display device according to the first embodiment.

【0049】図3は、本発明における第4の実施形態の
液晶表示装置の製造方法を説明した概略図である。図3
において、41は表示装置、42はレーザビーム、43
はビームスプリッタ、44及び45はミラー、46はレ
ーザを示す。
FIG. 3 is a schematic view illustrating a method for manufacturing a liquid crystal display device according to a fourth embodiment of the present invention. FIG.
, 41 is a display device, 42 is a laser beam, 43
Indicates a beam splitter, 44 and 45 indicate mirrors, and 46 indicates a laser.

【0050】本発明における第4の実施形態は、前記第
1、第2及び第3の実施形態に示したように基板間に液
晶と光硬化性液晶性モノマーとを混合した混合物を狭持
した表示装置41の製造である。混合物には、極微量の
重合開始剤(カンファンキノン等)が添加されている。
In the fourth embodiment of the present invention, a mixture of a liquid crystal and a photocurable liquid crystalline monomer is sandwiched between substrates as shown in the first, second and third embodiments. This is the manufacture of the display device 41. A very small amount of a polymerization initiator (e.g., camphanquinone) is added to the mixture.

【0051】図3に示す光学系において、波長488n
mのアルゴンレーザ46よりのレーザビーム42は、ビ
ームスプリッタ43により2光束に分岐された後、ミラ
ー44及び45によってビームの進行方向を変え、表示
装置41に入射する。この時、2光束のレーザビームの
偏光方向は、第1、第2の実施形態では液晶及び液晶性
モノマーがラビング処理により配向しているいずれかの
配向方向、第3の実施形態では誘電異方性が正となる周
波数を印加し液晶及び液晶性モノマーが配向している方
向と一致させておく。
In the optical system shown in FIG.
The laser beam 42 from the m. argon laser 46 is split into two light beams by the beam splitter 43, and then the traveling direction of the beam is changed by mirrors 44 and 45 to be incident on the display device 41. At this time, the polarization direction of the two-beam laser beam is one of the alignment directions in which the liquid crystal and the liquid crystalline monomer are aligned by the rubbing process in the first and second embodiments, and the dielectric anisotropic direction in the third embodiment. A frequency at which the property is positive is applied to match the direction in which the liquid crystal and the liquid crystalline monomer are oriented.

【0052】図4に示すようにある入射面に対してレー
ザビームの偏光をP偏光51とし、表示装置の法線方向
から入射させ(2光束の交差角度は180°)、表示装
置内で干渉させると、その偏光方向に定在波が発生す
る。この定在波の腹の部分では配向を保持したまま光硬
化性液晶性モノマーが重合するが、節の部分では重合が
起こらない。すなわち、重合した部分では液晶性モノマ
ーの比率が大きくなるが、重合していない部分では液晶
の比率が高くなり、第1の周期構造が形成される。ただ
し、照射量は液晶性モノマーが全て重合しない程度に抑
えておく。すなわち、重合を完了させるのに必要な照射
量の多くとも1/2以下の照射量だけを照射する。
As shown in FIG. 4, the polarization of the laser beam is set to P-polarized light 51 on a certain incident surface, and the P-polarized light 51 is incident from the normal direction of the display device (the crossing angle of the two light beams is 180 °) to cause interference in the display device. Then, a standing wave is generated in the polarization direction. At the antinodes of the standing wave, the photocurable liquid crystalline monomer polymerizes while maintaining the orientation, but no polymerization occurs at the nodes. That is, the ratio of the liquid crystal monomer increases in the polymerized portion, but increases in the non-polymerized portion, forming the first periodic structure. However, the irradiation dose is kept to such an extent that all the liquid crystalline monomers are not polymerized. That is, only the irradiation amount of at most 1 / or less of the irradiation amount necessary for completing the polymerization is irradiated.

【0053】次に、図4に示すように2光束のレーザビ
ームの交差角度を90°、偏光方向をS偏光52とし、
第1の実施形態では前述と直交した配向方向、第2の実
施形態では前述と直交した方向に誘電異方性が正となる
周波数を印加し液晶及び液晶性モノマーが配向している
方向と一致させて干渉光を照射すると、第2の周期構造
が形成できることになり、同一空間内で2つの周期間隔
の異なる周期構造が作製できることになる。これら2つ
の周期構造を独立に駆動することにより、青(中心波長
が488nm)と緑(中心波長が514nm)のブラッ
グ反射を得ることができる。
Next, as shown in FIG. 4, the crossing angle of the two laser beams is 90 °, the polarization direction is S polarization 52,
In the first embodiment, a frequency at which the dielectric anisotropy is positive is applied in the direction orthogonal to the above in the first embodiment, and in the direction perpendicular to the above in the second embodiment, the direction matches the direction in which the liquid crystal and the liquid crystalline monomer are oriented. Then, when the interference light is applied, a second periodic structure can be formed, and two periodic structures having different periodic intervals can be manufactured in the same space. By independently driving these two periodic structures, it is possible to obtain Bragg reflection of blue (the center wavelength is 488 nm) and green (the center wavelength is 514 nm).

【0054】図5は、本発明における第5の実施形態の
液晶表示装置の製造方法を説明した概略図である。図5
において61は表示装置、62はレーザビーム1、63
はビームスプリッタ、64及び65はミラー、66はレ
ーザ1、67はレーザ2、68はレーザビーム2、69
はシャッタを示す。
FIG. 5 is a schematic diagram illustrating a method for manufacturing a liquid crystal display device according to a fifth embodiment of the present invention. FIG.
In the figure, 61 is a display device, 62 is a laser beam 1, 63
Is a beam splitter, 64 and 65 are mirrors, 66 is laser 1, 67 is laser 2, 68 is laser beam 2, 69
Indicates a shutter.

【0055】本発明における第5の実施形態は、前記第
1、第2及び第3の実施形態に示したように基板間に液
晶と光硬化性液晶性モノマーとを混合した混合物を狭持
した表示装置61の製造である。前記第4の実施形態と
の違いは、波長が異なる2つのレーザを用いることにあ
る。異なる波長のレーザを用いることで、表示装置への
入射角度が同一であっても干渉縞間隔は異なる。ここで
は、レーザビームの入射角度を表示装置表面の法線方向
とし、両レーザビームの偏光方向を互いに直交させて1
つの周期構造を作製する場合には片側のレーザビームを
電子シャッタなどで遮断し、本発明における第4の実施
形態と同様の操作を順次行なえば、同様の表示装置を作
製することができる。
In the fifth embodiment of the present invention, a mixture of a liquid crystal and a photocurable liquid crystalline monomer is sandwiched between substrates as shown in the first, second and third embodiments. This is the manufacture of the display device 61. The difference from the fourth embodiment resides in that two lasers having different wavelengths are used. By using lasers of different wavelengths, the interference fringe intervals are different even if the incident angle on the display device is the same. Here, the incident angle of the laser beam is defined as the normal direction of the surface of the display device, and the polarization directions of the two laser beams are orthogonal to each other.
When one periodic structure is manufactured, one laser beam is blocked by an electronic shutter or the like, and the same operation as in the fourth embodiment of the present invention is sequentially performed, whereby the same display device can be manufactured.

【0056】図6は本発明における第6の実施形態の表
示装置の製造方法を説明した概略図である。図6におい
て71は表示装置、72はレーザビーム、73はビーム
スプリッタ1、74及び75はミラー、76はレーザ、
77はビームスプリッタ2、78はビームスプリッタ3
を示す。
FIG. 6 is a schematic diagram illustrating a method for manufacturing a display device according to a sixth embodiment of the present invention. In FIG. 6, 71 is a display device, 72 is a laser beam, 73 is a beam splitter 1, 74 and 75 are mirrors, 76 is a laser,
77 is the beam splitter 2, 78 is the beam splitter 3
Is shown.

【0057】本発明における第6の実施形態は、前記第
1の実施形態に示すように基板間に液晶と光硬化性液晶
性モノマーを混合した混合物を狭持した表示装置51の
製造である。前記第4及び第5の実施形態との違いは、
波長が異なる2つのレーザを表示装置に同時に照射する
ことにある。第5の実施形態と同様に異なる波長のレー
ザを用いることで、表示装置への入射角度が同一であっ
ても干渉縞間隔は異なり、レーザビームの入射角度を表
示装置表面の法線方向とし、両レーザビームの偏光方向
を互いに直交させて2つの周期構造を作製するために両
レーザビームを同時に表示装置に入射させれば、同一空
間内に2つの周期間隔の異なる周期構造を作製すること
ができる。
The sixth embodiment of the present invention is the manufacture of a display device 51 in which a mixture of a liquid crystal and a photocurable liquid crystalline monomer is sandwiched between substrates as shown in the first embodiment. The difference from the fourth and fifth embodiments is that
It is to irradiate a display device with two lasers having different wavelengths at the same time. By using lasers of different wavelengths as in the fifth embodiment, the interference fringe intervals are different even if the incident angle to the display device is the same, and the incident angle of the laser beam is set to the normal direction of the display device surface, If two laser beams are simultaneously incident on the display device to produce two periodic structures with the polarization directions of both laser beams orthogonal to each other, it is possible to produce two periodic structures having different periodic intervals in the same space. it can.

【0058】図5は本発明における第7の実施形態の液
晶表示装置の製造方法を説明した概略図である。図5に
おいて61は表示装置、62はレーザビーム、63はビ
ームスプリッタ、64及び65はミラー、66、67は
基板を示す。
FIG. 5 is a schematic diagram illustrating a method for manufacturing a liquid crystal display device according to a seventh embodiment of the present invention. In FIG. 5, 61 is a display device, 62 is a laser beam, 63 is a beam splitter, 64 and 65 are mirrors, and 66 and 67 are substrates.

【0059】本発明における第7の実施形態は、前記第
1及び第2の実施形態に示したように基板間に液晶と光
硬化性液晶性モノマーとを混合した混合物を狭持した表
示装置61の製造である。前記第4の実施形態との違い
は、レーザビームを4光束に分岐し、2光束ずつを干渉
させて、かつ2光束対の交差角度を180°及び90°
とし、2つの干渉縞間隔が異なる干渉光を用いることに
ある。その際、2光束対の偏光方向は一致させ、2対光
束間の偏光方向は直交させておく。そして、本発明の第
1、第2の実施形態で互いに直交した2つの配向方向と
前記偏光方向とを一致させて、2つの干渉光を同時に表
示装置に照射すると、それぞれ液晶性モノマーが配向方
向に保持されたまま定在波の腹の部分で重合し、2つの
周期間隔が異なる周期構造を形成することができる。こ
の方法で作製した第7の実施形態の表示装置は、前記第
1の実施形態の表示装置と同様の効果を期待できる。
The seventh embodiment of the present invention is directed to a display device 61 in which a mixture of a liquid crystal and a photocurable liquid crystalline monomer is sandwiched between substrates as described in the first and second embodiments. The manufacture of. The difference from the fourth embodiment is that the laser beam is split into four light beams, two light beams interfere with each other, and the intersection angles of the two light beam pairs are 180 ° and 90 °.
And the use of interference light having different interference fringe intervals. At this time, the polarization directions of the two light flux pairs are set to be the same, and the polarization directions between the two light fluxes are set to be orthogonal. Then, in the first and second embodiments of the present invention, when the two alignment directions orthogonal to each other and the polarization direction are made to coincide with each other and the display device is simultaneously irradiated with two interference lights, the liquid crystal monomers are respectively oriented in the alignment directions. While standing at the antinode portion of the standing wave to form a periodic structure having two different periodic intervals. The display device according to the seventh embodiment manufactured by this method can expect the same effect as the display device according to the first embodiment.

【0060】なお、前記実施形態においては、2光束の
交差角度を180°又は90°として説明してきたが、
これに限定されるものではない。層の向きも、作製する
際に2光束の方向を制御することにより制御可能であ
る。すなわち、複数のブラッグ反射光を一定の観測方向
に集中させたり、異なる方向に反射させたりすることが
できる。
In the above embodiment, the description has been made assuming that the intersection angle of the two light beams is 180 ° or 90 °.
It is not limited to this. The direction of the layer can also be controlled by controlling the directions of the two light beams during fabrication. That is, a plurality of Bragg reflected lights can be concentrated in a certain observation direction or reflected in different directions.

【0061】また、前記実施形態では、同一空間内に2
つの周期間隔の異なる周期構造を例に挙げて説明してき
たが、これに限定されるものでなく、同一空間内に3つ
又はそれ以上の複数の周期構造を前記実施形態を用いて
形成できることは明らかであり、これにより同一空間内
における光利用効率をより高めることができる。また、
これらの周期構造を独立駆動させるための電極対材料に
ついても限定されず、ITO(酸化インジウム錫)に代
表される透明電極やアルミニウム等の金属導体を用いる
ことができる。
In the above embodiment, two or more
Although a periodic structure having two different periodic intervals has been described as an example, the present invention is not limited to this, and it is possible to form three or more periodic structures in the same space using the above embodiment. Obviously, this makes it possible to further increase the light use efficiency in the same space. Also,
The electrode pair material for independently driving these periodic structures is not limited, and a transparent electrode typified by ITO (indium tin oxide) or a metal conductor such as aluminum can be used.

【0062】以上、本発明を実施形態に基づいて具体的
に説明したが、本発明は前記実施形態に限定されるもの
ではなく、その要旨を逸脱していない範囲において種々
変更可能である。
As described above, the present invention has been specifically described based on the embodiments. However, the present invention is not limited to the above-described embodiments, and can be variously modified without departing from the gist thereof.

【0063】[0063]

【発明の効果】本発明における効果を簡単に説明すれ
ば、以下の通りである。本発明における液晶表示装置
は、同一空間内に屈折率変調が可変な周期構造が複数形
成され、それぞれの周期構造は、電界により配向方向を
制御できる液晶材料からなる層と、電界により配向方向
を制御できない光学異方性を有する光硬化性材料からな
る層とが交互に積層した多層構造であり、かつ、独立に
駆動することが可能であり、かつ、各周期構造が異なる
波長帯を選択反射するためと独立に駆動するための電極
対が複数具備されている。また、必要に応じ、液晶の応
答速度より速い周期で、実質的に一方向となる電界を、
方向を変えて印加する。その結果、それぞれの周期構造
は、電界で配向方向を制御できる液晶材料の層と、電界
で配向方向を制御できない光学異方性を有する光硬化性
材料の層との屈折率差を、周期構造ごとに設けてある電
極対により独立に変えることができ、各周期構造の屈折
率周期により異なる波長帯を反射できることから、同一
空間内での光利用効率を高めることができる。
The effects of the present invention will be briefly described as follows. In the liquid crystal display device of the present invention, a plurality of periodic structures with variable refractive index modulation are formed in the same space, and each periodic structure has a layer made of a liquid crystal material whose orientation can be controlled by an electric field, and It has a multilayer structure in which layers of photocurable materials having optical anisotropy that cannot be controlled are alternately stacked, and can be driven independently, and each periodic structure selectively reflects different wavelength bands. And a plurality of electrode pairs for driving independently of each other. In addition, if necessary, an electric field that is substantially unidirectional with a period faster than the response speed of the liquid crystal,
Apply in a different direction. As a result, each periodic structure shows the difference in the refractive index between a layer of a liquid crystal material whose orientation can be controlled by an electric field and a layer of a photocurable material having optical anisotropy whose orientation can not be controlled by an electric field. Each wavelength can be changed independently by the electrode pair provided for each of the periodic structures, and different wavelength bands can be reflected by the refractive index period of each periodic structure, so that the light use efficiency in the same space can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る液晶表示装置の構成の一例を示し
た図である。
FIG. 1 is a diagram showing an example of a configuration of a liquid crystal display device according to the present invention.

【図2】本発明に係る液晶表示装置の表示動作の一例を
示した図である。
FIG. 2 is a diagram illustrating an example of a display operation of the liquid crystal display device according to the present invention.

【図3】本発明に係る液晶表示装置の製造方法における
光学系の一例を示した図である。
FIG. 3 is a diagram showing an example of an optical system in a method for manufacturing a liquid crystal display device according to the present invention.

【図4】本発明に係る液晶表示装置の製造方法における
レーザビームの偏光方向の一例を示した図である。
FIG. 4 is a diagram illustrating an example of a polarization direction of a laser beam in the method for manufacturing a liquid crystal display device according to the present invention.

【図5】本発明に係る液晶表示装置の製造方法において
2つのレーザを用いた場合の光学系の一例を示した図で
ある。
FIG. 5 is a diagram showing an example of an optical system when two lasers are used in the method for manufacturing a liquid crystal display device according to the present invention.

【図6】本発明に係る液晶表示装置の製造方法において
4光束のレーザビームを用いた場合の光学系の一例を示
した図である。
FIG. 6 is a diagram showing an example of an optical system when a laser beam of four light beams is used in the method of manufacturing a liquid crystal display device according to the present invention.

【図7】従来の液晶表示素子の概略図である。FIG. 7 is a schematic view of a conventional liquid crystal display device.

【図8】従来の液晶表示素子の多層構造体を説明するた
めの図である。
FIG. 8 is a view for explaining a multilayer structure of a conventional liquid crystal display element.

【図9】図8に示した多層構造体の電界無印加及び印加
時における各層の長軸方向を示す図である。
9 is a diagram showing the major axis direction of each layer when no electric field is applied and when the multilayer structure shown in FIG. 8 is applied.

【符号の説明】[Explanation of symbols]

31…第1の周期構造における液晶材料 32…第1の周期構造における光硬化性材料 33…第2の周期構造における液晶材料 34…第2の周期構造における光硬化性材料 35…液晶材料及び光硬化性材料の混合物を挟み込む基
板 36…液晶材料及び光硬化性材料の混合物を挟み込む基
板 37…第1の周期構造に電界を印加するための電極対 38…第2の周期構造に電界を印加するための電極対 39…第2の周期構造の逆格子ベクトル 41…液晶表示装置 42…レーザビーム 43…ビームスプリッタ 44…ミラー 45…ミラー 46…レーザ 51…レーザビームの偏光方向(P偏光) 52…レーザビームの偏光方向(S偏光) 53…2光束レーザビームの交差角度 54…液晶表示装置断面 61…液晶表示装置 62…レーザビーム1 63…ビームスプリッタ 64…ミラー 65…ミラー 66…レーザ1 67…レーザ2 68…レーザビーム2 69…シャッタ 71…液晶表示装置 72…レーザビーム 73…ビームスプリッタ1 74…ミラー 75…ミラー 76…レーザ 77…ビームスプリッタ2 78…ビームスプリッタ3 101…透明基板 102…透明基板 103…透明電極 104…透明電極 105…液晶液滴 106…高分子材料 107…電源 108…入射光 109…反射光 110…透過光 20…多層構造 21…長軸方向がある方向に向いた層 22…長軸方向が平行な方向に向いた層 23…長軸方向がある方向に向いた層 24…長軸方向が直交する方向に向いた層
31: liquid crystal material in first periodic structure 32: photocurable material in first periodic structure 33: liquid crystal material in second periodic structure 34: photocurable material in second periodic structure 35: liquid crystal material and light Substrate sandwiching mixture of curable material 36 Substrate sandwiching mixture of liquid crystal material and photocurable material 37 Electrode pair for applying electric field to first periodic structure 38 Applying electric field to second periodic structure Electrode pair 39: reciprocal lattice vector of second periodic structure 41: liquid crystal display device 42: laser beam 43: beam splitter 44: mirror 45: mirror 46: laser 51: polarization direction of laser beam (P polarization) 52: Polarization direction of laser beam (S-polarized light) 53 Cross angle of two-beam laser beam 54 Cross section of liquid crystal display device 61 Liquid crystal display device 62 Laser beam 1 DESCRIPTION OF SYMBOLS 3 ... Beam splitter 64 ... Mirror 65 ... Mirror 66 ... Laser 1 67 ... Laser 2 68 ... Laser beam 2 69 ... Shutter 71 ... Liquid crystal display 72 ... Laser beam 73 ... Beam splitter 1 74 ... Mirror 75 ... Mirror 76 ... Laser 77 ... Beam splitter 2 78 Beam splitter 3 101 Transparent substrate 102 Transparent substrate 103 Transparent electrode 104 Transparent electrode 105 Liquid crystal droplet 106 Polymer material 107 Power supply 108 Incident light 109 Reflected light 110 Transmitted light Reference Signs List 20 multilayer structure 21 layer whose major axis direction is oriented in a certain direction 22 layer whose major axis direction is oriented in a parallel direction 23 layer whose major axis direction is oriented in a certain direction 24 direction in which the major axis direction is orthogonal Layer suitable for

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G09G 3/18 G09G 3/18 5C006 (72)発明者 葉山 浩 東京都港区芝五丁目7番1号 日本電気株 式会社内 Fターム(参考) 2H088 GA06 GA15 HA13 HA20 HA28 JA08 LA02 MA06 MA20 2H089 HA27 HA32 KA08 KA20 QA16 RA04 TA07 TA12 TA15 TA17 TA18 2H090 KA04 LA04 LA09 LA11 LA16 LA20 MA15 MB14 2H092 MA30 NA25 PA08 PA11 PA12 PA13 QA06 2H093 NA25 ND08 NE06 NF04 5C006 BB11 BD03 EC11 FA54 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G09G 3/18 G09G 3/18 5C006 (72) Inventor Hiroshi Hayama 5-7-1 Shiba 5-chome, Minato-ku, Tokyo F-term in NEC Corporation (reference) 2H088 GA06 GA15 HA13 HA20 HA28 JA08 LA02 MA06 MA20 2H089 HA27 HA32 KA08 KA20 QA16 RA04 TA07 TA12 TA15 TA17 TA18 2H090 KA04 LA04 LA09 LA11 LA16 LA20 MA15 MB14 2H092 MA30 PA12 PA06 2H093 NA25 ND08 NE06 NF04 5C006 BB11 BD03 EC11 FA54

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】同一空間内に屈折率が変調する周期構造が
複数形成され、それぞれの周期構造は、電界により配向
方向を制御できる液晶材料からなる層と、電界により配
向方向を制御できない光硬化性材料からなる層とが交互
に積層した多層構造であり、かつ、各周期構造が異なる
波長帯を選択反射するためと独立に駆動するための電極
対が具備されていることを特徴とする液晶表示装置。
A periodic structure in which a refractive index is modulated is formed in a plurality of spaces. Each periodic structure includes a layer made of a liquid crystal material whose alignment direction can be controlled by an electric field and a photo-curing layer whose alignment direction cannot be controlled by an electric field. Characterized by a multilayer structure in which layers made of conductive materials are alternately stacked, and an electrode pair is provided for selectively reflecting different wavelength bands in each periodic structure and independently driving the same. Display device.
【請求項2】液晶材料として誘電異方性が負の液晶、光
硬化性材料として光学異方性材料である液晶性モノマー
を用いたことを特徴とする請求項1に記載の液晶表示装
置。
2. The liquid crystal display device according to claim 1, wherein a liquid crystal material having a negative dielectric anisotropy is used as a liquid crystal material, and a liquid crystalline monomer which is an optically anisotropic material is used as a photocurable material.
【請求項3】液晶材料として印加電圧の周波数により誘
電異方性が正又は負となる二周波液晶、光硬化性材料と
して光学異方性材料である液晶性モノマーを用いたこと
を特徴とする請求項1に記載の液晶表示装置。
3. A liquid crystal material comprising a dual-frequency liquid crystal whose dielectric anisotropy becomes positive or negative depending on the frequency of an applied voltage, and a liquid crystal monomer which is an optically anisotropic material is used as a photocurable material. The liquid crystal display device according to claim 1.
【請求項4】同一空間内に2つの周期構造が形成されて
おり、周期構造間の配向方向が直交していることを特徴
とする請求項1〜3のいずれか1項に記載の液晶表示装
置。
4. The liquid crystal display according to claim 1, wherein two periodic structures are formed in the same space, and the orientation directions between the periodic structures are orthogonal to each other. apparatus.
【請求項5】同一空間内に3つの周期構造が形成されて
おり、周期構造間の配向方向が60°異なっていること
を特徴とする請求項1〜3のいずれか1項に記載の液晶
表示装置。
5. The liquid crystal according to claim 1, wherein three periodic structures are formed in the same space, and the alignment directions between the periodic structures are different by 60 °. Display device.
【請求項6】請求項1〜5のいずれか1項に記載の液晶
表示装置の製造方法であって、液晶材料と光学異方性を
有する光硬化性材料との混合物を基板間に挟み込み複数
方向に配向させる工程と、前記挟み込んだ基板に複数の
干渉光を照射し、光硬化性材料が重合した層と重合しな
い層とが交互に積層した多重の多層構造を製造する工程
とを備えていることを特徴とする液晶表示装置の製造方
法。
6. A method for manufacturing a liquid crystal display device according to claim 1, wherein a mixture of a liquid crystal material and a photocurable material having optical anisotropy is sandwiched between substrates. And a step of irradiating the sandwiched substrate with a plurality of interference lights to produce a multi-layered structure in which a layer of a photocurable material polymerized and a layer of a non-polymerized material are alternately stacked. A method of manufacturing a liquid crystal display device.
【請求項7】4光束のレーザ光の内、入射面に対して2
光束はP偏光とし、この2光束が干渉し、残り2光束は
S偏光で干渉することを特徴とする請求項6に記載の液
晶表示装置の製造方法。
7. The laser beam of the four light beams, two of which are incident on the incident surface.
7. The method according to claim 6, wherein the light beam is P-polarized light, the two light beams interfere with each other, and the remaining two light beams interfere with S-polarized light.
【請求項8】各偏光の入射角度が異なることを特徴とす
る請求項6又は7に記載の液晶表示装置の製造方法。
8. The method for manufacturing a liquid crystal display device according to claim 6, wherein incident angles of the respective polarized lights are different.
【請求項9】異なる単一波長を発振するレーザを2つ用
い、各レーザ光を2光束に分岐し、分岐した2光束が干
渉し、光硬化性材料を硬化することを特徴とする請求項
6に記載の液晶表示装置の製造方法。
9. The method according to claim 1, wherein two laser beams emitting different single wavelengths are used, each laser beam is split into two light beams, and the two split light beams interfere with each other to cure the photocurable material. 7. The method for manufacturing a liquid crystal display device according to item 6.
【請求項10】入射面に対して1つのレーザ光から分岐
された2光束の偏光がP偏光、残り2光束の偏光がS偏
光であることを特徴とする請求項9に記載の液晶表示装
置の製造方法。
10. The liquid crystal display device according to claim 9, wherein the polarization of two light beams branched from one laser beam with respect to the incident surface is P polarization, and the polarization of the remaining two light beams is S polarization. Manufacturing method.
【請求項11】1つのレーザ光から分岐された2光束の
交差角度がもう1つのレーザで作製される干渉縞間隔と
同一にならない角度であることを特徴とする請求項9又
は10に記載の液晶表示装置の製造方法。
11. The method according to claim 9, wherein the crossing angle of the two light beams branched from one laser beam is an angle that is not the same as the interval between interference fringes produced by another laser beam. A method for manufacturing a liquid crystal display device.
【請求項12】請求項1〜5のいずれか1項に記載の液
晶表示装置の駆動方法であって、複数個の電極対に異な
った電圧を印加し、実質的に一方向の電界を生じさせる
ことを特徴とする液晶表示装置の駆動方法。
12. A method of driving a liquid crystal display device according to claim 1, wherein different voltages are applied to a plurality of electrode pairs to generate a substantially unidirectional electric field. A method for driving a liquid crystal display device.
【請求項13】請求項1〜5のいずれか1項に記載の液
晶表示装置の駆動方法であって、複数個の電極対に異な
った電圧を一定時間印加し、実質的に一方向の電界を生
じさせた後、印加電圧の値を変化させ、実質的に一方向
の電界を前記電界とは異なる方向に一定時間生じさせる
操作を繰り返し、電圧印加時間の平均として、実質的に
複数方向の電界を生じさせることを特徴とする液晶表示
装置の駆動方法。
13. The method for driving a liquid crystal display device according to claim 1, wherein different voltages are applied to a plurality of pairs of electrodes for a predetermined time, and a substantially unidirectional electric field is applied. After that, the operation of changing the value of the applied voltage and generating an electric field in a substantially one direction in a direction different from the electric field for a certain period of time is repeated, and as an average of the voltage application time, the operation is substantially performed in a plurality of directions. A method for driving a liquid crystal display device, wherein an electric field is generated.
【請求項14】電極対の数が4つであることを特徴とす
る請求項12又は13に記載の液晶表示装置の駆動方
法。
14. The driving method for a liquid crystal display device according to claim 12, wherein the number of electrode pairs is four.
【請求項15】実質的な複数の方向が直交する2方向で
あることを特徴とする請求項13又は14に記載の液晶
表示装置の駆動方法。
15. The driving method of a liquid crystal display device according to claim 13, wherein substantially a plurality of directions are two orthogonal directions.
JP31614798A 1998-11-06 1998-11-06 Liquid crystal display device and method of manufacturing and driving the same Expired - Lifetime JP3148188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31614798A JP3148188B2 (en) 1998-11-06 1998-11-06 Liquid crystal display device and method of manufacturing and driving the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31614798A JP3148188B2 (en) 1998-11-06 1998-11-06 Liquid crystal display device and method of manufacturing and driving the same

Publications (2)

Publication Number Publication Date
JP2000147477A true JP2000147477A (en) 2000-05-26
JP3148188B2 JP3148188B2 (en) 2001-03-19

Family

ID=18073804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31614798A Expired - Lifetime JP3148188B2 (en) 1998-11-06 1998-11-06 Liquid crystal display device and method of manufacturing and driving the same

Country Status (1)

Country Link
JP (1) JP3148188B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006088096A1 (en) * 2005-02-17 2006-08-24 Sharp Kabushiki Kaisha Display device
JP2007183559A (en) * 2005-12-06 2007-07-19 Sharp Corp Display device
JP2008262055A (en) * 2007-04-12 2008-10-30 Sharp Corp Liquid crystal display
CN103513463A (en) * 2012-06-20 2014-01-15 三星显示有限公司 Liquid crystal display device and method of manufacturing a liquid crystal display device
JP2019502172A (en) * 2015-11-18 2019-01-24 エヴェリックス インコーポレイテッド Interference filter membrane for display applications

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006088096A1 (en) * 2005-02-17 2006-08-24 Sharp Kabushiki Kaisha Display device
JP2007183559A (en) * 2005-12-06 2007-07-19 Sharp Corp Display device
JP2008262055A (en) * 2007-04-12 2008-10-30 Sharp Corp Liquid crystal display
CN103513463A (en) * 2012-06-20 2014-01-15 三星显示有限公司 Liquid crystal display device and method of manufacturing a liquid crystal display device
JP2019502172A (en) * 2015-11-18 2019-01-24 エヴェリックス インコーポレイテッド Interference filter membrane for display applications
US11347098B2 (en) 2015-11-18 2022-05-31 Everix, Inc. Interference filter film for display applications

Also Published As

Publication number Publication date
JP3148188B2 (en) 2001-03-19

Similar Documents

Publication Publication Date Title
KR101506950B1 (en) Multi-layer achromatic liquid crystal polarization gratings and related fabrication methods
CN109983378B (en) Optical element and optical element manufacturing method
JPH1048605A (en) Light control element and its production
JP2001201635A (en) Porlarized light element
JP3148188B2 (en) Liquid crystal display device and method of manufacturing and driving the same
TWI716766B (en) Flexible, adjustable lens power liquid crystal cells and lenses
JP4122762B2 (en) Polarization selective hologram optical element and image display device
JP3315434B2 (en) Volume hologram optical film, method of manufacturing the same, and liquid crystal optical element using the same
CN100451755C (en) Multilayer film optical member and production method theerfor
JP2776351B2 (en) Display device and method of manufacturing the same
JP2010506205A (en) Polarizing plate and polarized light irradiation apparatus including the same
JPH11237612A (en) High polymer dispersed liquid crystal element and its production
JP7136911B2 (en) image display device
RU2695937C1 (en) Method of manufacturing a liquid crystal structure for a diffraction grating (versions), a liquid crystal diffraction grating, a dynamic diffraction grating
JP4549833B2 (en) Alignment film, manufacturing technique thereof, and liquid crystal device
JPH1090730A (en) Optical element, its drive method and display device
JP3371393B2 (en) Display element and method of manufacturing the same
WO2023120496A1 (en) Liquid crystal element and method for manufacturing liquid crystal element
JPH08152605A (en) Display/recording medium and its production
JP2002357802A (en) Optical switching element, spatial light modulator and picture display device
JP2000162636A (en) Liquid crystal display device and its production
JPH1078569A (en) Optical element and driving method of the optical element as well as display device
JP2004170795A (en) Method of manufacturing alignment layer, and method of manufacturing liquid crystal device
JP4501058B2 (en) Optical element and manufacturing method thereof
JP2008209932A (en) Polarization selecting hologram optical device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080112

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080112

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term