JP2000144243A - Manufacture of driving transmission mechanism parts excellent in contact fatigue life strength - Google Patents

Manufacture of driving transmission mechanism parts excellent in contact fatigue life strength

Info

Publication number
JP2000144243A
JP2000144243A JP32645298A JP32645298A JP2000144243A JP 2000144243 A JP2000144243 A JP 2000144243A JP 32645298 A JP32645298 A JP 32645298A JP 32645298 A JP32645298 A JP 32645298A JP 2000144243 A JP2000144243 A JP 2000144243A
Authority
JP
Japan
Prior art keywords
less
surface roughness
carburizing
quenching
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP32645298A
Other languages
Japanese (ja)
Inventor
Masahiro Toda
正弘 戸田
Takeshi Miki
武司 三木
Seiji Ito
誠司 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP32645298A priority Critical patent/JP2000144243A/en
Publication of JP2000144243A publication Critical patent/JP2000144243A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Gears, Cams (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the pitting fatigue strength of driving transmission mechanism parts such as gears used for automobile transmission, etc., by subjecting a steel stock of specific composition to rough forming, to carburizing and quenching, then to high-frequency heating at specific temperature, and immediately to working and providing specific required physical properties. SOLUTION: A steel stock, having a composition which consists of, by weight, 0.1-0.3% C, 0.01-0.15% Si, 0.3-1.5% Mn, 0.3-1.5% Cr, 0.01-0.06% S, 0.001-0.01% Ca, <=0.003% O, and the balance Fe, etc., and in which the value of Ca/O is regulated to 0.5-3.5, is used. The steel stock is subjected to rough forming, to carburizing and quenching, to high-frequency heating to 200-600 deg.C for 1-5 min, and immediately to working of 10-60%. By this procedure, slack quenched layer, compressive residual stress at surface, and surface roughness Rmax are regulated to <15 μm, >=25 kgf/mm2, and >=2.5 μm, respectively. Moreover, the relationship between the value β' given by making the X-ray diffraction half-width made to dimensionless by the half-width after annealing of the steel stock and the surface roughness Rmax is regulated so that β'>=2.29-0.401 n (Rmax) is satisfied. Further, retained austenite is regulated to <=10%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車及び工作機
械などの摺動部品に係わり、特に自動車トランスミッシ
ョン等に使用される鋼製の高強度歯車他、接触疲労が課
題となる駆動伝達系部品に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to sliding parts such as automobiles and machine tools, and more particularly to high-strength steel gears used in automobile transmissions and the like, as well as to drive transmission parts which are subject to contact fatigue. Things.

【0002】[0002]

【従来の技術】歯車に代表される駆動伝達系部品は、熱
間鍛造で成形された後に表面を硬化させるために浸炭焼
入れ焼戻し処理が行われることが多い。自動車では軽量
化のため部品サイズの小型化が要望され、駆動系に用い
られる部品は使用時の負荷が大きくなるとともに、曲げ
疲労向上、及び部品同士の接触時に生じるピッチング疲
労寿命向上が要望されている。
2. Description of the Related Art A drive transmission system component represented by a gear is often subjected to carburizing, quenching and tempering to harden the surface after being formed by hot forging. In automobiles, it is required to reduce the size of parts in order to reduce the weight.Parts used in a drive system are required to have a large load during use, and are also required to improve bending fatigue and pitting fatigue life generated when parts come into contact with each other. I have.

【0003】曲げ疲労向上に対しては、”日本機械学会
論文集C編、55巻520号3034頁(1989)”
に報告されているように浸炭焼入れ焼戻し後に、ショッ
トピーニング処理を行い圧縮残留応力を付与する対策が
とられている。しかし、ピッチング寿命はその発生メカ
ニズムが不明であり、各種の対策が提案されている。特
開平1−264727号公報に開示されるように熱処理
後にショットピーニングを行い圧縮残留応力を付与する
方法が提案されている。しかし、特開平3−10741
8号公報はショットピーニングによりピッチング疲労は
かえって低下するとの記載もある。また、ショットピー
ニングは表面を荒らすため、駆動伝達時は騒音問題も有
している。
Regarding the improvement of bending fatigue, "Transactions of the Japan Society of Mechanical Engineers, C, 55, 520, 3034 (1989)"
As reported in Japanese Patent Application Laid-Open No. H11-260, measures have been taken to impart a compressive residual stress by performing shot peening after carburizing, quenching and tempering. However, the mechanism by which the pitching life occurs is unknown, and various countermeasures have been proposed. As disclosed in Japanese Patent Application Laid-Open No. 1-264727, a method has been proposed in which shot peening is performed after heat treatment to impart a compressive residual stress. However, JP-A-3-10741
No. 8 also states that shot peening reduces pitching fatigue. Further, since shot peening roughens the surface, it also has a noise problem during drive transmission.

【0004】ピッチング疲労特性に優れた鋼材とし
て、”特殊鋼44巻3号39〜48頁(1995年)”
に各種鋼材が報告されている。いずれも浸炭時に生成さ
れる粒界酸化層や不完全焼入れ層の深さ、硬さ制御を目
的として合金元素の成分調整が行われている。しかし、
粒界酸化層、及び不完全焼入れ層はそもそも初期欠陥が
あり、軟質化した層であることから成分調整を行っても
特性が出しにくい部分である。また、合金成分の添加は
コストアップを招くことになる。
[0004] As a steel material having excellent pitting fatigue properties, "Special Steel Vol. 44, No. 3, pp. 39-48 (1995)"
Various steel materials have been reported. In each case, the composition of alloy elements is adjusted for the purpose of controlling the depth and hardness of the grain boundary oxide layer and the incompletely quenched layer generated during carburization. But,
The grain boundary oxidized layer and the incompletely quenched layer originally have initial defects and are softened layers, so that even if component adjustment is performed, characteristics are difficult to obtain. Further, the addition of the alloy component causes an increase in cost.

【0005】この様に、高負荷荷重下におる駆動伝達系
部品でのピッチング疲労特性に関して、その疲労強度を
向上させる工業的に有益な技術は、未だ見出されていな
いのが実状である。
[0005] As described above, with regard to the pitting fatigue characteristics of the drive transmission system components under a high load, industrially useful techniques for improving the fatigue strength have not been found yet.

【0006】[0006]

【発明が解決しようとする課題】本発明は、自動車のト
ランスミッション等に使用される歯車などの駆動伝達系
部品におけるピッチング疲労強度を向上せんとするもの
である。
SUMMARY OF THE INVENTION It is an object of the present invention to improve the pitting fatigue strength of a drive transmission system component such as a gear used for an automobile transmission.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上述の課
題に対して研究を重ねた結果以下の新知見を見出した。
標準的なピッチング性能評価試験であるローラーピッチ
ング試験において、浸炭処理に発生する不完全焼入れ層
(軟化部)が摩耗することにより、ピッチング寿命が大
幅に向上することを見出した。摩耗の発生原因は、不完
全焼入れ層のベイナイト組織がショットピーニングなど
で付与される加工ひずみにより脆化するためである。摩
耗によりピッチング寿命が向上するのは、不完全焼入れ
層及びその中の粒界酸化部で発生する初期亀裂が摩耗に
より除去されピッチング発生が抑制されるため、また、
摩耗することで接触面積が増加し実質面圧が低下するた
めであった。
Means for Solving the Problems The present inventors have conducted research on the above-mentioned problems and found the following new findings.
In a roller pitting test, which is a standard pitting performance evaluation test, it was found that the pitting life was significantly improved by abrasion of an incompletely quenched layer (softened portion) generated during carburizing. The cause of abrasion is that the bainite structure of the incompletely quenched layer is embrittled by processing strain imparted by shot peening or the like. The reason that the pitting life is improved by the wear is that the initial cracks generated in the incompletely quenched layer and the grain boundary oxidized portion therein are removed by the wear, and the pitting generation is suppressed.
This is because the contact area increases due to the wear and the actual surface pressure decreases.

【0008】不完全焼入れ層が摩耗される条件について
種々検討を行った。不完全焼入れ層を脆化させるために
加工ひずみを加える方法としては、浸炭焼入れ焼戻し後
にショットピーニングを行う方法が直ぐに想像されが、
工程数がふやることになる。本発明者らは特開昭59−
232642号公報において、浸炭焼入れし、その後焼
戻し時の加熱を利用してた焼戻し温間鍛造成形する方法
を提案しているが、本加工法を用いることにより工程数
を増やすすことなく加工ひずみを加えることができる。
しかし、摩耗量が多くなると部品としての形状が損な
われること。また、摩耗量を多くするため不完全焼入れ
層を深くすると、粒界酸化も深くなり曲げ疲労が低下す
る。従って、極端に摩耗させることも避けなければなら
ない。
Various investigations have been made on the conditions under which the incompletely quenched layer is worn. As a method of applying processing strain to embrittle the incomplete quenching layer, a method of performing shot peening after carburizing quenching and tempering is immediately imagined,
The number of processes increases. The present inventors have disclosed in
Japanese Patent No. 232642 proposes a method of carburizing and quenching and thereafter performing tempering warm forging using heating during tempering. However, by using this processing method, it is possible to reduce the processing strain without increasing the number of steps. Can be added.
However, when the amount of wear increases, the shape of the part is damaged. Further, when the incompletely quenched layer is deepened to increase the wear amount, the grain boundary oxidation is also deepened, and the bending fatigue is reduced. Therefore, extreme wear must be avoided.

【0009】本発明者らは、不完全焼入れ層を研削によ
り除去した試験片を用いたローラーピッチング試験よ
り、MnS介在物が起点となってピッチングが発生する
ことも見出した。熱間圧延時にMnSは軸方向へ延伸し
た形態で存在する。歯車等の摺動部品の多くは円周方向
へ接触していくためにMnSの延伸方向と垂直方向へ接
触荷重が移動する。この周方向に沿って接触荷重が移動
することで表面には引張応力が発生し、軸方向に延伸し
たMnSは直角方向に引張荷重を受けることになる。接
触荷重が表面を移動する際、MnSは地鉄との界面密着
性が低いこと、また硬質なMnSは変形せず地鉄が変形
することからMnSと地鉄の間に空孔ができピッチング
に至っている。そして、MnSの延伸を抑制することで
ピッチング寿命が向上することが分かった。さらに鋼中
のS量を低減したMnS量の少ない鋼材を用いても同様
にピッチング寿命が向上することも分かった。
[0009] The present inventors have also found that pitting occurs from MnS inclusions as a starting point from a roller pitting test using a test piece from which an incompletely quenched layer has been removed by grinding. During hot rolling, MnS exists in a form stretched in the axial direction. Many of the sliding parts such as gears come into contact in the circumferential direction, so that the contact load moves in the direction perpendicular to the direction in which MnS extends. As the contact load moves along the circumferential direction, a tensile stress is generated on the surface, and MnS stretched in the axial direction receives a tensile load in the perpendicular direction. When the contact load moves on the surface, MnS has low interfacial adhesion to the ground iron, and hard MnS does not deform but deforms the ground iron. Has reached. And, it was found that the pitting life was improved by suppressing the stretching of MnS. Furthermore, it was also found that the pitting life was similarly improved by using a steel material having a reduced S content in steel and a small MnS content.

【0010】これらの知見を基に、曲げ疲労寿命等への
影響が少ない程度に摩耗層となる不完全焼入れ層を設け
てピッチング発生を抑制するとともに、使用中に摩耗層
が無くなってもMnSが延伸抑制された母層、ないしM
nS量が少ない母層が現れることによりピッチング寿命
向上が可能なことが分かり、以下のような達成手段を明
らかにし、本発明に至った。
Based on these findings, an incompletely quenched layer serving as a wear layer is provided to such an extent that the influence on bending fatigue life and the like is small, and the occurrence of pitting is suppressed, and MnS is reduced even when the wear layer disappears during use. Stretch-suppressed matrix or M
It has been found that the appearance of a base layer having a small amount of nS makes it possible to improve the pitting life, and the following means have been clarified, leading to the present invention.

【0011】すなわち本発明は、 (1)重量%において、C:0.1〜0.3%、Si :
0.01〜0.15%、Mn:0.3〜1.5%、C
r:0.3〜1.5%、S:0.01〜0.06%、C
a:0.001〜0.01%、O:0.003%以下、
但し、Ca/O:0.5〜3.5を含有し、残部Fe及
び不可避不純物からなる鋼材を粗成形した後、浸炭焼入
れを行い、しかる後200〜600℃に1〜5分間高周
波加熱して直ちに10〜60%の加工を加えることによ
り、不完全焼入れ層を15μm未満、表面での圧縮残留
応力を25kgf/mm2 以上、表面粗さRmax を2.5μm
以上とするとともに、X線回折半価幅をその鋼材焼鈍後
の半価幅で無次元化した値β’と表面粗さRmax との関
係がβ’≧2.29−0.40ln(Rmax )、残留オ
ーステナイトを10%以下とすることを特徴とする接触
疲労寿命強度に優れた駆動伝達系部品の製造方法。
That is, the present invention provides: (1) C: 0.1 to 0.3%, Si:
0.01-0.15%, Mn: 0.3-1.5%, C
r: 0.3 to 1.5%, S: 0.01 to 0.06%, C
a: 0.001 to 0.01%, O: 0.003% or less,
However, after roughly forming a steel material containing Ca / O: 0.5 to 3.5, the balance being Fe and unavoidable impurities, carburizing and quenching are performed, and then high-frequency heating is performed at 200 to 600 ° C. for 1 to 5 minutes. Immediately thereafter, the incompletely quenched layer is less than 15 μm, the compressive residual stress on the surface is 25 kgf / mm 2 or more, and the surface roughness Rmax is 2.5 μm.
In addition to the above, the relationship between the value β ′ obtained by rendering the half-width of X-ray diffraction non-dimensional by the half-width after annealing of the steel material and the surface roughness Rmax is β ′ ≧ 2.29−0.40 ln (Rmax). And a method for manufacturing a drive transmission system component having excellent contact fatigue life strength, wherein the retained austenite is 10% or less.

【0012】(2)重量%において、C:0.1〜0.
3%、Si :0.01〜0.15%、Mn:0.3〜
1.5%、S:0.01%未満、Cr:0.3〜1.5
%を含有し、残部Fe及び不可避不純物からなる鋼材を
粗成形した後、浸炭焼入れを行い、しかる後200〜6
00℃に1〜5分間高周波加熱して直ちに10〜60%
の加工を加えることにより、不完全焼入れ層を15μm
未満、表面での圧縮残留応力を25kgf/mm2 以上、表面
粗さRmax を2.5μm以上とするとともに、X線回折
半価幅をその鋼材焼鈍後の半価幅で無次元化した値β’
と表面粗さRmaxとの関係がβ’≧2.29−0.40
ln(Rmax )、残留オーステナイトを10%以下とす
ることを特徴とする接触疲労寿命強度に優れた駆動伝達
系部品の製造方法。
(2) C: 0.1 to 0.1% by weight.
3%, Si: 0.01 to 0.15%, Mn: 0.3 to
1.5%, S: less than 0.01%, Cr: 0.3 to 1.5
%, And after roughly forming a steel material comprising the balance of Fe and unavoidable impurities, carburizing and quenching are performed, and then 200 to 6%.
High frequency heating to 00 ° C for 1 to 5 minutes and immediately 10 to 60%
15 um
Less than 25 kgf / mm 2 or more, surface roughness Rmax is 2.5 μm or more, and the half-width of X-ray diffraction is made dimensionless by the half-width after annealing. '
And β ′ ≧ 2.29−0.40
A method of manufacturing a drive transmission system component having excellent contact fatigue life strength, wherein ln (Rmax) and retained austenite are 10% or less.

【0013】(3)鋼材組成として、Mo:0.1〜
1.0%、Ni:1.0%以下の中から1種以上を更に
含有する鋼材を用いることを特徴とする(1)または
(2)記載の接触疲労寿命強度に優れた駆動伝達系部品
の製造方法にある。
(3) Mo: 0.1 to
A drive transmission system component excellent in contact fatigue life strength according to (1) or (2), wherein a steel material further containing one or more of 1.0% and Ni: 1.0% or less is used. Manufacturing method.

【0014】[0014]

【発明の実施の形態】以下に本発明を詳細に説明する。
Cは部品として必要な強度、特に芯部の強度を確保する
ために添加する元素であるが、0.1%未満ではこの様
な効果を十分に得ることができず、0.3%を越えると
靭性が低下するために0.1%〜0.3%とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
C is an element added to secure the strength required as a part, particularly the strength of the core, but if it is less than 0.1%, such effects cannot be sufficiently obtained, and it exceeds 0.3%. And 0.1% to 0.3% because the toughness decreases.

【0015】Siは溶製時に脱酸材として用いており
0.01%以上必要である。しかし、浸炭時に粒界酸化
層を生成する元素であり多量添加は曲げ疲労低下など浸
炭用鋼の特性が著しく劣化するため0.15%以下とし
た。Mnは溶製時に脱酸材及び脱硫材として用いられる
他、強度,靭性,焼入性を確保するために必要な元素で
あり0.3%以上必要である。しかし、1.5%を越え
ると熱間圧延後の冷却過程でベイナイトやマルテンサイ
トの硬質な組織になり、切削,研削等の加工に適さなく
なる。
[0015] Si is used as a deoxidizing material at the time of melting and needs to be 0.01% or more. However, it is an element that forms a grain boundary oxide layer during carburization, and when added in a large amount, the properties of carburizing steel such as bending fatigue are significantly deteriorated, so that the content is set to 0.15% or less. Mn is used as a deoxidizing material and a desulfurizing material at the time of melting, and is an element necessary for ensuring strength, toughness, and hardenability, and is required to be 0.3% or more. However, when the content exceeds 1.5%, a hard structure of bainite or martensite is formed in a cooling process after hot rolling, and the material is not suitable for machining such as cutting and grinding.

【0016】Crは焼入性、機械的性能を確保するため
に必要な元素であり0.3%以上必要である。しかし、
この元素も1.5%を越えると熱間圧延後の冷却過程で
ベイナイトやマルテンサイトの硬質な組織になり、切
削,研削等の加工に適さなくなる。組み合わされた部品
が使用時に不完全焼入れ層の摩耗によってピッチング寿
命を向上させるために、加工ひずみを付与して不完全焼
入れ層を脆化させ、摩耗させる必要がある。
Cr is an element necessary for ensuring hardenability and mechanical performance, and is required to be 0.3% or more. But,
If this element also exceeds 1.5%, it becomes a hard structure of bainite or martensite in the cooling process after hot rolling, and is not suitable for machining such as cutting and grinding. In order to improve the pitting life of the combined parts during use due to the wear of the incompletely quenched layer, it is necessary to impart processing strain to embrittle and wear the incompletely quenched layer.

【0017】駆動伝達系部品の多くは合金鋼をオーステ
ナイト域まで加熱して熱間鍛造した後切削加工により所
定の形状に仕上げされる。その後表面を硬化させるため
再度オーステナイト域まで加熱され浸炭焼入れ焼戻し処
理が行われる。この製造工程ではオーステナイト域まで
の加熱を2度も行っている。この工程で、摩耗を生じさ
せるため浸炭時の不完全焼入れ層に加工ひずみを加える
には浸炭焼入れ焼戻し後に付与せざるを得ない。これに
対し、鋼材を浸炭焼入れした後焼戻し時に温間鍛造成形
を行う工程ではオーステナイト域までの加熱が1回で済
むとともに、温間鍛造時に加工ひずみを与えた不完全焼
入れ層が残留することになる。
Many of the drive transmission system components are heated to an austenite region, hot forged, and finished to a predetermined shape by cutting. Thereafter, in order to harden the surface, the steel sheet is heated to the austenite region again and carburizing, quenching and tempering are performed. In this manufacturing process, heating to the austenite region is performed twice. In this step, in order to apply processing strain to the incompletely quenched layer at the time of carburization to cause abrasion, it must be provided after carburizing, quenching and tempering. On the other hand, in the process of performing warm forging during tempering after carburizing and quenching a steel material, heating to the austenite region only needs to be performed once, and an incompletely quenched layer that gives work strain during warm forging remains. Become.

【0018】熱間鍛造に比べ温間鍛造では加熱温度が低
いことから一般に据込み、曲げ等の適度に粗成形された
素材が用いられる。そこで本発明でも鋼材を粗成形した
後に浸炭焼入れが行われる。浸炭焼入れままでは靭性が
低いことから焼戻しを行うため加熱される。この温度が
200℃未満であると鋼材の軟質化があまりみられず温
間鍛造成形性が損なわれ、600℃を越えた温度では再
結晶するため、加熱温度を200℃以上600℃以下と
した。
Since the heating temperature is lower in the warm forging than in the hot forging, a material which has been appropriately set up, bent or otherwise roughly formed is generally used. Therefore, in the present invention, carburizing and quenching are performed after the steel material is roughly formed. The as-hardened case is heated to perform tempering because of its low toughness. If this temperature is lower than 200 ° C., the softening of the steel material is not so much observed and the hot forgeability is impaired, and recrystallization occurs at a temperature exceeding 600 ° C., so that the heating temperature is 200 ° C. or higher and 600 ° C. or lower. .

【0019】加熱手段として高周波を用いるため、鋼材
温度を短時間に上昇させるのが容易であり酸化スケール
の発生を抑制できる。鋼材を均一加熱するために1分以
上の加熱時間が必要である。5分を越えた加熱では加熱
時間が長く、加熱効率及び酸化スケールの発生を防止す
る上からも避けるるべきである。加工率に対しては、6
0%超の加工を施すと延性不足から割れを生じる。10
%未満の加工では強度を付与できないこと、及び不完全
焼入れ層へ付与される加工ひずみが小さく摩耗しないか
らである。
Since a high frequency is used as the heating means, it is easy to raise the temperature of the steel material in a short time and the generation of oxide scale can be suppressed. A heating time of 1 minute or more is required to uniformly heat the steel material. Heating for more than 5 minutes requires a long heating time, and should be avoided in order to prevent heating efficiency and the generation of oxide scale. For the processing rate, 6
If the processing exceeds 0%, cracks occur due to insufficient ductility. 10
% Processing cannot impart strength, and the processing strain applied to the incompletely quenched layer is small and does not wear.

【0020】摩耗層が深すぎると部品の形状精度が低下
して騒音,振動問題となる可能性がある。また、不完全
焼入れ層が深いと粒界酸化層も深くなり曲げ疲労を低減
させることから不完全焼入れ層を15μm未満とした。
不完全焼入れ層が圧縮残留応力でないと、部品同士が接
触した際、摩耗が発生する表面での引張応力により不完
全焼入れ層に亀裂が発生、進展しピッチングに至ってし
まう。従って、圧縮残留応力が25kgf/mm2 以上必要で
ある。
If the wear layer is too deep, there is a possibility that the shape accuracy of the part is reduced and noise and vibration problems occur. Further, when the incompletely quenched layer is deep, the grain boundary oxide layer is also deepened to reduce bending fatigue.
If the incompletely quenched layer does not have a compressive residual stress, when the parts come into contact with each other, a crack is generated in the incompletely quenched layer due to the tensile stress on the surface where abrasion occurs, leading to pitching. Therefore, a compressive residual stress of 25 kgf / mm 2 or more is required.

【0021】焼戻し時の温鍛成形により、不完全焼入れ
層が脆化されるためには、温鍛成型時に加工ひずみが付
与される必要がある。その尺度として、表面に損傷を与
えないことを考慮してX線回折半価幅を用いることと
し、測定器,標準試料による差異が生じない様に、用い
る鋼材の焼鈍後半価幅で無次元化した値β’を用いた。
また、摩耗が生じるには表面に摩耗の起点となる凸部が
必要である。そのため焼戻し温間鍛造後の表面粗さRma
x は2.5μm以上必要である。しかし凸部があっても
加工ひずみが小さく脆化していないと摩耗が生じない。
そこで、Rmaxとβ’との関係は、β’≧2.29−
0.40ln(Rmax )を満足する必要がある。
In order for the incompletely quenched layer to be embrittled by the hot forging at the time of tempering, it is necessary to impart processing strain at the time of the hot forging. As a measure, the X-ray diffraction half width is used in consideration of not damaging the surface, and the dimension is made dimensionless by the latter half width of the steel used so that there is no difference between measuring instruments and standard samples. The obtained value β ′ was used.
Further, in order to cause abrasion, a convex portion serving as a starting point of abrasion is required on the surface. Therefore, the surface roughness Rma after tempering warm forging
x needs to be 2.5 μm or more. However, even if there is a projection, abrasion does not occur unless the processing strain is small and brittle.
Therefore, the relationship between Rmax and β ′ is β ′ ≧ 2.29−
It is necessary to satisfy 0.40 ln (Rmax).

【0022】さらに、残留オーステナイトが多いと塑性
変形をして摩耗が生じないため、10%以下とした。不
完全焼入れ層が摩耗により無くなってもピッチング発生
を抑制するために、第1発明では摩耗後にピッチングの
起点となるMnSの延伸が抑制された母層が現れるよう
にし、第2発明ではピッチングの起点となるMnSが少
ない母層が現れるようにする。
Further, if the amount of retained austenite is large, plastic deformation does not occur and abrasion does not occur. In order to suppress the occurrence of pitting even if the incompletely quenched layer is lost due to abrasion, in the first invention, a matrix layer in which the stretching of MnS, which is the starting point of pitting after wear, is suppressed, is provided. To form a base layer having a small amount of MnS.

【0023】第1発明においてMnS延伸を抑制するた
めには、Ca添加によりMnS形態制御を行う必要があ
る。駆動伝達系部品では、熱ひずみ除去、及び製品精度
確保のため研削等の機械加工が施されるが、Sはその切
削,研削加工における被削性に有効であり、0.01%
以上含有させる必要がある。しかし、0.06%を越え
ると鍛造時の加工限界を著しく低下させるために上限を
0.06%とする。
In the first invention, in order to suppress MnS stretching, it is necessary to control MnS morphology by adding Ca. In the drive transmission system parts, machining such as grinding is performed to remove thermal strain and secure product accuracy. S is effective for machinability in cutting and grinding, and 0.01%
It is necessary to contain the above. However, if it exceeds 0.06%, the working limit during forging is significantly reduced, so the upper limit is made 0.06%.

【0024】CaはMnSの延伸抑制のために必要な元
素であり、0.001%以上必要である。しかし、0.
01%を越えて含有させても、その効果は飽和して経済
性を損なうため上限を0.01%とする。Oは鋼中の介
在物量を増大し、回転曲げ疲労等の疲労強度特性を劣化
させるので0.003%以下とする。
Ca is an element necessary for suppressing the stretching of MnS, and is required to be 0.001% or more. However, 0.
Even if the content exceeds 01%, the effect is saturated and the economy is impaired, so the upper limit is made 0.01%. O increases the amount of inclusions in the steel and deteriorates fatigue strength characteristics such as rotational bending fatigue.

【0025】MnSの延伸抑制対策としては、変形能を
低下させピッチングの起点となるような硬質介在物の生
成を抑制することが必要である。具体的には、Ca添加
によりMnSを(Mn,Ca)S及び(Mn,Ca)S
+カルシウム・アルミネートにすることが有効である。
MnSを(Mn,Ca)S及び(Mn,Ca)S+カル
シウム・アルミネートにするにはCa/O(カルシウム
/酸素)を所定の比に保ち、反応系を制御することが必
要である。
As a measure for suppressing the stretching of MnS, it is necessary to suppress the generation of hard inclusions which lower the deformability and become the starting point of pitching. Specifically, MnS is converted to (Mn, Ca) S and (Mn, Ca) S by adding Ca.
It is effective to use + calcium aluminate.
In order to convert MnS into (Mn, Ca) S and (Mn, Ca) S + calcium aluminate, it is necessary to maintain Ca / O (calcium / oxygen) at a predetermined ratio and control the reaction system.

【0026】Ca/Oが0.5未満では硬質なCaO・
6Al2 3 等が生成しピッチングの起点となり、また
Ca/Oが3.5を越えるとやはり硬質なCaSが生成
し、ピッチング疲労寿命を低下する。よってCa/Oを
0.5〜3.5とする。第2発明においてMnSを低減
するために、Sは0.01%未満とした。従来のオース
テナイト域まで加熱されて浸炭処理されたままの部品に
比べ、浸炭焼入れ後焼戻し温間鍛造される本発明では熱
ひずみが少なく、鍛造ままで部品として用いられること
も想定される。また、焼戻し温間鍛造時の割れ起点は硬
質介在物であるMnSである。従って、焼戻し温間鍛造
時の割れ防止からMnSは少ない方が良く、鋼中のSが
少ない方が割れ発生を抑制することができる。
When Ca / O is less than 0.5, hard CaO.
6Al 2 O 3 and the like are generated and serve as a starting point of pitting. When Ca / O exceeds 3.5, hard CaS is also generated and the pitting fatigue life is reduced. Therefore, Ca / O is set to 0.5 to 3.5. In the second invention, S is set to less than 0.01% in order to reduce MnS. Compared to a conventional part that has been heated to the austenite region and has been carburized, the present invention in which tempering is performed after carburizing and quenching has a small thermal strain, and it is assumed that the part is used as a part as forged. The crack origin during tempering warm forging is MnS which is a hard inclusion. Therefore, in order to prevent cracking during tempering warm forging, it is better that MnS is small, and that the amount of S in steel is small, so that cracking can be suppressed.

【0027】焼入れ性を確保するためにCrだけでは不
十分であり、Mo及びNiなどの元素の少なくとも1種
を必要に応じて含有させる。従来鋼と同等或いはそれ以
上の焼入れ性を与えるために、Moは0.1%以上含有
させる。しかし1.0%を越えて含有させても、その効
果は飽和して経済性を損なうため1.0%以下とする。
また、Niは1.0%を越えて含有させても、その効果
は飽和して経済性を損なうため1.0%以下とする。
Cr alone is not enough to ensure hardenability, and at least one of elements such as Mo and Ni is contained as necessary. Mo is contained in an amount of 0.1% or more in order to provide hardenability equal to or higher than that of conventional steel. However, if the content exceeds 1.0%, the effect is saturated and the economy is impaired, so the content is set to 1.0% or less.
Further, even if Ni is contained in excess of 1.0%, the effect is saturated and the economy is impaired, so the content is set to 1.0% or less.

【0028】[0028]

【実施例】表1、表4に示す化学成分の鋼を溶製した後
造塊し、次に分塊圧延、棒鋼圧延して直径70mm(圧
延比50)を製造し、さらに直径36mm,32mm,
28mm,27mmの各丸棒へ圧延した。続いて各圧延
材を925℃で焼きならし処理した。
EXAMPLE Steels having the chemical compositions shown in Tables 1 and 4 were melted, then ingoted, then slab-rolled and bar-rolled to produce a diameter of 70 mm (rolling ratio of 50). ,
It was rolled into round bars of 28 mm and 27 mm. Subsequently, each rolled material was normalized at 925 ° C.

【0029】各素材を、浸炭ガス雰囲気中で930℃×
5時間加熱→130℃油焼入れを行った。その後、焼戻
し及び温間鍛造を行うため所定の温度に高周波により加
熱保持し、直径26mmの丸棒へ押出した。なお、加熱
時間は昇温1分、保持2分の合計3分とした。焼戻し温
間鍛造時の加工率を表す押出し減面率は、直径36mm
の圧延材を用いて押出した場合で48%となる。その
他、直径30mm,28mm,27mmの圧延材を用い
て、減面率はそれぞれ25%,14%,7%となる。焼
戻し温間鍛造は、負荷能力50tonfの油圧サーボタイプ
の圧縮試験機を用い、速度150mm/s一定で行っ
た。金型表面粗さは0.5〜1μmであるが、押出し材
表面粗さの影響を検討するべく、表面粗さ3〜4μmの
金型を用いた押出しも行った。
Each material was placed in a carburizing gas atmosphere at 930 ° C.
Heating for 5 hours → oil quenching at 130 ° C. Thereafter, in order to perform tempering and warm forging, the steel sheet was heated and held at a predetermined temperature by a high frequency and extruded into a round bar having a diameter of 26 mm. The heating time was 3 minutes in total, 1 minute for temperature rise and 2 minutes for holding. The extrusion reduction area, which represents the processing rate during tempering warm forging, is 36 mm in diameter.
It becomes 48% when extruding using the rolled material. In addition, using rolled materials having diameters of 30 mm, 28 mm, and 27 mm, the area reduction rates are 25%, 14%, and 7%, respectively. The tempering warm forging was performed at a constant speed of 150 mm / s using a compression tester of a hydraulic servo type having a load capacity of 50 tonf. Although the mold surface roughness is 0.5 to 1 μm, extrusion using a mold having a surface roughness of 3 to 4 μm was also performed in order to examine the effect of the extruded material surface roughness.

【0030】押出された直径26mmの丸棒からローラ
ーピッチング試験に用いる直径26mm、幅28mmを
有する小ローラー試験片を機械加工した。ローラーピッ
チング試験はこの小ローラー試験片と直径130mmの
大ローラーを組み合わせて疲労試験を行う。大ローラー
は直径70mmのSCr420圧延材を直径150mm
に鍛造した後、直径130mm,幅18mm,R150
mmのクラウンニングを有する所定形状に機械加工し、
その後浸炭ガス雰囲気中で930℃×5時間加熱→13
0℃油焼入→200℃×1時間の焼戻しを行った。
A small roller test piece having a diameter of 26 mm and a width of 28 mm used in a roller pitching test was machined from the extruded round bar having a diameter of 26 mm. In the roller pitching test, a fatigue test is performed by combining this small roller test piece with a large roller having a diameter of 130 mm. The large roller is made of rolled SCr420 material with a diameter of 70 mm and a diameter of 150 mm
After forging to 130mm in diameter, 18mm in width, R150
Machined into a predetermined shape with a crowning of mm,
Then heated at 930 ° C x 5 hours in a carburizing gas atmosphere → 13
Oil quenching at 0 ° C. → tempering at 200 ° C. × 1 hour.

【0031】各小ローラー試験片の表面残留応力,半価
幅,残留オーステナイトを測定した。X線半価幅は測定
機械,標準試料により誤差がでやすいために各試験片の
焼鈍材での値で無次元化している。その焼鈍条件は、各
試料とも850℃×1時間保持後10℃/時間で600
℃まで徐冷した。ピッチング寿命評価として、小ローラ
ー試験片と大ローラーを組み合わせてローラーピッチン
グ疲労試験を行った。試験条件は、試験片の回転数10
00rpm,すべり率40%、潤滑剤にはオートマチッ
ク変速機用オイルを用い、油温約80℃で行った。ロー
ラーピッチング試験での設定面圧は300kgf/mm2 で行
い、小ローラーに発生するピッチングの面積率が3%以
上になった時点を疲労寿命としてそれまでの回転数で評
価した。
The surface residual stress, half width, and retained austenite of each small roller test piece were measured. Since the X-ray half width is likely to have an error depending on the measuring machine and the standard sample, the dimension is made dimensionless by the value of the annealed material of each test piece. The annealing conditions were as follows.
The temperature was gradually cooled to ° C. As a pitting life evaluation, a roller pitting fatigue test was performed by combining a small roller test piece and a large roller. The test conditions were as follows:
The test was performed at 00 rpm, a slip ratio of 40%, and an automatic transmission oil as a lubricant at an oil temperature of about 80 ° C. The set surface pressure in the roller pitting test was set at 300 kgf / mm 2 , and the point at which the area ratio of pitting generated on the small roller became 3% or more was evaluated as the fatigue life by the number of rotations up to that point.

【0032】曲げ疲労を評価すべく小野式回転曲げ疲労
試験を行った。前述した直径70mmの圧延材を直径1
2mmへ圧延し、その後925℃で焼きならし処理し
た。各素材を浸炭ガス雰囲気中で930℃×5時間加熱
→130℃油焼入れを行し、その後、焼戻し及び温間鍛
造を行うため250℃に高周波により加熱保持し、直径
10mmの丸棒へ押出した。押出し減面率は31%であ
る。押出された直径10mm,長さ30mmの丸棒の両
端に直径15mm,長さ90mmの丸棒を摩擦圧接で接
合して平行部が直径10mmの回転曲げ試験片を作成し
た。
An Ono-type rotary bending fatigue test was performed to evaluate bending fatigue. The above-mentioned rolled material having a diameter of 70 mm is formed into
It was rolled to 2 mm and then normalized at 925 ° C. Each material was heated in a carburizing gas atmosphere at 930 ° C. × 5 hours → oil quenching at 130 ° C., and then heated and held at 250 ° C. by high frequency for tempering and warm forging, and extruded into a round bar having a diameter of 10 mm. . The extrusion area reduction rate is 31%. A round bar having a diameter of 15 mm and a length of 90 mm was joined to both ends of the extruded round bar having a diameter of 10 mm and a length of 30 mm by friction welding to prepare a rotary bending test piece having a parallel portion having a diameter of 10 mm.

【0033】第1発明或いは第3発明に対する実施例と
して、表1に示される鋼材A〜Kを用いローラーピッチ
ング試験を行った。鋼材A〜Eが本発明例である。鋼材
F〜KはCa,O及びCa/Oが所定の範囲外であり、
鋼材KはSiを多く含有している。表2に焼戻し温間鍛
造時の温度,減面率、及び鍛造後の不完全焼入れ層深
さ,圧延方向のMnS長さ,表面での粗さ,残留応力,
無次元化半価幅,残留γ量、さらにローラーピッチング
試験での疲労寿命を示す。残留応力は負値が圧縮残留応
力を、正値が引張のそれを示している。不完全焼入れ層
深さ、MnS長さは小ローラーの断面組織から測定し
た。
As an example for the first invention or the third invention, a roller pitting test was performed using steel materials A to K shown in Table 1. Steel materials A to E are examples of the present invention. In the steel materials F to K, Ca, O and Ca / O are out of a predetermined range,
Steel material K contains a large amount of Si. Table 2 shows the temperature during tempering forging, the area reduction rate, the depth of the incompletely quenched layer after forging, the MnS length in the rolling direction, the surface roughness, the residual stress, and the like.
The dimensionless half width, the amount of residual γ, and the fatigue life in a roller pitting test are shown. As for the residual stress, a negative value indicates the compressive residual stress, and a positive value indicates that of the tensile stress. The depth of the incompletely quenched layer and the MnS length were measured from the cross-sectional structure of the small roller.

【0034】No.1〜13の本発明例では、107 回で
もピッチングが発生しなかったので表2では「>10000
」×103 回と記述した。No.1〜11において、温間
鍛造時に用いた金型の表面粗さは、0.5〜1μmであ
る。これに対して、 No.12,及び No.13は、表面粗
さ3〜4μmの金型を用いて温間鍛造を行った場合であ
り、鍛造後の表面粗さRmax は No.1〜11に比べて粗
くなっている。また、温間鍛造時の減面率が小さいため
に付与されるβ’は No.1〜7の場合より小さい。しか
し、鍛造後の表面粗さRmax が大きいためにβ’は所定
の範囲に入っており、107 回までピッチングは発生し
なかった。
In the examples of Nos. 1 to 13 of the present invention, no pitching occurred even 10 7 times.
It was described as "× 10 3 times. In Nos. 1 to 11, the surface roughness of the mold used at the time of warm forging is 0.5 to 1 μm. On the other hand, No. 12 and No. 13 are cases where warm forging was performed using a mold having a surface roughness of 3 to 4 μm, and the surface roughness Rmax after forging was No. 1 to 11 It is coarser than. Further, β ′ given due to a small area reduction rate during warm forging is smaller than in the cases of Nos. 1 to 7. However, beta 'to the surface roughness Rmax after forging is large is within a predetermined range, pitching up to 10 7 times did not occur.

【0035】No.14〜25が比較例である。No.14〜
18はMnSが形態制御されてない鋼材を用いた場合で
あり、本発明例に比べてMnSが長い。従って、不完全
焼入れ層が摩耗した後MnSが形態制御されていない母
相が現れるためにローラーピッチング疲労寿命が短かっ
た。No.19もMnSが形態制御されてない鋼材を用い
た場合であるが、不完全焼入れ層が深く摩耗発生が終了
しないためにピッチングが発生しなかった。しかし、摩
耗が深くなることは製品精度の低下を招くことになり、
その許容限は製品によって異なる。また、不完全焼入れ
層が深い分粒界酸化層も深くなり曲げ疲労が低いことが
推定された。
Nos. 14 to 25 are comparative examples. No.14 ~
Reference numeral 18 denotes a case where a steel material whose MnS is not shape-controlled is used, and MnS is longer than that of the present invention. Therefore, after the incompletely quenched layer was worn, a parent phase in which MnS was not shape-controlled appeared, so that the roller pitting fatigue life was short. No. 19 was also a case where a steel material whose MnS was not shape-controlled was used, but no pitting occurred because the incompletely quenched layer was deep and the generation of wear did not end. However, deeper wear leads to lower product accuracy,
The limits vary by product. In addition, it was presumed that the incompletely quenched layer was deep and the grain boundary oxide layer was also deep, so that bending fatigue was low.

【0036】表3に小野式回転曲げ疲労試験結果とし
て、107 回疲労させても破断しない疲労限応力を示
す。 No.26〜30が本発明例、 No.31が鋼材Kを用
いた場合の比較例である。鋼材KはSiを多く含むため
粒界酸化層が深く、本発明例に比べ比較例は30%近く
曲げ疲労寿命が低いことが分かる。No.20は焼戻し温
間鍛鍛造時の加工率が低い場合であり、付与される加工
ひずみが小さく無次元化半価幅β’が所定の下限値より
小さい。ローラーピッチング試験では摩耗が発生しなか
ったためピッチング寿命は107 回に達していない。
[0036] As rotating bending fatigue test results Ono-type in Table 3, showing the fatigue limit stress also be fatigue 10 7 times without breaking. Nos. 26 to 30 are examples of the present invention, and No. 31 is a comparative example using steel material K. Since the steel material K contains a large amount of Si, the grain boundary oxide layer is deep, and it can be seen that the bending fatigue life of the comparative example is nearly 30% lower than that of the inventive example. No. 20 is a case where the working ratio at the time of tempering warm forging is low, and the applied working strain is small and the dimensionless half width β ′ is smaller than a predetermined lower limit. Pitting life because wear did not occur in the roller pitting test does not reach the 10 7 times.

【0037】No.21は、浸炭焼入れ後不完全焼入れ層
が無くなるまで研削行った後に焼戻し温間鍛造を行って
いる。摩耗層となるべき不完全焼入れ層がなく、摩耗が
生じないためピッチング寿命が低かった。No.22で
は、直径70mmの圧延材を直径26mmの丸棒へ圧延
した素材を用い、浸炭焼入れ後温間鍛造せずに焼戻しだ
けを行った。加工ひずみが付与されていないため、残留
応力は引張であり、β’も所定の下限値を下回っており
ピッチング寿命は107 回に達していない。
In No. 21, tempering warm forging is performed after grinding after carburizing and quenching until the incomplete quenched layer disappears. There was no incompletely quenched layer to be a wear layer, and no pitting life was obtained because no wear occurred. In No. 22, a material obtained by rolling a rolled material having a diameter of 70 mm into a round bar having a diameter of 26 mm was used, and only tempering was performed without carburizing quenching and warm forging. Since work strain is not applied, the residual stress is a tensile, beta 'also pitting life is below the predetermined lower limit value does not reach the 10 7 times.

【0038】No.23は、鍛造後の表面粗さを低くする
べく浸炭焼入れ後研磨を行いRmaxを1.0以下とし、
その後焼戻し温間鍛造を行った。鍛造後の表粗さが小さ
いために摩耗が発生せずピッチング寿命が低かった。N
o.24は焼戻し温間鍛造後表層を10μm程度研削し、
内部の残留γの高い面が出てきた場合である。表層が塑
性変形して摩耗が発生しないため低いピッチング寿命と
なった。
For No. 23, after carburizing and quenching to reduce the surface roughness after forging, polishing was performed to reduce Rmax to 1.0 or less,
Thereafter, tempering warm forging was performed. Since the surface roughness after forging was small, no abrasion occurred and the pitting life was short. N
o.24 grind the surface layer about 10μm after tempering warm forging,
This is a case where a surface with a high residual γ inside comes out. Since the surface layer was not plastically deformed and abrasion did not occur, the pitting life was short.

【0039】No.25、焼戻し温間鍛造時の加熱温度を
150℃とした場合であるが、加熱による素材軟質化が
十分でないため、50tonfの圧縮試験機では押出し成型
ができなかった。第2発明或いは第3発明に対する実施
例として、表4に示される鋼材L〜Tを用いローラーピ
ッチング試験を行った。鋼材L〜Qが本発明用鋼であ
り、鋼材R〜Tは比較例であり硫黄分を多く含有してい
る。
No. 25, in which the heating temperature at the time of tempering warm forging was set to 150 ° C. However, since the material was not sufficiently softened by heating, extrusion molding was not possible with a 50 tonf compression tester. As an example for the second invention or the third invention, a roller pitching test was performed using steel materials L to T shown in Table 4. Steel materials L to Q are steels for the present invention, and steel materials RT are comparative examples and contain a large amount of sulfur.

【0040】表5に焼戻し温間鍛造時の温度,減面率、
及び鍛造後の不完全焼入れ層深さ,表面での粗さ,残留
応力,無次元化半価幅,残留γ量、さらにローラーピッ
チング試験での疲労寿命を示す。残留応力は負値が圧縮
残留応力を、正値が引張のそれを示している。表5にお
いて、 No.32〜44が本発明例であり、 No.45〜5
3が比較例である。本発明例ではいずれの場合も107
回でピッチングに達しなかった。
Table 5 shows the temperature during tempering and forging, the area reduction rate,
The graph also shows the depth of the incompletely quenched layer after forging, surface roughness, residual stress, dimensionless half width, residual γ amount, and fatigue life in a roller pitting test. As for the residual stress, a negative value indicates the compressive residual stress, and a positive value indicates that of the tensile stress. In Table 5, Nos. 32 to 44 are examples of the present invention, and Nos. 45 to 5
3 is a comparative example. In the present invention example, 10 7
Pitching was not reached in times.

【0041】No.32〜42において、温間鍛造時に用
いた金型の表面粗さは、0.5〜1μmである。これに
対して、 No.43,及び No.44は、表面粗さ3〜4μ
mの金型を用いて温間鍛造を行った場合であり、鍛造後
の表面粗さRmax は No.32〜42に比べて粗くなって
いる。また、温間鍛造時の減面率が小さいために付与さ
れるβ’は No.32〜42の場合より小さい。しかし、
鍛造後の表面粗さRmax が大きいためにβ’は所定の範
囲に入っており、107 回までピッチングは発生しなか
った。
In Nos. 32 to 42, the surface roughness of the mold used during warm forging is 0.5 to 1 μm. On the other hand, No. 43 and No. 44 have a surface roughness of 3 to 4 μm.
This is a case where warm forging was performed using a m mold, and the surface roughness Rmax after forging was larger than that of Nos. 32-42. Further, β ′ given due to a small area reduction rate during warm forging is smaller than that of Nos. 32-42. But,
For the surface roughness Rmax after forging is large beta 'is within a predetermined range, pitching up to 10 7 times did not occur.

【0042】No.45〜47は鋼中の硫黄分が多い鋼材
R,鋼材S,鋼材Tを用いた場合であり、不完全焼入れ
層の摩耗後に延伸したMnSが存在する面が現れるため
にピッチング寿命が短かった。No.48は焼戻し温間鍛
鍛造時の加工率が低い場合であり、鍛造後のβ’が所定
の下限値より小さく、摩耗が発生しなかったためピッチ
ング寿命が短かった。
Nos. 45 to 47 show the cases where steel R, steel S and steel T containing a large amount of sulfur in the steel were used. Since the surface where stretched MnS was present after abrasion of the incompletely quenched layer appeared, pitting was performed. Life was short. No. 48 is a case where the working ratio at the time of tempering warm forging was low, β ′ after forging was smaller than a predetermined lower limit, and no pitting life was obtained because no abrasion occurred.

【0043】No.49は、浸炭焼入れ後不完全焼入れ層
が無くなるまで研削行った後に焼戻し温間鍛造を行って
いる。不完全焼入れ層がなく、摩耗が生じないためピッ
チング寿命が低かった。No.50は、直径70mmの圧
延材を直径26mmの丸棒へ圧延した素材を用い、浸炭
焼入れ後温間鍛造せずに焼戻しだけを行った。加工ひず
みが付与されていないため、残留応力が引張であり、
β’も所定の下限値を下回っておりピッチング寿命は1
7 回に達していない。
In No. 49, tempering warm forging is performed after grinding until the incomplete quenched layer disappears after carburizing and quenching. Since there was no incompletely quenched layer and no abrasion occurred, the pitting life was short. In No. 50, a material obtained by rolling a rolled material having a diameter of 70 mm into a round bar having a diameter of 26 mm was used, and only tempering was performed after carburizing and quenching without warm forging. Since no processing strain is given, the residual stress is tensile,
β 'is also below the lower limit and the pitting life is 1
Not reached 0 7 times.

【0044】No.51は、鍛造後の表面粗さを低くする
べく浸炭焼入れ後研磨を行いRmaxを1.0以下とし、
その後焼戻し温間鍛造を行った。鍛造後の表粗さが小さ
いために摩耗が発生せずピッチング寿命が低かった。N
o.52は焼戻し温間鍛造後に表層を10μm程度研削
し、内部の残留γの高い相が表面に出てきた場合であ
る。表層が塑性変形して摩耗が発生しないため低いピッ
チング寿命となった。
For No. 51, after carburizing and quenching to reduce the surface roughness after forging, polishing was performed to reduce Rmax to 1.0 or less.
Thereafter, tempering warm forging was performed. Since the surface roughness after forging was small, no abrasion occurred and the pitting life was short. N
No. 52 is a case where the surface layer was ground by about 10 μm after tempering warm forging, and a phase having a high residual γ inside appeared on the surface. Since the surface layer was not plastically deformed and abrasion did not occur, the pitting life was short.

【0045】No.53は、焼戻し温間鍛造時の加熱温度
を150℃とした場合であるが、加熱による素材軟質化
が十分でないため、50tonfの圧縮試験機では押出し成
型ができなかった。
No. 53 is the case where the heating temperature during the tempering warm forging was 150 ° C., but the material could not be softened sufficiently by heating, so that extrusion molding could not be carried out with a 50 tonf compression tester.

【0046】[0046]

【表1】 [Table 1]

【0047】[0047]

【表2】 [Table 2]

【0048】[0048]

【表3】 [Table 3]

【0049】[0049]

【表4】 [Table 4]

【0050】[0050]

【表5】 [Table 5]

【0051】[0051]

【発明の効果】本発明では、浸炭焼入れを行った後、焼
戻しの加熱を利用して加工を行い浸炭層に加工ひずみを
施すことにより使用時に表面が摩耗しピッチング寿命を
飛躍的に向上することができる。このことは駆動伝達系
部品の受ける負荷荷重を増大できる、或いは部品自体の
小型軽量化が可能となり、駆動伝達を行う部品を多く用
いる自動車、建築用機械の小型軽量化を実現し、燃費改
善など多大の効果をもたらす。
According to the present invention, after carburizing and quenching, working is performed by using the heating of tempering to apply a working strain to the carburized layer, whereby the surface is worn during use and the pitting life is greatly improved. Can be. This means that it is possible to increase the load applied to the drive transmission system components, or to reduce the size and weight of the components themselves. It has a great effect.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/00 301 C22C 38/00 301N 38/18 38/18 38/60 38/60 (72)発明者 伊藤 誠司 北海道室蘭市仲町12番地 新日本製鐵株式 会社室蘭製鐵所内 Fターム(参考) 3J030 AC10 BC02 BC10 CA10 4K032 AA05 AA08 AA11 AA12 AA16 AA26 AA29 AA31 CA01 4K042 AA18 BA01 BA03 CA03 CA06 CA08 CA10 DA06 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 38/00 301 C22C 38/00 301N 38/18 38/18 38/60 38/60 (72) Inventor Seiji Ito 12 Nakamachi, Muroran-shi, Hokkaido F-term in Muroran Works, Nippon Steel Corporation (reference) 3J030 AC10 BC02 BC10 CA10 4K032 AA05 AA08 AA11 AA12 AA16 AA26 AA29 AA31 CA01 4K042 AA18 BA01 BA03 CA03 CA06 CA08 DA06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%において、 C :0.1〜0.3% Si :0.01〜0.15% Mn:0.3〜1.5% Cr:0.3〜1.5% S :0.01〜0.06% Ca:0.001〜0.01% O :0.003%以下 但し、Ca/O:0.5〜3.5 を含有し、残部Fe及び不可避不純物からなる鋼材を粗
成形した後、浸炭焼入れを行い、しかる後200〜60
0℃に1〜5分間高周波加熱して直ちに10〜60%の
加工を加えることにより、不完全焼入れ層を15μm未
満、表面での圧縮残留応力を25kgf/mm2 以上、表面粗
さRmax を2.5μm以上とするとともに、X線回折半
価幅をその鋼材焼鈍後の半価幅で無次元化した値β’と
表面粗さRmax との関係がβ’≧2.29−0.40l
n(Rmax )、残留オーステナイトを10%以下とする
ことを特徴とする接触疲労寿命強度に優れた駆動伝達系
部品の製造方法。
C: 0.1 to 0.3% Si: 0.01 to 0.15% Mn: 0.3 to 1.5% Cr: 0.3 to 1.5% S by weight% : 0.01-0.06% Ca: 0.001-0.01% O: 0.003% or less However, Ca / O: 0.5-3.5 is contained, and the balance consists of Fe and unavoidable impurities. After the steel material is roughly formed, carburizing and quenching are performed, and then 200 to 60
Immediately after the high frequency heating at 0 ° C. for 1 to 5 minutes and the processing of 10 to 60%, the incompletely quenched layer is less than 15 μm, the compressive residual stress on the surface is 25 kgf / mm 2 or more, and the surface roughness Rmax is 2 0.5 μm or more, and the relationship between β ′ and the surface roughness Rmax obtained by rendering the half-width of the X-ray diffraction dimensionless by the half-width after annealing the steel is β ′ ≧ 2.29-0.40 l.
A method of manufacturing a drive transmission system component having excellent contact fatigue life strength, wherein n (Rmax) and retained austenite are 10% or less.
【請求項2】 重量%において、 C :0.1〜0.3% Si :0.01〜0.15% Mn:0.3〜1.5% S :0.01%未満 Cr:0.3〜1.5% を含有し、残部Fe及び不可避不純物からなる鋼材を粗
成形した後、浸炭焼入れを行い、しかる後200〜60
0℃に1〜5分間高周波加熱して直ちに10〜60%の
加工を加えることにより、不完全焼入れ層を15μm未
満、表面での圧縮残留応力を25kgf/mm2 以上、表面粗
さRmax を2.5μm以上とするとともに、X線回折半
価幅をその鋼材焼鈍後の半価幅で無次元化した値β’と
表面粗さRmax との関係がβ’≧2.29−0.40l
n(Rmax )、残留オーステナイトを10%以下とする
ことを特徴とする接触疲労寿命強度に優れた駆動伝達系
部品の製造方法。
2. In% by weight, C: 0.1 to 0.3% Si: 0.01 to 0.15% Mn: 0.3 to 1.5% S: less than 0.01% Cr: less than 0.01% After roughly forming a steel material containing 3 to 1.5% and the balance being Fe and unavoidable impurities, carburizing and quenching are performed, and then 200 to 60%.
Immediately after the high frequency heating at 0 ° C. for 1 to 5 minutes and the processing of 10 to 60%, the incompletely quenched layer is less than 15 μm, the compressive residual stress on the surface is 25 kgf / mm 2 or more, and the surface roughness Rmax is 2 0.5 μm or more, and the relationship between β ′ and the surface roughness Rmax obtained by rendering the half-width of the X-ray diffraction dimensionless by the half-width after annealing the steel is β ′ ≧ 2.29-0.40 l.
A method of manufacturing a drive transmission system component having excellent contact fatigue life strength, wherein n (Rmax) and retained austenite are 10% or less.
【請求項3】 鋼材組成として、 Mo:0.1〜1.0% Ni:1.0%以下 の中から1種以上を更に含有する鋼材を用いることを特
徴とする請求項1または2記載の接触疲労寿命強度に優
れた駆動伝達系部品の製造方法。
3. The steel material according to claim 1, further comprising one or more of the following: Mo: 0.1 to 1.0% Ni: 1.0% or less. Method for producing a drive train component having excellent contact fatigue life strength.
JP32645298A 1998-11-17 1998-11-17 Manufacture of driving transmission mechanism parts excellent in contact fatigue life strength Withdrawn JP2000144243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32645298A JP2000144243A (en) 1998-11-17 1998-11-17 Manufacture of driving transmission mechanism parts excellent in contact fatigue life strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32645298A JP2000144243A (en) 1998-11-17 1998-11-17 Manufacture of driving transmission mechanism parts excellent in contact fatigue life strength

Publications (1)

Publication Number Publication Date
JP2000144243A true JP2000144243A (en) 2000-05-26

Family

ID=18187978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32645298A Withdrawn JP2000144243A (en) 1998-11-17 1998-11-17 Manufacture of driving transmission mechanism parts excellent in contact fatigue life strength

Country Status (1)

Country Link
JP (1) JP2000144243A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100380441B1 (en) * 2000-10-23 2003-04-26 현대자동차주식회사 Alloy composition for transmission gear
JP2012177440A (en) * 2011-02-28 2012-09-13 Kubota Corp Engine transmission

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100380441B1 (en) * 2000-10-23 2003-04-26 현대자동차주식회사 Alloy composition for transmission gear
JP2012177440A (en) * 2011-02-28 2012-09-13 Kubota Corp Engine transmission

Similar Documents

Publication Publication Date Title
TWI399441B (en) Induction hardening steel component or parts with pre-carbonitriding treatment
JP5299140B2 (en) MATERIAL OF SHOT PEENING PROJECTION MATERIAL AND METHOD FOR PRODUCING SHOT PEENING PROJECTION MATERIAL
JP4872846B2 (en) Rough shape for nitriding gear and nitriding gear
JPWO2011030827A1 (en) Method for producing carbonitrided member
JP6241136B2 (en) Case-hardened steel
JP5332517B2 (en) Manufacturing method of carburizing steel
WO2013161623A1 (en) Case hardening steel material
JP5258458B2 (en) Gears with excellent surface pressure resistance
JP4102866B2 (en) Gear manufacturing method
JP5381171B2 (en) Manufacturing method of high strength case hardening steel parts
JP5405325B2 (en) Differential gear and manufacturing method thereof
JP2007146233A (en) Method for manufacturing structural parts for automobile made from steel
JP7264117B2 (en) Steel part and its manufacturing method
JP2011032537A (en) Steel for nitriding, and nitrided component
JP2000144243A (en) Manufacture of driving transmission mechanism parts excellent in contact fatigue life strength
WO2016158375A1 (en) Steel for carbonitriding and carbonitrided component
JP3623313B2 (en) Carburized gear parts
JPH0853711A (en) Surface hardening treating method
JP5335523B2 (en) Gear shaft steel and gear shaft excellent in bending fatigue resistance and peeling resistance
JP2001011572A (en) Gear excellent in contact fatigue life strength
JP2002327237A (en) Gear with long dedendum life and contact fatigue life, and manufacturing method therefor
JP2001011578A (en) Gear excellent in contact fatigue life strength
JP7310723B2 (en) Steel part and its manufacturing method
JP6043078B2 (en) Electric car motor gear with excellent seizure resistance
JP4371481B2 (en) Gear having excellent contact fatigue life strength and manufacturing method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060207