JP2000143201A - Production of hydrogen and oxygen by electromagnetic induction type magnetic decomposition of water using catalyst and producing device therefor - Google Patents

Production of hydrogen and oxygen by electromagnetic induction type magnetic decomposition of water using catalyst and producing device therefor

Info

Publication number
JP2000143201A
JP2000143201A JP10366125A JP36612598A JP2000143201A JP 2000143201 A JP2000143201 A JP 2000143201A JP 10366125 A JP10366125 A JP 10366125A JP 36612598 A JP36612598 A JP 36612598A JP 2000143201 A JP2000143201 A JP 2000143201A
Authority
JP
Japan
Prior art keywords
magnetic
oxygen gas
oxygen
water
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10366125A
Other languages
Japanese (ja)
Inventor
Manabu Sasaki
學 佐々木
Noriyuki Yoshida
範行 吉田
Yukio Funai
幸雄 船井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP10366125A priority Critical patent/JP2000143201A/en
Publication of JP2000143201A publication Critical patent/JP2000143201A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To continuously decompose water at a reaction temp. of <=150 deg.C. SOLUTION: A vertical cylindrical hydrothermal reactor has a structure of a reaction vessel constructed by combining an upper cap 3 adopting a ferromagnetic material, a drum body 5 adopting a non-magnetic material and a bottom vessel 4 adopting a ferromagnetic material to easily form magnetic field in the vertical direction in the vessel and water is decomposed into hydrogen and oxygen by a catalyst rotating to cross the magnetic field.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、酸素ガス又は水素ガス
の生成方法とその装置に関する。
The present invention relates to a method and an apparatus for producing oxygen gas or hydrogen gas.

【0002】[0002]

【従来の技術】水を分解することで得られる水素は、化
学工業、半導体素子製造、金属冶金、食品工業等に利用
されるだけでなく、クリーンなエネルギー源として今後
ますます需要が見込まれている。酸素についても近年ダ
イオキシン発生が問題となっている焼却炉でのダイオキ
シン発生を極めて少なくするため高濃度酸素により完全
燃焼させるための支燃性ガスの用途や上水の浄化に用い
られているオゾンガスの原料ガス等多くの用途がある。
[Prior Art] Hydrogen obtained by decomposing water is expected to be used not only in the chemical industry, semiconductor device manufacturing, metallurgy, food industry, etc., but also as a clean energy source in the future. I have. As for oxygen, dioxin generation has become a problem in recent years. There are many uses such as raw material gas.

【0003】酸素と水素とをエネルギー源等として工業
的に利用するには、連続的に製造できることが必須とな
る。酸素と水素を連続的に製造する従来の方法として、
水の電気分解によって得る方法、メタンガスと700℃
〜800℃に加熱された水蒸気とを反応させて水素だけ
を得る水蒸気改質法、1000℃以上の高温下で酸化鉄
等の触媒存在下で水を酸素と水素とに分解する方法が従
来から知られている。
In order to use oxygen and hydrogen industrially as an energy source or the like, it is essential that they can be continuously produced. As a conventional method of continuously producing oxygen and hydrogen,
Method obtained by electrolysis of water, methane gas and 700 ° C
Conventionally, a steam reforming method for obtaining only hydrogen by reacting steam heated to 800 ° C. and a method of decomposing water to oxygen and hydrogen in the presence of a catalyst such as iron oxide at a high temperature of 1000 ° C. or higher have been known. Are known.

【0004】[0004]

【発明が解決しようとする課題】上述した製造法のう
ち、電気分解法は我が国のように電気料金が高い国にお
いて、事業化することはコスト的にも不利である。ま
た、電気エネルギーよりも効率の良い重油等の熱源を選
べる水蒸気改質法は、反応温度が前述のように高いこと
と、地球温暖化の原因となる二酸化炭素の放出を伴い、
更に設備も大規模化するという欠点がある。また、10
00℃以上の高温下で酸化鉄等の触媒に水蒸気を接触さ
せる方法も、前記水蒸気改質法と同様の問題がある。
Among the above-mentioned production methods, the electrolysis method is disadvantageous in terms of cost to commercialize in a country where electricity rates are high, such as Japan. In addition, the steam reforming method that can select a heat source such as heavy oil that is more efficient than electric energy involves the high reaction temperature as described above and the emission of carbon dioxide that causes global warming,
Further, there is a disadvantage that the equipment becomes large-scale. Also, 10
A method in which steam is brought into contact with a catalyst such as iron oxide at a high temperature of 00 ° C. or more has the same problem as the steam reforming method.

【0005】[0005]

【課題を解決するための手段】前述の課題を解決するた
めに本発明に係る、それぞれ水分子中の酸素又は水素に
分離して得られる酸素ガス又は水素ガスの生成方法は、
大地に対し縦置き型の大気から隔離可能な円筒形状の反
応容器の上部蓋と底部容器にSUS430等の強磁性ステンレ
ス材料を採用し、中間の胴体部にSUS316等の非磁性ステ
ンレス材料を採用したフランジ接続の構造とすること
で、反応容器内における天地の上下方向に磁場を形成し
やすくした一方、大地と平行ないずれの方向にも磁場を
形成しにくくしたことに主たる特徴がある。第二に、大
地と垂直な前記反応容器内の壁面に沿って、あらかじめ
水に接触させた強磁性材料又は非磁性酸化物材料を上下
方向の磁場を横切るように円運動させ且つ前記円運動の
中心軸には前記水に接触した前記材料又は反応容器壁面
と絶縁されるように棒状導体金属の電極を天地の上下方
向に配置することで電磁誘導の原理によって、水に接触
した前記材料を介して、前記電極と反応容器との間に、
電場が形成されることに次なる特徴がある。このため二
酸化珪素(SiO2)や酸化第二鉄(Fe2O3)等の熱力学的
に極めて安定な金属酸化物を前記反応容器に装填して大
気から隔離された加熱雰囲気下で天地の上下方向の中心
軸廻りに回転させた場合には、天地の上下方向という特
定方向の滋場の影響を強く受けて、電磁気学のフレミン
グの法則により、反応容器と中心軸方向の前記電極間に
弱い電場が発生するため、水に接触させた非磁性金属酸
化物の粉体はイオン化するものと考えられる。この粉体
に水を接触させた場合には、水分子が解離して前記粉体
粒子間に電場を浸透させるため前記の電場がやや強くな
って直ちに金属酸化物から活性な酸素原子が分離(以
下、脱酸という)され、この活性な酸素原子から酸素ガ
スが生成される。そして生成された酸素ガスを排気する
ことによって金属酸化物が亜酸化物に転換され、またこ
の酸素ガスを更に排気し続けることで一酸化珪素(Si
O)や一酸化チタン(TiO)及び酸化第一鉄(FeO)等の
亜酸化物の生成割合が多くなると、これら亜酸化物が更
に金属に転換されはじめる。これら亜酸化物や金属の生
成割合が多くなるほど、前記酸素ガスの生成反応は抑制
され、水分子が直接亜酸化物や金属と化学反応して水分
子が水素と酸素に分解して水素ガスを発生する一方、水
分子中の酸素原子が前記亜酸化物や金属を酸化する。こ
のような化学反応を繰り返すことで、水素ガスの生成割
合は酸素ガスの生成割合以上に高くなる。
According to the present invention, there is provided a method for producing oxygen gas or hydrogen gas obtained by separating oxygen or hydrogen in water molecules, respectively, according to the present invention.
A ferromagnetic stainless steel material such as SUS430 is used for the top lid and bottom container of a cylindrical reaction vessel that can be isolated from the atmosphere in a vertical position on the ground, and a non-magnetic stainless steel material such as SUS316 is used for the middle body. The main feature of the flange connection structure is that a magnetic field is easily formed in the vertical direction of the top and bottom in the reaction vessel, but it is difficult to form a magnetic field in any direction parallel to the ground. Second, a ferromagnetic material or a non-magnetic oxide material previously contacted with water is circularly moved along a vertical wall of the reaction vessel along a wall in the reaction vessel so as to cross a vertical magnetic field, and On the central axis, the rod-shaped conductor metal electrodes are arranged vertically in the vertical direction so as to be insulated from the material in contact with the water or the wall surface of the reaction vessel. Between the electrode and the reaction vessel,
The formation of an electric field has the following characteristics. For this reason, a thermodynamically extremely stable metal oxide such as silicon dioxide (SiO2) or ferric oxide (Fe2O3) is charged into the reaction vessel, and the center of the top and bottom of the top and bottom is heated under a heating atmosphere isolated from the atmosphere. When rotated around an axis, a weak electric field is generated between the reaction vessel and the electrode in the direction of the central axis due to Fleming's law of electromagnetism, strongly affected by the field in the specific direction of the vertical direction of the top and bottom. Therefore, it is considered that the powder of the nonmagnetic metal oxide contacted with water is ionized. When water is brought into contact with this powder, water molecules dissociate and an electric field penetrates between the powder particles, so that the electric field becomes slightly strong and active oxygen atoms are immediately separated from the metal oxide ( The oxygen gas is generated from the active oxygen atoms. By exhausting the generated oxygen gas, the metal oxide is converted to suboxide, and by further exhausting the oxygen gas, silicon monoxide (Si
When the generation ratio of suboxides such as O), titanium monoxide (TiO), and ferrous oxide (FeO) increases, these suboxides begin to be further converted to metal. As the generation ratio of these suboxides and metals increases, the generation reaction of the oxygen gas is suppressed, and the water molecules directly react with the suboxides and metals to decompose the water molecules into hydrogen and oxygen to convert the hydrogen gas. Meanwhile, oxygen atoms in water molecules oxidize the suboxide and metal. By repeating such a chemical reaction, the generation rate of hydrogen gas becomes higher than the generation rate of oxygen gas.

【0006】第三に、本発明人は、前述までの特徴を有
する円筒形状の反応容器を水熱反応器と名付けている
が、この水熱反応器の容器内で天地の上下方向に外部磁
場を発生させるためには、この円筒容器外側にコイルを
捲いてコイルに電流を流して電磁石とすることによって
水熱反応器内の天地の上下方向に強い磁場を発生させる
ことができると容易に考えられ、この場合には、水熱反
応器の上部蓋や底部容器に強磁性材料の採用の必要はな
く、全てを非磁性材料で統一してよい。しかしながら、
この場合には本発明の水熱反応器と違い、同一の消費電
力に対し天地の上下方向に容器内を透過する磁場が弱く
なることから、反応容器廻りにより大型の電磁石の設置
が必要となるため、装置が大型化する欠点があると予想
される。そこで、本発明人は前記水熱反応容器におい
て、容器内部における天地の上下方向の磁束密度を増大
させるために、請求項3記載の強磁性材料を採用した上
部蓋と底部容器との外側部分を軟鋼や純鉄等の強磁性材
料で連結し、その連結部にコイルを捲いて電流を流して
電磁石として容器内部の天地の上下方向に磁場を効率的
に発生させる構造を採用したのが第三の主たる特徴であ
る。尚、必要に応じて容器内部における天地の上下方向
の磁場を減少させるか、磁場の方向を逆転させることも
コイルに流す電流値を小さくしたり、電流の+又は−の
極性を逆転させることで可能である。ところで、この場
合、容器全体を磁化させるから、使用後残留磁化の問題
がある。特に胴体部が残留磁化した場合が特に問題であ
り、上部蓋と底部容器間に磁場をかけても、容器胴体部
が磁化している場合は、上部蓋と底部容器による磁束が
容器胴体部の磁極に向かう傾向が強くなって、容器内に
均一な磁場ができにくくなって、水が分解する等の化学
反応速度低下の要因になると考えられる。残留磁化を消
すためには、一般に容器の上下方向に交流磁場をかけ
て、徐々にその磁場を弱くしていくことで可能である。
また、請求項5の水熱反応器においては、胴体部外側の
上端と下端部分を軟鉄等の強磁性体で磁気的に連結し、
その連結部にコイルを捲いて電磁石とし、その電磁石に
よって容器内に発生した磁界の向きを上部蓋と底部容器
間に発生する磁界の向きと同じにすることで、上部蓋と
底部容器間に発生する磁界が胴体部容器内壁面の上下方
向に発生した磁界によって容器の中心方向に押しやられ
るため、全体的に容器内部における半径方向の磁束密度
分布がより平坦化若しくは均一化されるようになると考
えられる。尚、上部蓋と胴体部上端の磁極は同じである
ため、この磁極が近接しているほど、両方の磁力線が打
ち消しあって、磁場が減少するため、両方の磁極間にシ
リコンゴムや銅板等の非磁性体若しくは反磁性体のシー
ル材を介して、両方の磁極を遠ざけることで、両磁極の
磁力線が相殺される磁束密度を減少させることができ
る。底部容器と胴体部下端の磁極についても同様のこと
が言える。
Third, the present inventor has named a cylindrical reaction vessel having the above-mentioned features a hydrothermal reactor. In the vessel of the hydrothermal reactor, an external magnetic field is applied in the vertical direction of the top and bottom. It is easily considered that a strong magnetic field can be generated in the vertical direction in the hydrothermal reactor by winding a coil on the outside of this cylindrical container and applying current to the coil to make it an electromagnet. In this case, it is not necessary to employ a ferromagnetic material for the top lid and the bottom vessel of the hydrothermal reactor, and all may be made of a non-magnetic material. However,
In this case, unlike the hydrothermal reactor of the present invention, since the magnetic field penetrating the inside of the container in the vertical direction of the upside and downside for the same power consumption becomes weak, it is necessary to install a large electromagnet around the reaction container. Therefore, it is expected that there is a drawback that the device becomes large. In view of the above, the present inventor has set the outer part of the upper lid and the bottom container employing the ferromagnetic material according to claim 3 in the hydrothermal reaction container in order to increase the magnetic flux density in the vertical direction inside and outside the container. The third method was to use a structure in which a ferromagnetic material such as mild steel or pure iron was used, a coil was wound around the connection, a current was passed, and a magnetic field was efficiently generated as an electromagnet vertically above and below the inside of the container. This is the main feature of If necessary, the magnetic field in the vertical direction in the container may be reduced or the direction of the magnetic field may be reversed by reducing the value of the current flowing through the coil or by reversing the + or-polarity of the current. It is possible. In this case, since the entire container is magnetized, there is a problem of residual magnetization after use. In particular, the case where the body is remanently magnetized is a problem, and even when a magnetic field is applied between the upper lid and the bottom vessel, when the body of the vessel is magnetized, the magnetic flux generated by the upper lid and the bottom vessel causes the magnetic flux of the body of the vessel. It is considered that the tendency toward the magnetic pole becomes strong, and it becomes difficult to form a uniform magnetic field in the container, which may cause a reduction in chemical reaction rate such as decomposition of water. In order to eliminate the residual magnetization, it is generally possible to apply an alternating magnetic field in the vertical direction of the container and gradually weaken the magnetic field.
Further, in the hydrothermal reactor according to claim 5, the upper end and the lower end on the outside of the body are magnetically connected with a ferromagnetic material such as soft iron,
A coil is wound around the connection part to form an electromagnet, and the direction of the magnetic field generated in the container by the electromagnet is made to be the same as the direction of the magnetic field generated between the top lid and the bottom container, so that it is generated between the top lid and the bottom container. It is thought that the magnetic field generated in the vertical direction of the inner wall surface of the body part is pushed toward the center of the container, so that the magnetic flux density distribution in the radial direction inside the container will be more flattened or uniform overall. Can be Since the magnetic poles at the upper lid and the upper end of the body are the same, the closer the magnetic poles are, the more the lines of magnetic force cancel each other and the magnetic field decreases. By separating both magnetic poles via a non-magnetic or diamagnetic sealing material, the magnetic flux density at which the magnetic lines of force of both magnetic poles cancel each other can be reduced. The same is true for the bottom vessel and the magnetic poles at the bottom of the body.

【0007】上記の反応を効率よく行うには、酸素及び
水素ガスを得る目的に対しては雰囲気圧力を20気圧以
下、雰囲気温度を50℃以上374℃以下とし、好まし
くは雰囲気圧力を絶対圧で0.5気圧以上2気圧以下、
雰囲気温度を90℃以上200℃以下とする。この好ま
しい理由は、水が分解して酸素と水素に分離するため、
酸素と水素の再結合反応による爆発燃焼によるおよそ2
0倍もの瞬間的に急激な圧力上昇の危険性があるため、
高温・高圧ほど爆発の危険性が高くなるためである。
In order to carry out the above reaction efficiently, the atmosphere pressure is set to 20 atm or less, the atmosphere temperature is set to 50 ° C. or more and 374 ° C. or less for the purpose of obtaining oxygen and hydrogen gases, 0.5 atm or more and 2 atm or less,
The ambient temperature is set to 90 ° C. or more and 200 ° C. or less. This is because water breaks down and separates into oxygen and hydrogen,
Approximately 2 due to explosive combustion due to recombination reaction of oxygen and hydrogen
Because there is a danger of instantaneous sudden pressure rise of 0 times,
This is because the higher the temperature and pressure, the higher the risk of explosion.

【0008】前述の水熱反応器において、大地を下に見
て強磁性材料の鉄粉又は酸化鉄を時計方向に回転させる
時、その進行方向を取り囲む渦状の磁場は遠ざかる方向
に見て時計回りに発生しているため、鉄粉又は酸化鉄の
回転体の上下に強磁性材料があれば、磁極は上蓋の上部
強磁性体がS極、底部容器の下部強磁性体はN極に磁化
することとなる。両方の強磁性体間の空間における磁場
の方向はN極からS極への向きであるため、上下の強磁
性体による外部磁場の磁力線の向きは下方から上方であ
り、前記の鉄粉の進行方向を囲む磁場(以下、「自己磁
場」という)は時計回りの渦状であるため、中心方向で
外部磁場と反対方向となって相殺する結果磁場が弱まる
一方、容器壁面方向で外部磁場と順方向となって加算さ
れる結果磁場が強まって酸素イオン等の陰イオンが滞留
する中心電極近傍に鉄粉の陽イオンが留まろうとする等
誘電分極しにくくなると考えられるため、中心電極と容
器壁面間の電位差は縮小することとなり、更に電磁石に
よる外部磁場を加えて、上蓋がS極、底部容器がN極に
なる磁束密度を大きくして行った場合は容器壁面の電位
が中心電極に比べて正で大きくなる。一方、反応容器内
の上蓋がN極、底部容器がS極になるように電磁石によ
る外部磁場を加えて大きくして行った場合は、反応容器
内の中心電極電位が壁面に比べて正で大きくなることが
確認される。実験データについては実施例に記載してい
る。尚、いずれの場合も回転体の回転の方向は大地を下
に見て時計方向である。この結果、両方の触媒材料共
に、電磁石のコイルを用いて外部磁場を発生させた時、
中心電極と容器壁面間の電位差の値が正で大きくなるよ
うに、コイルの電流と巻き数を調整することによって、
水分子が水素と酸素に分解する水熱分解反応速度を大き
くして、水素及び酸素の生成ガス流量を大きくすること
ができる。以上で述べたように、実際に鉄粉をあらかじ
め時計方向に回転させながら、最初水熱反応器の上蓋を
N極、底部容器をS極になるように外部磁界を加えた場
合は、水素は殆ど発生せず、酸素が発生する。次に、水
熱反応器の上蓋をS極、底部容器をN極になるように外
部磁界と鉄粉自身の回転による相乗磁場を加えた場合
は、酸素の発生量が低下して、水素発生量が増加する。
そして、このように外部磁場をかけて磁極を反転させた
場合、磁極を反転させない場合に比べて、明らかに水分
子中の水素及び酸素を分離して得られる水素ガスと酸素
ガスの生成量が増加するということが確認されている。
基本的に磁場を有効に活用して金属酸化物を脱酸又は還
元して得た亜酸化物や金属に転換した物質を触媒に用い
ることで、水を原料として水素ガスと酸素ガスを得ると
いう目的から、出発原料である金属酸化物としては、石
英等の珪素やルチル鉱石等のチタン、ボーキサイト等ア
ルミニウムと鉄等の酸化物に限らず、酸化物であれば、
アルミナやカルシウム、マグネシウム、マンガン、ニッ
ケル亜鉛、銅、ジルコニウム等の酸化物や炭酸化合物等
何でもよいことになる。出発原料の酸化物と水との接触
面積を大きくして化学反応速度を速くする意味で、粉体
とすることが好ましい。
In the above-described hydrothermal reactor, when the iron powder or iron oxide of the ferromagnetic material is rotated clockwise when looking down at the ground, the vortex magnetic field surrounding the traveling direction is clockwise as viewed in the direction away from it. If there is a ferromagnetic material above and below the rotating body of iron powder or iron oxide, the upper magnetic pole of the upper lid is magnetized to the S pole, and the lower ferromagnetic substance of the bottom vessel is magnetized to the N pole. It will be. Since the direction of the magnetic field in the space between both ferromagnetic materials is from the north pole to the south pole, the direction of the magnetic field lines of the external magnetic field by the upper and lower ferromagnetic materials is from below to above, and The magnetic field that surrounds the direction (hereinafter referred to as “self-magnetic field”) is a clockwise vortex. As a result, the magnetic field is strengthened and the cations of the iron powder tend to stay near the center electrode where anions such as oxygen ions stay. When the magnetic flux density at which the top lid becomes the S pole and the bottom vessel becomes the N pole is increased by further applying an external magnetic field by an electromagnet, the potential of the vessel wall is more positive than the center electrode. Grow in On the other hand, when an external magnetic field is applied by an electromagnet so that the upper lid in the reaction vessel becomes the N-pole and the bottom vessel becomes the S-pole, the central electrode potential in the reaction vessel is positive and large compared to the wall surface. It is confirmed that it becomes. Experimental data is described in Examples. In each case, the direction of rotation of the rotating body is clockwise with the ground facing downward. As a result, when both catalyst materials generate an external magnetic field using an electromagnet coil,
By adjusting the current and the number of turns of the coil so that the value of the potential difference between the center electrode and the vessel wall is positive and large,
The hydrothermal decomposition reaction rate in which water molecules are decomposed into hydrogen and oxygen can be increased to increase the flow rates of hydrogen and oxygen generated gas. As described above, when an external magnetic field is applied so that the top lid of the hydrothermal reactor becomes the north pole and the bottom vessel becomes the south pole while actually rotating the iron powder clockwise in advance, hydrogen becomes Almost no oxygen is generated. Next, when an external magnetic field and a synergistic magnetic field due to the rotation of the iron powder itself are applied so that the top lid of the hydrothermal reactor becomes the S pole and the bottom vessel becomes the N pole, the amount of generated oxygen decreases, and hydrogen generation occurs. The amount increases.
When the magnetic pole is reversed by applying an external magnetic field in this way, compared to a case where the magnetic pole is not reversed, the amounts of hydrogen gas and oxygen gas obtained by clearly separating hydrogen and oxygen in water molecules are reduced. It has been confirmed that it will increase.
Basically, hydrogen gas and oxygen gas are obtained by using water as a raw material by using a substance converted into suboxide or metal obtained by deoxidizing or reducing a metal oxide by effectively utilizing a magnetic field as a catalyst. For the purpose, the starting material metal oxide is not limited to silicon such as quartz or titanium such as rutile ore, oxide such as aluminum and iron such as bauxite, etc.
Any material such as an oxide or a carbonate compound such as alumina, calcium, magnesium, manganese, nickel zinc, copper, and zirconium may be used. It is preferable to use a powder in the sense that the contact area between the oxide of the starting material and water is increased to increase the chemical reaction rate.

【0009】前述の水熱反応器は、モータに直結されて
金属酸化物を回転させる撹拌軸が上部蓋部から軸シール
しながら貫通されあるいはあるいはモータと連結された
撹拌軸と反応容器内雰囲気中にある撹拌軸とが磁気カッ
プリングによって直結して貫通され、撹拌軸の最下部に
は粉体を駆動させる下羽根(実施例の図3参照)とその
直上には粉体が層流状に水平に回転させる上羽根(実施
例の図2参照)が取付けられた所に重要な特徴がある。
前記の下羽根は粉体を回転させながら揚力を与えるが、
この羽根単独で使用した場合、粉体は波打って回転する
ことになるため、天地の上下方向の磁場を垂直に横切っ
て回転する確率が少なくなるため、水が分解するときの
水素又は酸素ガスの生成速度が低下するものと予想され
る。前記の上羽根は下羽根回転の揚力で舞い上がって浮
上した粉体を大地と水平方向に層流状態に回転させる機
能を有している。尚、本発明の水熱反応器の撹拌器の構
造に関する磁気カップリングについては、反応容器内へ
の大気の漏洩を極小とするために、反応容器の蓋板に完
全な気密性を保ってねじ込まれた非磁性ステンレス鋼の
耐圧管の内部に、ベアリングが組み込まれた耐食性の強
磁性金属の撹拌軸が納められ、前記耐圧管の外側には電
磁コイルが密着してはめ込まれ、電磁コイルを回転させ
ることで耐圧管内部の撹拌軸が回転するようにする機構
等の例を採用することもできる。
In the above-described hydrothermal reactor, a stirring shaft that is directly connected to the motor and rotates the metal oxide is penetrated while sealing the shaft from the upper lid portion, or the stirring shaft connected to the motor and the stirring shaft in the atmosphere in the reaction vessel. The lower shaft (see FIG. 3 of the embodiment) for driving the powder is provided at the lowermost portion of the stirring shaft, and the powder is laminar just above the stirring shaft. There is an important feature where the upper blade (see FIG. 2 of the embodiment) that rotates horizontally is attached.
The lower blade gives lift while rotating the powder,
If these blades are used alone, the powder will undulate and rotate, reducing the probability that the powder will rotate vertically across the vertical magnetic field of the top and bottom. It is expected that the rate of formation of will decrease. The upper blade has a function of rotating the powder that has risen and floated by the lift of the rotation of the lower blade in a laminar flow state in the horizontal direction with the ground. The magnetic coupling relating to the structure of the stirrer of the hydrothermal reactor of the present invention is screwed into the lid plate of the reaction vessel while keeping the airtight in order to minimize the leakage of the atmosphere into the reaction vessel. A stirrer shaft made of a corrosion-resistant ferromagnetic metal with a built-in bearing is housed inside the pressure-resistant tube made of non-magnetic stainless steel, and an electromagnetic coil is closely fitted and fitted to the outside of the pressure-resistant tube, and the electromagnetic coil is rotated. By doing so, an example of a mechanism or the like that causes the stirring shaft inside the pressure-resistant tube to rotate can be adopted.

【0010】本発明の酸素ガス又は水素ガス生成装置
は、強磁性材料を収納すると共に大気から隔離できるも
のとし、生成ガス回収用途を兼ねる減圧装置につながる
反応容器と、この反応容器を加熱する加熱手段と、前記
反応容器内に水を加圧して供給できる水供給手段と前記
反応容器内に電場を形成するように撹拌軸廻りに設置さ
れた中空パイプ形状の電極と容器内の天地上下方向に磁
場を形成できる強磁性材料の蓋板と底部容器、非磁性材
料の胴部容器をフランジ接続の組合せ構造とした前記の
水熱反応器を備え、これに加えて前記蓋板と底部容器外
側のフランジ間を強磁性材料で連結し、その連結部にコ
イルを捲いて電磁石とすることで、反応容器内の天地方
向に外部磁場を形成できるようにしたことを重要な特徴
とする。この装置の運転で注意しなければいけないこと
は、運転中外気の空気が水熱反応器内に漏洩しないこと
が重要である。強磁性材料の鉄や酸化鉄の粉体を触媒に
用いた場合に、天地の上下方向の磁場を作用させて回転
させて水分子を本触媒に反応させた場合には、系内に漏
洩してきた酸素や窒素の影響を受けて酸化物や窒化物生
成等水分解触媒としての性能を劣化させる可能性がある
ためである。
[0010] The oxygen gas or hydrogen gas generator of the present invention is capable of accommodating a ferromagnetic material and isolating it from the atmosphere. Means, a water supply means capable of supplying water by pressurizing water into the reaction vessel, a hollow pipe-shaped electrode installed around a stirring axis so as to form an electric field in the reaction vessel, and a vertical direction in the vessel. A lid plate and bottom container made of a ferromagnetic material capable of forming a magnetic field, and the above-mentioned hydrothermal reactor having a combined structure of a body container made of a non-magnetic material and a flange connection are provided. An important feature is that the flanges are connected by a ferromagnetic material, and a coil is wound around the connection to form an electromagnet so that an external magnetic field can be formed in a vertical direction in the reaction vessel. It is important to note that the operation of this device does not allow the outside air to leak into the hydrothermal reactor during operation. When iron or iron oxide powder of a ferromagnetic material is used as a catalyst, water molecules react with this catalyst by rotating by applying a magnetic field in the vertical direction of the top and bottom, and leak into the system. This is because there is a possibility that the performance as a water splitting catalyst such as generation of oxides or nitrides may be deteriorated by the influence of oxygen or nitrogen.

【0011】酸化珪素の場合には、反応容器内における
主たる反応は以下の如くと推定される。 金属酸化物の還元反応: SiO2=SiO2++O2− ・・・・・(1) =SiO2++2e−+O* ・・・(2) =SiO+O* ・・・・・・(3) :SiO =Si2++O2− ・・・・・・(4) =Si2++2e−+O* ・・・・(5) =Si+O* ・・・・・・(6) 酸素ガスの生成反応: 2O* =1/2O2 ・・・・・・・(7) 金属酸化物の酸化反応(純水の還元反応): SiO+H2O=SiO2+H2 ・・・・・(8) Si+H2O =SiO+H2 ・・・・・(9) 純水の酸化反応: H2O+O* =H2+O2 ・・・・・(10)
In the case of silicon oxide, the main reaction in the reaction vessel is presumed as follows. Reduction reaction of metal oxide: SiO2 = SiO2 ++ O2- (1) = SiO2 ++ 2e- + O * (2) = SiO + O * (3): SiO2 = Si2 ++ O2 -... (4) = Si2 ++ 2e- + O * (5) = Si + O * (6) Oxygen gas generation reaction: 2O * = 1 / 2O2 (...) 7) Oxidation reaction of metal oxide (reduction reaction of pure water): SiO + H2O = SiO2 + H2 (8) Si + H2O = SiO + H2 (9) Oxidation reaction of pure water: H2O + O * = H2 + O2. ... (10)

【0012】上記の反応式(1)〜(3)及び(4)〜
(6)は、反応のギブスの自由エネルギー変化(ΔG)
の値が正の値となるので、反応式は自然には右に進行し
ない。しかしながら、前述の説明の通り、水を含んだ金
属酸化物は(1)を経て(2)、又は(4)を経て
(5)となり、陽イオンは反応容器壁面方向に向き、負
電荷は反応容器中心にある絶縁された棒状電極のある方
向に向くと考えられる。即ち、二酸化珪素の場合には
(1)式においては+2価の一酸化珪素イオンと−2価
の酸素イオンに分離(電離)して、更に(2)式におい
てはこの−2価の酸素イオンが2個の電子と活性な酸素
原子とに分離すると考えられる。そして(3)式におい
ては分離した電子(負電荷)は反応容器内で同様に電離
している+2価の一酸化珪素イオンと合体して中性分子
である一酸化珪素を形成しようとするはずである。一
方、電子に逃げられた先の2価の一酸化珪素イオンはす
ぐその外側に隣接する反応容器若しくはその他の金属酸
化物から電子をもらって一酸化珪素となって安定化する
と考えられる。このとき、活性な酸素原子は(7)式の
とおり近傍の同じ活性な酸素原子と結合して酸素ガスを
生成するか、又は(10)式のとおり近傍の水分子と化
学反応して酸素と水素を生成するということが考えられ
る。同様に水を含んだ金属酸化物が一酸化珪素である場
合も(4)〜(6)まで前述の如く説明することができ
る。結局反応容器中心の棒状電極の廻りを水に接触した
金属酸化物が負電荷を蓄えた状態で磁気の作用を受けて
大地を下に見ながら時計方向に回転している場合、前記
反応容器中心の棒状電極が絶縁されていれば、この棒状
電極は正極になりやすくなって、反応容器内を円運動し
ている負電荷は正極に向かおうとする、即ち、電流が正
極から負極の反応容器に流れようとするし、実際に流れ
るということがある。この場合前述のとおり、負電荷は
隣接する正極寄りの時計方向に回っている水を含んだ金
属酸化物に移動、即ち、その金属酸化物は還元されると
いう現象が起こるものと考えられる。また、この時、残
された活性な酸素原子が酸素ガス化するか、或いは近く
の水分子を分解して水素と酸素を容積比1:1で生成す
るということも既に述べた。以上によって、金属酸化物
からの脱酸が十分に進んで、亜酸化物の一酸化珪素や金
属珪素の生成割合が多くなってくると、反応式(8)及
び(9)に示すように水分子と反応して、水素を生成す
る割合は当然の如く高くなろう。一方、反応容器内の酸
素、水素及び水蒸気が増加して雰囲気圧力が高くなる
と、反応は平衡状態に達し、酸素及び水素のそれ以上の
生成は停止する。そこで、反応容器内から酸素、水素及
び水蒸気を吸引するため、反応容器内を減圧するか、あ
るいは大気圧より高い場合は放出すると共に、反応容器
内の水が不足した場合に水の供給を再開することで、以
上の一連の反応が再開し、連続的に酸素ガス又は酸素と
水素の混合ガスを生成することができる。
The above reaction formulas (1) to (3) and (4) to
(6) is the change in Gibbs free energy of the reaction (ΔG)
Is positive, so the reaction does not naturally proceed to the right. However, as described above, the metal oxide containing water becomes (2) via (1) or (5) via (4), the cation is directed toward the reaction vessel wall, and the negative charge is It is considered to face in a direction of the insulated rod-shaped electrode at the center of the container. That is, in the case of silicon dioxide, in formula (1), it is separated (ionized) into +2 valent silicon monoxide ion and -2 valent oxygen ion. Is thought to separate into two electrons and active oxygen atoms. In equation (3), the separated electrons (negative charges) should combine with +2 valent silicon monoxide ions which are also ionized in the reaction vessel to form silicon monoxide, which is a neutral molecule. It is. On the other hand, it is considered that the divalent silicon monoxide ion which has escaped to the electrons receives electrons from a reaction vessel or another metal oxide immediately adjacent to the divalent silicon monoxide ions and is stabilized as silicon monoxide. At this time, the active oxygen atom combines with the same active oxygen atom nearby as shown in equation (7) to generate oxygen gas, or chemically reacts with nearby water molecules as shown in equation (10) to form oxygen and oxygen. It is conceivable to generate hydrogen. Similarly, when the metal oxide containing water is silicon monoxide, (4) to (6) can be explained as described above. After all, when the metal oxide in contact with water around the rod-shaped electrode at the center of the reaction vessel is rotating clockwise while looking down at the earth under the action of magnetism while storing negative charges, If the rod-shaped electrode is insulated, the rod-shaped electrode is likely to become a positive electrode, and negative charges moving in a circular motion in the reaction vessel are directed to the positive electrode. And then actually flows. In this case, as described above, it is considered that the negative charge moves to the water-containing metal oxide that is rotating clockwise near the adjacent positive electrode, that is, the metal oxide is reduced. In addition, it has already been described that at this time, the remaining active oxygen atoms gasify oxygen or decompose nearby water molecules to generate hydrogen and oxygen at a volume ratio of 1: 1. As described above, when the deoxidation from the metal oxide has sufficiently proceeded and the production ratio of silicon monoxide and metal silicon has increased, as shown in reaction formulas (8) and (9), water The rate at which hydrogen reacts with molecules to produce hydrogen will of course be high. On the other hand, when the oxygen, hydrogen and water vapor in the reaction vessel increase and the atmospheric pressure increases, the reaction reaches an equilibrium state and further generation of oxygen and hydrogen stops. Therefore, in order to suck oxygen, hydrogen, and water vapor from the inside of the reaction vessel, the pressure inside the reaction vessel is reduced or released when the pressure is higher than the atmospheric pressure, and the water supply is restarted when the water inside the reaction vessel becomes insufficient. By doing so, the above series of reactions is restarted, and oxygen gas or a mixed gas of oxygen and hydrogen can be continuously generated.

【0013】尚、前記したようにSiO又はSiが水に
接触すると水素を生成するのは、従来からよく知られて
いる。ところが、SiO又はSiが酸化されてSiO2
になると、通常はそれ以上反応は進まない。しかしな
がら、本発明にあっては、電場が形成されている言わば
励起状態の雰囲気に水を含んだ酸化珪素がさらされてい
ることで、SiO2 −>SiO−>Si−>SiO−
>SiO2 −>SiO・・・・のサイクルを繰り返す
ようにしたものであり、所謂酸化珪素は水を分解する触
媒としての働きをなしていることになる。尚、最初、安
定な二酸化珪素が大半を占める場合は、水を媒介とす
る、即ち、水が触媒的な働きをしながら、二酸化珪素か
ら酸素が脱離即ち脱酸し、この初期段階時は、ほとんど
水素は検出されないが、亜酸化珪素及び金属珪素の割合
が多くなって行くにつれて、生成する水素濃度が高くな
って行くということが起こり、この場合には、反応容器
からの排気速度が十分に大きくなければ、亜酸化珪素や
金属珪素及び二酸化珪素の混合物全体が、金属珪素に転
換されるということにはなりにくいからである。逆に言
えば、反応容器からの排気速度を十分に大きくすれば、
二酸化珪素の大部分を金属珪素に転換するということも
可能と見られる。
It is well known that SiO or Si generates hydrogen when it comes into contact with water as described above. However, SiO or Si is oxidized and SiO2
, The reaction usually does not proceed any further. However, in the present invention, the silicon oxide containing water is exposed to an atmosphere in an excited state in which an electric field is formed, so that the SiO 2->SiO->Si-> SiO-
>SiO2-> SiO... Cycle is repeated, so-called silicon oxide acts as a catalyst for decomposing water. In the first place, when stable silicon dioxide occupies the majority, water is mediated, that is, oxygen is desorbed or deoxidized from silicon dioxide while water acts as a catalyst. Almost no hydrogen is detected, but as the proportion of silicon suboxide and metallic silicon increases, the concentration of generated hydrogen increases. In this case, the pumping speed from the reaction vessel is sufficient. If it is not too large, it is difficult to convert the entire mixture of silicon suboxide, metallic silicon and silicon dioxide to metallic silicon. Conversely, if the pumping speed from the reaction vessel is sufficiently high,
It appears that it is possible to convert most of the silicon dioxide to metallic silicon.

【0014】酸化チタンの場合には反応容器内における
主たる反応は以下の如くと推定される。 金属酸化物の還元反応: TiO2=TiO2++O2− ・・・・・(11) =TiO2++2e−+O*・・・(12) =TiO+O* ・・・・・・(13) :TiO =Ti2++O2− ・・・・・・(14) =Ti2++2e−+O* ・・・・(15) =Ti+O* ・・・・・・(16) 酸素ガスの生成反応:2O*=1/2O2 ・・・・・・・(17) 金属酸化物の酸化反応(純水の還元反応) :TiO+H2O=TiO2+H2 ・・・・・(18) Ti+H2O =TiO+H2 ・・・・・(19) 純水の酸化反応:H2O+O* =H2+O2・・・・・(20)
In the case of titanium oxide, the main reaction in the reaction vessel is presumed as follows. Reduction reaction of metal oxide: TiO2 = TiO2 ++ O2- (11) = TiO2 ++ 2e- + O * (12) = TiO + O * (13): TiO2 = Ti2 ++ O2 -... (14) = Ti2 ++ 2e- + O * (15) = Ti + O * (16) Oxygen gas generation reaction: 2O * = 1 / 2O2 (15) 17) Oxidation reaction of metal oxide (reduction reaction of pure water): TiO + H2O = TiO2 + H2 (18) Ti + H2O = TiO + H2 (19) Oxidation reaction of pure water: H2O + O * = H2 + O2. ... (20)

【0015】酸化鉄の場合、反応容器内における主たる
反応は以下の如くと推定される。酸化珪素や酸化チタン
と化学反応の経路は同様なので、途中を省略すると、
金属酸化物の還元反応: Fe3O4=3FeO+O* ・・・・・・(21) :FeO=Fe+O* ・・・・・・・・(22) 酸素ガスの生成反応: 2O*=1/2O2 ・・・・・・・・(23) 金属酸化物の酸化反応(純水の還元反応) :3FeO+H2O=Fe3O4+H2・・・・・(24) Fe+H2O =FeO+H2 ・・・・・・(25) 純水の酸化反応: H2O+O* =H2+O2 ・・・・・・(26)
In the case of iron oxide, the main reaction in the reaction vessel is estimated as follows. The route of chemical reaction with silicon oxide and titanium oxide is the same, so if you omit the middle,
Reduction reaction of metal oxide: Fe3O4 = 3FeO + O * (21): FeO = Fe + O * (22) Oxygen gas generation reaction: 2O * = 1 / 2O2. (23) Oxidation reaction of metal oxide (reduction reaction of pure water): 3FeO + H2O = Fe3O4 + H2 (24) Fe + H2O = FeO + H2 (25) Oxidation of pure water Reaction: H2O + O * = H2 + O2 (26)

【0016】[0016]

【発明の実施の形態】以下に本発明の実施の形態につい
て、添付図を参照しながら説明する。ここで、図1は本
発明に係る水熱反応器を天地の上下方向の上から見て0
度方向に切断した断面図である。また図2は本発明に係
る水熱反応器を天地の上下方向の上から見て90度方向
に切断した断面図である。図1の水熱反応器の基本形状
は円筒形状であり、強磁性材料のSUS430の上部蓋
3には純水注入配管1と生成ガス回収配管2と撹拌軸8
とが設けられ、撹拌軸にはパッキン12が設けられ、そ
して同じく強磁性材料のSUS430の底部容器4との
間に非磁性材料のSUS316の胴体部5がフランジボ
ルトを介して接続されている。その接続部はシリコンゴ
ムやテフロン等のガスケット11A、銅板等のガスケッ
ト11Bが使用されている。前記上部蓋3と底部容器4
のフランジ部に両者の磁気回路を形成する軟鋼のヨーク
6Aと6Bとが取付けられ、ヨーク6Aと6Bの間に永
久磁石7が挟まれる構造となっている。これによって上
部蓋と底部容器は磁気的に接続されるので、例えば永久
磁石のS極を上方、N極を下方に向けてヨークに挟んだ
場合、上部蓋から容器内の空隙を経て底部容器、そして
ヨーク6Bからヨーク6Aへ、更に上部蓋に向けて磁束
が流れ続けるため、効率よく磁場が容器内に形成され
る。永久磁石のN極とS極を反対向きに取付けた場合は
逆方向の磁束が流れることになる。尚、ヨーク6Aと6
Bとを連結したヨークにコイルを捲いて電流を流して電
磁石にしてもよい。更に、撹拌軸8には上部羽根9と下
部羽根10とが取付けられている。図2は、基本的に図
1を補足しており、絶縁電極の取付け方法が示されてお
り、例えば黄銅製の絶縁電極13に強磁性体の電極支持
板14が圧入され、この14はまた容器内底部容器との
間に磁場を形成しやすくする目的と撹拌によって舞上る
粉体が容器出口の生成ガス回収配管2に向う飛散を抑制
する目的とを兼ねており、14はボルト15にテフロン
シール材17とナット16によって容器本体に絶縁され
て固定されている。また胴体部上端と下端のフランジに
ヨーク6AAと6BBとがそれぞれ取付けられ、その間
に永久磁石7が取付けられている。尚、ヨーク6Aと6
Bとを連結したヨークにコイルを捲いて電流を流して電
磁石にしてもよい。本発明の装置について、最も特徴的
なのは前記水熱反応器であって、生成ガスを冷却して回
収しながら、水熱反応器内への純水の注入量を制御する
装置については市販品を流用して製作したため図面等の
説明を割愛しているが、本装置については、当然に生成
ガスを冷却する熱交換器と、かつジェットポンプ式の真
空ポンプと冷却水循環ポンプとが設けられ、また、生成
ガスの出口には圧力と温度制御可能な空気駆動式制御弁
とが設けられていると共に、注入する純水量の制御は反
応容器出口の生成ガス回収配管内の圧力と温度を検出し
ながら行っている。後述するように、本発明の水熱反応
器は吉田、佐々木両発明人による特願平9−30968
1の反応容器と違い、容器内部の天地の上下方向に効果
的に磁場を生成できるようにしたため、純水の注入量が
触媒の粉体重量に比べて過度に多くなければ、生成する
蒸気量は極めてわずかであるため、回収可能なドレン量
は極めて少ない。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 shows the hydrothermal reactor according to the present invention as viewed from above and below in the vertical direction.
It is sectional drawing cut | disconnected in the degree direction. FIG. 2 is a cross-sectional view of the hydrothermal reactor according to the present invention cut in a 90 ° direction when viewed from above and below. The basic shape of the hydrothermal reactor shown in FIG. 1 is a cylindrical shape, and a pure water injection pipe 1, a generated gas recovery pipe 2, and a stirring shaft 8 are provided on an upper lid 3 of SUS430 made of a ferromagnetic material.
A packing 12 is provided on the stirring shaft, and a body 5 of SUS316 of nonmagnetic material is connected to the bottom container 4 of SUS430 of ferromagnetic material via a flange bolt. A gasket 11A such as silicon rubber or Teflon or a gasket 11B such as a copper plate is used for the connection portion. The top lid 3 and the bottom container 4
The yokes 6A and 6B made of mild steel forming both magnetic circuits are attached to the flanges of the above, and the permanent magnet 7 is sandwiched between the yokes 6A and 6B. Thereby, since the upper lid and the bottom container are magnetically connected, for example, when the S pole of the permanent magnet is sandwiched between the yokes with the S pole facing upward and the N pole facing downward, the bottom container passes through the gap in the container from the top lid, Since the magnetic flux continues to flow from the yoke 6B to the yoke 6A and further toward the upper lid, a magnetic field is efficiently formed in the container. When the N and S poles of the permanent magnet are mounted in opposite directions, magnetic fluxes in opposite directions flow. The yokes 6A and 6A
An electromagnet may be formed by winding a coil around a yoke connected to B and passing a current. Further, an upper blade 9 and a lower blade 10 are attached to the stirring shaft 8. FIG. 2 basically supplements FIG. 1 and shows a method of attaching an insulated electrode. For example, a ferromagnetic electrode support plate 14 is press-fitted into an insulated electrode 13 made of brass. The bolts 15 are connected to the Teflon bolts 15 for the purpose of facilitating the formation of a magnetic field between the container and the bottom vessel and for the purpose of preventing the powder soaring by stirring from scattering toward the generated gas recovery pipe 2 at the outlet of the vessel. The container is insulated and fixed to the container body by a seal member 17 and a nut 16. Further, yokes 6AA and 6BB are mounted on the flanges at the upper and lower ends of the body, respectively, and a permanent magnet 7 is mounted between them. The yokes 6A and 6A
An electromagnet may be formed by winding a coil around a yoke connected to B and passing a current. The most characteristic of the apparatus of the present invention is the above-described hydrothermal reactor, and a commercially available apparatus for controlling the amount of pure water injected into the hydrothermal reactor while cooling and recovering the produced gas is a commercially available product. Although the description of the drawings and the like is omitted because it was diverted and manufactured, the apparatus is naturally provided with a heat exchanger for cooling the generated gas, and a jet pump type vacuum pump and a cooling water circulation pump. An air-driven control valve capable of controlling pressure and temperature is provided at the outlet of the generated gas, and the amount of pure water to be injected is controlled while detecting the pressure and temperature in the generated gas recovery pipe at the outlet of the reaction vessel. Is going. As will be described later, the hydrothermal reactor of the present invention is disclosed in Japanese Patent Application No. 9-30968 by Yoshida and Sasaki.
Unlike the first reaction vessel, since the magnetic field can be generated effectively in the vertical direction of the top and bottom inside the vessel, if the amount of pure water injected is not excessively large compared to the catalyst powder weight, the amount of generated steam , The amount of drain that can be recovered is extremely small.

【0017】図3には上部羽根の平面図と正面図が示さ
れており、同様に下部羽根の平面図と正面図が図4に示
されている。これらの羽根の機能については
FIG. 3 shows a plan view and a front view of the upper blade. Similarly, FIG. 4 shows a plan view and a front view of the lower blade. About the function of these wings

【0009】に詳細に説明した通りなので省略する。[0009] Since it has been described in detail above, the description is omitted.

【0018】次に、上記の装置を用いて、各触媒による
水素生成試験、酸素生成試験、水素と酸素の混合ガス生
成試験結果を以下に示す。
Next, the results of a hydrogen generation test, an oxygen generation test, and a mixed gas generation test of hydrogen and oxygen using the above catalysts are shown below.

【0019】第一実施例を以下に記載する。 (実験1:水素生成試験の実験) 触媒の種類:鉄粉(出発原料) 反応容器体積:9リットル 触媒重量:2000g 回転数:1500回/分 所要電力:毎時1kw 粉体の回転方向:大地を下に見て大地と鉛直軸の時計方
向 雰囲気温度:150℃ 生成ガス回収配管内温度:35℃ ドレン量:極めて僅かであり計測不能 雰囲気圧力:最初0.1気圧の絶対圧になるように真空
引きしつつ、断続的に純水を注入しながら、1気圧に到
達したら、この圧力を維持しながら、サンプルガスをダ
イアフラム式真空ポンプにて抜き取る。 連続運転時間=3時間: 採取時刻=3時間後;水素濃度:70%、酸素濃度:1
0%、窒素濃度:20%(島津製作所製ガスクロマトグ
ラフ装置使用) 混合ガス平均流量:260cc/分(日本アエラ製質量
流量計使用)
The first embodiment will be described below. (Experiment 1: Experiment of hydrogen generation test) Type of catalyst: iron powder (starting material) Reaction vessel volume: 9 liters Catalyst weight: 2000 g Number of revolutions: 1500 times / min Power required: 1 kW / hour Rotation direction of powder: ground Clockwise of earth and vertical axis as seen below Ambient temperature: 150 ° C Temperature in generated gas recovery pipe: 35 ° C Drain amount: extremely small and unmeasurable Atmospheric pressure: Vacuum to 0.1 atm absolute pressure at first When the pressure reaches 1 atm while intermittently injecting pure water while pulling, the sample gas is withdrawn by a diaphragm vacuum pump while maintaining this pressure. Continuous operation time = 3 hours: sampling time = 3 hours later; hydrogen concentration: 70%, oxygen concentration: 1
0%, nitrogen concentration: 20% (using a gas chromatograph manufactured by Shimadzu Corporation) Average mixed gas flow rate: 260 cc / min (using a mass flowmeter manufactured by Nippon Aera)

【0020】第二実施例を以下に記載する。 (実験2:酸素生成試験又は金属酸化物脱酸の実験) 触媒の種類:石英の粉体(出発原料) 反応容器体積:9リットル 触媒重量:2000g 回転数:1500回/分 粉体の回転方向:大地を下に見て大地と鉛直軸の時計方
向 雰囲気温度:150℃ 生成ガス回収配管内温度:40℃ ドレン量:極めて僅かであり計測不能 雰囲気圧力:最初0.1気圧の絶対圧になるように真空
引きしつつ、断続的に純水を注入しながら、0.7気圧
に到達したら、この圧力を維持しながら、サンプルガス
をダイアフラム式真空ポンプにて抜き取る。 連続運転時間=0.2時間: 採取時刻=0.2時間後;水素濃度:0%、酸素濃度:
90%、窒素濃度:10%(島津製作所製ガスクロマト
グラフ装置使用) 混合ガス平均流量:50リットル/分(日本アエラ製質量流
量計使用) 採取時刻=2時間後;水素濃度:10%、酸素濃度80
%、窒素濃度:10%(島津製作所製ガスクロマトグラ
フ装置使用) 混合ガス平均流量:70リットル/分(日本アエラ製質量流
量計使用) 本事例は、珪素の亜酸化物生成割合増大により、水素濃
度が10%に達したと考えられ、水素のみの平均流量=
7リットル/分であるから、0.42m3/kwh となり、電
気分解法の場合は1m3/6kwであるから、電気分解
法に比べて約2.4倍もの高効率が得られる。
A second embodiment is described below. (Experiment 2: Oxygen generation test or experiment of metal oxide deoxidation) Type of catalyst: powder of quartz (starting material) Volume of reaction vessel: 9 liters Weight of catalyst: 2000 g Number of revolutions: 1500 times / min Rotation direction of powder : Looking down the earth, clockwise between the earth and the vertical axis Atmospheric temperature: 150 ° C. Temperature in the generated gas recovery pipe: 40 ° C. Drain amount: extremely small and unmeasurable Atmospheric pressure: 0.1 atm absolute pressure at first When the pressure reaches 0.7 atm while intermittently injecting pure water while evacuating as described above, the sample gas is withdrawn by a diaphragm vacuum pump while maintaining this pressure. Continuous operation time = 0.2 hours: sampling time = 0.2 hours later; hydrogen concentration: 0%, oxygen concentration:
90%, nitrogen concentration: 10% (using a gas chromatograph manufactured by Shimadzu Corporation) Average mixed gas flow rate: 50 liter / min (using a mass flowmeter manufactured by Nippon Aera) Sampling time = 2 hours later; hydrogen concentration: 10%, oxygen concentration 80
%, Nitrogen concentration: 10% (using a gas chromatograph manufactured by Shimadzu Corporation) Average mixed gas flow rate: 70 l / min (using a mass flow meter manufactured by Nippon Aera) In this case, the hydrogen concentration was increased due to an increase in the suboxide generation ratio of silicon. Is considered to have reached 10%, and the average flow rate of only hydrogen =
Since it is 7 liters / minute, it is 0.42 m3 / kwh, and in the case of the electrolysis method, it is 1 m3 / 6 kw, so that the efficiency is about 2.4 times higher than that of the electrolysis method.

【0021】第三実施例を以下に記載する。 (実験3:磁場を反転させた水素と酸素生成試験の実
験) 触媒の種類:鉄粉(出発原料) 反応容器体積:9リットル 触媒重量:2000g 回転数:1500回/分 所要電力:毎時1kw 粉体の回転方向:大地を下に見て大地と鉛直軸の時計方
向 雰囲気温度:150℃ 生成ガス回収配管内温度:35℃ ドレン量:極めて僅か 雰囲気圧力:最初0.1気圧の絶対圧になるように真空
引きしつつ、断続的に純水を注入しながら、1気圧に到
達したら、この圧力を維持しながら、サンプルガスをダ
イアフラム式真空ポンプにて抜き取る。 磁場:水熱反応器の上部蓋を最初運転時間1時間だけN
極、底部容器S極になるよう外部磁場をかけながら、徐
々にその磁場を弱くして行きながら、次に前記上部蓋を
S極、底部容器をN極になるようにする。 連続運転時間=8時間: 採取時刻=1時間後;水素濃度:0%、酸素濃度:40
%、窒素濃度:60%(島津製作所製ガスクロマトグラ
フ装置使用) 混合ガス平均流量:25リットル/分(日本アエラ製質
量流量計使用) 採取時刻=4時間後;水素濃度:20%、酸素濃度:3
0%、窒素濃度:50%(島津製作所製ガスクロマトグ
ラフ装置使用) 混合ガス平均流量:25リットル/分(日本アエラ製質
量流量計使用) 採取時刻=8時間後;水素濃度:30%、酸素濃度:3
0%、窒素濃度:40%(島津製作所製ガスクロマトグ
ラフ装置使用) 混合ガス平均流量:20リットル/分(日本アエラ製質
量流量計使用) 尚、窒素はサンプリングラインを経由してダイアフラム
式真空ポンプ中に空気が混入したものと推定される。
A third embodiment is described below. (Experiment 3: Experiment of hydrogen and oxygen generation test with reversed magnetic field) Type of catalyst: iron powder (starting material) Reaction vessel volume: 9 liters Catalyst weight: 2000 g Number of revolutions: 1500 times / min Power required: 1 kW / hour powder Body rotation direction: Looking down the earth, clockwise between the earth and the vertical axis Atmospheric temperature: 150 ° C Temperature in the generated gas recovery pipe: 35 ° C Drain amount: extremely slight Atmospheric pressure: The absolute pressure is initially 0.1 atm When the pressure reaches 1 atm while intermittently injecting pure water while evacuating as described above, the sample gas is withdrawn by a diaphragm type vacuum pump while maintaining this pressure. Magnetic field: the top lid of the hydrothermal reactor is initially N for 1 hour
While applying an external magnetic field so as to become the pole and the bottom vessel S pole, the magnetic field is gradually weakened, and then the upper lid is turned to the S pole and the bottom vessel is turned to the N pole. Continuous operation time = 8 hours: sampling time = 1 hour later; hydrogen concentration: 0%, oxygen concentration: 40
%, Nitrogen concentration: 60% (using a gas chromatograph manufactured by Shimadzu Corporation) Average mixed gas flow rate: 25 l / min (using a mass flow meter manufactured by Nippon Aera) Collection time = 4 hours later; hydrogen concentration: 20%, oxygen concentration: 3
0%, nitrogen concentration: 50% (using a gas chromatograph manufactured by Shimadzu Corporation) Average mixed gas flow rate: 25 liter / min (using a mass flowmeter manufactured by Nippon Aera) Collection time = 8 hours later; hydrogen concentration: 30%, oxygen concentration : 3
0%, nitrogen concentration: 40% (using a gas chromatograph manufactured by Shimadzu Corporation) Average mixed gas flow rate: 20 liter / min (using a mass flowmeter manufactured by Nippon Aera) Nitrogen is passed through a sampling line into a diaphragm type vacuum pump. It is presumed that air was mixed in the air.

【0022】[0022]

【発明の効果】以上に説明したように、本発明によれ
ば、従来方法に比較して水の分解温度が低く、設備も小
型化が可能である。また、原料には地下水や水道水の
他、工業用水と酸化物触媒であり、また、熱源は反応容
器外壁を150℃程度に加熱できれば十分であること、
回収される酸素ガスや水素ガスが9リットルの反応容器
に対して、毎分50リットル/分もの酸素ガスと水素ガスと
の混合ガスを得ることができるため、地球温暖化の原因
となる炭酸ガスの排出を理論上ほとんどゼロに近づける
ことができる。
As described above, according to the present invention, the decomposition temperature of water is lower than in the conventional method, and the equipment can be downsized. In addition, raw materials are groundwater and tap water, industrial water and oxide catalyst, and the heat source is sufficient if the outer wall of the reaction vessel can be heated to about 150 ° C.
Since a mixed gas of oxygen gas and hydrogen gas at a rate of 50 liters / minute per minute can be obtained for a reaction vessel containing 9 liters of oxygen gas and hydrogen gas, carbon dioxide gas causing global warming can be obtained. Can theoretically be close to zero.

【0023】また、反応温度が100℃程度で酸化物触
媒によって水が酸素と水素に分解するため、火力発電所
や原子力発電所のボイラーやタービンの廃熱利用や市町
村のゴミ焼却場の焼却炉の廃熱利用による水素製造も可
能である。このため、大幅な水素製造コストの低減が図
られるものと考えられる。
Further, since water is decomposed into oxygen and hydrogen by an oxide catalyst at a reaction temperature of about 100 ° C., waste heat of boilers and turbines of thermal power plants and nuclear power plants is utilized, and incinerators of municipal garbage incineration plants are used. It is also possible to produce hydrogen by using waste heat of wastewater. For this reason, it is considered that the hydrogen production cost can be significantly reduced.

【0024】また、水の分解によって得られた酸素と水
素は、励起状態にあると考えられ、これらのガスを含ん
だ水は活性な反応溶媒となり、PCBやフロン、プラス
チック類の廃棄物等を分解する目的にも充分に使用可能
である。従って、これまで水素ガスは大規模な事業所で
なければ製造不可能であったが、小規模事業所での製造
可能性が生まれ、将来的にガソリンや軽油を燃料とする
自動車に比べて環境負荷が小さい水素自動車の普及にも
資することができる。
Oxygen and hydrogen obtained by the decomposition of water are considered to be in an excited state, and water containing these gases becomes an active reaction solvent, thereby reducing PCBs, CFCs, plastic wastes, and the like. It can be used sufficiently for the purpose of decomposition. Until now, hydrogen gas could not be produced unless it was a large-scale business establishment. However, the possibility of producing hydrogen gas at a small-scale business establishment has arisen, and in the future it will be more environmentally friendly than vehicles that use gasoline or diesel fuel. It can also contribute to the spread of hydrogen vehicles with small loads.

【0025】[0025]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る0度方向に切断した水熱反応器の
断面図
FIG. 1 is a cross-sectional view of a hydrothermal reactor cut in a 0-degree direction according to the present invention.

【図2】本発明に係る90度方向に切断した水熱反応器
の断面図
FIG. 2 is a cross-sectional view of a hydrothermal reactor cut at 90 degrees according to the present invention.

【図3】撹拌器の上部羽根の平面図と正面図FIG. 3 is a plan view and a front view of an upper blade of the stirrer.

【図4】撹拌器の下部羽根の平面図と正面図FIG. 4 is a plan view and a front view of a lower blade of the stirrer.

【符号の説明】[Explanation of symbols]

【図1】及びFIG. 1 and

【図2】 1・・・純水注入配管、2・・・生成ガス回収配管、3
・・・上部蓋、4・・・底部容器、5・・・胴体部、6
A・・・ヨーク、6・・・AAヨーク、6B・・・ヨー
ク、6BB・・・ヨーク、7・・・永久磁石、8・・・
撹拌軸、9・・・上部羽根、10・・・下部羽根、11
A・・・ガスケット、11B・・・ガスケット、12・
・・パッキン、13・・・絶縁電極(黄銅製)、14・
・・電極支持板(強磁性体)、15・・・ボルト、16
・・・ナット、17・・・テフロンシール材
[Fig. 2] 1 ... pure water injection pipe, 2 ... generated gas recovery pipe, 3
... top lid, 4 ... bottom container, 5 ... body, 6
A: yoke, 6: AA yoke, 6B: yoke, 6BB: yoke, 7: permanent magnet, 8:
Stirring shaft, 9 upper blade, 10 lower blade, 11
A: gasket, 11B: gasket, 12.
..Packing, 13 ... insulated electrode (made of brass), 14.
..Electrode support plate (ferromagnetic material), 15... Bolt, 16
... Nut, 17 ... Teflon sealing material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 範行 宮城県仙台市若林区南染師町32番地の1 メイツ南染師402 (72)発明者 船井 幸雄 東京都港区高輪1−5−33−507 Fターム(参考) 4G042 BA05 BA08 BA11 BA33 BB01 BB04  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Noriyuki Yoshida 1 Mates Minami Someshi 402 at 32 Minami Someshi-cho, Wakabayashi-ku, Sendai City, Miyagi Prefecture (72) Inventor Yukio Funai F-term 1-33-507 (Reference) 4G042 BA05 BA08 BA11 BA33 BB01 BB04

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】強磁性体や非磁性金属酸化物を大気から隔
離した加熱雰囲気下の電磁場内に配置して水に接触させ
ながら、互いに直交する電場と磁場に垂直に回転運動さ
せることで、水分子中の酸素の分離又は/及び非磁性酸
化物中の酸素の分離によって、酸素ガスを生成すること
を特徴とする酸素ガスの生成方法。
1. A ferromagnetic substance or a non-magnetic metal oxide is placed in an electromagnetic field under a heated atmosphere isolated from the atmosphere and is rotated in a direction perpendicular to an electric field and a magnetic field perpendicular to each other while being in contact with water. A method for producing oxygen gas, comprising producing oxygen gas by separating oxygen in water molecules and / or separating oxygen in a non-magnetic oxide.
【請求項2】強磁性体や非磁性金属酸化物を大気から隔
離した加熱雰囲気下の電磁場内に配置して水に接触させ
ながら、互いに直交する電場と磁場に垂直に回転運動さ
せることで、水分子中の水素及び酸素を分離して水素ガ
スと酸素ガスを生成することを特徴とする水素ガスと酸
素ガスの生成方法。
2. A ferromagnetic material or a non-magnetic metal oxide is placed in an electromagnetic field under a heated atmosphere isolated from the atmosphere and is rotated in a direction perpendicular to an electric field and a magnetic field orthogonal to each other while being in contact with water. A method for producing hydrogen gas and oxygen gas, comprising separating hydrogen and oxygen in water molecules to produce hydrogen gas and oxygen gas.
【請求項3】請求項1及び2の大気から隔離した加熱雰
囲気下の電磁場の内、磁場については請求項1,2の強
磁性体又は非磁性酸化物を回転させて前記物質固有の磁
場を天地の上下方向に形成しやすくするため、強磁性材
料を採用した上部蓋と、非磁性材料を採用した胴体部
と、強磁性材料を採用した底部容器との組合せから構成
された密閉可能な反応容器の構造を有することを特徴と
する水熱反応器。
3. The magnetic field of the electromagnetic field in a heated atmosphere isolated from the atmosphere of the first and second aspects is rotated by rotating the ferromagnetic material or the non-magnetic oxide of the first or second aspect to reduce the magnetic field specific to the substance. A sealable reaction composed of a combination of a top lid made of ferromagnetic material, a body part made of non-magnetic material, and a bottom container made of ferromagnetic material, so that it can be easily formed vertically. A hydrothermal reactor having a container structure.
【請求項4】請求項3の水熱反応器において、容器内部
における天地の上下方向の磁束密度を増大又は減少させ
るために、請求項3記載の強磁性材料を採用した上部蓋
と底部容器との外側部分を強磁性材料で連結し、その連
結部にコイルを捲いて電磁石とすることを可能とした反
応容器の構造を有することを特徴とする水熱反応器。
4. A hydrothermal reactor according to claim 3, wherein the top lid and the bottom vessel each employing the ferromagnetic material according to claim 3 for increasing or decreasing the magnetic flux density in the vertical direction of the top and bottom inside the vessel. A hydrothermal reactor having a structure of a reaction vessel in which an outer portion of the reactor is connected with a ferromagnetic material, and a coil is wound around the connection portion to be an electromagnet.
【請求項5】請求項4の水熱反応器において、容器内部
における天地の上下方向の磁束密度を増大又は減少さ
せ、容器の径方向の磁束密度をできるだけ均一化しやす
くするために、請求項3記載の胴体部に強磁性材料又は
非磁性材料を採用した場合、上部蓋と胴体部と底部容器
との各接続部のシール材は非磁性体又は反磁性体であ
り、かつそのシール材厚さは少なくとも各3mm以上で
あり、上部蓋と底部容器との外側部分を強磁性材料で磁
気的に連結し、その連結部にコイルを捲いて電磁石とす
ることを可能とし、また胴体部外側の上端と下端部分を
強磁性材料で磁気的に連結し、その連結部にコイルを捲
いて電磁石とすることを可能とした反応容器の構造を有
することを特徴とする水熱反応器。
5. The hydrothermal reactor according to claim 4, wherein the magnetic flux density in the vertical direction of the top and bottom inside the container is increased or decreased, and the magnetic flux density in the radial direction of the container is made as uniform as possible. When a ferromagnetic material or a non-magnetic material is adopted for the body described in the above, the sealing material at each connection between the top lid, the body and the bottom container is a non-magnetic or diamagnetic material, and the thickness of the sealing material is Is at least 3 mm each, the outer part of the upper lid and the bottom container is magnetically connected with a ferromagnetic material, and a coil is wound around the connection to form an electromagnet. And a lower end portion is magnetically connected with a ferromagnetic material, and a coil is wound around the connection portion to form an electromagnet.
【請求項6】請求項1及び2の大気から隔離した加熱雰
囲気下の電磁場の内、電場については、大地と垂直な軸
を中心として水に接触させた強磁性体又は非磁性酸化物
を円運動させ且つ前記円運動の中心軸には反応容器と絶
縁された棒状導体金属の電極を配置することで、水に接
触した強磁性体又は非磁性酸化物材料が前記電極に対し
電位差を発生しやすくしたことを特徴とする前記電極と
電極を中心に円運動する水に接触した前記材料との間に
形成されることを特徴とする電場の発生方法。
6. An electromagnetic field in a heated atmosphere isolated from the atmosphere according to claim 1 or 2, wherein the electric field is a circle formed by a ferromagnetic substance or a non-magnetic oxide contacted with water about an axis perpendicular to the ground. The ferromagnetic or non-magnetic oxide material in contact with water generates a potential difference with respect to the electrode by moving and placing a rod-shaped conductive metal electrode insulated from the reaction vessel on the central axis of the circular motion. A method for generating an electric field, wherein said method is formed between said electrode and said material in contact with water circulating around said electrode.
【請求項7】請求項1及び2の強磁性体を作動物質とし
た場合の大気から隔離した加熱雰囲気下の電磁場の内、
磁場については天地方向の上部磁極を最初N極とし、下
部磁極をS極として、徐々にそれぞれの磁場をS極、N
極になるよう外部磁場をかけることで、磁極を反転させ
ない場合に比べて水分子中の水素及び酸素を分離して得
られる水素ガスと酸素ガスの生成量を増加させることを
特徴とする水素ガスと酸素ガスの生成方法。
7. An electromagnetic field in a heated atmosphere isolated from the atmosphere when the ferromagnetic material according to claim 1 or 2 is used as a working material,
Regarding the magnetic field, the upper magnetic pole in the vertical direction is set as the north pole first, the lower magnetic pole is set as the south pole, and the respective magnetic fields are gradually set as the south pole and the north pole.
By applying an external magnetic field so as to be a pole, the amount of hydrogen gas and oxygen gas generated by separating hydrogen and oxygen in water molecules is increased as compared to a case where the magnetic pole is not reversed. And how to generate oxygen gas.
【請求項8】請求項1〜請求項2に記載された酸素ガス
の生成方法又は水素ガスと酸素ガスの生成方法におい
て、前記強磁性体は金属鉄又は酸化鉄であることを特徴
とする酸素ガスの生成方法又は水素ガスと酸素ガスの生
成方法。
8. The method for producing oxygen gas or the method for producing hydrogen gas and oxygen gas according to claim 1, wherein said ferromagnetic material is metallic iron or iron oxide. A method for producing gas or a method for producing hydrogen gas and oxygen gas.
【請求項9】請求項1〜請求項2に記載された酸素ガス
の生成方法又は水素ガスと酸素ガスの生成方法におい
て、前記金属酸化物は石英等を出発原料とする酸化珪素
であることを特徴とする酸素ガスの生成方法又は水素ガ
スと酸素ガスの生成方法。
9. The method for producing oxygen gas or the method for producing hydrogen gas and oxygen gas according to claim 1 or 2, wherein the metal oxide is silicon oxide starting from quartz or the like. A method for producing oxygen gas or a method for producing hydrogen gas and oxygen gas.
【請求項10】請求項1〜請求項2に記載された酸素ガ
スの生成方法又は水素ガスと酸素ガスの生成方法におい
て、前記生成反応は雰囲気圧力を0.05気圧の真空状
態より大気圧以上、雰囲気温度を50℃以上374℃以
下とすることを特徴とする酸素ガスの生成方法又は水素
ガスと酸素ガスの生成方法。
10. The method for producing an oxygen gas or the method for producing a hydrogen gas and an oxygen gas according to claim 1 or 2, wherein the production reaction is carried out at an atmospheric pressure higher than a vacuum state of 0.05 atm. A method for producing oxygen gas or a method for producing hydrogen gas and oxygen gas, characterized in that the ambient temperature is not lower than 50 ° C. and not higher than 374 ° C.
【請求項11】請求項8に記載された金属鉄及び酸化鉄
及び請求項9に記載された酸化珪素は粒径が300μm
以下であることを特徴とする微粒子体。
11. The metal iron and iron oxide described in claim 8 and the silicon oxide described in claim 9 have a particle size of 300 μm.
A fine particle body characterized by the following.
【請求項12】請求項3及び請求項5の水熱反応器にお
いて、前記水熱反応器にはモータに連結されて前記強磁
性体又は非磁性酸化物を回転させる撹拌軸が、上部蓋部
から軸シールしながら貫通されるかあるいはモータと連
結された撹拌軸の外側磁石と反応容器内雰囲気中にある
撹拌軸の内側磁石とが磁気カップリングによって反応容
器内に貫通され、撹拌軸の最下部には粉体を駆動させる
下羽根(実施例の図3参照)とその直上には粉体が層流
状に水平に回転させる上羽根(実施例の図2参照)が取
付けられたことを特徴とする水熱反応器。
12. The hydrothermal reactor according to claim 3, wherein said hydrothermal reactor has a stirring shaft connected to a motor for rotating said ferromagnetic material or non-magnetic oxide. The outer magnet of the stirring shaft connected to the motor or the outer magnet of the stirring shaft connected to the motor and the inner magnet of the stirring shaft in the atmosphere in the reaction container are penetrated into the reaction container by magnetic coupling. A lower blade (see FIG. 3 of the embodiment) for driving the powder and an upper blade (see FIG. 2 of the embodiment) for rotating the powder horizontally in a laminar manner are mounted directly above the lower blade. Characterized hydrothermal reactor.
【請求項13】強磁性体又は非磁性酸化物を収納すると
共に大気から隔離できるものとし、生成ガス回収用途を
兼ねる減圧装置につながる反応容器と、この反応容器を
加熱する加熱手段と、前記反応容器内に水を加圧して供
給できる水供給手段と前記反応容器内に電場を形成する
ように撹拌軸廻りに設置された棒状又は中空パイプ形状
の電極と容器内の天地上下方向に磁場を形成できる強磁
性材料と非磁性材料の組合せ構造とした請求項3及び請
求項5の水熱反応器を備えたことを特徴とする酸素ガス
又は水素ガスと酸素ガスの生成装置。
13. A reaction vessel for accommodating a ferromagnetic substance or a non-magnetic oxide and capable of being isolated from the atmosphere and connected to a decompression device serving also as a product gas recovery application, heating means for heating the reaction vessel, A water supply means capable of supplying water by pressurizing water into a vessel, a rod-shaped or hollow pipe-shaped electrode installed around a stirring axis so as to form an electric field in the reaction vessel, and a magnetic field in a vertical direction in the vessel. An apparatus for producing oxygen gas or hydrogen gas and oxygen gas, comprising the hydrothermal reactor according to claim 3 or 5, wherein the apparatus has a combined structure of a ferromagnetic material and a non-magnetic material.
JP10366125A 1998-09-13 1998-12-08 Production of hydrogen and oxygen by electromagnetic induction type magnetic decomposition of water using catalyst and producing device therefor Pending JP2000143201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10366125A JP2000143201A (en) 1998-09-13 1998-12-08 Production of hydrogen and oxygen by electromagnetic induction type magnetic decomposition of water using catalyst and producing device therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-276497 1998-09-13
JP27649798 1998-09-13
JP10366125A JP2000143201A (en) 1998-09-13 1998-12-08 Production of hydrogen and oxygen by electromagnetic induction type magnetic decomposition of water using catalyst and producing device therefor

Publications (1)

Publication Number Publication Date
JP2000143201A true JP2000143201A (en) 2000-05-23

Family

ID=26551941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10366125A Pending JP2000143201A (en) 1998-09-13 1998-12-08 Production of hydrogen and oxygen by electromagnetic induction type magnetic decomposition of water using catalyst and producing device therefor

Country Status (1)

Country Link
JP (1) JP2000143201A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004041715A1 (en) * 2002-11-08 2004-05-21 Hyun-Ik Yang Apparatus for generating hydrogen gas
WO2008131126A1 (en) * 2007-04-21 2008-10-30 Lsg Holdings, Inc. Method for making a gas from an aqueous fluid, product of the method, and apparatus therefor
WO2013105743A1 (en) * 2012-01-12 2013-07-18 (주)이엠티 Rechargeable battery anode active material precursor producing device using sealed reactor
CN105016299A (en) * 2015-04-16 2015-11-04 江苏师范大学 Reaction device for hydrogen production by using sodium borohydride
CN115198296A (en) * 2022-07-15 2022-10-18 青岛中石大新能源科技有限公司 Solar seawater electrolysis hydrogen production device and method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004041715A1 (en) * 2002-11-08 2004-05-21 Hyun-Ik Yang Apparatus for generating hydrogen gas
JP2006505478A (en) * 2002-11-08 2006-02-16 ヤン、ヒュン‐イク Hydrogen gas generator
KR100828047B1 (en) * 2002-11-08 2008-05-13 퓨전에너지(주) Apparatus for generating hydrogen gas
JP4794859B2 (en) * 2002-11-08 2011-10-19 ヤン、ヒュン‐イク Hydrogen gas generator
WO2008131126A1 (en) * 2007-04-21 2008-10-30 Lsg Holdings, Inc. Method for making a gas from an aqueous fluid, product of the method, and apparatus therefor
WO2013105743A1 (en) * 2012-01-12 2013-07-18 (주)이엠티 Rechargeable battery anode active material precursor producing device using sealed reactor
KR101355186B1 (en) * 2012-01-12 2014-01-28 (주)이엠티 Apparatus for preparing precursor of cathode material for secondary battery using closed reactor
CN105016299A (en) * 2015-04-16 2015-11-04 江苏师范大学 Reaction device for hydrogen production by using sodium borohydride
CN115198296A (en) * 2022-07-15 2022-10-18 青岛中石大新能源科技有限公司 Solar seawater electrolysis hydrogen production device and method

Similar Documents

Publication Publication Date Title
Soufi et al. Spinel ferrites nanoparticles: Synthesis methods and application in heterogeneous Fenton oxidation of organic pollutants–A review
Dehghan et al. Heterogeneous sonocatalytic degradation of amoxicillin using ZnO@ Fe3O4 magnetic nanocomposite: influential factors, reusability and mechanisms
Zhu et al. Nanostructured manganese oxides: natural/artificial formation and their induced catalysis for wastewater remediation
CN101466643B (en) Electromagnetic field treatment method and electromagnetic field treatment equipment of water
US20030001439A1 (en) Magnetohydrodynamic EMF generator
Liu et al. N-doped aluminum-graphite (Al-Gr-N) composite for enhancing in-situ production and activation of hydrogen peroxide to treat landfill leachate
US20130175163A1 (en) Apparatus and method for generating hydrogen from water
JP2005529455A (en) Plasma created in fluid
Widhiastuti et al. Electrocoagulation of boron by electrochemically co-precipitated spinel ferrites
Wang et al. Heterogeneous Electro-Fenton system for efficient degradation of 2, 4-DCP: Dual activation of O2 for H2O2 generation and oxygen-defect cobalt ferrite catalysts
EP2630089A2 (en) Enhanced water electrolysis apparatus and methods for hydrogen generation and other applications
Lu et al. Efficient activation of peroxymonosulfate by iron-containing mesoporous silica catalysts derived from iron tailings for degradation of organic pollutants
JP2000143201A (en) Production of hydrogen and oxygen by electromagnetic induction type magnetic decomposition of water using catalyst and producing device therefor
Casillas et al. Electrochemistry behind electrocoagulation using iron electrodes
Zhang et al. Degradation of the antibiotic ornidazole in aqueous solution by using nanoscale zero-valent iron particles: kinetics, mechanism, and degradation pathway
US4767953A (en) Electrode device for electromagnetic fluid flow apparatus
Xia et al. Green synthesis of a dendritic Fe3O4@ Feo composite modified with polar C-groups for Fenton-like oxidation of phenol
Sun et al. In situ hydrogenation of CO2 by Al/Fe and Zn/Cu alloy catalysts under mild conditions
Ramasamy et al. Cobalt promoted bifunctional graphene composite (Co@ pGSC) for heterogeneous peroxymonosulfate activation
RU2013139455A (en) METHOD FOR RESTORING SILICON AND TITANIUM BY GENERATION OF ELECTROMAGNETIC INTERACTIONS OF PARTICLES SiO2, FeTiО3 AND MAGNETIC WAVES
US10434487B2 (en) Apparatus for physically processing and/or heating media, in particular liquids
JP2002263655A (en) Production apparatus for magnetically treated water and apparatus for magnetically treating liquid fuel
Huang et al. A coupled electrochemical process for schwertmannite recovery from acid mine drainage: Important roles of anodic reactive oxygen species and cathodic alkaline
JP2016175820A (en) Method for producing ammonia and compound production device
CN111945184B (en) Fe2+/Fe3+Electrochemical preparation device, preparation method and application of hydroxide