JP2000140980A - Production of metal member with through hole and metal member with through hole - Google Patents

Production of metal member with through hole and metal member with through hole

Info

Publication number
JP2000140980A
JP2000140980A JP10313449A JP31344998A JP2000140980A JP 2000140980 A JP2000140980 A JP 2000140980A JP 10313449 A JP10313449 A JP 10313449A JP 31344998 A JP31344998 A JP 31344998A JP 2000140980 A JP2000140980 A JP 2000140980A
Authority
JP
Japan
Prior art keywords
hole
cross
metal member
less
forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10313449A
Other languages
Japanese (ja)
Inventor
Hideyuki Oma
英之 大間
Kazuhisa Ishida
和久 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP10313449A priority Critical patent/JP2000140980A/en
Publication of JP2000140980A publication Critical patent/JP2000140980A/en
Pending legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)
  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method of a metal member with a through hole of a small and long size capable of securing a precision for a formed position and straightness of the through hole well. SOLUTION: A through hole 21 is formed beforehand by drilling or backward extrusion and blanking for a metal stock having a low aspect ratio before forging. When an aspect ratio of the metal stock 20 is small, a forming precision of the through hole 21 is relatively easily secured. Reducing forging is conducted while inserting a mandrel 55 in the through hole 21. The stock 20, while being reduced in an axial cross section outer diameter and through hole inner diameter by a die hole 57 of a forging die 56, is formed to a non round shape in its outer shape corresponding to a die hole inner face. On the other hand, a through hole 21 inner face is restricted by the mandrel 55 and is formed so as to have a corresponding inner diameter. At this time, the mandrel 55 is pressed into a die hole 57 roughly in isotropy in the peripheral direction through the stock 20 not to cause deflection. As a result, a forming precision of the through hole 2 finally formed for an obtained metal member 1 is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、貫通孔付金属部材
の製造方法及び貫通孔付金属部材に関し、特に小型で貫
通孔のアスペクト比が大きく、かつ軸断面外形が四角形
状等の非円形形状である貫通孔付金属部材の製造方法及
び貫通孔付金属部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a metal member having a through hole and a metal member having a through hole, and more particularly to a non-circular shape such as a small-sized one having a large aspect ratio of a through-hole and having a square cross-sectional outer shape. The present invention relates to a method for manufacturing a metal member with a through hole and a metal member with a through hole.

【0002】[0002]

【従来の技術】上記のような貫通孔付金属部材は、例え
ば角状断面を有するものの場合、従来は以下のようにし
て製造されていた。まず、図9(a)に示すような丸棒
状の素材100を、同図(b)に示すように引抜ダイ1
02を用いて引き抜き加工することにより、製品外形に
対応する角棒状素材101とする。次いで、同図(c)
に示すように、その角棒状素材101を切断して角状素
材103とし、これにドリル104を用いて、断面中央
部に軸線方向に穿孔することにより、(d)に示すよう
な貫通孔105を有する金属部材104が得られる。
2. Description of the Related Art A metal member having a through hole as described above, for example, having a square cross section, has conventionally been manufactured as follows. First, as shown in FIG. 9 (a), a round bar-shaped material 100 as shown in FIG.
By performing a drawing process using 02, a square bar-shaped material 101 corresponding to the product outer shape is obtained. Next, FIG.
As shown in (d), the square rod-shaped material 101 is cut into a square material 103, and a drill 104 is used to drill a hole in the center of the cross section in the axial direction, thereby forming a through hole 105 as shown in (d). Is obtained.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記方
法においては、断面寸法の小さい長尺部材の場合、小径
のドリルにてかなりの深さの穿孔を行わなければならな
いから、ドリルに橈みが生じやすい問題がある。そのた
め、図10(a)に示すように、貫通孔105の形成位
置の精度が損なわれたり、あるいは同図(b)に示すよ
うに、貫通孔105の直進性が悪化して不良を生じやす
くなる。例えば、断面が10×15mm程度の角状であ
り、長さが60mm程度の角状素材に、内径7mm程度
の貫通孔を上記方法により形成しようとした場合、貫通
孔105の真直度が最大で38/100程度にまで悪化
することがある。
However, in the above method, in the case of a long member having a small cross-sectional dimension, a drill having a large diameter must be formed with a small-diameter drill. There are easy problems. Therefore, as shown in FIG. 10A, the precision of the formation position of the through-hole 105 is impaired, or as shown in FIG. Become. For example, when it is attempted to form a through hole having an inner diameter of about 7 mm in a square material having a cross section of about 10 × 15 mm and a length of about 60 mm by the above method, the straightness of the through hole 105 is the maximum. It may worsen to about 38/100.

【0004】本発明の課題は、貫通孔の形成位置や直進
性の精度を良好に確保できる小型長尺の貫通孔付金属部
材の製造方法と、それにより製造可能な貫通孔付金属部
材とを提供することにある。
An object of the present invention is to provide a method for manufacturing a small and long metal member with a through hole, which can ensure the formation position of a through hole and the accuracy of straightness, and a metal member with a through hole that can be manufactured by the method. To provide.

【0005】[0005]

【課題を解決するための手段及び作用・効果】上記課題
を解決するために本発明の貫通孔付金属部材の製造方法
の第一は、軸断面が円状であり、その軸断面外径D’が
10〜30mm、軸方向長さL’が15〜36mmの金
属素材に対し、その軸断面中央に、内径d’が5〜8m
mであり、L’/d’が3〜4.5の軸線方向の貫通孔
をドリル切削加工にて穿孔することにより、貫通孔付金
属素材を作製する切削穿孔工程と、加工後の孔内径を規
定するマンドレルを貫通孔に挿通しつつ貫通孔付金属素
材を、鍛造ダイに形成された非円形形状のダイ孔に対し
軸線方向に通すことにより減面率40〜70%以下の絞
り鍛造加工を行い、それによって軸断面外形がダイ孔に
対応する非円形形状となり、かつ加工後の部材の軸断面
外径をD、同じく貫通孔の内径及び長さをそれぞれd及
びLとして、L/dが5〜10、Dが7〜18mm、d
が5〜8mmの貫通孔付金属部材を得る絞り鍛造工程と
を含むことを特徴とする。
Means for Solving the Problems and Functions / Effects In order to solve the above-mentioned problems, a first method of manufacturing a metal member having a through hole according to the present invention is as follows. For a metal material having a length of 10 to 30 mm and an axial length L ′ of 15 to 36 mm, the inner diameter d ′ is 5 to 8 m at the center of the axial cross section.
m, wherein L ′ / d ′ is 3 to 4.5 in the axial direction by drilling a drilled hole to produce a metal material with a through hole, and a hole inner diameter after the processing. Forging with a surface reduction rate of 40 to 70% or less by passing a metal material with a through hole in the axial direction through a non-circular die hole formed in a forging die while inserting a mandrel defining the Is performed, whereby the outer shape of the shaft cross section becomes a non-circular shape corresponding to the die hole, and the outer diameter of the shaft cross section of the processed member is D, and the inner diameter and the length of the through hole are d and L, respectively, and L / d Is 5 to 10, D is 7 to 18 mm, d
And a drawing forging step of obtaining a metal member with a through hole of 5 to 8 mm.

【0006】また、同じく第二は、金属素材を後方押出
加工することにより、軸断面が円状であり、その軸断面
外径D’が10〜30mm、軸方向長さL’が15〜3
6mmで、その断面中央に内径d’が5〜8mmの軸線
方向の有底孔が形成された有底孔付金属素材を作製する
押出工程と、その有底孔付金属素材の底部を打ち抜くこ
とにより、有底孔をL’/d’が3〜4.5の貫通孔と
なして貫通孔付金属素材を作製する打抜き工程と、加工
後の孔内径を規定するマンドレルを貫通孔に挿通しつつ
孔付金属素材を、鍛造ダイに形成された非円形形状のダ
イ孔に対し軸線方向に通すことにより減面率70%以下
の絞り鍛造加工を行い、それによって軸断面外形がダイ
孔に対応する非円形形状となり、かつ加工後の部材の軸
断面外径をD、同じく貫通孔の内径及び長さをそれぞれ
d及びLとして、L/dが5〜10、Dが7〜18m
m、dが5〜8mmの貫通孔付金属部材を得る鍛造工程
とを含むことを特徴とする。
[0006] Similarly, the second is that a metal material is extruded backward to form a circular shaft cross section, whose outer diameter D 'is 10 to 30 mm and whose axial length L' is 15 to 3 mm.
Extrusion step of producing a metal material with a bottomed hole of 6 mm, having an axial bottomed hole with an inner diameter d ′ of 5 to 8 mm in the center of the cross section, and punching the bottom of the metal material with the bottomed hole A punching step of making the bottomed hole into a through hole having a L '/ d' of 3 to 4.5 to produce a metal material with a through hole, and inserting a mandrel defining the inner diameter of the hole after processing into the through hole. While the holed metal material is passed through the non-circular die hole formed in the forging die in the axial direction, a drawing forging process with a reduction in area of 70% or less is performed. L / d is 5 to 10 and D is 7 to 18 m, where D is the outer diameter of the cross section of the member after processing, and d and L are the inner diameter and length of the through hole, respectively.
a forging step of obtaining a metal member with through holes having m and d of 5 to 8 mm.

【0007】なお、本発明において「軸断面外形が非円
形形状である」とは、図7に示すように、軸断面(軸線
と直交する平面による断面)の外形線Tに対し、その幾
何学的重心Gを中心とする内接円ICと外接円OCとを
描き、さらにそれら内接円ICと外接円OCとの中間に
位置する仮想的な基準円SCを描いた場合に、断面外形
線Tの一部が基準円SCの内側に位置し、他の部分が該
基準円SCの外側に位置する形状をいう。例えば、三角
形状、四角形状(正方形、長方形等)等の多角形状形態
や楕円状形態を例示することができる。図7(a)は断
面外形線Tが正方形状の場合、(b)は楕円状の場合の
例を示している。また、非円形形状となる加工後の部材
の軸断面径Dは、該軸断面と同面積の円の直径として定
義する。
In the present invention, "the outer shape of the shaft cross section is a non-circular shape" means that, as shown in FIG. 7, the outer shape T of the shaft cross section (a cross section formed by a plane orthogonal to the axis) is represented by a geometrical shape. When an inscribed circle IC and a circumscribed circle OC centered on the center of gravity G are drawn, and a virtual reference circle SC located between the inscribed circle IC and the circumscribed circle OC is drawn, the cross-sectional outline A shape in which a part of T is located inside the reference circle SC and another part is located outside the reference circle SC. For example, a polygonal shape such as a triangular shape and a quadrangular shape (square, rectangular, etc.) and an elliptical shape can be exemplified. FIG. 7A shows an example in which the cross-sectional outline T is square, and FIG. 7B shows an example in the case of an elliptical shape. Further, the shaft cross-sectional diameter D of the processed member having a non-circular shape is defined as the diameter of a circle having the same area as the shaft cross-section.

【0008】上記本発明の方法によれば、貫通孔内径d
と長さLとの比L/dが5〜10と大きく、かつDが7
〜18mm、Lが40〜100mm程度の小型の金属部
材において、貫通孔の形成位置及び直進性の精度(以
下、両者を総称する場合は「形成精度」という)を、前
記従来の方法と比べて飛躍的に高めることができる。
According to the method of the present invention, the inner diameter d of the through hole is
The ratio L / d of the length L to the length L is as large as 5 to 10, and D is 7
In a small metal member having a diameter of about 18 mm and L of about 40 to 100 mm, the formation position of a through hole and the accuracy of straightness (hereinafter, collectively referred to as "formation accuracy") are compared with those of the conventional method. It can be dramatically increased.

【0009】上記方法においては、鍛造前の比較的アス
ペクト比の小さい素材に対し、ドリル切削又は後方押出
+打抜きにより予め貫通孔を形成しておく。素材のアス
ペクト比が小さければ、貫通孔の形成精度を比較的確保
しやすいためである。そして、この貫通孔内にマンドレ
ルを挿通しながら鍛造ダイにより絞り鍛造加工が行われ
る。素材は、鍛造ダイのダイ孔により断面縮小されつ
つ、外形形状がダイ孔内面に対応する非円形形状に成形
される。他方、貫通孔内面はマンドレルにより拘束され
つつ、対応する内径を有するものとなるように成形され
る。このとき、マンドレルは、ダイ孔内にて素材を介し
て周方向に略当方的に加圧されるため、橈みが生じにく
い。その結果、得られる金属部材に最終的に形成される
貫通孔の形成精度が高められるものと考えられる。
In the above method, a through hole is previously formed in a material having a relatively small aspect ratio before forging by drill cutting or backward extrusion + punching. This is because if the aspect ratio of the material is small, the accuracy of forming the through holes is relatively easy to secure. Then, drawing forging is performed by a forging die while inserting a mandrel into the through hole. The material is formed into a non-circular shape whose outer shape corresponds to the inner surface of the die hole while the cross section is reduced by the die hole of the forging die. On the other hand, the inner surface of the through hole is formed so as to have a corresponding inner diameter while being constrained by the mandrel. At this time, since the mandrel is pressed substantially isotropically in the circumferential direction through the material in the die hole, a radius is unlikely to be generated. As a result, it is considered that the formation accuracy of the through-hole finally formed in the obtained metal member is improved.

【0010】具体的には、本発明の方法により、貫通孔
の中心軸線をO、貫通孔付金属部材の中心軸線をCとし
て、OのCに対する同軸度をφ0.15mm以下の高精
度に確保することができるようになる。また、貫通孔の
真直度は20/100以下の精度を確保できる。例え
ば、真直度については、前記した従来の方法では38/
100程度のまで悪化していたものが、本発明の方法で
は、その半分程度以下の値とすることが可能となるので
ある。なお、本発明において同軸度は、JISB002
1の11.1に定義されたものを採用し、同じく真直度
はJIS B0021の1.2に定義されたものを採用
する。
More specifically, by the method of the present invention, the center axis of the through hole is O and the center axis of the metal member with the through hole is C, and the coaxiality of O to C is assured with high accuracy of φ0.15 mm or less. Will be able to Further, the straightness of the through hole can ensure an accuracy of 20/100 or less. For example, regarding straightness, 38 /
What has deteriorated to about 100 can be reduced to about half or less by the method of the present invention. In the present invention, the coaxiality is JISB002
The straightness defined in 11.1 of 1 is adopted, and the straightness defined in 1.2 of JIS B0021 is similarly adopted.

【0011】絞り鍛造加工後の部材にて、貫通孔の形成
位置及び直進性の精度を上記範囲のものとするには、鍛
造加工前の素材に形成する貫通孔の形成精度を確保する
ことが重要である。そして、その素材の貫通孔の前記
L’/d’の値が4.5以下である限り、本発明の方法
の第一及び第二で採用しているドリル切削あるいは後方
押出加工により、いずれも必要十分な貫通孔の形成精度
を確保できる。この場合、加工後の部材の貫通孔の同軸
度及び真直度を前記した範囲のものとするには、加工前
の素材の貫通孔の同軸度をφ0.10mm以下、真直度
は3/100以下とすることが望ましい。
In order for the precision of the through-hole formation position and straightness to be within the above ranges in the member after drawing forging, it is necessary to ensure the precision of formation of the through-hole formed in the material before forging. is important. As long as the value of L '/ d' of the through-hole of the material is 4.5 or less, any of the drilling or backward extrusion employed in the first and second methods of the present invention may be used. Necessary and sufficient accuracy of forming the through hole can be secured. In this case, in order to set the coaxiality and the straightness of the through hole of the processed member to the above-described range, the coaxiality of the through hole of the material before the processing is φ0.10 mm or less, and the straightness is 3/100 or less. It is desirable that

【0012】なお、得られる金属部材のL/dの値が5
未満では、従来の方法にて貫通孔の形成精度の高い部材
が得られることもあり、本発明を敢て適用する意味がな
くなる。他方、L/dが10を超えると、貫通孔の形成
精度が確保できなくなる。L/dは望ましくは5〜10
に設定するのがよい。
The value of L / d of the obtained metal member is 5
If it is less than 1, a member having a high precision of forming a through-hole may be obtained by a conventional method, so that it is meaningless to apply the present invention. On the other hand, when L / d exceeds 10, it becomes impossible to secure the formation accuracy of the through hole. L / d is preferably 5 to 10
It is good to set to.

【0013】また、部材の軸断面外形Dが10mm未
満、あるいは貫通孔内径dが3mm未満になると、貫通
孔の形成精度が確保できなくなる。一方、内径dが8m
mを超える貫通孔は、ドリル切削や旋盤切削等の公知の
方法でも十分可能となるため本発明を敢て適用する意味
がなくなる。他方、軸断面外形Dが30mmを超える場
合は、貫通孔内径dが3〜8mmとされる関係上、製造
すべき部材の肉厚が大きくなり過ぎ、絞り鍛造による製
造が困難となる。なお、Dは望ましくは10〜30mm
とするのがよく、dは望ましくは5〜8mmとするのが
よい。なお、Lが15〜36mmの範囲を外れると、d
が前記した範囲に設定される関係上、L/dを5〜10
の範囲のものとすることが不可能となる。
Further, if the axial cross-sectional outer shape D of the member is less than 10 mm or the inner diameter d of the through hole is less than 3 mm, the precision of forming the through hole cannot be ensured. On the other hand, the inner diameter d is 8m
A through-hole exceeding m can be sufficiently achieved by a known method such as drill cutting or lathe cutting, so that it is meaningless to apply the present invention. On the other hand, when the axial cross-sectional shape D exceeds 30 mm, the thickness of the member to be manufactured becomes too large because the inner diameter d of the through-hole is 3 to 8 mm, and it becomes difficult to manufacture by drawing forging. D is desirably 10 to 30 mm
And d is desirably 5 to 8 mm. When L is out of the range of 15 to 36 mm, d
Is set in the above range, L / d is set to 5 to 10
In the range of

【0014】絞り鍛造時の素材の減面率を70%以下と
する理由は、これが70%を超えると加工後の部材の貫
通孔の形成精度を確保できなくなるためである。他方減
面率は、50%以上を確保しないと、L’/d’が4.
5以下の素材を用いて、L/dが5以上の部材を製造す
ることが不可能となる。
The reason for reducing the surface reduction rate of the material at the time of drawing forging to 70% or less is that if it exceeds 70%, it is not possible to ensure the precision of forming through holes in the processed member. On the other hand, if the area reduction rate is not 50% or more, L ′ / d ′ is 4.
It becomes impossible to manufacture a member having an L / d of 5 or more using a material of 5 or less.

【0015】一方、加工前の素材については、軸断面外
径D’が10mm未満になると、ドリル切削あるいは後
方押出加工により必要な精度を具備した貫通孔を形成す
ることが困難となる。他方、D’が30mmを超える
と、減面率70%以下の条件にて、外径Dが18mm以
下の部材を得ることが不可能となる。また、素材の貫通
孔の内径d’については、これが5mm未満では、ドリ
ル切削あるいは後方押出加工により、必要な形成精度に
て貫通孔を形成することが困難となる。他方、d’が8
mmを超えると、減面率70%以下の条件にて、加工後
の部材の貫通孔内径dを3mm以下とすることができな
くなる。なお、D’は望ましくは15〜25mmとする
のがよく、d’は6〜8mmとするのがよい。
On the other hand, if the material before processing has an outer diameter D ′ of less than 10 mm in the axial cross section, it becomes difficult to form a through hole having required accuracy by drilling or backward extrusion. On the other hand, if D ′ exceeds 30 mm, it becomes impossible to obtain a member having an outer diameter D of 18 mm or less under the condition of a surface reduction rate of 70% or less. When the inner diameter d 'of the through hole of the material is less than 5 mm, it is difficult to form the through hole with necessary forming accuracy by drilling or backward extrusion. On the other hand, d 'is 8
If it exceeds mm, it becomes impossible to reduce the inner diameter d of the through-hole of the processed member to 3 mm or less under the condition of a surface reduction rate of 70% or less. Note that D ′ is desirably 15 to 25 mm, and d ′ is desirably 6 to 8 mm.

【0016】他方、L’/d’が3未満になると、減面
率70%以下の条件にて、加工後の部材のL/dを5以
上とすることが不可能となる。また、L’/d’が4.
5を超えると、素材に形成する貫通孔の形成精度を十分
に確保できなくなる。L’/d’は、望ましくは3〜4
とするのがよい。なお、L’が15〜36mmの範囲を
外れると、d’が前記した範囲に設定される関係上、
L’/d’を3〜4.5の範囲のものとすることが不可
能となる。
On the other hand, when L '/ d' is less than 3, it becomes impossible to make L / d of the processed member 5 or more under the condition of a surface reduction rate of 70% or less. L ′ / d ′ is 4.
If it exceeds 5, it is not possible to sufficiently secure the formation accuracy of the through hole formed in the material. L '/ d' is desirably 3 to 4
It is good to do. When L ′ is out of the range of 15 to 36 mm, d ′ is set to the above range,
It is impossible to make L ′ / d ′ in the range of 3 to 4.5.

【0017】なお、本発明の方法の第一及び第二では、
素材への貫通孔の形成がそれぞれドリル切削ないし後方
押出加工により形成されるが、ドリル切削を採用する本
発明の第一のほうが、素材への貫通孔の形成精度、ひい
ては得られる部材の貫通孔の形成精度をより高めること
が可能である。この場合、素材の貫通孔については同軸
度がφ0.20mm以下、真直度が20/100以下、
また、部材の貫通孔については、同軸度がφ0.10m
m以下、あるいは真直度が10/100以下と、さらに
良好な値を達成することが可能となる。
In the first and second aspects of the method of the present invention,
The formation of through-holes in the material is formed by drill cutting or backward extrusion, respectively. The first method of the present invention that employs drill cutting has a higher precision in forming the through-holes in the material and, consequently, the through-holes of the obtained members. It is possible to further improve the formation accuracy of the. In this case, the through-hole of the material has a coaxiality of φ0.20 mm or less, a straightness of 20/100 or less,
The coaxiality of the through hole of the member is φ0.10 m.
m or less, or a straightness of 10/100 or less, it is possible to achieve even better values.

【0018】次に、本発明の貫通孔付金属部材は、軸断
面外形が非円形形状で軸断面中央に軸線方向の貫通孔が
形成され、軸断面外径をD、同じく貫通孔の内径及び長
さをそれぞれd及びLとして、L/dが5〜10、Dが
7〜18mm、dが5〜8mmであり、貫通孔内面は、
周方向の切削痕と軸線方向の鍛造加工痕とが形成されて
おり、さらに、貫通孔の中心軸線をO、部材自身の中心
軸線をCとして、OのCに対する同軸度がφ0.15m
m以下であり、かつ貫通孔の真直度が20/100以下
であることを特徴とする。
Next, the metal member with a through-hole according to the present invention has a non-circular cross-sectional outer shape, an axial through-hole formed at the center of the axial cross-section, and has an outer diameter of the axial cross-section D, and an inner diameter of the through-hole. L / d is 5 to 10, D is 7 to 18 mm, and d is 5 to 8 mm, where d and L are the lengths, respectively.
A cutting mark in the circumferential direction and a forging mark in the axial direction are formed, and the center axis of the through hole is O, the center axis of the member itself is C, and the coaxiality of O to C is φ0.15 m.
m or less, and the straightness of the through hole is 20/100 or less.

【0019】上記貫通孔付金属部材は、前記本発明の製
造方法の第一により製造することができ、該製造方法の
採用により、その貫通孔は、同軸度がφ0.15mm以
下であり、かつ真直度が20/100以下と、従来の製
造方法では達成不可能な優れた形成精度を具備したもの
となる。この場合、上記同軸度は、φ0.10mm以下
とすることもでき、真直度は10/100以下とするこ
ともできる。
The above-mentioned metal member with a through hole can be manufactured by the first of the manufacturing method of the present invention, and by adopting the manufacturing method, the through hole has a coaxiality of φ0.15 mm or less, and With a straightness of 20/100 or less, it has excellent forming accuracy which cannot be achieved by the conventional manufacturing method. In this case, the coaxiality can be φ0.10 mm or less, and the straightness can be 10/100 or less.

【0020】他方、貫通孔の内面には周方向の切削痕と
軸線方向の鍛造加工痕とが形成される。これは貫通孔の
内面が、ドリル切削後にマンドレルにより鍛造加工され
た複合加工面であることを意味している。すなわち、ド
リル切削による孔形成の後、その内面をマンドレルによ
り鍛造すると、本発明の製造方法で採用する減面率範囲
では切削痕は消滅するには至らず、それに重なる形でマ
ンドレルによる鍛造加工痕が形成されるからである。な
お、従来技術のように、鍛造(あるいは引抜)加工後に
ドリル切削加工を施す形では、貫通孔の内面にドリルに
よる切削痕は形成されても、鍛造加工痕は形成されな
い。
On the other hand, circumferential cutting marks and forging marks in the axial direction are formed on the inner surface of the through hole. This means that the inner surface of the through hole is a composite machined surface forged with a mandrel after drilling. That is, if the inner surface is forged with a mandrel after the formation of a hole by drilling, the cut marks do not disappear within the reduction ratio range employed in the manufacturing method of the present invention, and the forged marks with the mandrel overlap with the mandrel. Is formed. In the case of performing drill cutting after forging (or drawing) as in the prior art, even if a drilling mark is formed on the inner surface of the through hole, no forging mark is formed.

【0021】そして、貫通孔は、ドリル加工面の状態で
は切削痕が深く比較的荒れたものとなるのに対し、鍛造
加工を重ねて施すことで切削痕がつぶれて内面が平滑化
される。これにより、例えば部材内面に他部材を通して
摺動させるときに、その摺動性が改善されたり、あるい
は線材等を挿通する際の引っ掛かりが生じにくくなるな
ど、種々の効果を奏することができる。すなわち、上記
本発明の貫通孔付金属部材の構成により、全体として
は、貫通孔の形成精度が高く、形成される貫通孔内
面の平滑性に優れ、さらに、切削加工及び鍛造加工の
組合せにより容易に製造可能である、という3つの効果
が同時に達成されるのである。
In the through hole, the cutting marks are deep and relatively rough in the state of the drilling surface, but the cutting marks are crushed and the inner surface is smoothed by repeatedly performing forging. Accordingly, various effects can be obtained, for example, when sliding the inner surface of the member through another member, the slidability is improved, or the wire is hardly caught when the wire is inserted. That is, by the configuration of the metal member with a through-hole according to the present invention, as a whole, the precision of the formation of the through-hole is high, the smoothness of the inner surface of the through-hole formed is excellent, and the combination of cutting and forging is easy. The three effects of being able to be manufactured at the same time are achieved at the same time.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面に示す実施例を参照しながら説明する。図1〜図
4は、本発明の方法に基づく貫通孔付金属部材の製造工
程を示している。まず、図1に示すように、圧延線材等
として得られる円状断面の金属棒材Bを、所定長に切断
して円柱状の金属素材10を作る。図2(a)に示すよ
うに、金属素材10は、軸断面が円状であり、その軸断
面外径D’が10〜30mm(望ましくは15〜25m
m)、軸方向長さL’が15〜36mm(望ましくは2
0〜30mm)、L’/D’が3〜4.5(望ましくは
3〜3.5)とされる。
Embodiments of the present invention will be described below with reference to embodiments shown in the drawings. 1 to 4 show steps of manufacturing a metal member with a through hole based on the method of the present invention. First, as shown in FIG. 1, a metal bar B having a circular cross section obtained as a rolled wire or the like is cut into a predetermined length to produce a columnar metal material 10. As shown in FIG. 2A, the metal material 10 has a circular axial cross section and an outer diameter D ′ of the axial cross section of 10 to 30 mm (preferably 15 to 25 m).
m), and the axial length L ′ is 15 to 36 mm (preferably 2
0 to 30 mm), and L ′ / D ′ is 3 to 4.5 (preferably 3 to 3.5).

【0023】なお金属素材の材質は特に限定されない
が、本実施例ではステンレス鋼、例えばSUS410等
のマルテンサイト系ステンレス鋼(ただし、焼きなまし
状態のもの)が採用されている。
The material of the metal material is not particularly limited. In this embodiment, stainless steel, for example, martensitic stainless steel such as SUS410 (in an annealed state) is used.

【0024】次いで、図2に示すように、その金属素材
10に対しドリル50を用いてその軸断面中央に、内径
d’が5〜8mmの円状断面の貫通孔21を、ドリル切
削加工にて軸線方向に穿孔することにより貫通孔付金属
素材20を形成する。このとき、貫通孔21の内面に
は、図2(c)に示すように、周方向の切削痕(ドリル
マーク)DMが形成される。なお、L’/d’は3〜
4.5(望ましくは3〜3.5)とされる。ドリル切削
の採用により、貫通孔21の同軸度をφ0.20mm以
下、同じく真直度Kを20/100以下に確保すること
が可能となる。なお、図6に示すように、円柱状部材2
00の中心に円柱状内面の貫通孔201を形成する場
合、その同軸度Jは、円柱状部材200の中心軸線Cを
中心とする直円筒のうち、貫通孔201を完全に包含す
る最小のものの直径にて定義される。また、真直度K
は、円柱状部材200の中心軸線Cと貫通孔201の中
心軸線Oとを含む平面内にて、Cからの距離が最大とな
るO上の点を通ってCに平行な直線O’を引いたとき
に、そのCとO’との距離をWとして、Cの円柱状部材
200内に存在する部分の長さをLとして、W/Lにて
定義する。
Next, as shown in FIG. 2, a through hole 21 having a circular cross section having an inner diameter d 'of 5 to 8 mm is formed in the center of the axial cross section of the metal material 10 by using a drill 50 by drilling. The metal material 20 with through holes is formed by drilling in the axial direction. At this time, a cutting mark (drill mark) DM in the circumferential direction is formed on the inner surface of the through hole 21 as shown in FIG. L '/ d' is 3 to
4.5 (preferably 3 to 3.5). By adopting the drill cutting, it becomes possible to secure the coaxiality of the through hole 21 to φ0.20 mm or less and the straightness K to 20/100 or less. In addition, as shown in FIG.
When the through-hole 201 of the cylindrical inner surface is formed at the center of 00, the coaxiality J of the through-hole 201 of the smallest one completely including the through-hole 201 among the straight cylinders centered on the central axis C of the cylindrical member 200 is determined. Defined by diameter. In addition, straightness K
Draws a straight line O ′ parallel to C through a point on O where the distance from C is the largest in a plane including the central axis C of the columnar member 200 and the central axis O of the through hole 201. Then, the distance between C and O ′ is defined as W, and the length of the portion of the C existing in the columnar member 200 is defined as L / W / L.

【0025】一方、図3は、貫通孔付金属素材20を形
成する別の方法の例を示している。この方法では、
(a)に示すように、金属素材10を押出口51aを有
するコンテナ51のキャビティ51b内に入れ、そのキ
ャビティ51b内の素材21に対し押出口から軸線方向
に穿孔ラム52を圧入する。これにより、素材21は、
穿孔ラム52と押出口51aの間からラム52の圧入方
向と逆向きに押し出され、有底孔21’が形成された有
底孔付金属素材20’が得られる。そして、(b)に示
すように、その底部20aを打抜き加工にて打ち抜くこ
とにより、有底孔21’が貫通孔21となって貫通孔付
金属素材20が得られる。この方法では、貫通孔21の
同軸度をφ0.15mm以下、同じく真直度Kを3/1
00以下に確保することができる。
FIG. 3 shows an example of another method of forming the metal material 20 with through holes. in this way,
As shown in (a), the metal material 10 is put into a cavity 51b of a container 51 having an extrusion port 51a, and a perforated ram 52 is pressed into the material 21 in the cavity 51b from the extrusion port in the axial direction. Thereby, the material 21
The metal material 20 ′ with a bottomed hole having the bottomed hole 21 ′ is extruded from the space between the perforated ram 52 and the extrusion port 51 a in a direction opposite to the press-fit direction of the ram 52. Then, as shown in (b), by punching out the bottom portion 20a by a punching process, the bottomed hole 21 'becomes the through hole 21 and the metal material 20 with a through hole is obtained. In this method, the coaxiality of the through hole 21 is φ0.15 mm or less, and the straightness K is set to 3/1.
00 or less.

【0026】こうして得られた貫通孔付金属素材20に
は、図4に示すように、深絞り鍛造工程が施され、最終
的な貫通孔付金属部材1となる。(a)に示すように、
素材20の貫通孔21内に、これよりも幾分小径で、後
方側に素材20の後端面を押す鍛造パンチ54が一体化
されたマンドレル55を挿通する。このマンドレル55
の外径は、最終的な部材1の貫通孔2の内径に対応する
寸法に設定されている。そして、該マンドレル55とと
もに素材20を鍛造パンチ54により、鍛造ダイ56の
ダイ孔57に圧入する。ダイ孔57は素材20よりも断
面積の小さい非円形形状、本実施例では正方形状に形成
されており、その入口側には円状断面の素材20を縮径
しつつ案内するテーパ状の案内部57aが形成されてい
る。素材20は、ダイ孔57において軸断面外径及び貫
通孔内径が縮小されつつ、外面側がダイ孔内面に対応す
る非円形形状(この場合、正方形状)に鍛造成形され
る。他方、貫通孔21の内面はマンドレル55により拘
束されつつ、対応する内径を有するものとなるように成
形される。
As shown in FIG. 4, the thus obtained metal material 20 with through-holes is subjected to a deep drawing forging process to form a final metal member 1 with through-holes. As shown in (a),
A mandrel 55 having a diameter slightly smaller than this and integrated with a forging punch 54 that pushes the rear end face of the material 20 toward the rear side is inserted into the through hole 21 of the material 20. This mandrel 55
Is set to a dimension corresponding to the inner diameter of the through hole 2 of the final member 1. Then, the material 20 is pressed into the die hole 57 of the forging die 56 by the forging punch 54 together with the mandrel 55. The die hole 57 is formed in a non-circular shape having a smaller sectional area than the material 20, that is, in a square shape in this embodiment, and a tapered guide for guiding the material 20 having a circular cross section while reducing its diameter at the entrance side. A portion 57a is formed. The raw material 20 is forged into a non-circular shape (in this case, a square shape) in which the outer surface side corresponds to the inner surface of the die hole while the outer diameter of the axial cross section and the inner diameter of the through hole are reduced in the die hole 57. On the other hand, the inner surface of the through hole 21 is formed so as to have a corresponding inner diameter while being restrained by the mandrel 55.

【0027】なお、図4(b)に示すように、上記絞り
鍛造前の素材20の軸断面積をS0、鍛造後の部材1の
軸断面積をS1として、減面率RA(={(S0−S1)
/S0}×100(%))は、40〜70%、望ましく
は40〜50%とされる。また、ダイ孔57からは、マ
ンドレル55の押込速度よりも高速で材料が押し出され
るため、貫通孔21の内面はマンドレル55の外面で擦
られる。その結果、同図(c)に示すように、得られる
部材1の貫通孔2の内面には、前述の切削痕DMの上に
重なる形で、該擦りに伴う鍛造痕FMが軸線方向に形成
される。ここで、(d)に示すように、鍛造前の貫通孔
21の内面は切削痕DMが深く比較的荒れたものとなっ
ているが、上記鍛造加工を施すことで切削痕DMがつぶ
れ、最終的な貫通孔2は内面が平滑化されたものとな
る。
As shown in FIG. 4 (b), assuming that the axial cross-sectional area of the blank 20 before drawing and forging is S0 and the axial cross-sectional area of the forged member 1 is S1, the area reduction ratio RA (= {( S0-S1)
/ S0} × 100 (%)) is 40 to 70%, preferably 40 to 50%. Further, since the material is extruded from the die hole 57 at a speed higher than the pushing speed of the mandrel 55, the inner surface of the through hole 21 is rubbed by the outer surface of the mandrel 55. As a result, as shown in FIG. 3C, a forging mark FM due to the rubbing is formed in the inner surface of the through hole 2 of the obtained member 1 in the axial direction so as to overlap the above-mentioned cutting mark DM. Is done. Here, as shown in (d), the cutting surface DM is deep and relatively rough on the inner surface of the through hole 21 before forging. The typical through hole 2 has a smooth inner surface.

【0028】図5は、こうして製造された貫通孔付金属
部材1の平面図及び縦断面図である。部材1は、上記絞
り鍛造工程により、軸断面形状が正方形状であり、円形
換算した場合の軸断面外径をD、同じく貫通孔2の内径
及び長さをそれぞれd及びLとして、L/dが5〜10
(望ましくは5〜7)、Dが10〜30mm(望ましく
は15〜25mm)、dが5〜8mm(望ましくは5〜
6mm)のものとなる。そして、素材20を、図3に示
すような後方押出加工にて作った場合には、貫通孔2の
中心軸線をO、部材1の中心軸線をCとして、OのCに
対する同軸度J(図6)をφ0.15mm以下、同じく
真直度K(図6)Kを20/100以下に確保できる。
他方、図2に示すように、ドリル切削を採用した場合に
は、Jはφ0.10mm以下、Kは10/100以下
と、さらに向上する。なお、本実施例では部材1の材質
はマルテンサイト系ステンレス鋼であり、この後さらに
焼き入れ(必要により焼き戻し)処理が施されて、例え
ばエアコンのコンプレッサーの摺動部品等の用途に供さ
れる。
FIG. 5 is a plan view and a longitudinal sectional view of the metal member 1 with a through hole manufactured as described above. The member 1 has a square cross-sectional shape obtained by the above-described drawing forging process, and the shaft cross-sectional outer diameter when converted into a circle is D, and the inner diameter and the length of the through hole 2 are d and L, respectively, and L / d Is 5-10
(Preferably 5 to 7), D is 10 to 30 mm (preferably 15 to 25 mm), d is 5 to 8 mm (preferably 5 to 5 mm).
6 mm). When the material 20 is made by backward extrusion as shown in FIG. 3, the central axis of the through hole 2 is O and the central axis of the member 1 is C, and the coaxiality J of O to C (see FIG. 3). 6) can be maintained at φ0.15 mm or less, and the straightness K (FIG. 6) can be maintained at 20/100 or less.
On the other hand, as shown in FIG. 2, when drill cutting is employed, J is further improved to φ0.10 mm or less and K is improved to 10/100 or less. In the present embodiment, the material of the member 1 is martensitic stainless steel, and after that, it is further quenched (tempered if necessary), and is used for applications such as sliding parts of a compressor of an air conditioner. You.

【0029】なお、図4において、鍛造ダイ56のダイ
孔57の形状を変更することにより、部材1の軸断面外
径形状は、例えば図8(a)に示すような三角形状のも
の、(b)に示すように六角形状のもの、さらには
(c)に示すような楕円状のものなど、各種形状とする
ことが可能である。
In FIG. 4, by changing the shape of the die hole 57 of the forging die 56, the outer diameter of the axial cross section of the member 1 is, for example, triangular as shown in FIG. Various shapes such as a hexagonal shape as shown in b) and an elliptical shape as shown in FIG.

【0030】以下、本発明の効果を確認するために以下
の実験を行った。すなわち、SUS410(焼きなまし
材)の丸棒部材B(図1)を切断し、L’=36mm、
D’=18mmの金属素材10を作製した。次いで、こ
れに、図2に示すように、ドリルを用いて内径d’が8
mmの貫通孔21を穿孔することにより、貫通孔付素材
20を都合10個作製した。なお、貫通孔21の同軸度
Jの平均値はφ0.20mm(標準偏差:0.05m
m)であり、真直度Kは2/100(標準偏差:0.0
04)であった(以下、実施例1という)。
The following experiment was conducted to confirm the effects of the present invention. That is, the round bar member B (FIG. 1) of SUS410 (annealed material) was cut, and L ′ = 36 mm,
A metal material 10 with D '= 18 mm was produced. Then, as shown in FIG. 2, the inner diameter d ′ was changed to 8 using a drill.
By piercing the through-holes 21 of 10 mm, ten materials 20 with through-holes were produced for convenience. The average value of the coaxiality J of the through hole 21 is φ0.20 mm (standard deviation: 0.05 m).
m), and the straightness K is 2/100 (standard deviation: 0.0).
04) (hereinafter referred to as Example 1).

【0031】他方、同じ金属素材10を用いて図3に示
す後方押出加工及び打抜き加工により、上記実施例1と
同寸法の貫通孔付素材20を都合10個作製した。な
お、貫通孔21の同軸度Jの平均値はφ0.30mm
(標準偏差:0.08mm)であり、真直度Kは4/1
00(標準偏差:(0.009)であった(以下、実施
例2という)。
On the other hand, the same metal material 10 was used to produce ten through-hole materials 20 having the same dimensions as in Example 1 by backward extrusion and punching as shown in FIG. The average value of the coaxiality J of the through hole 21 is φ0.30 mm.
(Standard deviation: 0.08 mm), and the straightness K is 4/1.
00 (standard deviation: (0.009) (hereinafter referred to as Example 2)).

【0032】そして、これら実施例1及び実施例2の貫
通孔付素材20に、図4に示す絞り鍛造加工をそれぞれ
施すことにより、軸断面寸法が11mm×13mm(円
換算軸断面径D=15.5mm)、長さLが36mm、
貫通孔2の内径dが7.5mm、L/dが4.3mmの
貫通孔付金属部材1とした。
Each of the through-hole materials 20 of Example 1 and Example 2 was subjected to drawing forging as shown in FIG. 4, so that the shaft cross-sectional dimension was 11 mm × 13 mm (circular shaft cross-sectional diameter D = 15). .5 mm), length L is 36 mm,
The through-hole 2 had an inner diameter d of 7.5 mm and an L / d of 4.3 mm.

【0033】なお、比較例として、図9に示すように、
丸棒部材100を引抜加工することにより、軸断面寸法
が11mm×3mmの角棒部材101となし、これを長
さL=70mmに定尺切断したのち、ドリルを用いて内
径d’が7.5mmの貫通孔105を穿孔した貫通孔付
素材も都合10個作製した。
As a comparative example, as shown in FIG.
The round bar member 100 is drawn to form a square bar member 101 having an axial cross-sectional dimension of 11 mm × 3 mm, which is cut to a fixed length of L = 70 mm, and having an inner diameter d ′ of 7. For convenience, ten through-hole materials having 5 mm through holes 105 were also produced.

【0034】そして、上記得られた各部材の貫通孔の同
軸度J及び真直度Kを測定したところ、比較例の部材の
Jはφ0.19mm(標準偏差:0.04mm)、Kは
6/100(標準偏差:0.010)と大きかったのに
対し、実施例1の貫通孔付素材20を用いて本発明の方
法により製造した部材については、Jがφ0.10mm
(標準偏差:0.02mm)、Kが5/100(標準偏
差:(0.008)であり、同じく実施例2の貫通孔付
素材20を用いたものについては、Jがφ0.15mm
(標準偏差:0.03mm)、Kが2/100(標準偏
差:0.004)と、いずれも良好であった。
When the coaxiality J and straightness K of the through-holes of each of the obtained members were measured, J of the comparative example was 0.19 mm (standard deviation: 0.04 mm), and K was 6 / In contrast to the large value of 100 (standard deviation: 0.010), the member manufactured by the method of the present invention using the material with through holes 20 of Example 1 had a J of φ0.10 mm.
(Standard deviation: 0.02 mm) and K is 5/100 (standard deviation: (0.008). Similarly, in the case of using the through-hole material 20 of Example 2, J is φ0.15 mm.
(Standard deviation: 0.03 mm) and K were 2/100 (standard deviation: 0.004), all of which were good.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の貫通孔付金属部材の製造方法の工程説
明図。
FIG. 1 is a process explanatory view of a method for manufacturing a metal member with through holes according to the present invention.

【図2】図1に続く説明図。FIG. 2 is an explanatory view following FIG. 1;

【図3】図1に続く別の説明図。FIG. 3 is another explanatory view following FIG. 1;

【図4】図2又は図3に続く説明図。FIG. 4 is an explanatory view following FIG. 2 or FIG. 3;

【図5】本発明の貫通孔付金属部材の一例を示す平面図
及び縦断面図。
FIG. 5 is a plan view and a longitudinal sectional view showing an example of a metal member having a through hole according to the present invention.

【図6】貫通孔の同軸度及び真直度の概念を説明する
図。
FIG. 6 is a diagram illustrating the concept of coaxiality and straightness of a through hole.

【図7】非円形形状の軸断面形状の定義を説明する図。FIG. 7 is a diagram for explaining the definition of a non-circular cross-sectional shape;

【図8】本発明の貫通孔付金属部材の軸断面形状のいく
つかの変形例を示す図。
FIG. 8 is a view showing some modified examples of the axial cross-sectional shape of the metal member with through holes according to the present invention.

【図9】従来の貫通孔付金属部材の製造方法を示す説明
図。
FIG. 9 is an explanatory view showing a method for manufacturing a conventional metal member with through holes.

【図10】その問題点の説明図。FIG. 10 is an explanatory diagram of the problem.

【符号の説明】[Explanation of symbols]

1 貫通孔付金属部材 2 貫通孔 10 金属素材 20 貫通孔付金属素材 21 貫通孔 50 ドリル 55 マンドレル 56 鍛造ダイ 57 ダイ孔 DM 切削痕 FM 鍛造痕 DESCRIPTION OF SYMBOLS 1 Metal member with a through hole 2 Through hole 10 Metal material 20 Metal material with a through hole 21 Through hole 50 Drill 55 Mandrel 56 Forging die 57 Die hole DM Cutting mark FM Forging mark

フロントページの続き Fターム(参考) 4E029 GA02 4E087 AA08 AA10 BA15 BA20 CA17 CA21 CA22 CA24 CA28 CB11 CB12 DB01 DB03 DB05 DB06 DB22 DB24 EC11 EC17 EC18 EC37 EC38 EC39 EC46 HA00Continued on front page F term (reference) 4E029 GA02 4E087 AA08 AA10 BA15 BA20 CA17 CA21 CA22 CA24 CA28 CB11 CB12 DB01 DB03 DB05 DB06 DB22 DB24 EC11 EC17 EC18 EC37 EC38 EC39 EC46 HA00

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 軸断面が円状であり、その軸断面外径
D’が10〜30mm、軸方向長さL’が15〜36m
mの金属素材に対し、その軸断面中央に、内径d’が5
〜8mmであり、L’/d’が3〜4.5の軸線方向の
貫通孔をドリル切削加工にて穿孔することにより、貫通
孔付金属素材を作製する切削穿孔工程と、 加工後の孔内径を規定するマンドレルを前記貫通孔に挿
通しつつ前記貫通孔付金属素材を、鍛造ダイに形成され
た非円形形状のダイ孔に対し軸線方向に通すことにより
減面率40〜70%以下の絞り鍛造加工を行い、それに
よって軸断面外形が前記ダイ孔に対応する非円形形状と
なり、かつ加工後の部材の軸断面外径をD、同じく貫通
孔の内径及び長さをそれぞれd及びLとして、L/dが
5〜10、Dが7〜18mm、dが5〜8mmの貫通孔
付金属部材を得る絞り鍛造工程とを含むことを特徴とす
る貫通孔付金属部材の製造方法。
1. An axial cross section is circular, the outer diameter D 'of the axial cross section is 10 to 30 mm, and the length L' in the axial direction is 15 to 36 m.
m, the inner diameter d 'is 5
A drilling step of producing a metal material with a through-hole by drilling a through-hole in the axial direction having an L ′ / d ′ of 3 to 4.5 mm, and a hole after processing; By passing the metal material with the through hole in the axial direction through the non-circular die hole formed in the forging die while inserting the mandrel for defining the inner diameter into the through hole, the area reduction rate is 40 to 70% or less. Drawing forging is performed, whereby the cross-sectional outer shape becomes a non-circular shape corresponding to the die hole, and the processed cross-sectional outer diameter of the member is D, and the inner diameter and length of the through hole are d and L, respectively. , L / d is 5 to 10, D is 7 to 18 mm, and d is 5 to 8 mm. A drawing forging step is performed to obtain a metal member with a through hole.
【請求項2】 金属素材を後方押出加工することによ
り、軸断面が円状であり、その軸断面外径D’が10〜
30mm、軸方向長さL’が15〜36mmで、その断
面中央に内径d’が5〜8mmの軸線方向の有底孔が形
成された有底孔付金属素材を作製する押出工程と、 その有底孔付金属素材の底部を打ち抜くことにより、前
記有底孔をL’/d’が3〜4.5の貫通孔となして貫
通孔付金属素材を作製する打抜き工程と、 加工後の孔内径を規定するマンドレルを前記貫通孔に挿
通しつつ前記孔付金属素材を、鍛造ダイに形成された非
円形形状のダイ孔に対し軸線方向に通すことにより減面
率70%以下の絞り鍛造加工を行い、それによって軸断
面外形が前記ダイ孔に対応する非円形形状となり、かつ
加工後の部材の軸断面外径をD、同じく貫通孔の内径及
び長さをそれぞれd及びLとして、L/dが5〜10、
Dが7〜18mm、dが5〜8mmの貫通孔付金属部材
を得る鍛造工程とを含むことを特徴とする貫通孔付金属
部材の製造方法。
2. The metal material is extruded rearward so that the shaft cross section is circular, and the shaft cross section has an outer diameter D 'of 10 to 10.
An extrusion process of producing a metal material with a bottomed hole having an axial length L ′ of 30 mm, an axial length L ′ of 15 to 36 mm, and an inner diameter d ′ of 5 to 8 mm at the center of the cross section; A punching step of punching the bottom of the metal material with a bottomed hole to make the bottomed hole a through-hole having an L '/ d' of 3 to 4.5 to produce a metal material with a through-hole; By drawing a metal material with a hole in the axial direction through a non-circular die hole formed in a forging die while inserting a mandrel defining a hole inner diameter into the through hole, drawing and forging with a surface reduction rate of 70% or less. Processing is performed, whereby the axial cross-sectional outer shape becomes a non-circular shape corresponding to the die hole, and the axial cross-sectional outer diameter of the processed member is D, and the internal diameter and length of the through-hole are d and L, respectively. / D is 5 to 10,
A forging step of obtaining a metal member with a through hole having D of 7 to 18 mm and d of 5 to 8 mm.
【請求項3】 前記貫通孔の中心軸線をO、前記貫通孔
付金属部材の中心軸線をCとして、OのCに対する同軸
度をφ0.15mm以下とする請求項1又は2に記載の
貫通孔付金属部材の製造方法。
3. The through hole according to claim 1, wherein the central axis of the through hole is O and the central axis of the metal member with the through hole is C, and the coaxiality of O to C is φ0.15 mm or less. A method for manufacturing an attached metal member.
【請求項4】 前記貫通孔の中心軸線をO、前記貫通孔
付金属部材の中心軸線をCとして、OのCに対する同軸
度をφ0.10mm以下とする請求項1記載の貫通孔付
金属部材の製造方法。
4. The metal member with a through hole according to claim 1, wherein the central axis of the through hole is O and the central axis of the metal member with the through hole is C, and the coaxiality of O with respect to C is φ0.10 mm or less. Manufacturing method.
【請求項5】 前記貫通孔の真直度を20/100以下
とする請求項1ないし4のいずれかに記載の貫通孔付金
属部材の製造方法。
5. The method for manufacturing a metal member with a through hole according to claim 1, wherein the straightness of the through hole is 20/100 or less.
【請求項6】 前記貫通孔の真直度が10/100以下
とする請求項1又は4のいずれかに記載の貫通孔付金属
部材の製造方法。
6. The method according to claim 1, wherein the straightness of the through hole is not more than 10/100.
【請求項7】 前記貫通孔付金属部材の軸断面外形を四
角形状とする請求項1ないし6のいずれかに記載の貫通
孔付金属部材の製造方法。
7. The method for manufacturing a metal member with a through hole according to claim 1, wherein the metal member with a through hole has a quadrangular cross-sectional outer shape.
【請求項8】 軸断面外形が非円形形状で軸断面中央に
軸線方向の貫通孔が形成され、軸断面外径をD、同じく
前記貫通孔の内径及び長さをそれぞれd及びLとして、 L/dが5〜10、Dが7〜18mm、dが5〜8mm
であり、 前記貫通孔内面は、周方向の切削痕と軸線方向の鍛造加
工痕とが形成されており、さらに、 前記貫通孔の中心軸線をO、部材自身の中心軸線をCと
して、OのCに対する同軸度がφ0.15mm以下であ
り、かつ前記貫通孔の真直度が20/100以下である
ことを特徴とする貫通孔付金属部材。
8. A non-circular cross-sectional outer shape, a through-hole in the axial direction formed in the center of the cross-section of the shaft, and the outer diameter of the cross-section of the shaft is D, and the inner diameter and the length of the through-hole are d and L, respectively. / D is 5 to 10, D is 7 to 18 mm, d is 5 to 8 mm
On the inner surface of the through-hole, a cutting mark in the circumferential direction and a forging mark in the axial direction are formed, and the center axis of the through-hole is O, and the center axis of the member itself is C, and A metal member with a through-hole, wherein the coaxiality with respect to C is φ0.15 mm or less, and the straightness of the through-hole is 20/100 or less.
【請求項9】 前記貫通孔の中心軸線をO、部材自身の
中心軸線をCとして、OのCに対する同軸度がφ0.1
0mm以下であり、さらに、前記貫通孔の真直度が10
/100以下である請求項8記載の貫通孔付金属部材。
9. The coaxiality of O to C is φ0.1, where O is the central axis of the through hole and C is the central axis of the member itself.
0 mm or less, and the straightness of the through hole is 10 mm or less.
The metal member with a through hole according to claim 8, wherein the ratio is not more than / 100.
JP10313449A 1998-11-04 1998-11-04 Production of metal member with through hole and metal member with through hole Pending JP2000140980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10313449A JP2000140980A (en) 1998-11-04 1998-11-04 Production of metal member with through hole and metal member with through hole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10313449A JP2000140980A (en) 1998-11-04 1998-11-04 Production of metal member with through hole and metal member with through hole

Publications (1)

Publication Number Publication Date
JP2000140980A true JP2000140980A (en) 2000-05-23

Family

ID=18041445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10313449A Pending JP2000140980A (en) 1998-11-04 1998-11-04 Production of metal member with through hole and metal member with through hole

Country Status (1)

Country Link
JP (1) JP2000140980A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103691857A (en) * 2014-01-10 2014-04-02 中信重工机械股份有限公司 Method for forging isotropous rectangular shaft forging
CN106413932A (en) * 2014-04-08 2017-02-15 美国制造公司 Variable-wall light-weight axle shaft with an integral flange member and method for making the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103691857A (en) * 2014-01-10 2014-04-02 中信重工机械股份有限公司 Method for forging isotropous rectangular shaft forging
CN106413932A (en) * 2014-04-08 2017-02-15 美国制造公司 Variable-wall light-weight axle shaft with an integral flange member and method for making the same
JP2017518188A (en) * 2014-04-08 2017-07-06 ユーエス・マニュファクチュアリング・コーポレイションUS Manufacturing Corporation Variable wall lightweight axle shaft with integral flange member and method for making the same
US10543717B2 (en) 2014-04-08 2020-01-28 Aam International S.À R.L. Variable-wall light-weight axle shaft with an integral flange member and method for making the same

Similar Documents

Publication Publication Date Title
JP3950940B2 (en) Bush manufacturing method
CN101823117B (en) Method of producing metallic shell for spark plug and die for producing the metallic shell
US8042270B2 (en) Method of manufacturing hose coupling fitting
US10670133B2 (en) Metal sleeve and method for producing it
JPWO2013038526A1 (en) Pipe manufacturing method
JP2007130673A (en) Manufacturing method of outer and inner ring of bearing race using in bearing steel pipe
WO1992020851A1 (en) Sewing machine needle and method of manufacturing same
JP2000140980A (en) Production of metal member with through hole and metal member with through hole
JPH0890135A (en) Joint metal tool and manufacture of this half-made product
JP2013202690A (en) Plastic working method of tubular part
JPS58184033A (en) Manufacture of flanged shaft
US6558263B1 (en) Forging method of a hollow part
JP2006088221A (en) Manufacturing method of tube having high dimensional accuracy
RU2185916C2 (en) Method for making flanged sleeve
JPH1024340A (en) Manufacture of work with slit and manufacture of anchor bolt
RU2107574C1 (en) Process for manufacturing semi-tubular rivets
JPH11216289A (en) Sewing machine needle and manufacture therefor
RU2133167C1 (en) Semihollow rivet manufacture method
JP2001225143A (en) Method for forge-shaping holey part
JP3336395B2 (en) Worm shaft material and method of manufacturing the same
JP2002339934A (en) Manufacturing method for spacer
JPH06304644A (en) Manufacture of tapered bore tube
JP2008137043A (en) Method for forming deep hole
JP4234224B2 (en) Groove machining method and manufacturing method for automobile steering main shaft
RU2194593C2 (en) Method for making flanged sleeve