JP2000137026A - Abnormality inspection method, and joining quality inspection system for wire bonding device - Google Patents

Abnormality inspection method, and joining quality inspection system for wire bonding device

Info

Publication number
JP2000137026A
JP2000137026A JP10311132A JP31113298A JP2000137026A JP 2000137026 A JP2000137026 A JP 2000137026A JP 10311132 A JP10311132 A JP 10311132A JP 31113298 A JP31113298 A JP 31113298A JP 2000137026 A JP2000137026 A JP 2000137026A
Authority
JP
Japan
Prior art keywords
vibration
beat wave
measurement
laser
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10311132A
Other languages
Japanese (ja)
Inventor
Akiyoshi Ono
晃義 大野
Tetsuro Maruyama
哲朗 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP10311132A priority Critical patent/JP2000137026A/en
Priority to US09/397,966 priority patent/US6323943B1/en
Publication of JP2000137026A publication Critical patent/JP2000137026A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • H01L2224/8503Reshaping, e.g. forming the ball or the wedge of the wire connector
    • H01L2224/85035Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball"
    • H01L2224/85045Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball" using a corona discharge, e.g. electronic flame off [EFO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85181Translational movements connecting first on the semiconductor or solid-state body, i.e. on-chip, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/859Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector involving monitoring, e.g. feedback loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/1016Shape being a cuboid
    • H01L2924/10161Shape being a cuboid with a rectangular active surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Abstract

PROBLEM TO BE SOLVED: To accurately and multiply detect the generation of abnormality in a measuring object. SOLUTION: This method is provided with an irradiation process (step S1) for irradiating respective points of a measuring object with plural laser beams oscillated by a laser beam resonator, a light receiving process (step S2) for receiving respectively the beams returned from the respective measuring points of the measuring object, which are the laser beams emitted from the irradiation process S1, and a photoelectric conversion process (S3) for converting photoelectrically respectively the laser beams received in the process S2 and self-mixed with laser beams oscillated in the resonator. A vibration quality determining process (S4) is provided also to determine the quality of vibration of the measuring object based on conditions of beat waves in the respective points of the object converted in the process S3 to be output.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、異常検査方法に係
り、特に、測定対象物の種々の測定点にて自己混合型レ
ーザ振動計測の原理により測定対象物の振動を計測する
ことで測定対象物の異常を検査する異常検査方法に関す
る。本発明はこの異常検査方法の実施に適したシステム
として、ワイヤボンディング装置の接合良否検査システ
ムに係り、特に、シリコンチップとリードフレーム間を
導通させるためのワイヤを接続するワイヤボンディング
装置の接合良否検査システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an abnormality inspection method and, more particularly, to a method of measuring an object by measuring the vibration of the object at various measurement points of the object by the principle of self-mixing laser vibration measurement. The present invention relates to an abnormality inspection method for inspecting an abnormality of an object. The present invention relates to a bonding quality inspection system of a wire bonding apparatus as a system suitable for carrying out this abnormality inspection method, and particularly to a bonding quality inspection of a wire bonding apparatus for connecting a wire for conducting between a silicon chip and a lead frame. About the system.

【0002】[0002]

【従来の技術】ワイヤ・ボンディング装置は、ICやLSI
の核となるシリコンチップとリードフレーム間を導通さ
せるためのワイヤを接続する装置であり、荷重や加熱と
同時に約60kHzの超音波加振を加えることによりボンデ
ィングを行う。ボンディング装置自体が移動を繰り返す
ことで、固定台のチップの上に多数のワイヤ接続を行
う。
2. Description of the Related Art Wire bonding apparatuses are IC and LSI.
This is a device that connects wires for conducting between the silicon chip, which is the core of the process, and the lead frame, and performs bonding by applying ultrasonic vibration of about 60 kHz at the same time as applying load and heating. By repeating the movement of the bonding apparatus itself, a large number of wires are connected on the chip on the fixed base.

【0003】従来、ボンディング良否の判定において普
及している方法は間接的な検査手法が多く、一般的には
通電や引っ張り試験による検査や、超音波振動子のイン
ピーダンス変化や加圧状態の微妙な変化での測定が行わ
れている。例えばアルゴンやヘリウムーネオンなどの非
接触レーザ振動計を用いて、ボンディング装置と離れた
場所から測定を行う手法もある。
Conventionally, there are many indirect inspection methods that have been widely used for determining the quality of bonding. Generally, inspections are conducted by applying a current or a tensile test, and a change in impedance of an ultrasonic vibrator or a delicate state of a pressurized state. Measurements have been made on changes. For example, there is a method of performing measurement from a place away from the bonding apparatus using a non-contact laser vibrometer such as argon or helium-neon.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来例では、ICの内部回路の構成によっては、通電による
検査が不可能となる場合があり、また、引っ張り試験は
破壊検査であるため抜き取り検査であって、接合不良が
生じたときにワイヤボンディング装置を停止させる等の
処理を行うことができない。
However, in the above-mentioned conventional example, depending on the configuration of the internal circuit of the IC, it may not be possible to perform the inspection by energization. In addition, since the tensile test is a destructive inspection, it is necessary to perform a sampling inspection. Therefore, it is impossible to perform a process such as stopping the wire bonding apparatus when a bonding failure occurs.

【0005】インピーダンス変化による測定の場合、ホ
ーンと呼ばれる共振器の先端での振動状態変化をホーン
の根元で検出を行うため、接合状態変化による振動状態
変化を捕らえにくい。また、加圧状態をピックアップす
る場合でも同様に、例えばシリコンチップの固定台に設
置した圧電素子ではホーン先端の振動状態変化を捕らえ
にくい。そして、アルゴンやヘリウムーネオンなどを利
用した非接触レーザ振動計を用いた場合、大きさや重量
のためボンディング装置上へのレーザヘッドの固定が難
しく、連続稼動時のボンディング装置の移動に対応でき
ない。
In the case of the measurement based on the impedance change, a change in the vibration state at the tip of the resonator called a horn is detected at the root of the horn. Similarly, even in the case of picking up a pressurized state, it is difficult to detect a change in the vibration state at the tip of the horn, for example, with a piezoelectric element installed on a fixed base of a silicon chip. When a non-contact laser vibrometer using argon, helium-neon, or the like is used, it is difficult to fix the laser head on the bonding device due to its size and weight, and cannot cope with the movement of the bonding device during continuous operation.

【0006】このように、従来のワイヤボンディング装
置の接合良否検査システムは、いずれも、ワイヤボンデ
ィング装置と一体となって移動しつつ実際に接合が行わ
れたか否かをリアルタイムで測定することができない、
という不都合があった。
[0006] As described above, none of the conventional bonding quality inspection systems for wire bonding apparatuses can measure in real time whether or not bonding has actually been performed while moving integrally with the wire bonding apparatus. ,
There was an inconvenience.

【0007】また、自己混合型の振動計測装置を利用し
て測定対象物の異常を検出する手法は、測定対象物の変
位の方向と同方向からレーザ光を照射するものであった
ため、そのまま多数の計測点を同時に計測するシステム
に応用することができなかった。すると、測定対象物の
異常の発生を多重的に正確に検出することが難しい、と
いう不都合があった。
[0007] In addition, the method of detecting an abnormality of an object to be measured by using a self-mixing vibration measuring device is to irradiate a laser beam from the same direction as the direction of displacement of the object to be measured. Could not be applied to a system that measures the measurement points at the same time. Then, there is an inconvenience that it is difficult to accurately and multiplexly detect occurrence of an abnormality in the measurement target.

【0008】[0008]

【発明の目的】本発明は、係る従来例の有する不都合を
改善し、特に、測定対象物の異常の発生を多重的かつ正
確に検出することのできる異常検査方法を提供すること
を、その目的とする。本発明はまた、ワイヤボンディン
グ装置と一体となって移動しつつ実際に接合が行われた
か否かをリアルタイムで測定することができる接合良否
検査システムを提供することを、その目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to improve the disadvantages of the prior art and, in particular, to provide an abnormality inspection method capable of multiplexed and accurately detecting the occurrence of an abnormality in an object to be measured. And Another object of the present invention is to provide a bonding quality inspection system capable of measuring in real time whether bonding has actually been performed while moving integrally with a wire bonding apparatus.

【0009】[0009]

【課題を解決するための手段】そこで、本発明では、レ
ーザ共振器で発振する複数のレーザ光を測定対象物の各
点にそれぞれ照射する照射工程と、この照射工程によっ
て照射されたレーザ光の測定対象物の各測定点からの戻
り光をそれぞれ受光する受光工程と、この受光工程で受
光し共振器内で発振したレーザ光と自己混合したレーザ
光をそれぞれ光電変換する光電変換工程とを備えてい
る。しかも、光電変換工程で変換されて出力される測定
対象物の各点のビート波の状態に基づいて測定対象物の
振動の良否を判定する振動良否判定工程とを備えた、と
いう構成を採っている。これにより前述した目的を達成
しようとするものである。
Therefore, according to the present invention, there is provided an irradiation step of irradiating a plurality of laser beams oscillated by a laser resonator to each point of an object to be measured, and a method of irradiating the laser light irradiated by the irradiation step. A light receiving step of receiving return light from each measurement point of the measuring object, and a photoelectric conversion step of photoelectrically converting the laser light received in this light receiving step and self-mixed with the laser light oscillated in the resonator. ing. Moreover, a vibration quality determination step of determining the quality of vibration of the measurement object based on the state of the beat wave at each point of the measurement object converted and output in the photoelectric conversion step is adopted. I have. This aims to achieve the above-mentioned object.

【0010】本発明では、測定対象物の測定点を複数と
り、多点同時計測を行う。これらの測定点は、その法線
ベクトルが振動方向(変位の移動方向)と一致する振動
面の1又は複数の測定点や、曲面となっている測定点
や、振動の変位によって反射光が振動周期にて間欠的に
なくなる反射変化測定点や、測定対象物の振動方向とは
異なる方向からレーザ光を照射することで、レーザ光と
測定対象物表面の交差位置が振動に応じて変化する移動
測定点や、正常の場合にはなんら振動しない測定点など
のうち、複数を選択してそれぞれビート波を得る。一定
の波長λのレーザ光を照射する場合、測定対象物がλ/
2の長さ変位したときに、ビート波に鋸歯状波が生じ
る。また、測定対象物の振動変位がλ/2を下回るか又
はλ/4未満となると、測定対象物の変位変化波形とな
る。一方、発振波長と、このレーザ光が帰還したときの
発振波長に波長差を設けると、波長差によるビート周波
数に測定対象物の移動速度によるドップラ周波数成分が
重畳したビート波を得ることができ、このビート波を周
波数電圧変換すると測定対象物の速度変化波形となる。
このように、各種のビート波に基づいて振動の状態を示
す鋸歯状波や変位変化波形や速度変化波形を得ることが
できる。そして、これらの振動状態を表す波形の状態を
解析することにより、振動の良否を判定する。
In the present invention, a plurality of measurement points of a measurement object are taken and multi-point simultaneous measurement is performed. At these measurement points, one or more measurement points on the vibration surface whose normal vector coincides with the vibration direction (movement direction of displacement), measurement points that are curved, or reflected light vibrates due to the displacement of vibration. Movement in which the intersecting position of the laser light and the surface of the measurement object changes according to the vibration by irradiating the laser light from the reflection change measurement point that disappears intermittently in the cycle or the direction different from the vibration direction of the measurement object A beat wave is obtained by selecting a plurality of measurement points or measurement points that do not oscillate at all under normal conditions. When irradiating a laser beam having a constant wavelength λ, the object to be measured is λ /
When displaced by 2 lengths, a sawtooth wave is generated in the beat wave. Further, when the vibration displacement of the measurement object is smaller than λ / 2 or smaller than λ / 4, the waveform of the displacement of the measurement object is obtained. On the other hand, if a wavelength difference is provided between the oscillation wavelength and the oscillation wavelength when this laser light returns, a beat wave can be obtained in which a Doppler frequency component due to the moving speed of the measurement object is superimposed on the beat frequency due to the wavelength difference, When this beat wave is frequency-voltage converted, it becomes a velocity change waveform of the object to be measured.
As described above, a sawtooth wave, a displacement change waveform, and a speed change waveform that indicate the state of vibration can be obtained based on various beat waves. Then, the quality of the vibration is determined by analyzing the state of the waveform representing the vibration state.

【0011】また、このような異常検査方法の実施に適
したシステムとしては、ワイヤボンディング装置の接合
良否検査システムがある。この接合良否検査システム
は、超音波振動を発振する超音波振動子と、この超音波
振動子によって発振された超音波振動を接合対象物に伝
達するホーンと、このホーンの先端部分に取付けられる
と共に接合対象物と接するワイヤに荷重を加えるキャピ
ラリとを有するワイヤボンディング装置によるワイヤと
接合対象物との接合の良否を検査する。
As a system suitable for performing such an abnormality inspection method, there is a bonding quality inspection system of a wire bonding apparatus. The bonding quality inspection system includes an ultrasonic vibrator that oscillates ultrasonic vibration, a horn that transmits ultrasonic vibration oscillated by the ultrasonic vibrator to an object to be welded, and a horn that is attached to a tip portion of the horn. The quality of the bonding between the wire and the object to be joined is inspected by a wire bonding apparatus having a capillary that applies a load to the wire in contact with the object to be joined.

【0012】この接合良否検査システムは、キャピラリ
又はホーンを測定対象物として当該測定対象物の移動に
追従してレーザ光を照射すると共に当該測定対象物から
の戻り光を受光するレーザ共振器と、このレーザ共振器
内での自己混合により生じたレーザ光を受光する受光素
子と、この受光素子から出力される信号からビート波を
検出するビート波出力手段と、このビート波出力手段に
よって出力されたビート波に基づいて測定対象物の振動
の異常の有無を判定する信号処理手段とを備えている。
The bonding quality inspection system includes a laser resonator that irradiates a laser beam while following the movement of the measurement object using a capillary or a horn as a measurement object and receives return light from the measurement object. A light receiving element for receiving the laser light generated by the self-mixing in the laser resonator; a beat wave output means for detecting a beat wave from a signal output from the light receiving element; Signal processing means for determining whether or not there is abnormality in the vibration of the measurement object based on the beat wave.

【0013】本発明による接合良否検査システムでは、
レーザ共振器は、ワイヤボンディング装置と一体となっ
て、ホーン及びキャピラリのボンディング時の移動に追
従して測定点にレーザ光を照射する。この戻り光はレー
ザ共振器内にて自己混合し、ビート波が生じる。ビート
波出力手段は、増幅やノイズの除去などを行った後、ビ
ート波を出力する。そして、信号処理手段は、このビー
ト波に基づいて測定対象物の振動の異常の有無を判定す
る。例えばワイヤの接合が正常行われている時のビート
波を基準として振幅や周波数を比較すると、ワイヤの接
合が正常に行われないときの異常振動が検出される。こ
のため、信号処理手段によって測定対象物の振動の異常
が検出されたときにワイヤと接合対象物との接合の不良
と判定する。
In the bonding quality inspection system according to the present invention,
The laser resonator is integrated with the wire bonding apparatus and irradiates the measurement point with laser light following the movement of the horn and the capillary during bonding. This return light is self-mixed in the laser resonator to generate a beat wave. The beat wave output means outputs a beat wave after performing amplification, noise removal, and the like. Then, the signal processing means determines whether or not the vibration of the measurement target is abnormal based on the beat wave. For example, when the amplitude and the frequency are compared on the basis of the beat wave when the wire bonding is performed normally, abnormal vibration when the wire bonding is not performed normally is detected. For this reason, when the abnormality of the vibration of the object to be measured is detected by the signal processing means, it is determined that the bonding between the wire and the object to be bonded is defective.

【0014】[0014]

【発明の実施の形態】図1は、本発明による異常検査方
法の構成を示すフローチャートである。図1に示すよう
に、本実施形態による異常検査方法は、レーザ共振器で
発振する複数のレーザ光を測定対象物の各点にそれぞれ
照射する照射工程(ステップS1)と、この照射工程S
1によって照射されたレーザ光の測定対象物の各測定点
からの戻り光をそれぞれ受光する受光工程(ステップS
2)と、この受光工程S2で受光し共振器内で発振した
レーザ光と自己混合したレーザ光をそれぞれ光電変換す
る光電変換工程(ステップS3)とを備えている。しか
も、光電変換工程S3で変換されて出力される測定対象
物の各点のビート波の状態に基づいて測定対象物の振動
の良否を判定する振動良否判定工程(ステップS4)と
を備えている。
FIG. 1 is a flowchart showing the configuration of an abnormality inspection method according to the present invention. As shown in FIG. 1, the abnormality inspection method according to the present embodiment includes an irradiation step (Step S1) of irradiating a plurality of laser beams oscillated by a laser resonator to each point of an object to be measured, and an irradiation step S1.
1. A light receiving step (Step S) of receiving return light from each measurement point of the object to be measured of the laser light irradiated by Step 1
2) and a photoelectric conversion step (step S3) of photoelectrically converting the laser light received in the light receiving step S2 and oscillated in the resonator, and the laser light self-mixed. In addition, there is provided a vibration quality determination step (step S4) for determining the quality of the vibration of the measurement object based on the state of the beat wave at each point of the measurement object converted and output in the photoelectric conversion step S3. .

【0015】図1に示す例では、測定対象物の複数の測
定点へ同時にレーザ光を照射する。このとき、測定対象
物の変位の移動方向と一致する方向のみならず、検出し
たい異常の種類に応じて種々の方向から種々の測定点へ
レーザ光を照射することで、多点同時計測を行う。それ
ぞれのレーザ光は測定対象物の測定点で反射し、戻り光
がレーザ共振器へ入射する。すると、発振光と戻り光と
が共振器内で自己混合し、ビート波が生じる。
In the example shown in FIG. 1, a plurality of measurement points on a measurement object are irradiated with laser light simultaneously. At this time, multi-point simultaneous measurement is performed by irradiating laser beams from various directions to various measurement points according to the type of abnormality to be detected, as well as the direction in which the displacement direction of the measurement object moves. . Each laser beam is reflected at a measurement point on the measurement object, and return light enters the laser resonator. Then, the oscillation light and the return light self-mix in the resonator, and a beat wave is generated.

【0016】図2を参照すると、測定対象物の変位が微
小となると、ビート波の波形は2種類の状態のうち、一
方の状態となる。図2(A)に示すM字状態は、測定対
象物の変位がλ/2を越えているときの波形であり、図
2(B)に示すS字状態は、測定対象物の変位がλ/2
又はλ/4を下回ったときのビート波(微小波)の波形
である。図2(B)に示すS字状態の波形は、実験によ
り、そのまま測定対象物の振動の状態を示すものである
ことが明らかとなった。このため、ビート波がS字状態
となったときには、このS字状態の微小波をそのまま解
析することで測定対象物の振動を知ることができる。
Referring to FIG. 2, when the displacement of the object to be measured becomes very small, the waveform of the beat wave becomes one of two states. The M-shaped state shown in FIG. 2A is a waveform when the displacement of the measuring object exceeds λ / 2, and the S-shaped state shown in FIG. / 2
Or, it is a waveform of a beat wave (small wave) when it falls below λ / 4. The waveform in the S-shape state shown in FIG. 2 (B) has been clarified by an experiment to indicate the vibration state of the measurement object as it is. Therefore, when the beat wave is in the S-shaped state, the vibration of the object to be measured can be known by directly analyzing the minute wave in the S-shaped state.

【0017】図2に示す場合の他、微小波は、M字状態
の波に重なって現れる場合がある。これは、測定対象物
が、大きい振動をしつつ、例えば中心位置が微小に振動
するなどの場合に生じる。このような場合であっても、
微小な振動については、微小波を抽出してそのまま周波
数解析するなどして振動の状態を知ることができる。こ
のような微小波の抽出又は微小波であるとの判定では、
ビート波の振幅に着目するとよい。すなわち、ビート波
がM字状態又は鋸歯状波となっている状態での振幅を記
憶しておき、この予め定められた振幅よりもビート波の
振幅が小さくなったときに、ビート波全体が微小波とな
ったと判定することができる。また、鋸歯状波に加えら
れた微小波についても、波の上端と下端の振幅が連続し
て鋸歯状波全体の振幅を下回っている場合に当該波を微
小波と判定することができる。
In addition to the case shown in FIG. 2, a minute wave may appear overlapping with an M-shaped wave. This occurs when, for example, the measurement object vibrates greatly and the center position slightly vibrates, for example. Even in such a case,
With respect to the minute vibration, the state of the vibration can be known by extracting the minute wave and analyzing the frequency as it is. In such extraction of a minute wave or determination of a minute wave,
Note the amplitude of the beat wave. That is, the amplitude in the state where the beat wave is in an M-shaped state or a sawtooth wave is stored, and when the amplitude of the beat wave becomes smaller than the predetermined amplitude, the entire beat wave becomes minute. It can be determined that a wave has occurred. Also, regarding the minute wave added to the sawtooth wave, when the amplitude at the upper end and the lower end of the wave is continuously lower than the amplitude of the entire sawtooth wave, the wave can be determined as a minute wave.

【0018】次に、本発明による異常検査装置の実施形
態を説明する。異常検査装置は、振動方向7にて振動す
る測定対象物1の異常を検出する。測定対象物として
は、種々の製品の製造工程で用いられる接合装置や切断
装置や駆動装置などがある。図3に示す例では、測定対
象物は、図3中左右方向に振動する円柱状の物体であ
る。この測定対象物の複数の測定点の振動を計測するた
め、図3に示す例では3つの半導体レーザ2を使用して
いる。各半導体レーザから出力される信号は、それぞれ
ビート波検出手段8に入力される。ビート波検出手段8
では、入力された信号を増幅器にて増幅し、これをデジ
タルデータに変換している。そして、このデジタル化さ
れたビート波を演算装置14にて解析する。また、ビー
ト波をデジタルデータに変換せず、アナログデータのま
ま信号処理することで振動の異常を検出する構成とする
と、より応答性よく処理することができ、すると、接合
装置や切断装置や駆動装置の動作中にリアルタイムで異
常の検査を行うことができる。演算装置は、ワークステ
ーション、マイクロコンピュータ又はパーソナルコンピ
ュータなどであり、主記憶装置やCPUなどを備える。
Next, an embodiment of the abnormality inspection apparatus according to the present invention will be described. The abnormality inspection device detects an abnormality of the measurement object 1 that vibrates in the vibration direction 7. The measuring object includes a joining device, a cutting device, a driving device, and the like used in manufacturing processes of various products. In the example shown in FIG. 3, the measurement target is a columnar object that vibrates in the left-right direction in FIG. In order to measure the vibrations at a plurality of measurement points of the measurement object, three semiconductor lasers 2 are used in the example shown in FIG. Signals output from the respective semiconductor lasers are input to the beat wave detecting means 8 respectively. Beat wave detecting means 8
In this example, an input signal is amplified by an amplifier and converted into digital data. Then, this digitized beat wave is analyzed by the arithmetic unit 14. If the beat wave is not converted to digital data, but the signal is processed as analog data to detect abnormal vibrations, processing can be performed with better responsiveness. An abnormality can be inspected in real time during operation of the apparatus. The arithmetic device is a workstation, a microcomputer, a personal computer, or the like, and includes a main storage device, a CPU, and the like.

【0019】さらに、実施の態様によっては、正常時の
ビート波を基準ビート波として予め記憶する基準ビート
波記憶部16を演算装置14に併設する。正常時のビー
ト波を格納し、測定中のビート波と比較することで、異
常の発生を検出することができる。また、演算装置14
に、測定対象物1を駆動制御する駆動制御手段18を併
設し、この駆動制御手段から測定対象物の駆動周波数情
報を得るようにしてもよい。ある周期で駆動される測定
対象物は、当該周期で振動しているため、破損や取付け
不良などが生じると、この駆動周波数による振動周波数
成分以外の周波数成分がビート波に重畳するため、駆動
制御手段18から入力される駆動周波数と測定対象物の
振動周波数を比較することで異常の検出を行うことがで
きる。
Further, in some embodiments, a reference beat wave storage unit 16 for preliminarily storing a normal beat wave as a reference beat wave is provided in the arithmetic unit 14. By storing the beat wave in a normal state and comparing it with the beat wave being measured, occurrence of an abnormality can be detected. The arithmetic unit 14
In addition, a drive control means 18 for controlling the drive of the measuring object 1 may be additionally provided, and the driving frequency information of the measuring object may be obtained from the driving control means. Since the measurement object driven at a certain cycle vibrates at the cycle, if a breakage or a mounting failure occurs, a frequency component other than the vibration frequency component due to the drive frequency is superimposed on the beat wave, so that the drive control is performed. An abnormality can be detected by comparing the driving frequency input from the means 18 with the vibration frequency of the object to be measured.

【0020】図4に半導体レーザ2の構成例を示す。半
導体レーザ2は、レーザ光を出力するレーザ共振器4
と、このレーザ共振器4内で発振光と戻り光とが自己混
合した光を受光するフォトダイオード6とを備えてい
る。また、レーザダイオードの共振器4によって発振さ
れたレーザ光は、レンズ5で集光されて測定対象物に照
射される。屈折率の異なるレンズを選択することで、照
射するレーザ光のビームスポットを変更することができ
る。
FIG. 4 shows a configuration example of the semiconductor laser 2. The semiconductor laser 2 includes a laser resonator 4 that outputs laser light.
And a photodiode 6 for receiving light in which oscillation light and return light are self-mixed in the laser resonator 4. The laser light oscillated by the resonator 4 of the laser diode is condensed by the lens 5 and irradiated on the measurement object. By selecting lenses having different refractive indexes, the beam spot of the laser light to be irradiated can be changed.

【0021】図5は微小波を観測するための実験系の構
成を示すブロック図である。ここでは、振動源を振動さ
せるファンクション・ジェネレータ(FG)の印加電圧
および周波数を変化させたときのビート波の状態をオシ
ロスコープ52で観測した。図6に示すように、FGか
ら振動源に与えた電圧変化と同様にPD出力波形の周波
数や振動振幅が変化していた。FG印加電圧が3Vの場
合には、図6(A)に示すように折返し間で鋸歯状波が
生じている。900mVで駆動すると、鋸歯状波が崩れ
始める。100mV未満で駆動すると、ビート波はS字
状態となる。図6に示すビート波を示す線が太くなって
いるのは、ホワイト・ノイズの影響である。この図6
(C)乃至(G)に示すS字状態のビート波は、測定対
象物の変位変化を示す変位変化波形であり、このビート
波の周期を観測することで直ちに測定対象物の振動周期
を求めることができる。
FIG. 5 is a block diagram showing a configuration of an experimental system for observing a minute wave. Here, the state of the beat wave when the applied voltage and frequency of the function generator (FG) that vibrates the vibration source were changed was observed with the oscilloscope 52. As shown in FIG. 6, the frequency and the vibration amplitude of the PD output waveform changed in the same manner as the voltage change applied from the FG to the vibration source. When the FG applied voltage is 3 V, a sawtooth wave is generated between the turns as shown in FIG. When driven at 900 mV, the sawtooth wave begins to collapse. When driven at less than 100 mV, the beat wave enters an S-shaped state. The thick line indicating the beat wave shown in FIG. 6 is due to the influence of white noise. This figure 6
The beat waves in the S-shaped state shown in (C) to (G) are displacement change waveforms indicating a change in displacement of the measurement object. By observing the cycle of the beat wave, the oscillation cycle of the measurement object is immediately obtained. be able to.

【0022】次に、種々の測定点を例示して説明する。
図1に示す照射工程は、例えば、測定対象物の測定点が
曲率を有する曲率付測定点である場合には当該曲率の中
心位置を照射方向に設定する工程を備えるとよい。図7
に示す例では、符号2Aで示す半導体レーザと、符号2
Bで示す半導体レーザとが測定対象物の曲率の中心へ向
う方向にてレーザ光を照射している。また、照射工程
は、測定対象物の振動によって反射の有無又は反射角度
が変化する反射変化測定点にレーザ光の照射位置を設定
する工程を備えるとよい。図7に示す例では、符号2C
で示す半導体レーザは反射変化測定点にレーザ光を照射
している。この反射変化測定点にレーザ光を照射する場
合、図1に示す振動良否判定工程は、反射変化測定点か
らの戻り光に応じたビート波のピーク(図9参照)に基
づいて当該測定対象物の振動の周期を判定する工程を備
えるとよい。
Next, various measurement points will be described by way of example.
The irradiation step illustrated in FIG. 1 may include, for example, a step of setting the center position of the curvature in the irradiation direction when the measurement point of the measurement target is a measurement point with a curvature having a curvature. FIG.
In the example shown in FIG.
A semiconductor laser indicated by B emits laser light in a direction toward the center of the curvature of the object to be measured. The irradiation step may include a step of setting an irradiation position of the laser beam at a reflection change measurement point where the presence or absence of reflection or the reflection angle changes due to the vibration of the measurement object. In the example shown in FIG.
The semiconductor laser shown by irradiates the laser beam to the reflection change measurement point. When the reflection change measurement point is irradiated with laser light, the vibration quality determination step shown in FIG. 1 is performed based on the peak of the beat wave (see FIG. 9) corresponding to the return light from the reflection change measurement point. It is preferable to include a step of determining a cycle of the vibration of the radiator.

【0023】照射工程はまた、測定対象物1の振動に応
じてレーザ光の照射位置が移動する移動測定点にレーザ
光の照射位置を設定する工程と、この工程によって移動
測定点にレーザ光の照射位置を設定した場合には当該レ
ーザ光のビームスポット径を基準より大きくさせる工程
とを備えるとよい。図7に示す例では、符号2Bで示す
半導体レーザはこの移動測定点にレーザ光を照射してい
る。このビームスポット径は、例えば、図7の符号13
で示すように、振動変位量の約2倍程度とすると、振動
変位による測定点の移動の影響を減らすことができる。
The irradiating step includes the step of setting the laser beam irradiation position to a moving measurement point at which the laser beam irradiation position moves in accordance with the vibration of the object 1 to be measured, and the step of setting the laser beam irradiation position to the moving measurement point by this step. When the irradiation position is set, a step of making the beam spot diameter of the laser beam larger than a reference may be provided. In the example shown in FIG. 7, the semiconductor laser indicated by reference numeral 2B irradiates the movement measurement point with laser light. This beam spot diameter is, for example, 13 in FIG.
As shown by, when the amount of vibration displacement is about twice, the influence of the movement of the measurement point due to the vibration displacement can be reduced.

【0024】照射工程はさらに、測定対象物1の振動の
方向を含む平面から当該測定対象物の測定点へ振動方向
の一方向に対して所定角度を有する角度をレーザ光の照
射方向に設定する工程を備えるとよい。図7(B)に示
す例では、半導体レーザ2Aは測定対象物の振動変位の
方向7に対して所定角度θを有する位置からレーザ光を
照射している。測定対象物の振動の振幅方向(変位方
向)に対して所定の照射角θを定義し、この照射角でレ
ーザ光を照射する。すると、振動面の移動量の1/co
sθが計測されるため、ビート波をS字状態とすること
ができる。
In the irradiating step, an angle having a predetermined angle with respect to one direction of the vibration direction from a plane including the direction of the vibration of the object 1 to the measuring point of the object is set as the irradiation direction of the laser beam. Steps may be provided. In the example shown in FIG. 7B, the semiconductor laser 2A emits laser light from a position having a predetermined angle θ with respect to the direction 7 of the vibration displacement of the measurement object. A predetermined irradiation angle θ is defined with respect to the amplitude direction (displacement direction) of the vibration of the measurement object, and laser light is irradiated at this irradiation angle. Then, 1 / co of the moving amount of the vibration surface
Since sθ is measured, the beat wave can be in an S-shaped state.

【0025】自己混合型レーザ・ドップラ振動計では、
振動変位がレーザ発振波長λの半分390 [nm](レー
ザ発振波長が780 [nm] であるレーザを使った場合)
移動した時、出力信号として鋸歯状波が一波分現れる。
ここでは、振動振幅がλ/2以上ある時の鋸歯状態のピ
ート波をM字状態と呼び、λ/2以下となった時の鋸歯
状態でないビート波をS字状態と呼ぶこととしている
が、測定を行う際レーザ照射角度を変える等によって測
定する振幅範囲をS字状態を保つようにした場合、出現
したビート波の振幅は振動振幅と同様に変動するため、
振幅変化を伴ったボンディング不良の検知を簡略な構成
で行うことができる。
In a self-mixing laser Doppler vibrometer,
Vibration displacement is half of laser oscillation wavelength λ 390 [nm] (when using laser whose laser oscillation wavelength is 780 [nm])
When moved, one sawtooth wave appears as an output signal.
Here, the peat wave in the sawtooth state when the vibration amplitude is λ / 2 or more is called an M-shaped state, and the beat wave that is not in the sawtooth state when the vibration amplitude is λ / 2 or less is called the S-shaped state. If the amplitude range to be measured is kept in the S-shape state by changing the laser irradiation angle when performing the measurement, the amplitude of the appearing beat wave fluctuates similarly to the vibration amplitude,
It is possible to detect a bonding failure with a change in amplitude with a simple configuration.

【0026】図8に反射変化測定点の例を示す。図8
(A)および図7(A)にて実線で示す例では、測定対
象物での反射光の進行先は半導体レーザ2Cに対して鈍
角となり、ほとんど戻り光がない。一方、図8(B)お
よび図7(A)にて二点鎖線で示す位置では、反射光の
進行先は半導体レーザ2Cに対して鋭角となり、多少戻
り光がレーザ共振器に入射する。このような反射変化測
定点を計測すると、図9の上から二番目に示す波形が得
られる。すなわち、測定対象物の1周期ごとにピークが
一つ生じる波形である。このピークの幅は図9の符号2
Caで示すように狭くなり、また、振幅も小さくなる。
このため、反射変化測定点を計測すると、測定対象物の
振動周期を簡単に得ることができる。
FIG. 8 shows an example of reflection change measurement points. FIG.
In the example shown by the solid line in FIG. 7A and FIG. 7A, the traveling destination of the reflected light on the measurement object is at an obtuse angle with respect to the semiconductor laser 2C, and there is almost no return light. On the other hand, at the positions indicated by the two-dot chain lines in FIGS. 8B and 7A, the reflected light travels at an acute angle with respect to the semiconductor laser 2C, and some return light enters the laser resonator. When such a reflection change measurement point is measured, the second waveform from the top in FIG. 9 is obtained. That is, it is a waveform in which one peak occurs in each cycle of the measurement object. The width of this peak is indicated by reference numeral 2 in FIG.
It becomes narrow as shown by Ca, and the amplitude also becomes small.
For this reason, when the reflection change measurement point is measured, the vibration cycle of the measurement object can be easily obtained.

【0027】図7に示した半導体レーザ2Aの波形は図
9に示す様にS字状態となり、振幅の変化を検知するこ
とができる。そして、図7に示す半導体レーザ2Bによ
るビート波は、図9に示す例ではS字状態の波形と同一
のスケールで表示しているため、ほぼ直線となってい
る。このレーザヘッド2Bの波形を増幅すると、レーザ
ヘッド2の波形の倍の周波数の波形を得ることができ
る。
The waveform of the semiconductor laser 2A shown in FIG. 7 is in an S-shaped state as shown in FIG. 9, and a change in amplitude can be detected. The beat wave generated by the semiconductor laser 2B shown in FIG. 7 is displayed on the same scale as the S-shaped waveform in the example shown in FIG. When the waveform of the laser head 2B is amplified, a waveform having a frequency twice that of the waveform of the laser head 2 can be obtained.

【0028】より具体的な異常の判定手法としては、例
えば前回測定した波形データと今回測定した波形データ
の比較を行い、その差によって不良の検出をさせる手法
がある。比較させる波形データは前回の測定データを使
う以外にも、過去の典型的良波形データl波形を使用・
良データを使い過去何十回や何百回も加算平均を行った
波形データを使用・過去のデータにより学習させた二ュ
ーラルネットワークによる特徴抽出を行った波形データ
を使用・リファレンスできるような外部入力波形データ
を使用など、必要とされる検出精度や検出までの時間等
の条件の変化によって参照とするデータを選択できる。
As a more specific abnormality judging method, for example, there is a method of comparing the previously measured waveform data with the currently measured waveform data, and detecting a defect based on the difference. For the waveform data to be compared, in addition to using the previous measurement data, use past typical good waveform data
Uses waveform data that has been averaged dozens or hundreds of times using good data.Uses waveform data that has been subjected to feature extraction by a neural network trained using past data. Data to be referred to can be selected according to changes in conditions such as required detection accuracy and time to detection, such as when using external input waveform data.

【0029】また、上述したように、測定対象物の駆動
周波数と測定対象物の振動周波数とを比較するようにし
ても良い。この場合、図1に示した振動良否判定工程
は、ビート波に基づいて測定対象物の振動周波数を算出
する工程と、当該振動周波数と測定対象物を振動させる
駆動手段の駆動周波数と比較する工程と、この比較の結
果振動周波数と駆動周波数とが一致しない場合に異常と
判定する工程とを備える。
Further, as described above, the driving frequency of the object to be measured may be compared with the vibration frequency of the object to be measured. In this case, the vibration quality determination step shown in FIG. 1 includes a step of calculating a vibration frequency of the measurement target based on the beat wave and a step of comparing the vibration frequency with a drive frequency of a driving unit that vibrates the measurement target. And a step of determining an abnormality when the vibration frequency and the drive frequency do not match as a result of the comparison.

【0030】上述したように本実施形態によると、小型
・軽量なレーザヘッドを構成できる自己混合型レーザ・
ドップラ振動計使って、測定対象物の異常を検出するた
め、測定対象物の振動状態の検出を連続稼動時において
も行うことができる。また、自己混合型レーザ・ドップ
ラ振動計を用いることで、振動の振幅変化(変位量の変
化)を伴う異常の検出を行うことができる。また、自己
混合型レーザ・ドップラ振動計を用いることで、測定対
象物の振動の周波数変化を伴う測定対象物の異常を検出
することができる。さらに、図7に示すように多点同時
計測を行うと、より不良検出精度を向上させることがで
き、さらに、それぞれのビート波の状態の組合わせか
ら、異常の内容を推定することができる。
As described above, according to this embodiment, a self-mixing type laser that can constitute a small and lightweight laser head
Since the abnormality of the object to be measured is detected using the Doppler vibrometer, the vibration state of the object to be measured can be detected even during continuous operation. Further, by using the self-mixing type laser Doppler vibrometer, it is possible to detect an abnormality accompanied by a change in vibration amplitude (change in displacement). Further, by using the self-mixing type laser Doppler vibrometer, it is possible to detect an abnormality of the measurement object accompanied by a frequency change of the vibration of the measurement object. Further, when the simultaneous measurement is performed at multiple points as shown in FIG. 7, the accuracy of defect detection can be further improved, and the content of the abnormality can be estimated from the combination of the states of the beat waves.

【0031】また、本実施形態では、正常な状態の波形
一波と比較を行うことで異常な状態を検出でき、正常な
状態の波形を複数用いて比較を行うことで更に検出精度
を高めることが可能である。さらに、正常な状態の波形
を多数メモリできるため、波形自身や波形の特徴ポイン
トを強調するような波形処理を加えることができる。そ
して、波形そのものだけでなく、例えば包絡線などの波
形の特徴を抽出した(波形)データを使うことで処理の
高速化や軽量化を図ることができる。また、周波数や位
相などについて行う比較処理は、リファレンスとする外
部入力波形を用いることで判定の高速化や単純化が可能
である。
In this embodiment, an abnormal state can be detected by comparing with a normal waveform, and the detection accuracy can be further improved by comparing a plurality of normal waveforms. Is possible. Further, since a large number of waveforms in a normal state can be stored in the memory, waveform processing that emphasizes the waveform itself and the characteristic points of the waveform can be added. In addition, not only the waveform itself but also data (waveform) obtained by extracting characteristics of the waveform such as an envelope, for example, can be used to increase the processing speed and reduce the weight. Further, the comparison processing performed on the frequency, the phase, and the like can be performed at high speed and simplified by using an external input waveform as a reference.

【0032】さらに、判定に必要とされる精度や応答速
度、メモリ量の制限等の条件により、判定のための参照
データを選択できる。そして、小型レーザヘッドを複数
同時に用いることで平面的や立体的な振動の変化を捕ら
えることができる。また、典型的な正常な状態の波形一
波と比較を行うことで異常な状態を検出できる。さら
に、正常な状態の波形を多数メモリできるため、例えば
加算平均やニューラル・ネットなどの波形処理を用いる
ことで、波形自体あるいは波形の特徴ポイントについて
変化を強調することもできる。そしてビート波形そのも
のだけでなく、例えば包絡線などの波形の特徴を抽出し
た(波形)データを使うことで処理の高速化や軽量化を
図ることができる。
Further, reference data for determination can be selected according to conditions such as accuracy, response speed, and memory amount required for determination. By using a plurality of small laser heads at the same time, two-dimensional or three-dimensional changes in vibration can be captured. Further, an abnormal state can be detected by comparing the waveform with a typical normal waveform. Furthermore, since a large number of waveforms in a normal state can be stored in memory, for example, by using waveform processing such as averaging or neural net, it is possible to emphasize changes in the waveform itself or characteristic points of the waveform. By using not only the beat waveform itself but also (waveform) data obtained by extracting characteristics of a waveform such as an envelope, the processing speed and weight can be reduced.

【0033】[0033]

【実施例】次に、本発明によるワイヤボンディング装置
の接合良否検査装置の実施例を説明する。図10に示す
ように、本実施例では、超音波振動を発振する超音波振
動子と、この超音波振動子によって発振された超音波振
動を接合対象物に伝達するホーン71と、このホーン7
1の先端部分に取付けられると共に接合対象物と接する
ワイヤ89に荷重を加えるキャピラリ73とを有するワ
イヤボンディング装置によるワイヤと接合対象物との接
合の良否を検査する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a description will be given of an embodiment of a bonding inspection apparatus for a wire bonding apparatus according to the present invention. As shown in FIG. 10, in the present embodiment, an ultrasonic vibrator that oscillates ultrasonic vibration, a horn 71 that transmits the ultrasonic vibration oscillated by the ultrasonic vibrator to an object to be joined, and a horn 7
The quality of the connection between the wire and the object to be bonded is inspected by a wire bonding apparatus having a capillary 73 attached to the distal end of the device 1 and applying a load to the wire 89 in contact with the object to be bonded.

【0034】そして、接合良否検査装置は、キャピラリ
73又はホーン71を測定対象物として当該測定対象物
の移動に追従してレーザ光を照射すると共に当該測定対
象物からの戻り光を受光するレーザ共振器2と、このレ
ーザ共振器2内での自己混合により生じたレーザ光を受
光する受光素子6と、この受光素子6から出力される信
号からビート波を検出するビート波出力手段8と、この
ビート波出力手段8によって出力されたビート波に基づ
いて測定対象物の振動の異常の有無を判定する信号処理
手段60とを備えている。
The bonding quality inspection apparatus uses the capillary 73 or the horn 71 as a measurement object to irradiate a laser beam following the movement of the measurement object and to receive a return light from the measurement object. A light receiving element 6 for receiving a laser beam generated by self-mixing in the laser resonator 2; a beat wave output means 8 for detecting a beat wave from a signal output from the light receiving element 6; A signal processing unit that determines whether or not there is an abnormality in the vibration of the measurement target based on the beat wave output by the beat wave output unit;

【0035】本実施例では、半導体レーザとレンズから
構成されるレーザ・ヘッド2をワイヤ・ボンディング装
置上に固定し、ボンディングの連続稼動と共に異常振動
の計測を行う。レーザ・ヘッド2の固定位置は、例え
ば、ワイヤ・ボンディング装置のキャピラリ73から超
音波振動子の振動方向へ延長させた位置で、必要に応じ
てS字状態となるように上下に角度を設けた位置とす
る。例えばキャピラリから20 [mm] 離した場所にレーザ
・ヘッドを配置すると、十分な戻り光を得られ他の装置
と干渉しない。半導体レーザにより電気信号化されたキ
ャピラリ振動状態は、信号処理手段へと入力され必要に
応じてワイヤボンディング装置の図示しない操作装置へ
と情報が送られる。
In the present embodiment, a laser head 2 composed of a semiconductor laser and a lens is fixed on a wire bonding apparatus, and measurement of abnormal vibration is performed together with continuous operation of bonding. The fixed position of the laser head 2 is, for example, a position extended from the capillary 73 of the wire bonding apparatus in the vibration direction of the ultrasonic vibrator, and is provided with an angle up and down so as to be in an S-shaped state as necessary. Position. For example, if the laser head is placed 20 [mm] away from the capillary, sufficient return light will be obtained and will not interfere with other devices. The capillary vibration state converted into an electric signal by the semiconductor laser is input to a signal processing unit, and information is sent to an operation device (not shown) of the wire bonding apparatus as needed.

【0036】自己混合型レーザ・ドップラ振動計測の原
理を用いると半導体レーザを用いて小型・軽量なレーザ
ヘッドを構成できるため、ボンディング装置の振動状態
検出に応用し、ホーン71またはホーン先端部分に固定
されているキャピラリ73のリアルタイム振動モニタリ
ング・システムを構成できる。
Using the principle of self-mixing type laser Doppler vibration measurement, a small and lightweight laser head can be constructed using a semiconductor laser. Therefore, the laser head is applied to the vibration state detection of a bonding apparatus and fixed to the horn 71 or the tip of the horn. A real-time vibration monitoring system for the capillary 73 can be configured.

【0037】図11は図10に示したワイヤボンディン
グ装置による接合例を示す斜視図である。ここでは、IC
やLSIの核となるシリコンチップ77の端子83と基盤
79上のリードフレーム85間を導通させるためのワイ
ヤ81を接続する。図12に示すように、キャピラリ7
3は中空となっており、ワイヤ89が順次供給される。
例えば、シリコンチップ77は、基盤79上に配置さ
れ、このシリコンチップ77と基盤79とは接着剤85
により固定される。ワイヤボンディング装置の固定台8
8と基盤79との固定には、治具を用いる。
FIG. 11 is a perspective view showing a bonding example using the wire bonding apparatus shown in FIG. Here, IC
And a wire 81 for conducting between a terminal 83 of a silicon chip 77 serving as a core of the LSI and a lead frame 85 on a base 79. As shown in FIG.
3 is hollow, and the wires 89 are sequentially supplied.
For example, the silicon chip 77 is disposed on a base 79, and the silicon chip 77 and the base 79 are bonded with an adhesive 85.
Is fixed by Fixing stand 8 for wire bonding equipment
A jig is used for fixing the base 8 and the base 79.

【0038】図13にワイヤボンディングの工程を示
す。まず、図13(A)に示すように、電気トーチ91
によりキャピラリ先端に金ボール93を形成する。次い
で、図13(B)に示すように、ホーン71を下降させ
ることで、シリコンチップの端子83と金ボールとを接
着させる。これは、キャピラリ先端が図13(B)中二
点鎖線で示す位置まで移動させ、荷重や加熱と同時に約
60kHzの超音波加振を加えることで行う。すると、チッ
プ77の端子83とワイヤ81とが固着する。さらに、
ホーン71をリードフレーム85側へ移動させ、ワイヤ
をリードフレームに固着させる。このボンディング装置
自体が移動を繰り返すことで、図11に示すように固定
台のチップの上に多数のワイヤ接続を行う。
FIG. 13 shows a wire bonding process. First, as shown in FIG.
Thus, a gold ball 93 is formed at the tip of the capillary. Next, as shown in FIG. 13B, the horn 71 is lowered to bond the silicon chip terminal 83 and the gold ball. This is because the tip of the capillary is moved to the position shown by the two-dot chain line in FIG.
This is performed by applying ultrasonic vibration of 60 kHz. Then, the terminals 83 of the chip 77 and the wires 81 are fixed. further,
The horn 71 is moved to the lead frame 85 side to fix the wire to the lead frame. By repeating the movement of the bonding apparatus itself, a large number of wires are connected on the chip of the fixed base as shown in FIG.

【0039】次に、図11乃至図13にて説明したワイ
ヤボンディングの異常検出処理を説明する。図10に示
す例では、信号処理手段60は、ビート波の振幅の変化
に基づいて測定対象物の異常の有無を判定する機能を備
えている。これは、キャピラリ73によりシリコンチッ
プ77とワイヤとが接続されるときには、振動のエネル
ギーが接合の仕事となるため、キャピラリ73等の測定
対象物の振動振幅が小さくなる。このため、信号処理手
段60が、接合が行われるタイミングで、例えばS字状
態のビート波の振幅が小さくなったか否かを確認するこ
とで、振動の異常を検出し、接合の良否を判定すること
ができる。
Next, the wire bonding abnormality detection processing described with reference to FIGS. 11 to 13 will be described. In the example illustrated in FIG. 10, the signal processing unit 60 has a function of determining whether there is an abnormality in the measurement target based on a change in the amplitude of the beat wave. This is because, when the silicon chip 77 and the wire are connected by the capillary 73, the energy of vibration serves as a joining work, so that the vibration amplitude of the measurement object such as the capillary 73 becomes small. For this reason, the signal processing means 60 detects abnormalities in vibration by determining whether the amplitude of the beat wave in the S-shaped state has become small, for example, at the timing when the joining is performed, and determines the quality of the joining. be able to.

【0040】また、接合良否判定システムが、測定対象
物が正常な振動をしたときのビート波を基準ビート波と
して記憶した基準ビート波記憶部62を備え、そして、
信号処理手段60が、この基準ビート波記憶部62に格
納された基準ビート波とビート波出力手段8から出力さ
れるビート波とを比較すると共に当該比較結果に応じて
測定対象物の振動の良否を判定する振動良否判定部を備
えるとよい。これにより、接合時や移動時の振動振幅の
増減が正常かいなかを高速に検出することができる。
Further, the bonding quality judgment system includes a reference beat wave storage unit 62 which stores a beat wave when the object to be measured vibrates normally as a reference beat wave,
The signal processing unit 60 compares the reference beat wave stored in the reference beat wave storage unit 62 with the beat wave output from the beat wave output unit 8 and determines whether the vibration of the object to be measured is good or bad according to the comparison result. May be provided. This makes it possible to quickly detect whether the increase or decrease in the vibration amplitude during joining or movement is normal.

【0041】図14に自己混合型レーザ・ドップラ振動
計を用いて実際に測定した良好なボンディング状態での
キャピラリ振動に応じたビート波と、超音波振動子の駆
動電流の例を示す。図14(A)は超音波振動子に印加
した駆動電流であり、図14(B)はS字状態のビート
波である。図14(C)および(D)は図14(A)お
よび(B)の二点鎖線で示す部分の拡大図である。図1
4(C)および(D)に示すように、超音波振動子に印
加した振動周波数と測定した振動波形の周波数が一致し
た。超音波振動子に印加した振動周波数と測定した振動
波形の周波数や周期の差を観測することで、上記の振幅
変化と同じように、振動の周波数変化を伴ったボンディ
ング不良の検知が可能である。この場合、信号処理手段
60が、ビート波の周波数の変化に基づいて測定対象物
の異常の有無を判定する機能を備える。
FIG. 14 shows an example of a beat wave corresponding to capillary vibration in a good bonding state and a drive current of an ultrasonic vibrator actually measured using a self-mixing type laser Doppler vibrometer. FIG. 14A shows a drive current applied to the ultrasonic transducer, and FIG. 14B shows a beat wave in an S-shaped state. FIGS. 14C and 14D are enlarged views of the portions indicated by the two-dot chain lines in FIGS. 14A and 14B. FIG.
As shown in FIGS. 4 (C) and (D), the vibration frequency applied to the ultrasonic vibrator coincided with the frequency of the measured vibration waveform. By observing the difference between the vibration frequency applied to the ultrasonic vibrator and the frequency or cycle of the measured vibration waveform, it is possible to detect a bonding failure accompanied by a change in the vibration frequency in the same manner as in the amplitude change described above. . In this case, the signal processing means 60 has a function of determining whether or not there is an abnormality in the measurement target based on a change in the frequency of the beat wave.

【0042】より具体的には、図10に示す例では、信
号処理手段60が、ビート波出力手段によって出力され
たビート波に基づいて測定対象物の振動周期を算出する
振動周期算出部と、超音波振動子の駆動電流の周期と測
定対象物の振動周期とを比較すると共に当該比較結果に
応じて測定対象物の振動の良否を判定する駆動周期比較
部を備える。駆動電流の周期は、図10の超音波振動子
駆動部61から入力される。
More specifically, in the example shown in FIG. 10, the signal processing means 60 calculates a vibration cycle of the object to be measured based on the beat wave output from the beat wave output means, A drive cycle comparison unit is provided for comparing the cycle of the drive current of the ultrasonic vibrator with the cycle of vibration of the object to be measured, and determining whether the vibration of the object to be measured is good or not according to the comparison result. The cycle of the drive current is input from the ultrasonic transducer drive unit 61 in FIG.

【0043】図16に多点同時計測を行う場合の測定点
の例を示す。ここでは、図7乃至図9を参照して説明し
た種々の測定点の振動を計測する。キャピラリの振動だ
けでなくICチップや基板など同時に測定することで不良
検知精度を上げることができる。具体的には、キャピラ
リ71にレーザ光を照射すると共に当該キャピラリから
の戻り光を受光するキャピラリ用レーザ共振器(符号1
01,102,103,106,107,108で示す
方向)と、ホーン71にレーザ光を照射すると共に当該
ホーンからの戻り光を受光するホーン用レーザ共振器
(符号105,106で示す方向)と、接合対象物(例
えば、シリコンチップ77と基盤79からなるワーク)
にレーザ光を照射するワーク用レーザ共振器(符号10
4,109,110,111で示す方向)とを備えてい
る。
FIG. 16 shows an example of measurement points when performing simultaneous multipoint measurement. Here, vibrations at various measurement points described with reference to FIGS. 7 to 9 are measured. Defect detection accuracy can be improved by measuring not only the vibration of the capillary but also the IC chip and substrate at the same time. Specifically, a capillary laser resonator (reference numeral 1) that irradiates the capillary 71 with laser light and receives return light from the capillary.
01, 102, 103, 106, 107, and 108) and a horn laser resonator (a direction indicated by reference numerals 105 and 106) that irradiates the horn 71 with laser light and receives return light from the horn. Object to be joined (for example, a work composed of a silicon chip 77 and a base 79)
Laser cavity for workpieces that irradiates laser light to the workpiece (reference numeral 10)
4, 109, 110, 111).

【0044】レーザ・へッドを複数個使うことで、キャ
ピラリの平面的・立体的な動きを測定できる。キャピラ
リだけでなく、同時にホーンの振動を平面的や立体的に
測定することも可能であり、さらにはICチップや基板の
振動を測定しボンディング良否判定の精度向上に活かす
こともできる。例えば、符号102と符号103とで示
す測定でS字状態のビート波の振幅や周期が異なる場合
には、図10に示すようにキャピラリの取付け不良によ
り符号75で示す二点鎖線のような振動を生じさせてい
ると判定することができる。また、符号104,11
0,109で示すような方向から通常振動が微少なワー
ク88の振動を計測し、ビート波が検出された場合に
は、ワイヤの不良や図12で示す接着剤85の不良と判
定できる。さらに、図示しないキャピラリの上方向から
キャピラリへ向けて測定すると、金ボールの形成不良を
検査することができる。図16に異常の種類とビート波
の変化の関係を示す。図15に示す種々の方向のうちの
いくつかを組合わせ、さらに例えば移動測定点などで振
動周期を得ておくことで、図16に示した各種の異常の
発生をリアルタイムで確実に検出することができ、そし
て、多点同時計測による複数のビート波の状態から異常
内容の判定を行うこともできる。
By using a plurality of laser heads, the planar and three-dimensional movement of the capillary can be measured. Not only the capillary, but also the horn vibration can be measured two-dimensionally or three-dimensionally. Further, the vibration of the IC chip or the substrate can be measured and utilized for improving the accuracy of the bonding judgment. For example, when the amplitude and the period of the beat wave in the S-shaped state are different in the measurement indicated by the reference numeral 102 and the reference numeral 103, as shown in FIG. Can be determined. Reference numerals 104 and 11
The vibration of the work 88 whose normal vibration is very small is measured from the directions indicated by 0 and 109, and if a beat wave is detected, it can be determined that the wire is defective or the adhesive 85 shown in FIG. 12 is defective. Further, when the measurement is performed from above the capillary (not shown) toward the capillary, it is possible to inspect the formation failure of the gold ball. FIG. 16 shows the relationship between the type of abnormality and the change of the beat wave. By combining some of the various directions shown in FIG. 15 and obtaining a vibration period at, for example, a moving measurement point, the occurrence of various abnormalities shown in FIG. 16 can be reliably detected in real time. The abnormality content can be determined from the state of a plurality of beat waves by simultaneous measurement at multiple points.

【0045】上述したように本実施形態によると、ワイ
ヤ・ボンディング装置のホーンやキャピラリの振動を連
続稼動時においてもセンシングでき、ワイヤ・ボンディ
ング装置のホーンやキャピラリの振動周波数や振動振
幅、位相などの振動状態に関する情報を波形データとし
て蓄積・加工・利用できる。また、キャピラリの振動だ
けでなくICチップや基板など同時に測定することで不良
検知精度を上げることができる。
As described above, according to the present embodiment, the vibration of the horn or capillary of the wire bonding apparatus can be sensed even during continuous operation, and the vibration frequency, vibration amplitude, phase, etc. of the horn or capillary of the wire bonding apparatus can be sensed. Information on the vibration state can be stored, processed, and used as waveform data. In addition, the accuracy of defect detection can be improved by simultaneously measuring not only the vibration of the capillary but also the IC chip and the substrate.

【0046】さらに、超音波振動子への印加電圧などを
利用することにより、リファレンスとする波形との比較
を周波数や位相について行うことで高速で単純な処理に
よる判定が可能である。また、判定に必要とされる精度
や応答速度、メモリ量の制限等の条件により、判定のた
めの参照データを選択できる。そして、小型・軽量であ
るレーザヘッドを複数同時に用いることでホーンやキャ
ピラリなどの振動を平面的あるいは立体的に捕らえるこ
とができる。
Further, by utilizing the voltage applied to the ultrasonic transducer and the like, the comparison with the reference waveform is performed on the frequency and the phase, so that a high-speed and simple processing can be determined. In addition, reference data for determination can be selected according to conditions such as accuracy, response speed, and memory amount required for determination. By using a plurality of small and lightweight laser heads at the same time, vibration of a horn, a capillary, or the like can be captured two-dimensionally or three-dimensionally.

【0047】[0047]

【発明の効果】本発明は以上のように構成され機能する
ので、これによると、照射工程が、複数の測定点にレー
ザ光を照射するため、測定対象物の測定点を複数とり、
多点同時計測を行うことができ、例えば、その法線ベク
トルが振動方向と等しい振動面や、曲面となっている測
定点や、反射変化測定点や、移動測定点や、正常の場合
にはなんら振動しない測定点などのうち、複数を選択し
てそれぞれビート波を得ることができ、さらに、振動良
否判定工程が、それぞれの測定点に対応するビート波に
応じた変位変化波形や速度変化波形から振動の良否を判
定するため、測定対象物の通常の振動とは異なる振動が
生じたときに当該異常振動を直ちに検出することができ
るという従来にない優れた異常検査方法を提供すること
ができる。
Since the present invention is constructed and functions as described above, according to this, the irradiation step irradiates a plurality of measurement points with laser light, so that a plurality of measurement points of the measurement object are taken.
Multipoint simultaneous measurement can be performed, for example, a vibration surface whose normal vector is equal to the vibration direction, a measurement point that is a curved surface, a reflection change measurement point, a moving measurement point, and in the case of normal, A beat wave can be obtained by selecting a plurality of measurement points that do not vibrate at all, and a vibration quality determination step includes a displacement change waveform and a speed change waveform corresponding to the beat wave corresponding to each measurement point. In order to judge the quality of the vibration from the above, it is possible to provide an unprecedented superior abnormality inspection method in which the abnormal vibration can be immediately detected when a vibration different from the normal vibration of the measurement object occurs. .

【0048】また、本発明によるワイヤボンディング装
置の接合良否検査システムでは、レーザ共振器が、ホー
ン及びキャピラリの移動に追従して測定点にレーザ光を
照射すると、この戻り光はレーザ共振器内にて自己混合
し、ビート波が生じ、信号処理手段が、このビート波に
基づいて測定対象物の振動の異常の有無を判定するた
め、正常な接合でのビート波の例えば振幅の減少などの
現象を確認して測定対象物の振動の異常を検出すること
ができ、特に、キャピラリの取付け不良やワークの接合
不良などが生じると通常とは異なる振動となるため、こ
のワイヤボンディング装置の異常振動を検出すると、ボ
ンディングの接合不良の検査となり、また、レーザ共振
器内でビート波を生じさせる構成のため、小型かつ軽量
であり、このため、実際に接合が行われたか否かをリア
ルタイムで測定することができるという従来にない優れ
た接合不良検査システムを提供することができる。
Further, in the bonding quality inspection system of the wire bonding apparatus according to the present invention, when the laser resonator irradiates the measurement point with laser light following the movement of the horn and the capillary, the return light is transmitted into the laser resonator. The beat wave is generated by self-mixing, and the signal processing means determines whether or not the vibration of the object to be measured is abnormal based on the beat wave. Can detect abnormalities in the vibration of the object to be measured.In particular, if there is a problem such as improper attachment of the capillary or poor joining of the workpiece, the vibration will be different from the normal one. If it is detected, it will be inspected for bonding failure, and it is small and light because of the configuration that generates a beat wave in the laser resonator. It is possible to provide a no good bonding failure inspection system prior being able to measure whether the bonding is performed in real time during.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の実施形態の構成を示すフローチ
ャートである。
FIG. 1 is a flowchart showing a configuration of a first embodiment of the present invention.

【図2】ビート波の状態の変化を示す波形図であり、図
2(A)はM字状態の一例を示し、図2(B)はS字状
態の一例を示す図である。
FIGS. 2A and 2B are waveform diagrams showing changes in the state of a beat wave. FIG. 2A shows an example of an M-shaped state, and FIG. 2B shows an example of an S-shaped state.

【図3】本発明による振動計測装置の構成を示すブロッ
ク図である。
FIG. 3 is a block diagram showing a configuration of a vibration measuring device according to the present invention.

【図4】図3に示した光検出手段の詳細構成の一例を示
す説明図である。
FIG. 4 is an explanatory diagram illustrating an example of a detailed configuration of a light detection unit illustrated in FIG. 3;

【図5】測定対象物が微小な振動を行う場合のビート波
の状態を観測するための実験系の構成を示すブロック図
である。
FIG. 5 is a block diagram showing a configuration of an experimental system for observing a state of a beat wave when a measurement object performs minute vibration.

【図6】振動周波数を10 [kHz] 特定し、FG印加電
圧を変化させた場合のビート波の状態を示す波形図であ
り、図6(A)乃至(G)はそれぞれFG印加電圧が3
[V] 乃至 20 [mV] である場合のビート波の状態を示
す図である。
FIG. 6 is a waveform diagram showing the state of a beat wave when the vibration frequency is specified as 10 [kHz] and the FG applied voltage is changed, and FIGS.
It is a figure which shows the state of a beat wave in the case of [V]-20 [mV].

【図7】曲率を有する測定点と、反射光が変化する測定
点と、所定角度にてレーザ光が照射される測定点との振
動を計測する例を示す説明図であり、図7(A)は平面
図で、図7(B)は右側面図である。
FIG. 7 is an explanatory diagram showing an example of measuring vibration at a measurement point having a curvature, a measurement point at which reflected light changes, and a measurement point irradiated with laser light at a predetermined angle; ) Is a plan view, and FIG. 7B is a right side view.

【図8】反射光が変化する測定点にレーザ光を照射した
例を示す説明図であり、図8(A)は図7(A)にて実
線で示す状態でのレーザ光の光路を示す図で、図8
(B)は図7(A)にて二点鎖線で示す状態でのレーザ
光の光路を示す図である。
8A and 8B are explanatory diagrams illustrating an example in which a measurement point at which reflected light changes is irradiated with laser light. FIG. 8A illustrates an optical path of the laser light in a state indicated by a solid line in FIG. FIG. 8
FIG. 7B is a diagram illustrating an optical path of the laser light in a state indicated by a two-dot chain line in FIG.

【図9】図7に示した各レーザ共振器が出力するビート
波の例を示す波形図である。
9 is a waveform diagram showing an example of a beat wave output from each laser resonator shown in FIG.

【図10】本発明によるワイヤボンディング装置の接合
良否検査システムの構成を示すブロック図である。
FIG. 10 is a block diagram showing a configuration of a bonding quality inspection system of the wire bonding apparatus according to the present invention.

【図11】図10に示したワイヤボンディング装置の接
合対象の一例を示す斜視図である。
11 is a perspective view showing an example of a bonding target of the wire bonding apparatus shown in FIG.

【図12】図10に示したキャピラリの詳細を示す拡大
図である。
FIG. 12 is an enlarged view showing details of a capillary shown in FIG. 10;

【図13】図13(A)乃至(C)は図10に示したワ
イヤボンディング装置でのワイヤ接合動作の一例を示す
説明図である。
FIGS. 13A to 13C are explanatory diagrams illustrating an example of a wire bonding operation in the wire bonding apparatus illustrated in FIG. 10;

【図14】図10に示す構成で使用する振動子駆動電流
とビート波の一例を示す図で、図14(A)は振動子駆
動電流波形の一例を示す図で、図14(B)はビート波
の一例を示す図で、図14(C)は図14(A)の二点
鎖線で示した位置の拡大図であり、図14(D)は図1
4(B)の二点鎖線で示した位置の拡大図である。
14 is a diagram showing an example of a vibrator driving current and a beat wave used in the configuration shown in FIG. 10; FIG. 14A is a diagram showing an example of a vibrator driving current waveform; FIG. FIG. 14 (C) is an enlarged view of a position indicated by a two-dot chain line in FIG. 14 (A), and FIG.
FIG. 4B is an enlarged view of a position indicated by a two-dot chain line in FIG.

【図15】多点同時計測を行う場合の測定点および測定
法光の一例を示す斜視図である。
FIG. 15 is a perspective view showing an example of measurement points and measurement light when performing simultaneous multipoint measurement.

【図16】ワイヤボンディングにおける異常の種類と当
該異常に対応するビート波の変化の関係を示す図表であ
る。
FIG. 16 is a table showing a relationship between types of abnormalities in wire bonding and changes in beat waves corresponding to the abnormalities.

【符号の説明】[Explanation of symbols]

1 測定対象物 2 レーザ素子 4 レーザダイオード(共振器) 6 フォトダイオード 8 ビート波検出手段 10 増幅器 12 A/D変換器 14 演算装置 16 基準ビート波記憶部 18 駆動制御手段 DESCRIPTION OF SYMBOLS 1 Measurement object 2 Laser element 4 Laser diode (resonator) 6 Photodiode 8 Beat wave detection means 10 Amplifier 12 A / D converter 14 Operation device 16 Reference beat wave storage part 18 Drive control means

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G047 AB07 AC10 BA04 BC00 BC04 BC05 CA04 GD00 GG09 GG19 4M106 AA14 BA05 CA33 DH05 DH12 DH20 DH32 DJ21 5F044 JJ01  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G047 AB07 AC10 BA04 BC00 BC04 BC05 CA04 GD00 GG09 GG19 4M106 AA14 BA05 CA33 DH05 DH12 DH20 DH32 DJ21 5F044 JJ01

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 レーザ共振器で発振する複数のレーザ光
を測定対象物の各点にそれぞれ照射する照射工程と、こ
の照射工程によって照射されたレーザ光の前記測定対象
物の各測定点からの戻り光をそれぞれ受光する受光工程
と、この受光工程で受光し前記共振器内で前記発振した
レーザ光と自己混合したレーザ光をそれぞれ光電変換す
る光電変換工程とを備えると共に、 前記光電変換工程で変換されて出力される前記測定対象
物の各点のビート波の状態に基づいて前記測定対象物の
振動の良否を判定する振動良否判定工程とを備えたこと
を特徴とする異常検査方法。
1. An irradiation step of irradiating a plurality of laser beams oscillated by a laser resonator to each point of a measurement object, and a step of irradiating the laser light irradiated by the irradiation step from each measurement point of the measurement object. A light-receiving step of receiving the return light, and a photoelectric conversion step of photoelectrically converting the laser light received in the light-receiving step and the self-mixed laser light in the resonator and the self-mixed laser light. An abnormality inspection method, comprising: a vibration quality determination step of determining the quality of vibration of the measurement object based on a state of a beat wave at each point of the measurement object that is converted and output.
【請求項2】 前記照射工程は、前記測定対象物の測定
点が曲率を有する曲率付測定点である場合には当該曲率
の中心位置を照射方向に設定する工程を備えたことを特
徴とする請求項1記載の異常検査方法。
2. The method according to claim 1, wherein the irradiating step includes a step of setting a center position of the curvature in an irradiation direction when the measurement point of the measurement object is a measurement point with a curvature having a curvature. The abnormality inspection method according to claim 1.
【請求項3】 前記照射工程は、前記測定対象物の振動
によって反射の有無又は反射角度が変化する反射変化測
定点にレーザ光の照射位置を設定する工程を備え、 前記振動良否判定工程は、前記反射変化測定点からの戻
り光に応じたビート波のピークに基づいて当該測定対象
物の振動の周期を判定する工程を備えたことを特徴とす
る請求項1記載の異常検査方法。
3. The irradiation step includes a step of setting an irradiation position of the laser beam at a reflection change measurement point at which the presence or absence of reflection or a reflection angle changes due to the vibration of the measurement object. 2. The abnormality inspection method according to claim 1, further comprising a step of determining a vibration cycle of the measurement object based on a peak of a beat wave corresponding to light returned from the reflection change measurement point.
【請求項4】 前記照射工程は、前記測定対象物の振動
に応じてレーザ光の照射位置が移動する移動測定点にレ
ーザ光の照射位置を設定する工程と、この工程によって
移動測定点にレーザ光の照射位置を設定した場合には当
該レーザ光のビームスポット径を基準より大きくさせる
工程とを備えたことを特徴とする請求項1記載の異常検
査方法。
4. The irradiating step includes: setting a laser beam irradiation position at a moving measurement point at which the laser beam irradiation position moves in accordance with the vibration of the measurement object; 2. The abnormality inspection method according to claim 1, further comprising the step of: setting a beam spot diameter of the laser beam larger than a reference when a light irradiation position is set.
【請求項5】 前記照射工程は、前記測定対象物の振動
の方向を含む平面から当該測定対象物の測定点へ振動方
向の一方向に対して所定角度を有する角度をレーザ光の
照射方向に設定する工程を備えたことを特徴とする請求
項1又は4記載の異常検査方法。
5. The method according to claim 1, wherein the step of irradiating the laser beam with an angle having a predetermined angle with respect to one direction of the vibration direction from a plane including the direction of vibration of the measurement object to a measurement point of the measurement object. 5. The abnormality inspection method according to claim 1, further comprising a setting step.
【請求項6】 前記振動良否判定工程は、前記ビート波
に基づいて前記測定対象物の振動周波数を算出する工程
と、当該振動周波数と前記測定対象物を振動させる駆動
手段の駆動周波数と比較する工程と、この比較の結果振
動周波数と駆動周波数とが一致しない場合に異常と判定
する工程とを備えたことを特徴とする請求項1記載の異
常検査方法。
6. The vibration quality determination step includes calculating a vibration frequency of the measurement target based on the beat wave, and comparing the vibration frequency with a drive frequency of a driving unit that vibrates the measurement target. 2. The abnormality inspection method according to claim 1, further comprising a step and a step of determining an abnormality when the vibration frequency and the drive frequency do not match as a result of the comparison.
【請求項7】 超音波振動を発振する超音波振動子と、
この超音波振動子によって発振された超音波振動を接合
対象物に伝達するホーンと、このホーンの先端部分に取
付けられると共に接合対象物と接するワイヤに荷重を加
えるキャピラリとを有するワイヤボンディング装置によ
るワイヤと接合対象物との接合の良否を検査する接合良
否検査システムにおいて、 前記キャピラリ又はホーンを測定対象物として当該測定
対象物の移動に追従してレーザ光を照射すると共に当該
測定対象物からの戻り光を受光するレーザ共振器と、こ
のレーザ共振器内での自己混合により生じたレーザ光を
受光する受光素子と、この受光素子から出力される信号
からビート波を検出するビート波出力手段と、このビー
ト波出力手段によって出力されたビート波に基づいて前
記測定対象物の振動の異常の有無を判定する信号処理手
段とを備えたことを特徴とする接合良否検査システム。
7. An ultrasonic vibrator for oscillating ultrasonic vibration,
A wire bonding apparatus having a horn for transmitting ultrasonic vibrations oscillated by the ultrasonic vibrator to an object to be joined, and a capillary attached to a tip portion of the horn and applying a load to a wire in contact with the object to be joined; In a bonding quality inspection system for inspecting the quality of bonding between the object and the bonding target, the capillary or horn is used as a measurement target, the laser beam is irradiated following the movement of the measurement target, and return from the measurement target is performed. A laser resonator that receives light, a light receiving element that receives laser light generated by self-mixing in the laser resonator, and a beat wave output unit that detects a beat wave from a signal output from the light receiving element, A signal for determining the presence or absence of abnormal vibration of the object to be measured based on the beat wave output by the beat wave output means. And a signal processing means.
【請求項8】 前記信号処理手段が、前記ビート波の振
幅の変化に基づいて前記測定対象物の異常の有無を判定
する機能を備えたことを特徴とする請求項7記載の接合
良否検査システム。
8. The joint quality inspection system according to claim 7, wherein said signal processing means has a function of determining the presence or absence of an abnormality in said measurement target based on a change in amplitude of said beat wave. .
【請求項9】 前記信号処理手段が、前記測定対象物が
正常な振動をしたときのビート波を基準ビート波として
記憶した基準ビート波記憶部と、この基準ビート波記憶
部に格納された基準ビート波と前記ビート波出力手段か
ら出力されるビート波とを比較すると共に当該比較結果
に応じて測定対象物の振動の良否を判定する振動良否判
定部とを備えたことを特徴とする請求項7又は8記載の
接合良否検査システム。
9. A reference beat wave storage unit that stores a beat wave when the measurement object vibrates normally as a reference beat wave, and a reference beat wave stored in the reference beat wave storage unit. A vibration quality determination unit that compares a beat wave with a beat wave output from the beat wave output unit and that determines a quality of a vibration of the measurement object according to the comparison result. 7. The bonding quality inspection system according to 7 or 8.
【請求項10】 前記信号処理手段が、前記ビート波の
周波数の変化に基づいて前記測定対象物の異常の有無を
判定する機能を備えたことを特徴とする請求項7,8又
は9記載の接合良否検査システム。
10. The apparatus according to claim 7, wherein the signal processing means has a function of determining whether or not the measurement target is abnormal based on a change in the frequency of the beat wave. Bonding quality inspection system.
【請求項11】 前記信号処理手段が、前記ビート波出
力手段によって出力されたビート波に基づいて前記測定
対象物の振動周期を算出する振動周期算出部と、前記超
音波振動子の駆動電流の周期と前記測定対象物の振動周
期とを比較すると共に当該比較結果に応じて測定対象物
の振動の良否を判定する駆動周期比較部を備えたことを
特徴とする請求項10記載の接合良否検査システム。
11. A vibration cycle calculating section for calculating a vibration cycle of the object to be measured based on a beat wave output by the beat wave output means, and a driving current of the ultrasonic vibrator. The joint quality inspection according to claim 10, further comprising a drive cycle comparison unit that compares a cycle with a vibration cycle of the measurement object and determines whether the vibration of the measurement object is good or not according to the comparison result. system.
【請求項12】 超音波振動を発振する超音波振動子
と、この超音波振動子によって発振された超音波振動を
接合対象物に伝達するホーンと、このホーンの先端部分
に取付けられると共に接合対象物と接するワイヤに荷重
を加えるキャピラリとを有するワイヤボンディング装置
によるワイヤと接合対象物との接合の良否を検査する接
合良否検査システムにおいて、 前記キャピラリにレーザ光を照射すると共に当該キャピ
ラリからの戻り光を受光するキャピラリ用レーザ共振器
と、前記ホーンにレーザ光を照射すると共に当該ホーン
からの戻り光を受光するホーン用レーザ共振器と、前記
接合対象物にレーザ光を照射するワーク用レーザ共振器
とを有するレーザ光照射手段を備えると共に、 このレーザ光照射手段の各レーザ共振器内での自己混合
により生じるレーザ光を受光する受光素子と、この受光
素子から出力される信号からビート波を検出するビート
波出力手段と、このビート波出力手段によって出力され
た複数のビート波に基づいて前記測定対象物の振動の異
常の有無を判定する振動異常判定手段とを備えたことを
特徴とする接合良否検査システム。
12. An ultrasonic vibrator for oscillating ultrasonic vibration, a horn for transmitting ultrasonic vibration oscillated by the ultrasonic vibrator to an object to be joined, and a horn attached to a tip portion of the horn and connected to the object to be joined. In a bonding quality inspection system for inspecting the quality of bonding between a wire and an object to be bonded by a wire bonding apparatus having a capillary for applying a load to a wire in contact with an object, a laser beam is applied to the capillary and return light from the capillary is applied. , A horn laser resonator that irradiates the horn with laser light and receives return light from the horn, and a work laser resonator that irradiates the joining object with laser light. And a self-mixing of the laser light irradiating means in each laser resonator. A light receiving element for receiving the laser light generated by the light receiving means, a beat wave output means for detecting a beat wave from a signal output from the light receiving element, and the measurement object based on a plurality of beat waves output by the beat wave output means A bonding quality inspection system, comprising: a vibration abnormality determining unit that determines whether or not there is a vibration abnormality of an object.
JP10311132A 1998-09-24 1998-10-30 Abnormality inspection method, and joining quality inspection system for wire bonding device Withdrawn JP2000137026A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10311132A JP2000137026A (en) 1998-10-30 1998-10-30 Abnormality inspection method, and joining quality inspection system for wire bonding device
US09/397,966 US6323943B1 (en) 1998-09-24 1999-09-17 Vibration measurement method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10311132A JP2000137026A (en) 1998-10-30 1998-10-30 Abnormality inspection method, and joining quality inspection system for wire bonding device

Publications (1)

Publication Number Publication Date
JP2000137026A true JP2000137026A (en) 2000-05-16

Family

ID=18013519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10311132A Withdrawn JP2000137026A (en) 1998-09-24 1998-10-30 Abnormality inspection method, and joining quality inspection system for wire bonding device

Country Status (1)

Country Link
JP (1) JP2000137026A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142049A (en) * 2005-11-16 2007-06-07 Toshiba Corp Ultrasonic bonding equipment, controller therefor, and ultrasonic bonding method
JP2011191232A (en) * 2010-03-16 2011-09-29 Joyo Machine Co Ltd Method and device of determining acceptance/rejection of fine diameter wire bonding
KR20140138903A (en) * 2012-11-16 2014-12-04 가부시키가이샤 신가와 Wire bonding apparatus and method for producing semiconductor device
US10830710B2 (en) 2019-02-19 2020-11-10 Toshiba Memory Corporation Method and device for inspecting a semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142049A (en) * 2005-11-16 2007-06-07 Toshiba Corp Ultrasonic bonding equipment, controller therefor, and ultrasonic bonding method
JP2011191232A (en) * 2010-03-16 2011-09-29 Joyo Machine Co Ltd Method and device of determining acceptance/rejection of fine diameter wire bonding
KR20140138903A (en) * 2012-11-16 2014-12-04 가부시키가이샤 신가와 Wire bonding apparatus and method for producing semiconductor device
KR101596249B1 (en) 2012-11-16 2016-02-22 가부시키가이샤 신가와 Wire bonding apparatus and method for producing semiconductor device
US10830710B2 (en) 2019-02-19 2020-11-10 Toshiba Memory Corporation Method and device for inspecting a semiconductor device

Similar Documents

Publication Publication Date Title
US7819013B2 (en) Method and apparatus for measuring oscillation amplitude of an ultrasonic device
EP1486790B1 (en) Mounting method and mounting apparatus of electronic part
JP2705423B2 (en) Ultrasonic bonding equipment and quality monitoring method
KR100674520B1 (en) System and method for laser ultrasonic bond integrity evaluation
US7492449B2 (en) Inspection systems and methods
JPWO2018143410A1 (en) Ultrasonic bonding apparatus, ultrasonic bonding inspection method, and manufacturing method of ultrasonic bonding portion
US6323943B1 (en) Vibration measurement method and apparatus
JPS63191927A (en) Bonding parameter monitor during bonding process
JP5221314B2 (en) Ultrasonic measurement method and electronic component manufacturing method
Or et al. Dynamics of an ultrasonic transducer used for wire bonding
US5533398A (en) Method and apparatus for testing lead connections of electronic components
US10830710B2 (en) Method and device for inspecting a semiconductor device
JP2004047944A (en) Bonding apparatus and bonding method having process for judging bonding state
JP2000137026A (en) Abnormality inspection method, and joining quality inspection system for wire bonding device
JP6664300B2 (en) Wire bonding quality determination device and wire bonding quality determination method
JP2000202644A (en) Method for judging quality of ultrasonic welding
JP4772467B2 (en) Ultrasonic bonding apparatus, control apparatus for ultrasonic bonding apparatus, and ultrasonic bonding method
KR20030066344A (en) Method for determining optimum bond parameters when bonding with a wire bonder
JP2008084881A (en) Manufacturing process and inspection method of electronic device
KR100903458B1 (en) Method and device for measuring the amplitude of a freely oscillating capillary of a wire bonder
JPH11197854A (en) Ultrasonic welding device and welding state in ultrasonic welding device
JPH01101475A (en) Continuity formation inspecting device
JPH0961486A (en) Soldering inspecting instrument
JPH0252981B2 (en)
JPH0348153A (en) Decision of strength of ceramic junction

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110