JP2000136934A - Detection-signal processor for angular velocity sensor - Google Patents
Detection-signal processor for angular velocity sensorInfo
- Publication number
- JP2000136934A JP2000136934A JP10309983A JP30998398A JP2000136934A JP 2000136934 A JP2000136934 A JP 2000136934A JP 10309983 A JP10309983 A JP 10309983A JP 30998398 A JP30998398 A JP 30998398A JP 2000136934 A JP2000136934 A JP 2000136934A
- Authority
- JP
- Japan
- Prior art keywords
- vibration
- signal
- angular velocity
- detection
- amplitude
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Gyroscopes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、振動子をx方向に
励振すなわち振動駆動し、この駆動方向xに直交する軸
z(又はy)を回転軸とする角速度Ωが振動子に加わっ
たときに発生するコリオリ力Fにより誘起される、駆動
方向x及び角速度Ωに直交する方向y(又はz)すなわ
ち検出方向y(又はz)の振動を検出する振動型角速度
センサの、該検出方向の振動を検出した信号に基づいて
角速度Ωを表わす信号を発生する、検出信号処理装置に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method in which a vibrator is excited in an x direction, that is, vibrated, and an angular velocity .OMEGA. Vibration of the vibration type angular velocity sensor which detects vibration in the direction y (or z) orthogonal to the drive direction x and the angular velocity Ω, that is, the detection direction y (or z), induced by the Coriolis force F generated in the detection direction The present invention relates to a detection signal processing device that generates a signal representing an angular velocity Ω based on a signal that has detected.
【0002】[0002]
【従来の技術】上述の振動型角速度センサには、例え
ば、振動子が水晶等の圧電材料であってそれに励振用電
極および振動検出用電極を接合した、圧電振動子を用い
るもの,マイクロマシン技術により、シリコン基板上に
アンカを介して浮動支持した導電薄膜を振動子とし、励
振用櫛歯電極および振動検出用櫛歯電極にて、振動子を
静電駆動しかつ静電容量変化によって振動を検出する静
電駆動型のもの,振動を電磁気結合による起電流または
起電圧を用いて検出するもの,等がある。2. Description of the Related Art The above-mentioned vibration type angular velocity sensor uses a piezoelectric vibrator in which a vibrator is made of a piezoelectric material such as quartz and an excitation electrode and a vibration detection electrode are joined to the piezoelectric material. A conductive thin film floatingly supported on a silicon substrate via an anchor is used as a vibrator, and the vibrator is electrostatically driven by a comb electrode for excitation and a comb electrode for vibration detection, and vibration is detected by a change in capacitance. And a type that detects vibration using electromotive force or electromotive voltage due to electromagnetic coupling.
【0003】ここでその中の一種である静電駆動型のも
のにつき、より詳しく例示すると、代表的なものは、浮
動薄膜の左辺部に1組かつ右辺部に1組の浮動櫛歯電極
(左側浮動櫛歯電極と右側浮動櫛歯電極)を備え、固定
櫛歯電極も2組(各組の浮動櫛歯電極に非接触で噛み合
いかつ平行な左側固定櫛歯電極および右側固定櫛歯電
極)として、左側浮動櫛歯電極/左側固定櫛歯電極間と
右側浮動櫛歯電極/右側固定櫛歯電極間に交互に電圧を
印加することにより、浮動薄膜がx方向に振動する。浮
動薄膜に、z軸を中心とする回転の角速度が加わると、
浮動薄膜にコリオリ力が加わって、浮動薄膜は、y方向
にも振動する楕円振動となる。浮動薄膜を導体としもし
くは電極が接合したものとし、浮動薄膜のxz平面に平
行な検出電極を基板上に備えておくと、この検出電極と
浮動薄膜との間の静電容量が、楕円振動のy成分(角速
度成分)に対応して振動する。この静電容量の変化(振
幅)を測定することにより、角速度を求めることが出来
る(例えば特開平5-248872号公報,特開平7-218268号公
報,特開平8-152327号公報,特開平9-127148号公報,特
開平9-42973号公報)。Here, a more detailed example of the electrostatic drive type, which is one of them, is that a typical one is a set of floating comb electrodes (one set on the left side and one set on the right side of the floating thin film). Two sets of fixed comb electrodes are provided (left fixed comb electrodes and right fixed comb electrodes which mesh with and are parallel to each set of floating comb electrodes in a non-contact manner). By alternately applying a voltage between the left floating comb electrode / left fixed comb electrode and between the right floating comb electrode / right fixed comb electrode, the floating thin film vibrates in the x direction. When the angular velocity of rotation about the z-axis is applied to the floating thin film,
When the Coriolis force is applied to the floating thin film, the floating thin film has an elliptical vibration that vibrates also in the y direction. If the floating thin film is used as a conductor or an electrode is bonded, and a detection electrode parallel to the xz plane of the floating thin film is provided on the substrate, the capacitance between the detection electrode and the floating thin film becomes elliptical oscillation. Vibrates according to the y component (angular velocity component). By measuring the change (amplitude) of the capacitance, the angular velocity can be obtained (for example, Japanese Patent Application Laid-Open Nos. 5-248872, 7-218268, 8-152327, 9). -127148, JP-A-9-42973).
【0004】ところで、振動子の振動検出には、振動子
の変位(振動子の位置)を電気信号に変換する変位検出
態様、ならびに、振動子の速度(変位速度)を電気信号
に変換する速度検出態様がある。センサより出力される
信号が電流で検出回路の入力電位の変動をなくしたい場
合、図8の(a)に示すような、演算増幅器を用いる電
流/電圧変換回路や、バイポーラトランジスタにより変
位速度を、図8の(b)に示すような、演算増幅器を用
いるチャージアンプ(積分器)により変位を表わす電気
信号すなわち検出信号を発生する。検出信号が電圧で、
電流を流したくない磁界による起電力のような場合、ハ
イインピーダンス入力のバッファアンプ,差動増幅器,
FET等により変位速度が検出される。また、変位信号
を時間微分して変位速度信号を得ることができ、変位速
度信号を積分して変位信号を得ることができる。In detecting vibration of a vibrator, a displacement detection mode for converting a displacement of the vibrator (position of the vibrator) into an electric signal, and a speed for converting a speed (displacement speed) of the vibrator into an electric signal. There is a detection mode. When it is desired to eliminate the fluctuation of the input potential of the detection circuit by a signal output from the sensor, the displacement speed is determined by a current / voltage conversion circuit using an operational amplifier or a bipolar transistor as shown in FIG. As shown in FIG. 8B, a charge amplifier (integrator) using an operational amplifier generates an electric signal indicating displacement, that is, a detection signal. The detection signal is voltage,
In the case of electromotive force caused by a magnetic field that does not want current to flow, buffer amplifiers, differential amplifiers,
The displacement speed is detected by an FET or the like. Further, the displacement signal can be obtained by time-differentiating the displacement signal, and the displacement signal can be obtained by integrating the displacement speed signal.
【0005】[0005]
【発明が解決しようとする課題】振動型角速度センサで
は、角速度Ωが振動子に加わったときにコリオリ力Fに
より誘起されるy方向の、略駆動周波数で振動する振幅
を検出し、y方向の振幅に比例した電圧として出力す
る。しかし、y方向の振幅は、駆動周波数,x方向及び
y方向の共振周波数の関係によるy方向の振幅増幅率e
およびx方向の振幅aに依存し、また、回路特に初段ア
ンプの特性より検出信号の電圧振幅及び位相回転が決ま
る。このため、環境温度等の変化の為上記特性が変化す
ると、同一角速度に対する出力レベルが変動する問題点
があり、また、出力が駆動振幅aに比例する為、駆動方
向xの振幅aを高精度に、定値制御する必要があった。In a vibration type angular velocity sensor, when an angular velocity .OMEGA. Is applied to a vibrator, an amplitude oscillating at a substantially driving frequency in a y direction induced by a Coriolis force F is detected. Output as a voltage proportional to the amplitude. However, the amplitude in the y direction depends on the relationship between the driving frequency, the resonance frequency in the x direction and the resonance frequency in the y direction, and the amplitude amplification factor e in the y direction.
And the amplitude a in the x direction, and the voltage amplitude and phase rotation of the detection signal are determined by the characteristics of the circuit, especially the first stage amplifier. Therefore, when the above characteristics change due to a change in environmental temperature or the like, there is a problem that the output level for the same angular velocity fluctuates. Further, since the output is proportional to the drive amplitude a, the amplitude a in the drive direction x can be accurately determined. In addition, constant value control was required.
【0006】本発明は、上記出力変動の要因となる駆動
振幅aおよび駆動周波数fの変動に対して角速度検出出
力のレベル変動を少なくすることを第1の目的とし、さ
らに、初段アンプの温度による特性変化に対しても出力
レベル変動を少なくすることを第2の目的とする。A first object of the present invention is to reduce the level fluctuation of the angular velocity detection output with respect to the fluctuation of the driving amplitude a and the driving frequency f which cause the above-mentioned fluctuation of the output. A second object is to reduce the output level fluctuation even with respect to the characteristic change.
【0007】[0007]
【課題を解決するための手段】まず、次のように演算式
および記号を定義する: x(t)=a・sin(ωt) ・・・(1) vx(t)=a・ω・cos(ωt) ・・・(2) ix(t)=b・vx(t) =b・a・ω・cos(ωt) ・・・(3) Vx(t)=c・b・a・ω・cos(ωt) ・・・(4) VDCx=d・c・b・a・ω ・・・(5) F(t)=2・m・vx(t)・Ω ・・・(6) ky≒m・ω2 ・・・(7) y(t)=e・F(t)/ky =e・2・m・vx(t)・Ω/(m・ω2) =e・2・m・a・ω・cos(ωt)・Ω/(m・ω2) =2・e・a・cos(ωt)・Ω/ω ・・・(8) vy(t)=−2・e・a・sin(ωt)・Ω ・・・(9) iy(t)=−2・g・e・a・sin(ωt)・Ω ・・・(10) Vy(t)=−2・h・g・e・a・sin(ωt)・Ω ・・・(11) VDCy=−2・i・h・g・e・a・Ω ・・・(12) VDCy/VDCx=−2・i・h・g・e・a・Ω/(d・c・b・a・ω) =−2・i・h・g・e・Ω/(d・c・b・ω) ・・・(13) =j・e・Ω/ω ・・・(14a) j=−2・i・h・g/(d・c・b) Ω=(VDCy/VDCx)・ω/(j・e) ・・・(14b) V2x(t)=k・b・a・sin(ωt) ・・・(15) V2DCx=k・d・b・a ・・・(16) VDCy/V2DCx=−2・i・h・g・e・Ω/(k・d・b) ・・・(17) =j’・h・e・Ω/k ・・・(18a) j’=−2・i・g/d・b Ω=(VDCy/V2DCx)・k/(j’・h・e) ・・・(18b) (−2・h・g・e・a・Ω)・(c・b・a・ω) ・・・(19) (c・b・a・ω) 2 ・・・(20) (−2・h・g・e・a・Ω)/(c・b・a・ω)=−2・h・g・e・Ω/(c・b・ω) =(VDCy/V2DCx)・d/i ・・・(21) Ω=(VDCy/V2DCx)・k/(j’・h・e) =〔(−2・h・g・e・a・Ω)/(c・b・a・ω)〕・(i/d)/(j'・h・e) ・・・(22)。First, an arithmetic expression and a symbol are defined as follows: x (t) = a · sin (ωt) (1) vx (t) = a · ω · cos (ωt) ・ ・ ・ (2) ix (t) = b ・ vx (t) = ba ・ ω ・ cos (ωt) ・ ・ ・ (3) Vx (t) = c ・ ba ・ a ・ ω ・cos (ωt) ・ ・ ・ (4) VDCx = d ・ c ・ b ・ a ・ ω ・ ・ ・ ・ (5) F (t) = 2 ・ m ・ vx (t) ・ Ω ・ (6) ky ≒ m · ω 2 ··· (7) y (t) = e · F (t) / ky = e · 2 · m · vx (t) · Ω / (m · ω 2 ) = e · 2 · m · a · ω · cos (ωt) · Ω / (m · ω 2 ) = 2 · e · a · cos (ωt) · Ω / ω (8) vy (t) = − 2 · e · a · sin (ωt) · Ω (9) iy (t) = − 2 · g · e · a · sin (ωt) · Ω (10) Vy (t) = − 2 · h · g · e · a · sin (ωt) · Ω (11) VDCy = −2 · i · h · g · e · a · Ω (12) VDCy / VDCx = −2 · i · h · g・ E ・ a ・ Ω / (d ・ c ・ b ・ a ・ ω ) = − 2 · i · h · g · e · Ω / (d · c · b · ω) (13) = j · e · Ω / ω (14a) j = −2 · i・ H ・ g / (d ・ c ・ b) Ω = (VDCy / VDCx) ・ ω / (j ・ e) (14b) V2x (t) = k ・ ba ・ sin (ωt) ・ ・・ (15) V2DCx = k ・ d ・ b ・ a (16) VDCy / V2DCx = −2 ・ i ・ h ・ g ・ e ・ Ω / (k ・ d ・ b) ・ ・ ・ (17) = j ′ · he · Ω / k (18a) j ′ = − 2 · ig / d · b Ω = (VDCy / V2DCx) · k / (j ′ · he) (18b) (−2 ・ h ・ g ・ e ・ a ・ Ω) ・ (c ・ b ・ a ・ ω) ・ ・ ・ (19) (c ・ b ・ a ・ ω) 2・ ・ ・ (20) ( −2 · h · g · a · Ω) / (c · b · a · ω) = − 2 · h · g · e · Ω / (c · b · ω) = (VDCy / V2DCx) · d / I (21) Ω = (VDCy / V2DCx) · k / (j ′ · he · e) = [(− 2 · h · g · e · a · Ω) / (c · ba · ω)] ・ (i / d) / (j ′ ・· E) ··· (22).
【0008】x(t):振動子のx振動の変位 vx(t):振動子のx振動の変位速度 ix(t):変位速度vx(t)に比例する電流値 Vx(t):x振動の変位速度を表わす電圧 VDCx:x振動の変位速度を表わす直流電圧 F(t):コリオリ力 Ω:振動子に加わる、z軸廻りの角速度 y(t):コリオリ力による振動子のy方向変位 vy(t):コリオリ力による振動子のy方向変位速度 iy(t):変位速度vy(t)に比例する電流値 Vy(t):y振動の変位速度を表わす電圧 VDCy:y振動の変位速度を表わす直流電圧 V2x(t):x振動の変位を表わす電圧 a:振幅 f:振動周波数(=ω/(2π)) b:比例係数 c:比例係数 d:比例係数 m:振動子の質量 e:振動子の、y方向の振幅増幅率 g:比例係数 h:y振動センサの電流電圧変換係数 i:比例係数 j:比例係数 k:x振動センサの電流電圧変換係数 j’:比例係数。X (t): displacement of x vibration of vibrator vx (t): displacement speed of x vibration of vibrator ix (t): current value proportional to displacement speed vx (t) Vx (t): x Voltage representing the displacement speed of the vibration VDCx: DC voltage representing the displacement speed of the x-vibration F (t): Coriolis force Ω: Angular velocity around the z-axis applied to the transducer y (t): y-direction of the transducer due to Coriolis force Displacement vy (t): Displacement velocity in the y direction of the vibrator due to Coriolis force iy (t): Current value proportional to displacement velocity vy (t) Vy (t): Voltage representing displacement velocity of y vibration VDCy: DC voltage representing displacement speed V2x (t): voltage representing displacement of x vibration a: amplitude f: vibration frequency (= ω / (2π)) b: proportional coefficient c: proportional coefficient d: proportional coefficient m: vibrator Mass e: Amplitude amplification factor of oscillator in y direction g: Proportional coefficient h: Current-voltage conversion coefficient of y vibration sensor i: Proportional coefficient j: Proportional coefficient k: x vibration Sensor current-voltage conversion coefficient j ': proportional coefficient.
【0009】振動子が(1)式の、x方向に正弦波振動x
(t)をしているとすると、その変位速度vx(t)は、(2)式
となる。変位速度vx(t)に比例する、(3)式に示す電流
ix(t)をx振動センサで発生して、該電流ix(t)を電圧
に変換すると(4)式で示す電圧Vx(t)が得られる。この
電圧Vx(t)を直流電圧に変換すると、(5)式で示す直流
電圧VDCxが得られる。The vibrator is a sinusoidal vibration x in the x direction of the equation (1).
Assuming that (t) is satisfied, the displacement velocity vx (t) is given by equation (2). When a current ix (t) expressed by the equation (3), which is proportional to the displacement velocity vx (t), is generated by the x vibration sensor and the current ix (t) is converted into a voltage, the voltage Vx ( t) is obtained. When this voltage Vx (t) is converted into a DC voltage, a DC voltage VDCx represented by equation (5) is obtained.
【0010】z軸を回転軸とする一定の角速度Ωが振動
子に印加されると、(6)式のコリオリ力F(t)が振動子に
加わる。また、振動子の駆動方向xの共振周波数と角速
度検出方向yの共振周波数が1%程度の差でほぼ一致さ
せると、y方向のばね定数kyは、(7)式で表わされ
る。コリオリ力F(t)によるy方向の変位y(t)は、コリ
オリ力F(t)に比例し、kyに反比例するので、振動子
のy方向の振幅増幅率をeとすると、(8)式で表わされ
る。y方向の変位速度vy(t)は、y方向の変位y(t)の
微分値であり、(9)式で表わされる。When a constant angular velocity Ω having the z axis as a rotation axis is applied to the vibrator, a Coriolis force F (t) of equation (6) is applied to the vibrator. When the resonance frequency of the vibrator in the driving direction x and the resonance frequency of the angular velocity detection direction y are substantially equal to each other with a difference of about 1%, the spring constant ky in the y direction is expressed by the equation (7). Since the displacement y (t) in the y direction due to the Coriolis force F (t) is proportional to the Coriolis force F (t) and inversely proportional to ky, assuming that the amplitude amplification factor of the vibrator in the y direction is e, (8) It is expressed by an equation. The displacement velocity vy (t) in the y-direction is a differential value of the displacement y (t) in the y-direction and is expressed by equation (9).
【0011】y方向の変位速度vy(t)に比例する、(10)
式に示す電流iy(t)をy振動センサで発生して、該電流
iy(t)を電圧に変換すると(11)式で示す電圧Vy(t)が得
られる。この電圧Vy(t)を直流電圧に変換すると、(12)
式で示す直流電圧VDCyが得られる。(10) proportional to the displacement velocity vy (t) in the y direction,
When a current iy (t) shown in the equation is generated by the y vibration sensor and the current iy (t) is converted into a voltage, a voltage Vy (t) shown in the equation (11) is obtained. When this voltage Vy (t) is converted into a DC voltage, (12)
The DC voltage VDCy shown by the equation is obtained.
【0012】次にVDCyとVDCxの比をとると、(13)式が
得られ、駆動方向xの振幅aが消える。これにより従来
必要であった高精度な駆動方向xの振幅制御が不要とな
る。gとb,hとc,iとdは同等の信号の変換係数な
ので、温度及び周波数に対する特性変化は同等と考えら
れ、VDCy/VDCxは、(14a)式のようにあらわせる。j
は定数である。VDCy/VDCxは、eとΩに比例しωに反
比例する。(14a)式より、(14b)式に示すように、角速度
Ωが求まる。角速度Ωの値は、(VDCy/VDCx)とωに
比例し、eに反比例する形で求まる。Next, when the ratio between VDCy and VDCx is obtained, equation (13) is obtained, and the amplitude a in the driving direction x disappears. This eliminates the need for a highly accurate amplitude control in the driving direction x, which was conventionally required. Since g and b, h and c, and i and d are equivalent signal conversion coefficients, the characteristic changes with respect to temperature and frequency are considered to be equivalent, and VDCy / VDCx is expressed as in equation (14a). j
Is a constant. VDCy / VDCx is proportional to e and Ω and inversely proportional to ω. From the equation (14a), the angular velocity Ω is obtained as shown in the equation (14b). The value of the angular velocity Ω is obtained in a form that is proportional to (VDCy / VDCx) and ω and inversely proportional to e.
【0013】振動子の駆動方向xの振動の「速度」を振
動センサで検出し、検出方向yの振動の「速度」を振動
センサで検出して、両検出値に基づいて角速度Ωを算出
する態様では、各振動センサから、(4)式および(11)式
で表わされる変位信号Vx(t),Vy(t)が得られるので、
これらの信号から、(5)式,(12)式および(14b)式の演算
にて角速度Ωを表わす信号を生成する電気回路を採用す
ればよい。The "speed" of the vibration in the driving direction x of the vibrator is detected by a vibration sensor, the "speed" of the vibration in the detection direction y is detected by a vibration sensor, and the angular velocity Ω is calculated based on both the detected values. In the embodiment, the displacement signals Vx (t) and Vy (t) expressed by the equations (4) and (11) are obtained from each vibration sensor.
From these signals, an electric circuit that generates a signal representing the angular velocity Ω by calculating the expressions (5), (12) and (14b) may be employed.
【0014】振動子の駆動方向xおよび検出方向yの振
動の「変位」を振動センサで検出して、両検出値に基づ
いて角速度Ωを算出する態様では、各振動センサから、
(1)式および(8)式で表わされる変位信号x(t),y(t)が
得られるので、これらを微分して(4)式および(11)式で
表わされる変位信号Vx(t),Vy(t)を発生する微分回路
と、これらの信号Vx(t),Vy(t)から、(5)式,(12)式お
よび(14b)式の演算にて角速度Ωを表わす信号を生成す
る電気回路を採用すればよい。In a mode in which the "displacement" of the vibration in the driving direction x and the detection direction y of the vibrator is detected by the vibration sensor, and the angular velocity Ω is calculated based on both detected values,
Since the displacement signals x (t) and y (t) expressed by the equations (1) and (8) are obtained, these are differentiated to obtain the displacement signal Vx (t) expressed by the equations (4) and (11). ), Vy (t), and a signal representing the angular velocity Ω by calculating the equations (5), (12) and (14b) from these signals Vx (t) and Vy (t). May be employed as an electric circuit that generates
【0015】また、振動子の検出方向yの振動の「速度」
をy振動センサで検出し、駆動方向xの振動の「変位」
をx振動センサで検出する態様では、振動子のx振動の
変位信号(電圧)V2x(t)は、(15)式で表わせる。これ
を直流電圧V2DCxに変換すると、(16)式となる。次にV
DCyとV2DCxの比をとると、(17)式となり、(18b)式にて
角速度Ωを算出することができる。hとkは定数なの
で、h/kが温度等の変動に対して一定になるようにす
れば、eのみに依存することになり、駆動方向xと角速
度検出方向yの共振周波数の関係のみに、感度変動は依
存することになる。これは、駆動方向x及び角速度の検
出方向yの各振動を、「変位速度」検出にて検出し、駆
動方向xの変位速度検出信号を積分して変位を得る場合
も、上記VDCy/V2DCxを算出する(17)式と同等の式と
なり、環境変化に対する回路の特性変動による感度の変
動を最小にできる。The "speed" of the vibration of the vibrator in the detection direction y
Is detected by the y vibration sensor, and the “displacement” of the vibration in the driving direction x is detected.
Is detected by the x-vibration sensor, the displacement signal (voltage) V2x (t) of the x-vibration of the vibrator can be expressed by Expression (15). When this is converted into the DC voltage V2DCx, the equation (16) is obtained. Then V
When the ratio between DCy and V2DCx is obtained, Expression (17) is obtained, and the angular velocity Ω can be calculated by Expression (18b). Since h and k are constants, if h / k is made constant with respect to fluctuations in temperature and the like, it depends only on e, and only the relationship between the resonance frequency in the driving direction x and the angular velocity detection direction y , The sensitivity variation will depend. This is because the above-mentioned VDCy / V2DCx is also used when the displacement is detected by detecting each vibration in the drive direction x and the detection direction y of the angular velocity by “displacement speed” detection and integrating the displacement speed detection signal in the drive direction x. The equation becomes equivalent to the equation (17) to be calculated, and the fluctuation of the sensitivity due to the fluctuation of the characteristic of the circuit to the environmental change can be minimized.
【0016】また、(11)式で表わす検出方向yの検出信
号Vy(t)の振幅(−2・h・g・e・a・Ω)と、(4)式で表わ
す駆動方向xの検出信号Vx(t)の振幅(c・b・a・ω)の
積は、(19)式で示すものとなり、この積に比例した電気
信号を、(20)式で表わす駆動方向xの検出信号の振幅の
二乗に比例した電気信号で割算した、(21)式で表わす
(VDCy/V2DCx)・d/iの場合も、VDCy/VDCx,VDC
y/V2DCxを算出する(13),(17)式と同等の(21)式とな
る。(21)式より、 (VDCy/V2DCx)=〔(−2・h・g・e・a・Ω)/(c・b・a・
ω)〕・(i/d) これを(18b)式に代入すると、(22)式となり、(21)式の (−2・h・g・e・a・Ω)/(c・b・a・ω) に基づいて角速度Ωを算出できる。Further, the amplitude (-2 · h · g · e · a · Ω) of the detection signal Vy (t) in the detection direction y expressed by the equation (11) and the detection of the driving direction x expressed by the equation (4) are obtained. The product of the amplitudes (c, b, a, ω) of the signal Vx (t) is as shown in equation (19), and an electric signal proportional to this product is a detection signal in the drive direction x represented by equation (20). Divided by the electrical signal proportional to the square of the amplitude of
(VDCy / V2DCx) · d / i, VDCy / VDCx, VDC
Equation (21) equivalent to equations (13) and (17) for calculating y / V2DCx is obtained. From equation (21), (VDCy / V2DCx) = [(− 2 · h · g · e · a · Ω) / (c · b · a ·
ω)] · (i / d) By substituting this into equation (18b), equation (22) is obtained, and in equation (21), (−2 · h · g · e · a · Ω) / (c · b · a · ω) can be used to calculate the angular velocity Ω.
【0017】特に、検出方向yの振動の速度(変位速
度)を検出し駆動方向xの変位を検出する場合や、両方
向の振動の変位を検出し駆動方向xの検出信号を微分し
て速度に変換する場合は、両方向の信号の位相が一致ま
たは180度のずれであるので、DC電圧に変換する回
路に乗算器とローパスフィルタを用いることが可能であ
る。 (1)そこで本発明の角速度センサの検出信号処理装置
は、振動型角速度センサの駆動方向(x)の振動変位また
は変位速度、及び、前記センサに角速度(Ω)が作用した
ときの駆動方向に直交する検出方向(y)の振動変位また
は変位速度を検出する振動検出手段(10a,10b,13/11a,11
b,14);および、該振動検出手段(10a,10b,13/11a,11b,1
4)が検出する駆動方向(x)の振幅と検出方向(y)の振幅の
比(VDCy/VDCx)をパラメ−タとする角速度値(Ω)を演算
する手段(15);を備える。なお、理解を容易にするため
にカッコ内には、図面に示し後述する実施例の対応要素
又は対応事項の記号を、参考までに付記した。In particular, when detecting the displacement of the drive direction x by detecting the speed (displacement speed) of the vibration in the detection direction y, or detecting the displacement of the vibration in both directions and differentiating the detection signal in the drive direction x to obtain the speed. In the case of conversion, since the phases of the signals in both directions match or are shifted by 180 degrees, it is possible to use a multiplier and a low-pass filter in a circuit for converting to a DC voltage. (1) Therefore, the detection signal processing device of the angular velocity sensor according to the present invention is capable of controlling the vibration displacement or displacement velocity in the driving direction (x) of the vibration type angular velocity sensor and the driving direction when the angular velocity (Ω) acts on the sensor. Vibration detecting means (10a, 10b, 13 / 11a, 11) for detecting vibration displacement or displacement speed in the orthogonal detection direction (y)
b, 14); and the vibration detecting means (10a, 10b, 13 / 11a, 11b, 1
Means (15) for calculating an angular velocity value (Ω) having as a parameter a ratio (VDCy / VDCx) of the amplitude in the driving direction (x) detected in 4) and the amplitude in the detection direction (y). In addition, in order to facilitate understanding, symbols of corresponding elements or corresponding items in the embodiments shown in the drawings and described later are added for reference in parentheses.
【0018】上述のように、VDCyとV2DCxの比(VDCy/V
DCx)をとると、該比は、eとΩに比例しωに反比例する
ので、例えば(13),(17)又は(21)式で表わすように角速
度Ωのパラメ−タとなり、(14b),(18b)又は(22)式にて
角速度Ωを算出することができる。例えば(17)式で見る
と、hとkは定数なので、h/kが温度等の変動に対し
て一定になるようにすれば、eのみに依存することにな
り、駆動方向xと角速度検出方向yの共振周波数の関係
のみに、感度変動は依存することになる。環境変化に対
する回路の特性変動による感度の変動を最小にできる。As described above, the ratio of VDCy to V2DCx (VDCy / V
DCx), the ratio is proportional to e and .OMEGA. And inversely proportional to .OMEGA., So it becomes a parameter of the angular velocity .OMEGA. As expressed by, for example, (13), (17) or (21), and (14b) , (18b) or (22) can be used to calculate the angular velocity Ω. For example, looking at the equation (17), h and k are constants. If h / k is made to be constant with respect to fluctuations in temperature and the like, it depends only on e. The sensitivity variation depends only on the relationship of the resonance frequency in the direction y. Fluctuations in sensitivity due to fluctuations in circuit characteristics due to environmental changes can be minimized.
【0019】[0019]
【発明の実施の形態】(2)前記角速度値を演算する手
段(15)は、検出信号において、駆動方向(x)の振幅の二
乗を演算する手段(15g),検出方向(y)の振幅と駆動方向
(x)の振幅の積を演算する手段(15h)、および、前記振幅
の二乗と振幅の積の比(21式)を前記パラメ−タとして算
出する手段(15e)、を含む。 (3)前記振動検出手段(10a,10b,13/11a,11b,14)は、
変位速度を検出する(図3〜図7)。 (4)前記振動検出手段(10a,10b,13)は、変位を検出す
る(図2)。 (5)前記振動検出手段(10a,10b,13/11a,11b,14)は、
駆動方向の変位と検出方向の変位速度を検出する(図2+
図3)。 (6)前記角速度値を演算する手段(15)は、駆動方向
(x)の変位速度を積分して振幅を得る積分手段(15i)を含
む。(2) The means (15) for calculating the angular velocity value includes means (15g) for calculating the square of the amplitude in the drive direction (x), and the amplitude in the detection direction (y) in the detection signal. And driving direction
means (15h) for calculating the product of the amplitudes of (x), and means (15e) for calculating the ratio of the square of the amplitude to the product of the amplitudes (Equation 21) as the parameter. (3) The vibration detecting means (10a, 10b, 13 / 11a, 11b, 14)
The displacement speed is detected (FIGS. 3 to 7). (4) The vibration detecting means (10a, 10b, 13) detects displacement (FIG. 2). (5) The vibration detecting means (10a, 10b, 13 / 11a, 11b, 14)
Detects the displacement in the drive direction and the displacement speed in the detection direction (Fig. 2+
(Figure 3). (6) The means (15) for calculating the angular velocity value includes a driving direction
An integrating means (15i) for integrating the displacement speed of (x) to obtain an amplitude is included.
【0020】本発明の他の目的および特徴は、図面を参
照した以下の実施例の説明より明らかになろう。Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.
【0021】[0021]
【実施例】−第1実施例− 図1に本発明の第1実施例を示す。この実施例は、振動
子8に加わるz軸廻りの角速度を検出する、静電駆動型
の角速度センサである。絶縁層を形成したシリコン基板
1には、導電性とするための不純物を含むポリシリコン
(以下導電性ポリシリコン)の、浮動体アンカ2a〜2
dが接合しており、シリコン基板1上の絶縁層の上に形
成された配線(点線で示す)により、導電性ポリシリコ
ンでなる半導体薄膜の、振動枠6,振動子8,固定電極
9a,9b/10a,10bは、基板1上の図示を省略
した接続電極に接続されている。なお、シリコン基板1
に上記ポリシリコンの導電形(p)と反対の導電性
(n)の基板を用い、シリコン基板1にpn接合により
配線を形成し、上記配線と浮動体アンカ2a〜2dと接
続電極のアンカ部とを接合してもよい。また、基板1に
は、シリコン板に代えて、石英ガラス,ガラス,セラミ
ック,高融点金属等の、マイクロマシン製造工程温度が
安定し、環境に良い材質を用いることが可能である。FIG. 1 shows a first embodiment of the present invention. This embodiment is an electrostatic drive type angular velocity sensor that detects the angular velocity applied to the vibrator 8 around the z-axis. On the silicon substrate 1 on which the insulating layer is formed, floating body anchors 2a to 2 made of polysilicon containing conductive impurities (hereinafter referred to as conductive polysilicon) are provided.
d is bonded, and the wiring (formed by a dotted line) formed on the insulating layer on the silicon substrate 1 allows the semiconductor thin film made of conductive polysilicon to be made of the vibration frame 6, the vibrator 8, the fixed electrode 9a, 9b / 10a and 9b are connected to connection electrodes (not shown) on the substrate 1. The silicon substrate 1
A wiring having a conductivity (n) opposite to the conductivity type (p) of the polysilicon is formed on the silicon substrate 1 by pn junction, and the wiring, the floating body anchors 2a to 2d, and the anchor portions of the connection electrodes are formed. May be joined. Further, instead of the silicon plate, the substrate 1 can be made of a material that is stable in the micromachine manufacturing process temperature and is good for the environment, such as quartz glass, glass, ceramic, and high melting point metal.
【0022】浮動体アンカ2a〜2dに、y方向に延び
る第1組の浮動支持梁3a〜3dが連続しており、これ
らの支持梁3a〜3dに平行梁4a,4bが連続し、こ
れらの平行梁4a,4bに連続する、y方向に延びる第
2組の浮動支持梁5a〜5dに、基板1の表面に実質上
平行な、矩形リング状の振動枠6が連続している。A first set of floating support beams 3a to 3d extending in the y direction are continuous with the floating body anchors 2a to 2d, and parallel beams 4a and 4b are continuous with the support beams 3a to 3d. A rectangular ring-shaped vibrating frame 6, which is substantially parallel to the surface of the substrate 1, is continuous with the second set of floating support beams 5a to 5d extending in the y direction, which are continuous with the parallel beams 4a and 4b.
【0023】振動枠6のy方向に平行な辺(y辺又はy
平行辺と称す)6b,6dから左右(x方向)に、櫛歯
状にy方向に等ピッチで分布する複数個の、x駆動用の
可動側櫛歯電極が突出している。y辺6dを間に置いて
相対向する1対のx駆動用の固定電極9a,9bには、
y辺6dの可動側櫛歯電極の歯間スロットに進入した、
x駆動用の櫛歯状の固定櫛歯電極があり、これらのx駆
動用の可動側櫛歯電極とx駆動用の固定櫛歯電極との間
には、微小ギャップがある。x駆動用の固定電極9a,
9bに交互に電圧を印加することにより、振動枠6がx
方向に振動する。The side (y side or y side) of the vibrating frame 6 parallel to the y direction
A plurality of movable comb-shaped electrodes for x driving protruding from the parallel sides 6b and 6d in the left-right direction (x direction) at equal pitches in the y direction in a comb shape protrude. The pair of fixed electrodes 9a and 9b for x drive facing each other with the y side 6d interposed therebetween include:
has entered the interdental slot of the movable comb electrode on the y side 6d,
There is a comb-shaped fixed comb-teeth electrode for x drive, and there is a minute gap between the movable comb electrode for x drive and the fixed comb tooth electrode for x drive. x-drive fixed electrode 9a,
By alternately applying a voltage to 9b, the vibration frame 6 becomes x
Vibrates in the direction.
【0024】もう1つのy辺6bを間に置いて相対向す
る1対のx振動検出用の固定電極10a,10bには、
y辺6bの可動側櫛歯電極の歯間スロットに進入した、
x振動検出用の櫛歯状の固定櫛歯電極があり、これらの
x振動検出用の可動側櫛歯電極とx振動検出用の固定櫛
歯電極との間には、微小ギャップがある。振動枠6がx
方向に振動すると、固定電極10aおよび10bと振動
枠6との間の静電容量が逆相で高低変化する。A pair of fixed electrodes 10a and 10b for detecting x vibration which face each other with another y side 6b interposed therebetween have:
has entered the interdental slot of the movable comb electrode on the y side 6b,
There are comb-shaped fixed comb-teeth electrodes for x-vibration detection, and there is a minute gap between the movable comb electrode for x-vibration detection and the fixed comb-teeth electrode for x-vibration detection. Vibration frame 6 is x
When it vibrates in the direction, the capacitance between the fixed electrodes 10a and 10b and the vibration frame 6 changes in height in opposite phases.
【0025】第3組の、x方向に延びる浮動支持梁7a
〜7dの一端が、矩形リング状の振動枠6のy辺6b,
6dに、一体で連なっており、これらの支持梁の他端
が、振動枠6のロ型リングの内空間にある振動子8のy
辺8b,8dに、一体で連なっている。振動子8のy辺
8b,8dには、第3組の支持梁7a〜7dと平行な、
x方向に延びるy変位検出用の可動電極8eがy方向に
分布し、y辺8b,8dからx方向に延びている。可動
電極8eの分布1ピッチ内に、y変位検出用の1対の固
定電極11a,11bがあり、各対がy方向に分布して
いる。A third set of floating support beams 7a extending in the x direction
7d are connected to the y-side 6b of the rectangular ring-shaped vibrating frame 6,
6d, and the other ends of these support beams are connected to the y of the vibrator 8 in the inner space of the b-shaped ring of the vibrating frame 6.
The sides 8b and 8d are integrally connected. The y-sides 8b and 8d of the vibrator 8 are parallel to the third set of support beams 7a to 7d.
A movable electrode 8e for y displacement detection extending in the x direction is distributed in the y direction, and extends in the x direction from the y sides 8b and 8d. Within one pitch of the distribution of the movable electrodes 8e, there is a pair of fixed electrodes 11a and 11b for detecting y displacement, and each pair is distributed in the y direction.
【0026】上述の、第1組の浮動支持梁3a〜3d,
平行梁4a,4b,第2組の浮動支持梁5a〜5d,振
動枠6,第3組の浮動支持梁7a〜7d,振動子8、お
よび、固定電極9a,9b/10a,10bの櫛歯は、
基板1の表面からz方向に離れている。すなわち基板1
の表面に、ギャップを置いて対向している。これらは、
マイクロ加工技術により、浮動体アンカおよび固定電極
アンカをシリコン基板1の表面上に形成した後に、浮動
体アンカおよび固定電極アンカに、一体連続で形成され
る。上述のように、基板1の表面からz方向に離れ、し
かも基板1に対してx方向とy方向又はz方向とに変位
又は撓み得る支持態様を本書において「浮動」又は「可
動」と称す。As described above, the first set of floating support beams 3a to 3d,
Parallel beams 4a, 4b, second set of floating support beams 5a to 5d, vibrating frame 6, third set of floating support beams 7a to 7d, vibrator 8, and comb teeth of fixed electrodes 9a, 9b / 10a, 10b Is
It is separated from the surface of the substrate 1 in the z direction. That is, the substrate 1
, Facing each other with a gap. They are,
After the floating body anchor and the fixed electrode anchor are formed on the surface of the silicon substrate 1 by the micro-machining technology, they are formed integrally and continuously on the floating body anchor and the fixed electrode anchor. As described above, a support mode that is separated from the surface of the substrate 1 in the z direction and that can be displaced or bent in the x direction, the y direction, or the z direction with respect to the substrate 1 is referred to as “floating” or “movable” in this document.
【0027】上述の振動枠6の形状はロ形リングであ
り、その2つの対角線の交点に関して上下および左右対
称であって、重心は該交点にある。この振動枠6に第3
組の支持梁7a〜7dを介して一体連続の振動子8も、
前記交点に関して上下および左右対称であって、重心は
該交点にある。The shape of the above-mentioned vibrating frame 6 is a ro-shaped ring, which is vertically and horizontally symmetrical with respect to the intersection of the two diagonal lines, and whose center of gravity is at the intersection. The vibration frame 6 has a third
The vibrator 8 which is integral and continuous through the set of support beams 7a to 7d is also
It is vertically and horizontally symmetric with respect to the intersection, and the center of gravity is at the intersection.
【0028】振動枠6を支持する第1組の浮動支持梁3
a〜3dおよび第2組の浮動支持梁5a〜5dが基体1
から浮いておりしかもy方向に延びるので、それらはy
方向には撓まないが、x方向には撓み易く、振動枠6
は、y方向には振動しにくく、x方向に振動し易い。振
動子8は振動枠6と一体連続であり、しかもx方向に延
びる第3組の浮動支持梁7a〜7dを介して振動枠6で
支持されているので、振動枠6がx方向に振動すると振
動子8も同じくx方向に振動する。第3組の浮動支持梁
7a〜7dはx方向には撓まないが、y方向には撓み易
く、振動子8は、振動枠6に対してx方向には振動しに
くく、y方向に振動し易い。これにより、z軸廻りの角
速度がセンサ全体(1〜11)に加わると、振動子8は
y方向に振動するが、振動枠6はy方向には実質上振動
しない。The first set of floating support beams 3 supporting the vibration frame 6
a to 3d and the second set of floating support beams 5a to 5d
Because they are floating from and extend in the y-direction,
Although it does not bend in the direction, it is easy to bend in the x direction.
Are less likely to vibrate in the y direction and more likely to vibrate in the x direction. Since the vibrator 8 is integral with the vibrating frame 6 and is supported by the vibrating frame 6 via the third set of floating support beams 7a to 7d extending in the x direction, when the vibrating frame 6 vibrates in the x direction. The vibrator 8 also vibrates in the x direction. The third set of floating support beams 7a to 7d does not bend in the x direction, but easily bends in the y direction, and the vibrator 8 hardly vibrates in the x direction with respect to the vibrating frame 6 and vibrates in the y direction. Easy to do. Thus, when an angular velocity about the z-axis is applied to the entire sensor (1 to 11), the vibrator 8 vibrates in the y direction, but the vibration frame 6 does not substantially vibrate in the y direction.
【0029】振動枠6(および振動子8)は、アンカ2
a〜2dおよび基板1上の配線(点線)を介してx駆動
回路12に接続され、そこで機器ア−ス(GND)に接
続されている。固定電極9aと9bは、基板1上の配線
を介してx駆動回路12に接続されている。x駆動回路
12は、固定電極9aと9bに交互に、静電吸引用の電
圧を印加しこれをx方向の共振周波数で繰返す。振動枠
6(および振動子8)は、固定電極9aに電圧が加わっ
たときに図1上で左方に引かれ、固定電極9bに電圧が
加わったときに右方に引かれて、左右に共振振動する。The vibration frame 6 (and the vibrator 8)
It is connected to the x drive circuit 12 via a to 2d and wiring (dotted line) on the substrate 1, where it is connected to the equipment ground (GND). The fixed electrodes 9a and 9b are connected to the x drive circuit 12 via wiring on the substrate 1. The x drive circuit 12 alternately applies a voltage for electrostatic attraction to the fixed electrodes 9a and 9b and repeats this at a resonance frequency in the x direction. The vibration frame 6 (and the vibrator 8) is pulled to the left in FIG. 1 when a voltage is applied to the fixed electrode 9a, is pulled to the right when a voltage is applied to the fixed electrode 9b, and moves to the left and right. Resonates and vibrates.
【0030】振動枠6が左方に移動するときには、x振
動検出用の可動櫛歯電極(y辺6b)とx振動検出用の
固定電極10bとの間の静電容量は減少するが、可動櫛
歯電極(y辺6b)とx振動検出用の固定電極10aと
の間の静電容量は増大する。右方に移動するときにはそ
の逆となる。可動櫛歯電極(y辺6b)は機器ア−ス電
位(GND)であるが、固定電極10aと10bはx振
動検出回路13に接続されている。x振動検出回路13
は、x振動検出用の固定電極10aと10bに対する振
動枠6(機器ア−ス電位GND)の位置差(差動増幅
値)を表わす電気信号(駆動方向xの変位信号)を発生
してx駆動回路12に与える。この電気信号は、振動枠
6のx振動に同期したレベル変化を示す交流信号(以
下、x振動フィ−ドバック信号)である。x駆動回路1
2は、該フィ−ドバック信号を用いて、駆動信号を生成
して、駆動信号に同期した駆動電圧を固定電極9a,9
bに印加する。When the vibration frame 6 moves to the left, the capacitance between the movable comb-teeth electrode (x-side 6b) for detecting the x-vibration and the fixed electrode 10b for detecting the x-vibration decreases. The capacitance between the comb electrode (y side 6b) and the fixed electrode 10a for x vibration detection increases. The opposite is true when moving to the right. The movable comb electrode (y side 6b) is at the equipment earth potential (GND), while the fixed electrodes 10a and 10b are connected to the x vibration detection circuit 13. x vibration detection circuit 13
Generates an electric signal (displacement signal in the driving direction x) representing the position difference (differential amplification value) of the vibration frame 6 (equipment earth potential GND) with respect to the fixed electrodes 10a and 10b for x vibration detection, and It is given to the drive circuit 12. This electric signal is an AC signal (hereinafter referred to as an x vibration feedback signal) indicating a level change synchronized with the x vibration of the vibration frame 6. x drive circuit 1
2 generates a drive signal using the feedback signal, and applies a drive voltage synchronized with the drive signal to the fixed electrodes 9a and 9;
b.
【0031】振動子8がy方向に振動すると、振動子8
の可動電極8eと固定電極11aとの間の静電容量が増
減振動し、これと逆位相で可動電極8eと固定電極11
bとの間の静電容量が増減振動する。y振動検出回路1
4は、y振動検出用の固定電極11aと11bに対す
る、振動枠6(機器ア−ス電位GND)の変位速度の差
(差動増幅値)を表わす電気信号(検出方向yの変位速
度信号)を発生し、これを信号処理回路15に与える。
振動子8(振動枠6)のx振動が一定である場合、角速
度と振動子8のy振動の振幅との間には、(6)〜(11)式
にて示すように、一定の関係がある。信号処理回路15
は、この関係に基づいて、検出方向yの変位速度信号を
角速度Ωを表わす信号(角速度信号)に変換する。When the vibrator 8 vibrates in the y direction, the vibrator 8
The capacitance between the movable electrode 8e and the fixed electrode 11a increases and decreases and vibrates, and the movable electrode 8e and the fixed electrode 11
The capacitance between b and fluctuates. y vibration detection circuit 1
Reference numeral 4 denotes an electric signal (displacement speed signal in the detection direction y) representing a difference (differential amplification value) of a displacement speed of the vibration frame 6 (equipment earth potential GND) with respect to the fixed electrodes 11a and 11b for y vibration detection. And this is given to the signal processing circuit 15.
When the x-vibration of the vibrator 8 (vibration frame 6) is constant, there is a fixed relationship between the angular velocity and the amplitude of the y-vibration of the vibrator 8 as shown in equations (6) to (11). There is. Signal processing circuit 15
Converts the displacement velocity signal in the detection direction y into a signal representing the angular velocity Ω (angular velocity signal) based on this relationship.
【0032】図2に、x振動検出回路13およびx駆動
回路12の構成を、図3にはy振動検出回路14の構成
を示す。x駆動回路12(図2)の振幅調整回路12a
に含まれる起動信号発生器が始動時に振動枠6+振動子
8のx振動体の共振周波数と実質上同一の周波数の駆動
信号を発生し移相器12bがその位相を調整した駆動信
号SDaを発生し、インバ−タ12dがその反転信号S
Dbを発生する。出力増幅器12e,12hが、駆動信
号SDa,SDbを増幅したx励振電圧VDa,VDb
を生成し、x励振用の固定電極9a,9bに印加する。FIG. 2 shows the configuration of the x vibration detection circuit 13 and the x drive circuit 12, and FIG. Amplitude adjustment circuit 12a of x drive circuit 12 (FIG. 2)
The start signal generator included in the first embodiment generates a driving signal having substantially the same frequency as the resonance frequency of the vibration frame 6 + the vibrator 8 at the time of starting, and the phase shifter 12b generates the driving signal SDa whose phase is adjusted. The inverter 12d outputs the inverted signal S
Db. The output amplifiers 12e and 12h amplify the drive signals SDa and SDb and generate x excitation voltages VDa and VDb.
Is generated and applied to the fixed electrodes 9a and 9b for x excitation.
【0033】駆動信号SDa,SDbが相互に逆位相で
あるので、振動枠6がx方向に振動し、x振動検出用の
固定電極10a,10bと振動枠6とのx方向の距離が
逆位相で変化する。この変位を表わす電圧を、チャ−ジ
アンプ13a,13bが発生する。差動増幅器13cが
逆位相の変位検出電圧を差動増幅するので、その増幅出
力は、チャ−ジアンプ13a,13bの各変位検出電圧
に含まれる同相ノイズを相殺したフィ−ドバック信号V
2x(t)となり、x駆動回路12の振幅調整回路12aに
与えられる。振幅調整回路12aは、与えられるフィ−
ドバック信号V2x(t)の振幅を監視し、それが設定値Vr
efとなるように、フィ−ドバック信号を増幅する。この
ようにレベルが規格化されたフィ−ドバック信号が移相
器12bに与えられる。移相器12bは、振動枠6(振
動子8を含む)がその共振周波数でx振動しているとき
の、フィ−ドバック信号V2x(t)に対する駆動信号SD
aの位相遅れを基準とし、該基準±45deg(°)以内
の位相遅れにフィ−ドバック信号V2x(t)を遅延して、
これをデュ−ティが50%の矩形波に2値化し、これを
駆動信号SDaとし駆動信号SDaの逆相信号をインバ
−タ12fで生成してこれを駆動信号SDbとし、それ
らを出力増幅器12e,12hに与える。Since the drive signals SDa and SDb have opposite phases, the vibration frame 6 vibrates in the x direction, and the distance between the fixed electrodes 10a and 10b for x vibration detection and the vibration frame 6 in the x direction is opposite to each other. To change. Charge amplifiers 13a and 13b generate a voltage representing this displacement. Since the differential amplifier 13c differentially amplifies the displacement detection voltage of the opposite phase, the amplified output is the feedback signal V which cancels the common-mode noise contained in each displacement detection voltage of the charge amplifiers 13a and 13b.
2x (t), which is given to the amplitude adjustment circuit 12a of the x drive circuit 12. The amplitude adjustment circuit 12a is provided with a given field.
The amplitude of the feedback signal V2x (t) is monitored,
The feedback signal is amplified so as to be ef. The feedback signal whose level is thus standardized is supplied to the phase shifter 12b. The phase shifter 12b provides a drive signal SD for the feedback signal V2x (t) when the vibration frame 6 (including the vibrator 8) is vibrating x at its resonance frequency.
The feedback signal V2x (t) is delayed by a phase delay within ± 45 deg (°) with respect to the phase delay of a.
This is binarized into a rectangular wave having a duty of 50%, which is used as a drive signal SDa, a reverse phase signal of the drive signal SDa is generated by an inverter 12f, and this is used as a drive signal SDb, which is used as an output amplifier 12e. , 12h.
【0034】振動子8がx方向に振動しているときにz
軸廻りの角速度が振動子8に加わると振動子8のx振動
がx,y平面に沿う楕円振動となる。すなわち角速度対
応のy成分(y振動)が現われる。これにより角速度検
出用の固定電極11a,11bに対して振動子8がy方
向に振動する。振動検出回路14(図3)は、演算増幅
器を用いる電流/電圧変換増幅器14a,14bにて、
振動枠6のy変位速度を表わす電圧を発生する。差動増
幅器14cが逆位相のy変位速度電圧を差動増幅するの
で、その増幅出力は、増幅器14a,14bの各変位速
度電圧に含まれる同相ノイズを相殺した、y振動速度検
出信号Vy(t)となり、信号処理回路15の同期検波回路
15bに与えられる。同期検波回路15bは、駆動周波
数成分の信号Vy(t)を直流変換し、ロ−パスフィルタ1
5dが高周波ノイズを遮断して、y振動速度のレベルを
表わす直流信号VDcyを割算回路15eに与える。一
方、x振動変位信号V2x(t)が同期検波回路15aに与
えられる。同期検波回路15aは、駆動周波数成分の信
号V2x(t)を直流変換し、ロ−パスフィルタ15cが高
周波ノイズを遮断して、x振動変位のレベルを表わす直
流信号V2DCxを割算回路15eに与える。割算回路15
eは、VDcy/V2DCxを演算し、増幅器15fが、この
比VDcy/V2DCxを、(18b)式に従って角速度Ωに変換し
て、角速度Ωを表わす電気信号を出力する。When the vibrator 8 is vibrating in the x direction, z
When an angular velocity around the axis is applied to the vibrator 8, the x vibration of the vibrator 8 becomes an elliptical vibration along the x, y plane. That is, a y component (y vibration) corresponding to the angular velocity appears. Thus, the vibrator 8 vibrates in the y direction with respect to the angular velocity detecting fixed electrodes 11a and 11b. The vibration detection circuit 14 (FIG. 3) includes current / voltage conversion amplifiers 14a and 14b using operational amplifiers.
A voltage representing the y displacement speed of the vibration frame 6 is generated. Since the differential amplifier 14c differentially amplifies the y-phase velocity voltage having the opposite phase, the amplified output is the y vibration velocity detection signal Vy (t ) Is given to the synchronous detection circuit 15b of the signal processing circuit 15. The synchronous detection circuit 15b converts the drive frequency component signal Vy (t) into a DC signal,
5d cuts off the high-frequency noise and supplies a DC signal VDcy representing the level of the y vibration velocity to the dividing circuit 15e. On the other hand, the x vibration displacement signal V2x (t) is supplied to the synchronous detection circuit 15a. The synchronous detection circuit 15a converts the drive frequency component signal V2x (t) into a DC signal, and the low-pass filter 15c blocks high-frequency noise, and supplies a DC signal V2DCx representing the level of x vibration displacement to the division circuit 15e. . Division circuit 15
e calculates VDcy / V2DCx, and the amplifier 15f converts the ratio VDcy / V2DCx into an angular velocity Ω according to the equation (18b), and outputs an electric signal representing the angular velocity Ω.
【0035】−第2実施例− 図4に、第2実施例の信号処理回路15の構成を示す。
なお、センサの機構ならびにx振動検出回路13の構成
は図1および図2に示すものである。この第2実施例で
は、乗算器15hにy振動の速度信号Vy(t)およびx振
動の変位信号V2x(t)が与えられ、乗算器15hは(19)
式に従って両者の積を算出する。乗算器15gはx振動
の変位信号V2x(t)の2乗値を算出する。割算回路15
eは、(21)式に従って(d/i)・(VDcy/V2DCx)を演算
し、増幅器15fが、この比(d/i)・(VDcy/V2DCx)
を、(22)式に従って角速度Ωに変換して、角速度Ωを表
わす電気信号を出力する。Second Embodiment FIG. 4 shows a configuration of a signal processing circuit 15 according to a second embodiment.
The mechanism of the sensor and the configuration of the x-vibration detection circuit 13 are as shown in FIGS. In the second embodiment, the speed signal Vy (t) of the y vibration and the displacement signal V2x (t) of the x vibration are given to the multiplier 15h, and the multiplier 15h receives (19)
The product of both is calculated according to the formula. The multiplier 15g calculates the square value of the displacement signal V2x (t) of the x vibration. Division circuit 15
e calculates (d / i) · (VDcy / V2DCx) according to equation (21), and the amplifier 15f calculates the ratio (d / i) · (VDcy / V2DCx)
Is converted into an angular velocity Ω according to equation (22), and an electrical signal representing the angular velocity Ω is output.
【0036】−第3実施例− 第3実施例のx振動検出回路13の構成を図5に、信号
処理回路15の構成を図6に示す。なお、センサの機構
は図1に示すものである。この第3実施例では、振動検
出回路13は、演算増幅器を用いる電流/電圧変換増幅
器13d,13eにて、振動枠6のx変位速度を表わす
電圧を発生する。差動増幅器13cが逆位相のx変位速
度電圧を差動増幅するので、その増幅出力は、一方の変
位速度電圧が表わす速度の略2倍を表わす電圧で、増幅
器13d,13eの各変位速度電圧に含まれる同相ノイ
ズを相殺した、x振動の速度信号Vx(t)となり、x駆動
回路12の振幅調整回路12a、ならびに、図6の信号
処理回路15の積分器15iに与えられる。Third Embodiment The configuration of the x-vibration detection circuit 13 of the third embodiment is shown in FIG. 5, and the configuration of the signal processing circuit 15 is shown in FIG. The mechanism of the sensor is as shown in FIG. In the third embodiment, the vibration detection circuit 13 generates a voltage representing the x displacement speed of the vibration frame 6 by current / voltage conversion amplifiers 13d and 13e using operational amplifiers. Since the differential amplifier 13c differentially amplifies the opposite phase x displacement speed voltage, the amplified output is a voltage representing approximately twice the speed represented by one displacement speed voltage, and the respective displacement speed voltages of the amplifiers 13d and 13e. Is canceled out, and becomes a velocity signal Vx (t) of x vibration, which is supplied to the amplitude adjustment circuit 12a of the x drive circuit 12 and the integrator 15i of the signal processing circuit 15 in FIG.
【0037】積分器15iはx振動の速度信号Vx(t)を
積分してx振動の変位信号V2x(t)を発生しこれを乗算
器15h,15gに与える。第2実施例と同様に、乗算
器15hは(19)式に従って両者の積を算出する。乗算器
15gはx振動の変位信号V2x(t)の2乗値を算出す
る。割算回路15eは、(21)式に従って(d/i)・(VDcy/
V2DCx)を演算し、増幅器15fが、この比(d/i)・(VDc
y/V2DCx)を、(22)式に従って角速度Ωに変換して、角
速度Ωを表わす電気信号を出力する。The integrator 15i integrates the velocity signal Vx (t) of the x vibration to generate a displacement signal V2x (t) of the x vibration and supplies the displacement signal V2x (t) to the multipliers 15h and 15g. Similarly to the second embodiment, the multiplier 15h calculates the product of the two according to the equation (19). The multiplier 15g calculates the square value of the displacement signal V2x (t) of the x vibration. The dividing circuit 15e calculates (d / i) · (VDcy /
V2DCx), and the amplifier 15f calculates the ratio (d / i) · (VDc
y / V2DCx) is converted into an angular velocity Ω according to equation (22), and an electrical signal representing the angular velocity Ω is output.
【0038】−第4実施例− 図7に、第4実施例の信号処理回路15の構成を示す。
なお、センサの機構ならびにx振動検出回路13の構成
は図1および図5に示すものである。この第4実施例で
は、乗算器15hにy振動の速度信号Vy(t)およびx振
動の速度信号Vx(t)が与えられ、90度移相器15j
が、(4)式のcos(ωt)をsin(ωt)に変換する形で、x振
動の速度信号Vx(t)を、V2x(t)相当の変位信号に変換
する。その後の処理は、図6に示す第3実施例の信号処
理回路15の処理と同様であり、(VDcy/V2DCx)に係
数を乗じた値を割算回路15eで算出し、それを増幅器
15fで角速度信号に変換する。Fourth Embodiment FIG. 7 shows a configuration of a signal processing circuit 15 according to a fourth embodiment.
The sensor mechanism and the configuration of the x-vibration detection circuit 13 are as shown in FIGS. In the fourth embodiment, the speed signal Vy (t) of the y vibration and the speed signal Vx (t) of the x vibration are given to the multiplier 15h, and the 90-degree phase shifter 15j is provided.
Converts the velocity signal Vx (t) of x vibration into a displacement signal equivalent to V2x (t) in the form of converting cos (ωt) into sin (ωt) in equation (4). Subsequent processing is the same as the processing of the signal processing circuit 15 of the third embodiment shown in FIG. 6, in which a value obtained by multiplying (VDcy / V2DCx) by a coefficient is calculated by a division circuit 15e, and the calculated value is calculated by an amplifier 15f. Convert to angular velocity signal.
【0039】尚、本願発明を、駆動方向xおよび検出方
向yの態様で示したが、本願発明は、検出方向をzとす
る態様でも同様に実施しうる。その態様は、上述の説明
の中のyとzを入れ替えたものとなる。Although the present invention has been described in the form of the driving direction x and the detecting direction y, the present invention can be similarly implemented in a mode in which the detecting direction is z. In this case, y and z in the above description are exchanged.
【図1】 本発明の第1実施例の概要を示す図面であ
り、センサ部は平面図、電気回路部はブロック図であ
る。FIG. 1 is a drawing showing an outline of a first embodiment of the present invention, in which a sensor unit is a plan view and an electric circuit unit is a block diagram.
【図2】 図1に示すx振動検出回路13およびx駆動
回路12の構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of an x vibration detection circuit 13 and an x drive circuit 12 shown in FIG.
【図3】 図1に示すy振動検出回路14の構成を示す
ブロック図である。FIG. 3 is a block diagram showing a configuration of a y-vibration detection circuit 14 shown in FIG.
【図4】 本発明の第2実施例の信号処理回路15の構
成を示すブロック図である。FIG. 4 is a block diagram illustrating a configuration of a signal processing circuit 15 according to a second embodiment of the present invention.
【図5】 本発明の第3実施例を適用するx振動検出回
路13およびx駆動回路12の構成を示すブロック図で
ある。FIG. 5 is a block diagram showing a configuration of an x vibration detection circuit 13 and an x drive circuit 12 to which a third embodiment of the present invention is applied.
【図6】 本発明の第3実施例の信号処理回路15の構
成を示すブロック図である。FIG. 6 is a block diagram illustrating a configuration of a signal processing circuit 15 according to a third embodiment of the present invention.
【図7】 本発明の第4実施例の信号処理回路15の構
成を示すブロック図である。FIG. 7 is a block diagram illustrating a configuration of a signal processing circuit 15 according to a fourth embodiment of the present invention.
【図8】 従来より振動の検出に用いられる増幅器の構
成2例を示す電気回路図であり、(a)は振動の速度を
表わす電気信号を発生する電流/電圧変換増幅器を、
(b)は振動の変位を表わす電気信号を発生するチャ−
ジアンプを示す。FIG. 8 is an electric circuit diagram showing an example of a configuration of an amplifier conventionally used for detecting vibration, in which (a) is a current / voltage conversion amplifier that generates an electric signal indicating the speed of vibration;
(B) is a chart for generating an electric signal representing the displacement of vibration.
Shows the amplifier.
1:基板 2a〜2d:アンカ
ー 3a〜3d:支持梁 4a,4b:平行梁 5a〜5d:支持梁 6:振動枠 7a〜7d:支持梁 8:振動子 9a,9b:x励振用の固定電極 10a,10b:x
振動検出用の固定電極 11a,11b:y振動検出用の固定電極 13:x振動検出回路 14:y振動検出回
路 15:信号処理回路(角速度演算装置)1: substrate 2a to 2d: anchor 3a to 3d: support beam 4a, 4b: parallel beam 5a to 5d: support beam 6: vibrating frame 7a to 7d: support beam 8: vibrator 9a, 9b: fixed electrode for x excitation 10a, 10b: x
Fixed electrodes for vibration detection 11a, 11b: Fixed electrodes for y vibration detection 13: x vibration detection circuit 14: y vibration detection circuit 15: signal processing circuit (angular velocity calculation device)
Claims (2)
位または変位速度、及び、前記センサに角速度が作用し
たときの駆動方向に直交する検出方向の振動変位または
変位速度を検出する振動検出手段;および、該振動検出
手段が検出する駆動方向の振幅と検出方向の振幅の比を
パラメ−タとする角速度値を演算する手段;を備えるこ
とを特徴とする角速度センサの検出信号処理装置。1. A vibration detecting means for detecting a vibration displacement or a displacement speed in a driving direction of a vibration type angular velocity sensor and a vibration displacement or a displacement speed in a detection direction orthogonal to the driving direction when an angular velocity acts on the sensor; And a means for calculating an angular velocity value having a parameter of a ratio between the amplitude in the driving direction detected by the vibration detecting means and the amplitude in the detection direction as a parameter.
号において、駆動方向の振幅の二乗を演算する手段,検
出方向の振幅と駆動方向の振幅の積を演算する手段、お
よび、前記振幅の二乗と振幅の積の比を前記パラメ−タ
として算出する手段、を含む請求項1記載の角速度セン
サの検出信号処理装置。2. The means for calculating the angular velocity value includes: means for calculating the square of the driving direction amplitude in the detection signal; means for calculating the product of the detection direction amplitude and the driving direction amplitude; 2. A detection signal processing device for an angular velocity sensor according to claim 1, further comprising means for calculating a ratio of a product of a square and an amplitude as the parameter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10309983A JP2000136934A (en) | 1998-10-30 | 1998-10-30 | Detection-signal processor for angular velocity sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10309983A JP2000136934A (en) | 1998-10-30 | 1998-10-30 | Detection-signal processor for angular velocity sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000136934A true JP2000136934A (en) | 2000-05-16 |
Family
ID=17999732
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10309983A Pending JP2000136934A (en) | 1998-10-30 | 1998-10-30 | Detection-signal processor for angular velocity sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000136934A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001356018A (en) * | 2000-06-15 | 2001-12-26 | Murata Mfg Co Ltd | Angular velocity sensor |
JP2006010408A (en) * | 2004-06-23 | 2006-01-12 | Murata Mfg Co Ltd | Vibratory gyro |
JP2006170620A (en) * | 2004-12-10 | 2006-06-29 | Denso Corp | Gyroscope sensor |
WO2012043886A1 (en) * | 2010-09-30 | 2012-04-05 | シチズンホールディングス株式会社 | Physical quantity sensor and multiplication/division circuit |
JP2017207440A (en) * | 2016-05-20 | 2017-11-24 | 株式会社デンソー | Gyro sensor device |
-
1998
- 1998-10-30 JP JP10309983A patent/JP2000136934A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001356018A (en) * | 2000-06-15 | 2001-12-26 | Murata Mfg Co Ltd | Angular velocity sensor |
JP2006010408A (en) * | 2004-06-23 | 2006-01-12 | Murata Mfg Co Ltd | Vibratory gyro |
JP2006170620A (en) * | 2004-12-10 | 2006-06-29 | Denso Corp | Gyroscope sensor |
JP4534741B2 (en) * | 2004-12-10 | 2010-09-01 | 株式会社デンソー | Gyro sensor |
WO2012043886A1 (en) * | 2010-09-30 | 2012-04-05 | シチズンホールディングス株式会社 | Physical quantity sensor and multiplication/division circuit |
CN103140737A (en) * | 2010-09-30 | 2013-06-05 | 西铁城控股株式会社 | Physical quantity sensor and multiplication/division circuit |
JP5774016B2 (en) * | 2010-09-30 | 2015-09-02 | シチズンホールディングス株式会社 | Physical quantity sensor |
CN103140737B (en) * | 2010-09-30 | 2015-09-16 | 西铁城控股株式会社 | Physical quantity transducer |
JP2017207440A (en) * | 2016-05-20 | 2017-11-24 | 株式会社デンソー | Gyro sensor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0649002A1 (en) | Vibration-sensing gyro | |
JPH10191657A (en) | Complementary electrostatic driver for microactuator | |
JP2001264072A (en) | Angular velocity sensor | |
JPH10170275A (en) | Vibratory angular velocity sensor | |
JP2000046560A (en) | Angular velocity sensor | |
JPH1144541A (en) | Angular velocity sensor | |
JP2001264071A (en) | Vibrator driving device | |
JP2000136934A (en) | Detection-signal processor for angular velocity sensor | |
JP3288597B2 (en) | Vibratory gyroscope | |
JP2000131074A (en) | Electrostatically driven angular velocity-detecting apparatus | |
JP2996157B2 (en) | Vibrating gyro | |
JP4233088B2 (en) | Rotational angular velocity measuring method and rotational angular velocity measuring device | |
JP2000105124A (en) | Electrostatic drive, electrostatic detecting type angular velocity sensor | |
JP2000049358A (en) | Surface micromachine and its manufacture | |
JP3732582B2 (en) | Angular velocity detector | |
JP3500756B2 (en) | Angular velocity sensor | |
JPH10260043A (en) | Angular velocity detecting device | |
JP2001264355A (en) | Acceleration sensor | |
JPH11118826A (en) | Micromachine sensor | |
JP2004301575A (en) | Angular velocity sensor | |
JP2000329561A (en) | Angular speed sensor | |
JP3449255B2 (en) | Amplifier circuit device | |
JP2002277246A (en) | Angular velocity detector | |
JP3028999B2 (en) | Vibrating gyro | |
JP2002162231A (en) | Vibration type gyroscope |