JP2000134141A - Radio receiver - Google Patents

Radio receiver

Info

Publication number
JP2000134141A
JP2000134141A JP10301441A JP30144198A JP2000134141A JP 2000134141 A JP2000134141 A JP 2000134141A JP 10301441 A JP10301441 A JP 10301441A JP 30144198 A JP30144198 A JP 30144198A JP 2000134141 A JP2000134141 A JP 2000134141A
Authority
JP
Japan
Prior art keywords
signal
orthogonal
signals
received
weighting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10301441A
Other languages
Japanese (ja)
Inventor
Takafumi Yamaji
隆文 山路
Shuichi Obayashi
秀一 尾林
Yasushi Murakami
康 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10301441A priority Critical patent/JP2000134141A/en
Publication of JP2000134141A publication Critical patent/JP2000134141A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the cost of the radio receiver employing the spatial division multiplex system by demultiplexing received signals in every incoming direction, based on a signal resulting from A/D-conversion a sum signal based on a signal synchronously with a period of orthogonal signals from an orthogonal signal generating means. SOLUTION: A received signal by antenna x1-x4 is given to weighting circuits 5-8 via frequency selection means 1-4 that select a desired frequency band signal. An antenna control signal generating means 10 receives weighted vectors Wa-Wc, which are used to make antenna beams coincide with each of received signals a-c received from different directions and direct a null point in an incoming direction of the other signals, modulate orthogonal signals Ca-Cc from an orthogonal signal generating means 19, outputs antenna control signals W1-W4 to the weighting circuits 5-8, where the received signals are weighted by the antenna control signals W1-W4. A signal combining means 15 combines the weighted signals, the sum signal is via an analog signal processing means 16 and an A/D converter 17 to an orthogonal signal demultiplexer means 18, where the orthogonal signals from the orthogonal signal generating means 19 via a delay circuit 20 are multiplied with the sum signal to extract low-frequency components and to demultiplex the received signals a-c in each arrived direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はアダプティブアレイ
アンテナを用いた無線受信機に係わり、特に空間分割多
重通信に利用される無線受信機に関する。
The present invention relates to a radio receiver using an adaptive array antenna, and more particularly to a radio receiver used for space division multiplex communication.

【0002】[0002]

【従来の技術】空間分割多重通信に利用される無線受信
機としては図5と図6に示すような構成のものが知られ
ている。まず図5に示す無線受信機について説明する。
この無線受信機は複数のアンテナ素子x1,x2,x
3,x4を有する。個々のアンテナ素子x1,x2,x
3,x4にはそれぞれ、到来方向が互いに異なる複数の
信号a,b,cが到来して受信される。個々のアンテナ
素子x1,x2,x3,x4の出力はそれぞれ、信号の
増幅、周波数変換、チャネル選択等を行うアナログ信号
処理手段61に入力される。各アナログ信号処理手段6
1の出力はそれぞれアナログ/デジタル変換器(以下、
ADCと呼ぶ)62によってデジタル信号に変換され、
変換された各デジタル信号はそれぞれ、デジタル信号処
理部63において位相と振幅の重み付けが行われた後に
合成される。これによって各到来方向の信号a,b,c
が分離される。
2. Description of the Related Art As a radio receiver used for space division multiplex communication, one having a configuration as shown in FIGS. 5 and 6 is known. First, the wireless receiver shown in FIG. 5 will be described.
This radio receiver has a plurality of antenna elements x1, x2, x
3, x4. Individual antenna elements x1, x2, x
3, x4, a plurality of signals a, b, and c having different arrival directions from each other arrive and are received. The outputs of the individual antenna elements x1, x2, x3, and x4 are input to analog signal processing means 61 that performs signal amplification, frequency conversion, channel selection, and the like. Each analog signal processing means 6
The outputs of 1 are analog-to-digital converters (hereinafter, referred to as
ADC) 62 converts it into a digital signal,
Each of the converted digital signals is subjected to phase and amplitude weighting in the digital signal processing unit 63 and then combined. Thereby, the signals a, b, and c in the respective directions of arrival are obtained.
Are separated.

【0003】3つの方向の到来信号a、b、cがそれぞ
れのアンテナ素子X1 ,X2 ,X3,X4 に励起させる
信号をベクトルSa=[sa1,sa2,sa3,sa
4]T ,Sb=[sb1,sb2,sb3,sb
4]T ,Sc=[sc1,sc2,sc3,sc4]T
とすると、アンテナ出力XはX=[x1,x2,x3,
x4]T =Sa+Sb+Scと表せる。各受信信号に対
してデジタル信号処理部43において所定の重み付けベ
クトルW=[w1,w2,w3,w4]を付加すると、
重み付け後の信号yはy=WXと表すことができる。こ
こで、信号aを受信するために重み付けベクトルWaと
してWaSb=0,WaSc=0を満たす値を選ぶと、
y=Wa{Sa+Sb+Sc}=WaSaとなり、到来
信号b,cは出力されず、到来信号aのみが出力され
る。
A signal Sa = [sa1, sa2, sa3, sa] in which signals arriving in three directions a, b and c excite the respective antenna elements X1, X2, X3 and X4.
4] T , Sb = [sb1, sb2, sb3, sb
4] T , Sc = [sc1, sc2, sc3, sc4] T
Then, the antenna output X is X = [x1, x2, x3,
x4] T = Sa + Sb + Sc When a predetermined weighting vector W = [w1, w2, w3, w4] is added to each received signal in the digital signal processing unit 43,
The weighted signal y can be expressed as y = WX. Here, if a value that satisfies WaSb = 0 and WaSc = 0 is selected as the weighting vector Wa in order to receive the signal a,
y = Wa {Sa + Sb + Sc} = WaSa, the incoming signals b and c are not output, and only the incoming signal a is output.

【0004】この例ではアンテナが4素子で不要信号が
2波なので、WaSb=0,WaSc=0を満たすWa
は複数存在し一意ではないが、所望信号aが最大となる
Waが選択される。このときアンテナのビームパターン
は主ローブが信号aの到来方向に向けられる。同様にb
のみ、cのみを出力する重みベクトルをWbとWcとし
それぞれ他の信号と分離して出力させることができる。
In this example, there are four antennas and two unnecessary signals, so that WaSb = 0 and WaSc = 0 are satisfied.
Are plural and not unique, but a Wa that maximizes the desired signal a is selected. At this time, the main lobe of the beam pattern of the antenna is directed to the arrival direction of the signal a. Similarly, b
Only the weight vector that outputs only c can be Wb and Wc, and can be output separately from other signals.

【0005】また、図6に示す別の構成の無線受信機で
は、複数のアンテナ素子x1,x2,x3,x4にて受
信された到来方向の異なる各信号a,b,cがそれぞ
れ、周波数分離手段71にて周波数分割されて複数の信
号処理部72に伝達される。個々の信号処理部72で
は、各周波数分離手段71から入力された各信号が重み
付けベクトルWaにより重み付けされ、合成された後、
信号の増幅、周波数変換、チャネル選択等を行うアナロ
グ信号処理手段73に入力される。そして各アナログ信
号処理手段73の出力はそれぞれ、アナログ/デジタル
変換器(ADC)74によってデジタル信号に変換さ
れ、各到来方向の信号a,b,cが分離される。
In a radio receiver having another configuration shown in FIG. 6, signals a, b and c having different directions of arrival received by a plurality of antenna elements x1, x2, x3 and x4 are respectively subjected to frequency separation. The signal is frequency-divided by means 71 and transmitted to a plurality of signal processing units 72. In each signal processing unit 72, each signal input from each frequency separation unit 71 is weighted by a weight vector Wa and synthesized,
The signal is input to an analog signal processing unit 73 that performs signal amplification, frequency conversion, channel selection, and the like. Then, the output of each analog signal processing means 73 is converted into a digital signal by an analog / digital converter (ADC) 74, and signals a, b, and c in the respective incoming directions are separated.

【0006】[0006]

【発明が解決しようとする課題】上記した各無線受信機
では、各アンテナ素子に受信される信号が雑音レベルよ
り小さい場合でも、重み付け合成の結果が所要の信号対
雑音電力比を満足しているようなことがある。したがっ
て、図5に示した無線受信機内のADCは、雑音レベル
より小さい信号もデジタル信号に変換できなければなら
ず、それだけ高い分解能をもったものが要求される。図
5に示した無線受信機では、このような高い分解能を持
った高価なADCがアンテナ素子の数だけ必要になる。
このため、無線受信機のコストが高くなるという問題が
ある。
In each of the above radio receivers, even when the signal received by each antenna element is smaller than the noise level, the result of the weighted combination satisfies the required signal-to-noise power ratio. Something like that. Therefore, the ADC in the radio receiver shown in FIG. 5 must be able to convert a signal smaller than the noise level into a digital signal, and is required to have a higher resolution. In the radio receiver shown in FIG. 5, expensive ADCs having such a high resolution are required for the number of antenna elements.
For this reason, there is a problem that the cost of the wireless receiver is increased.

【0007】一方、図6に示した無線受信機において
は、重み付け回路やADC等の回路を信号多重数の系統
分独立に設ける必要があり、やはり高い分解能を持った
高価なADCが数多く必要になるため、全体的なコスト
増につながる。
On the other hand, in the radio receiver shown in FIG. 6, it is necessary to provide circuits such as weighting circuits and ADCs independently for the number of multiplexed signals, which also necessitates many expensive ADCs having high resolution. Therefore, the overall cost increases.

【0008】本発明はこのような課題を解決するためも
ので、受信信号に重み付けをする重み付け回路および受
信信号をA/D変換する高い分解能を持った高価なA/
D変換器の数を減らして、空間分割多重方式の安価な無
線受信機を提供することを目的とする。
The present invention has been made to solve such a problem. A weighting circuit for weighting a received signal and an expensive A / D converter having a high resolution for A / D converting the received signal are provided.
An object of the present invention is to provide an inexpensive radio receiver of the space division multiplex system by reducing the number of D converters.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明の無線受信機は、それぞれ到来方向の異なる
複数の信号を受信する複数のアンテナ素子と、前記各ア
ンテナ素子により受信されたそれぞれの信号から予め決
められた周波数帯域の信号を選択して出力する周波数選
択手段と、互いに直交する複数の周期的な直交信号を発
生する直交信号発生手段と、前記周波数選択手段により
選択された各アンテナ素子毎の受信信号にそれぞれ付与
する重み信号を前記直交信号により変調する重み信号変
調手段と、前記重み信号変調手段より出力された重み変
調信号で、前記周波数選択手段により選択された各アン
テナ素子毎の受信信号にそれぞれ重み付けする重み付け
手段と、前記重み付け手段によってそれぞれ重み付けら
れた各受信信号を合成する合成手段と、前記合成信号を
A/D変換するA/D変換手段と、前記A/D変換手段
の出力信号から前記直交信号発生手段より発生された直
交信号の周期に同期した信号に基づいて前記各到来方向
毎の受信信号を分離する分離手段とを備えることを特徴
とする。
In order to achieve the above object, a radio receiver according to the present invention comprises a plurality of antenna elements for receiving a plurality of signals having different directions of arrival, and a plurality of antenna elements for receiving a plurality of signals from the respective antenna elements. Frequency selecting means for selecting and outputting a signal of a predetermined frequency band from each signal, orthogonal signal generating means for generating a plurality of periodic orthogonal signals orthogonal to each other, and a signal selected by the frequency selecting means. Weight signal modulating means for modulating, by the quadrature signal, a weight signal to be given to a received signal for each antenna element; and a weight modulation signal output from the weight signal modulating means, wherein each of the antennas selected by the frequency selecting means Weighting means for weighting the received signal of each element, and receiving signals weighted by the weighting means. Synthesizing means, an A / D converting means for A / D converting the synthesized signal, and a signal synchronized with a cycle of an orthogonal signal generated by the orthogonal signal generating means from an output signal of the A / D converting means. Separating means for separating the received signal for each direction of arrival based on the received signal.

【0010】到来方向の異なる信号a、b、cがそれぞ
れのアンテナ素子に励起させる信号をベクトルSa=
[sa1,sa2,sa3,sa4]T 、Sb=[sb
1,sb2,sb3,sb4]T 、Sc=[sc1,s
c2,sc3,sc4]T とすると、アンテナ素子の出
力XはX=[x1,x2,x3,x4]T =Sa+Sb
+Scとなる。各アンテナ素子の出力Xに付与される重
み付けベクトルWをW=[w1,w2,w3,w4]で
表すと、重み付け後の信号yはy=WXと表すことがで
きる。WaとしてWaSb=0,WaSc=0を満たす
数値を選択すると、y=Wa{Sa+Sb+Sc}=W
aSaとなり、到来信号b,cは出力されず到来信号a
のみが受信される。同様に到来信号aのみ、到来信号b
のみを出力する重み付けベクトルをWbとWcと表せ
る。ただし、アンテナ素子の数と受信信号の数によって
は、これらの重み付けベクトルWa、Wb、Wcは一意
ではない場合があるが、その場合は所望信号が最大振幅
となる値を選択する。
[0010] Signals a, b, and c having different directions of arrival are signals that excite the respective antenna elements by a vector Sa =
[Sa1, sa2, sa3, sa4] T , Sb = [sb
1, sb2, sb3, sb4] T , Sc = [sc1, s
c2, sc3, sc4] T , the output X of the antenna element is X = [x1, x2, x3, x4] T = Sa + Sb
+ Sc. When the weight vector W given to the output X of each antenna element is represented by W = [w1, w2, w3, w4], the weighted signal y can be represented by y = WX. When a value satisfying WaSb = 0 and WaSc = 0 is selected as Wa, y = Wa {Sa + Sb + Sc} = W
aSa, the incoming signals b and c are not output and the incoming signal a
Only received. Similarly, only the incoming signal a, the incoming signal b
Weighting vectors that output only the signals can be expressed as Wb and Wc. However, depending on the number of antenna elements and the number of received signals, these weighting vectors Wa, Wb, and Wc may not be unique, but in that case, a value that maximizes the desired signal is selected.

【0011】各重み付けベクトルに、互いに直交する周
期的な直交信号Ca,Cb,Ccを乗算する。ここで直
交信号Ca(t)と直交信号Cb(t)が互いに直交す
るとは直交信号Ca(t)と直交信号Cb(t)の積を
一定時間積分した結果がゼロになることを意味する。W
=WaCa+WbCb+WcCcをアンテナ出力Xに乗
算すると、重み付け後の信号yはy=WX=WaSaC
a+WbSbCb+WcScCcとなる。
Each weight vector is multiplied by a periodic orthogonal signal Ca, Cb, Cc orthogonal to each other. Here, that the orthogonal signal Ca (t) and the orthogonal signal Cb (t) are orthogonal to each other means that the result of integrating the product of the orthogonal signal Ca (t) and the orthogonal signal Cb (t) for a certain period of time becomes zero. W
= WaC + WbCb + WcCc multiplied by the antenna output X, the signal y after weighting becomes y = WX = WaSaC
a + WbSbCb + WcScCc.

【0012】重み付け後の信号yをA/D変換手段でデ
ジタル信号に変換し、直交信号Caと乗算して一定時間
の積分をとると、yCa=WXCa=WaSaCaCa
+WbSbCbCa+WcScCcCaとなるのでWa
Saのみ取り出すことができる。同様に直交信号Cb,
Ccを乗算して積分するとWbSb、WcScをそれぞ
れ抽出することができる。
The weighted signal y is converted into a digital signal by A / D conversion means, multiplied by the quadrature signal Ca, and integrated for a certain period of time to obtain yCa = WXCa = WaSaCaCa
+ WbSbCbCa + WcScCcCa, so Wa
Only Sa can be taken out. Similarly, the orthogonal signal Cb,
By multiplying and integrating Cc, WbSb and WcSc can be respectively extracted.

【0013】ただし、重み付け後の信号yは、A/D変
換手段としての回路やその他の回路を通過してくるため
これら回路による信号遅延をうける。そこで重み付け後
の信号yに乗算する直交信号も遅延させるなどして各信
号の同期をとる必要がある。なお、一定時間の積分は信
号を低域通過フィルタに通すことで近似値をとることが
可能である。この低域通過フィルタにおいて所望信号の
情報を欠落させないためには、所望信号の周波数成分が
通過帯域内にある必要がある。すなわち所望信号が通過
できる通過域をもった低域通過フィルタで信号を分離さ
せる必要があるので、直交信号Ca,Cb,Ccの周期
を所望信号の符号間隔(符号レートの逆数)と比較して
短くする必要がある。
However, since the signal y after weighting passes through a circuit as A / D conversion means and other circuits, the signal y is subjected to signal delay by these circuits. Therefore, it is necessary to synchronize the respective signals by, for example, delaying the orthogonal signal by which the weighted signal y is multiplied. It should be noted that the integration over a certain period of time can be approximated by passing the signal through a low-pass filter. In order that the information of the desired signal is not lost in the low-pass filter, the frequency component of the desired signal needs to be within the pass band. That is, since it is necessary to separate the signals by a low-pass filter having a pass band through which the desired signal can pass, the period of the orthogonal signals Ca, Cb, and Cc is compared with the code interval (reciprocal of the code rate) of the desired signal. Must be shorter.

【0014】本発明の無線受信機によれば、受信信号に
重み付けをする回路がアンテナ素子の数だけで済むとと
もに、受信信号をA/D変換する高い分解能を持った高
価なA/D変換器が1つで済む。また、重み信号をデジ
タル的に生成する場合には、多重数の増加に対してソフ
トウェアの変更によって対応できる。したがって空間分
割多重方式の無線受信機を安価に提供することができ
る。
According to the radio receiver of the present invention, a circuit for weighting a received signal only requires the number of antenna elements, and an expensive A / D converter having a high resolution for A / D converting the received signal. Only one. When the weight signal is generated digitally, the increase in the number of multiplexes can be handled by changing the software. Therefore, a space-division multiplex wireless receiver can be provided at low cost.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0016】図1は本発明の第1の実施形態である無線
受信機の構成を示している。
FIG. 1 shows the configuration of a radio receiver according to a first embodiment of the present invention.

【0017】この無線受信機は、到来方向の異なる複数
の信号a,b,cを受信する複数のアンテナ素子x1,
x2,x3,x4を有する。各アンテナ素子x1,x
2,x3,x4で受信された各信号はそれぞれ、所望の
周波数帯域の信号を選択する周波数選択手段1,2,
3,4を通じて対応する重み付け回路5,6,7,8に
入力される。
This radio receiver has a plurality of antenna elements x1, x2 for receiving a plurality of signals a, b, c having different directions of arrival.
x2, x3, and x4. Each antenna element x1, x
2, x3, and x4 are frequency selecting means 1, 2, 2, and 3, respectively, for selecting a signal in a desired frequency band.
The signals are input to the corresponding weighting circuits 5, 6, 7 and 8 through the circuits 3 and 4.

【0018】各重み付け回路5,6,7,8はそれぞ
れ、対応する周波数選択手段1,2,3,4により選択
された受信信号をアンテナ制御信号発生手段10より発
生されたアンテナ制御信号W1,W2,W3,W4(変
調された重み付けベクトル)に従って重み付けする。
Each of the weighting circuits 5, 6, 7, 8 respectively converts the received signal selected by the corresponding frequency selecting means 1, 2, 3, 4 into an antenna control signal W1, generated by the antenna control signal generating means 10. Weighting is performed according to W2, W3, and W4 (modulated weighting vectors).

【0019】アンテナ制御信号発生手段10は、予め設
定された重み付けベクトル、つまり到来方向の異なる受
信信号a,b,c毎に、その受信信号の到来方向にアン
テナのビームを一致させ、かつその他の信号の到来方向
にヌル点を向けるような重み付けベクトルWa,Wb,
Wcを入力し、これを直交信号発生手段19により発生
された直交信号Ca,Cb,Ccで変調することによっ
て前記アンテナ制御信号W1,W2,W3,W4(変調
された重み付けベクトル)を生成し、各重み付け回路
5,6,7,8にそれぞれ伝達する。このアンテナ制御
信号発生手段10は、たとえば、重み付けベクトルW
a,Wb,Wcに直交信号Ca,Cb,Ccを乗算する
複数の乗算器と、各乗算結果を加算合成する加算器とで
構成されるアンテナ素子数分のアンテナ制御信号発生回
路11,12,13,14により構成される。
The antenna control signal generating means 10 matches the beam of the antenna with the arrival direction of the received signal for each of the weighting vectors set in advance, that is, for each of the received signals a, b, and c having different arrival directions. Weighting vectors Wa, Wb, which point the null point in the signal arrival direction,
The antenna control signals W1, W2, W3, and W4 (modulated weighting vectors) are generated by inputting Wc and modulating the input signals with the orthogonal signals Ca, Cb, and Cc generated by the orthogonal signal generating means 19, The signals are transmitted to the weighting circuits 5, 6, 7, and 8, respectively. The antenna control signal generating means 10 outputs, for example, a weight vector W
a, Wb, and Wc are multiplied by quadrature signals Ca, Cb, and Cc, and the number of antenna control signal generating circuits 11, 12, and 13 and 14.

【0020】各重み付け回路5,6,7,8によって重
み付けされた各受信信号は信号合成手段(加算器)15
によって合成された後、アナログ信号処理手段16に入
力される。アナログ信号処理手段16は、合成信号に対
して増幅、周波数変換、チャネル選択等を行ってその結
果をアナログ/デジタル変換器(以下、ACDと呼
ぶ。)17に入力する。ACD17は、アナログ信号処
理手段16の出力信号をデジタル信号に変換して直交信
号分離手段18に出力する。
Each of the received signals weighted by each of the weighting circuits 5, 6, 7, and 8 is added to a signal combining means (adder) 15
And then input to the analog signal processing means 16. The analog signal processing means 16 performs amplification, frequency conversion, channel selection, and the like on the synthesized signal, and inputs the result to an analog / digital converter (hereinafter, referred to as ACD) 17. The ACD 17 converts the output signal of the analog signal processing unit 16 into a digital signal and outputs the digital signal to the orthogonal signal separation unit 18.

【0021】直交信号分離手段18は、遅延手段20を
介して直交信号発生手段19より入力された直交信号を
ACD17の出力に乗算し、その乗算結果である信号か
ら低域成分を抽出することによって各到来方向毎の受信
信号a,b,cを分離し出力する。
The orthogonal signal separating means 18 multiplies the output of the ACD 17 by the orthogonal signal input from the orthogonal signal generating means 19 via the delay means 20, and extracts a low-frequency component from the signal resulting from the multiplication. It separates and outputs the received signals a, b, and c for each direction of arrival.

【0022】次に、本実施形態の無線受信機の作用につ
いて図2を参照して説明する。
Next, the operation of the radio receiver according to the present embodiment will be described with reference to FIG.

【0023】図2は、直交信号として0と1の値が変化
する信号を用いた場合の本無線受信機の各部での信号波
形を示している。ただし、同信号波形図は高周波信号の
包絡線の変化を模式的に示したものである。
FIG. 2 shows signal waveforms at various parts of the radio receiver when a signal in which values of 0 and 1 change as an orthogonal signal is used. However, the same signal waveform diagram schematically shows a change in the envelope of the high-frequency signal.

【0024】アンテナ素子x1,x2,x3,x4に、
たとえば図2(a)に示すような、到来方向の異なる3
つの信号a,b,cが到来した場合を考える。この場
合、アンテナ素子x1,x2,x3,x4の出力とし
て、たとえば図2(b)に示すような包絡線を有する信
号が得られる。
The antenna elements x1, x2, x3, x4 are:
For example, as shown in FIG.
Consider the case where two signals a, b and c arrive. In this case, for example, a signal having an envelope as shown in FIG. 2B is obtained as the output of the antenna elements x1, x2, x3, x4.

【0025】一方、直交信号発生手段19からは、到来
方向の異なる各受信信号a,b,cに対して、たとえば
図2(c)に示すような、直交信号Ca,Cb,Ccが
発生される。直交信号Caは1,0,0の繰り返し信
号、直交信号Cbは0,1,0の繰り返し信号、そして
直交信号Cbは0,0,1の繰り返し信号とする。ここ
で、直交信号CaとCbはその積がに0であるから互い
に直交している。同様に直交信号CaとCcも互いに直
交しており、直交信号CbとCcも互いに直交してい
る。
On the other hand, the orthogonal signal generator 19 generates orthogonal signals Ca, Cb and Cc as shown in FIG. 2C for each of the received signals a, b and c having different arrival directions. You. The orthogonal signal Ca is a repetition signal of 1,0,0, the orthogonal signal Cb is a repetition signal of 0,1,0, and the orthogonal signal Cb is a repetition signal of 0,0,1. Here, since the products of the orthogonal signals Ca and Cb are 0, they are orthogonal to each other. Similarly, the orthogonal signals Ca and Cc are orthogonal to each other, and the orthogonal signals Cb and Cc are also orthogonal to each other.

【0026】アンテナ制御信号発生手段10は、所定の
重み付けベクトルWa,Wb,Wc(すなわち、個々の
受信信号a,b,c毎にその信号の到来方向にアンテナ
のビームを一致させ、かつその他の信号の到来方向にヌ
ル点を向けるような重み付けベクトル)を入力し、これ
を前記の各直交信号Ca,Cb,Ccによって切り替え
ることによって、たとえば図2(d)に示すような、変
調されたアンテナ制御信号W1,W2,W3,W4を生
成する。
The antenna control signal generating means 10 matches predetermined antenna weight vectors Wa, Wb, Wc (that is, for each of the received signals a, b, c, the beam of the antenna with the arrival direction of the signal, and other signals). By inputting a weighting vector that directs a null point in the direction of arrival of the signal) and by switching it with each of the orthogonal signals Ca, Cb, and Cc, a modulated antenna such as that shown in FIG. It generates control signals W1, W2, W3, and W4.

【0027】ただし、直交信号Ca,Cb,Cc、およ
び直交信号Ca,Cb,Ccによって変調されたアンテ
ナ制御信号W1,W2,W3,W4の周期は、受信信号
a,b,cの変化の周期に対して十分短いものとする。
However, the periods of the orthogonal signals Ca, Cb, Cc and the antenna control signals W1, W2, W3, W4 modulated by the orthogonal signals Ca, Cb, Cc are the periods of the changes of the received signals a, b, c. Should be short enough.

【0028】各重み付け回路5,6,7,8はそれぞ
れ、周波数選択手段1,2,3,4より出力された図2
(b)に示したような受信信号を、アンテナ制御信号発
生手段10より与えられたアンテナ制御信号W1,W
2,W3,W4に従って重み付けする。なお、このとき
に行われるべき重み付けの方法には、信号の位相のみを
制御する方法と、信号の振幅と位相の両方を制御する方
法があるが、図2では簡単のため振幅の変化のみを模式
的に示してある。
Each of the weighting circuits 5, 6, 7, and 8 respectively outputs the signals from the frequency selecting means 1, 2, 3, and 4 shown in FIG.
The received signals as shown in FIG. 2B are converted into the antenna control signals W1 and W given by the antenna control signal generating means 10.
2, W3, and W4. Note that the weighting method to be performed at this time includes a method of controlling only the phase of the signal and a method of controlling both the amplitude and the phase of the signal. It is shown schematically.

【0029】各重み付け回路5,6,7,8からの出力
はそれぞれ、図2(e)に示すように、振幅(あるいは
搬送波の位相)が直交信号Ca,Cb,Ccの周期で変
化するパルス列となる。個々のパルスは、図2(f)に
示すように、各到来方向の受信信号a,b,cが混合さ
れたものである。これら重み付け回路5,6,7,8の
出力は信号合成手段15において合成される。この信号
合成の結果、図2(g)に示すように、信号合成手段1
5からは、直交信号Caが1になるタイミングで信号a
が、直交信号Cbが1になるタイミングで信号bが、直
交信号Ccが1になるタイミングで信号cが出力され
る。
As shown in FIG. 2E, the outputs from the weighting circuits 5, 6, 7, and 8 are pulse trains whose amplitude (or the phase of the carrier wave) changes at the period of the orthogonal signals Ca, Cb, and Cc. Becomes Each pulse is a mixture of the received signals a, b, and c in each arrival direction, as shown in FIG. The outputs of the weighting circuits 5, 6, 7, and 8 are combined in a signal combining unit 15. As a result of this signal synthesis, as shown in FIG.
5, the signal a at the timing when the orthogonal signal Ca becomes 1
However, the signal b is output when the orthogonal signal Cb becomes 1 and the signal c is output when the orthogonal signal Cc becomes 1.

【0030】以上の動作は、アンテナのビーム方向を直
交信号Ca,Cb,Ccの周期で切り替えて、空間分割
多重信号を時分割多重信号に変換していることに相当す
る。時分割方式では、ある到来方向の信号aを受信して
いるとき他の到来方向の各信号bおよびcは受信されな
いが、受信信号の占有周波数帯域より高い周波数(した
がって短い周期)で直交信号を繰り返すと時間当たりの
サンプル数が多くなって、実質的にすべての到来方向の
信号a,b,cを同時に受信できる。
The above operation corresponds to converting the space division multiplexed signal to the time division multiplexed signal by switching the beam direction of the antenna at the cycle of the orthogonal signals Ca, Cb, Cc. In the time division method, when the signal a in a certain direction of arrival is received, the signals b and c in the other directions of arrival are not received, but the quadrature signal is generated at a frequency higher than the occupied frequency band of the received signal (thus a shorter period). When repeated, the number of samples per time increases, and signals a, b, and c in substantially all incoming directions can be received simultaneously.

【0031】合成された信号は直交信号Ca,Cb,C
cの周期で切り替えられた時分割多重信号なので、直交
信号Ca,Cb,Ccと同期した信号でゲートの開閉を
行うことで受信信号を分離可能である。
The combined signals are orthogonal signals Ca, Cb, C
Since it is a time-division multiplexed signal switched at a period of c, the received signal can be separated by opening and closing the gate with a signal synchronized with the orthogonal signals Ca, Cb, and Cc.

【0032】図3に、このゲートの開閉による信号分離
方式を採用した直交信号分離手段18の構成例を示す。
この直交信号分離手段18では、遅延手段20より遅延
して出力された直交信号Ca,Cb,Ccを順序回路3
1を介してゲート開閉信号としてゲート32に出力する
ことによって受信信号を分離している。直交信号Ca,
Cb,Ccは0または1であるから、これら直交信号C
a,Cb,Ccによるゲート31の開閉は信号の乗算と
等価である。分離された信号は受信信号a,b,cをそ
れぞれサンプリングしたパルス列と等価である。このパ
ルス列を低域通過フィルタに通すと元の信号が復元でき
る。
FIG. 3 shows an example of the configuration of the orthogonal signal separating means 18 adopting the signal separating method by opening and closing the gate.
In the orthogonal signal separating means 18, the orthogonal signals Ca, Cb, and Cc delayed and output from the delay means 20 are output by the sequential circuit 3.
The received signal is separated by outputting the signal to the gate 32 as a gate opening / closing signal via 1. The orthogonal signal Ca,
Since Cb and Cc are 0 or 1, these orthogonal signals C
Opening and closing the gate 31 by a, Cb, and Cc is equivalent to multiplication of signals. The separated signals are equivalent to pulse trains obtained by sampling the received signals a, b, and c, respectively. When this pulse train is passed through a low-pass filter, the original signal can be restored.

【0033】このように受信機内部で空間分割多重信号
を時分割多重信号に変換しかつ時分割多重信号として復
調することで空間分割多重信号の分離が可能となる。こ
れにより高周波アナログ回路を単純化でき、より安価な
無線受信機を実現できる。
As described above, the space division multiplexed signal is converted into the time division multiplexed signal and demodulated as the time division multiplexed signal in the receiver, so that the space division multiplexed signal can be separated. Thus, the high-frequency analog circuit can be simplified, and a cheaper radio receiver can be realized.

【0034】ところで、直交信号Ca,Cb,Ccとし
ては互いに周波数の異なる信号を利用することもでき
る。たとえば、受信信号aに周波数1MHz、受信信号
bに2MHz、受信信号cに3MHzを割り当てること
で、空間多重信号が周波数多重信号に変換される。この
周波数多重信号が直交信号分離手段18において、遅延
手段20により遅延された直交信号によって同期検波さ
れることで、到来方向毎の信号a,b,cが分離され
る。なお、直交信号Ca,Cb,Ccは正弦波である必
要はなく、例えば方形波で近似してもよい。
Incidentally, signals having different frequencies can be used as the orthogonal signals Ca, Cb, Cc. For example, by allocating a frequency of 1 MHz to the received signal a, 2 MHz to the received signal b, and 3 MHz to the received signal c, the spatial multiplexed signal is converted into a frequency multiplexed signal. The frequency multiplexed signal is synchronously detected by the orthogonal signal separating means 18 using the orthogonal signal delayed by the delay means 20, so that signals a, b, and c for each direction of arrival are separated. Note that the orthogonal signals Ca, Cb, and Cc need not be sine waves, but may be approximated by, for example, square waves.

【0035】また、直交信号Ca,Cb,Ccとして擬
似乱数を用いることもできる。この場合、空間分割信号
がコード分割多重信号に変換される。
Further, pseudo random numbers can be used as the orthogonal signals Ca, Cb, Cc. In this case, the space division signal is converted into a code division multiplex signal.

【0036】重み付けは受信信号の周波数のまま行うこ
ともできるが、受信信号をいったん中間周波数に変換し
た後に重み付けを行うこともできる。この場合はイメー
ジ除去フィルタや周波数変換回路等がアンテナ素子毎に
必要になるが、ミリ波通信に用いられる高精度が要求さ
れる高周波重み付け回路の場合、中間周波数で重み付け
を行ったほうがより安価で精度のよい重み付け回路を実
現できる。
The weighting can be performed with the frequency of the received signal, but the weighting can also be performed after the received signal is once converted to the intermediate frequency. In this case, an image removal filter, a frequency conversion circuit, and the like are required for each antenna element. An accurate weighting circuit can be realized.

【0037】さらに、ビーム方向だけを制御し、ヌル点
を制御しない場合は、重み付け回路として移相回路を用
いることができる。この場合、可変利得回路が必要ない
のでさらにコストを下げることができる。
When only the beam direction is controlled and the null point is not controlled, a phase shift circuit can be used as a weighting circuit. In this case, the cost can be further reduced because no variable gain circuit is required.

【0038】無線通信に用いられる時分割多重通信で
は、スロットを伝達信号の符号間隔より長くするのが普
通である。たとえば1スロットあたり256シンボルを
伝送する。このような時分割多重通信と空間分割多重通
信を併用する場合、例えば1シンボルあたり16スロッ
トを割り当てて受信機内部の時分割スロットを1シンボ
ルより短くすると両多重方式の併用が可能になる。
In time division multiplex communication used for wireless communication, it is usual that the slot is longer than the code interval of the transmission signal. For example, 256 symbols are transmitted per slot. When such time division multiplexing communication and space division multiplexing communication are used together, for example, if 16 slots are assigned per symbol and the time division slot inside the receiver is made shorter than one symbol, both multiplexing systems can be used together.

【0039】空間分割多重方式と周波数分割多重方式を
併用した無線受信機の例を図4に示す。
FIG. 4 shows an example of a radio receiver using both space division multiplexing and frequency division multiplexing.

【0040】この無線受信機では、複数のアンテナ素子
x1,x2,x3,x4にて受信された各信号がそれぞ
れ周波数分離手段41,42,43,44によって周波
数軸上で分割されて、時分割数にあわせて設けられた信
号処理回路45,46,47内の各重み付け回路48,
49,50,51にそれぞれ伝達される。以降の動作
は、図1に示した実施形態の無線受信機と同様である。
すなわち、各重み付け回路48,49,50,51はそ
れぞれ、入力された受信信号をアンテナ制御信号発生手
段52より発生されたアンテナ制御信号W1,W2,W
3,W4(変調された重み付けベクトル)に従って重み
付けする。各重み付け回路48,49,50,51によ
って重み付けされた各信号は信号合成手段53により合
成された後、アナログ信号処理手段54に入力される。
アナログ信号処理手段54は、合成信号に対して増幅、
周波数変換、チャネル選択等を行ってその結果をアナロ
グ/デジタル変換器(ACD)55に入力する。ACD
55は、アナログ信号処理手段54の出力信号をデジタ
ル信号に変換して直交信号分離手段56に出力する。直
交信号分離手段56は、遅延手段57を介して直交信号
発生手段58より入力された直交信号Ca,Cb,Cc
をACD55の出力信号に乗算し、その乗算結果である
信号から低域成分を抽出して到来方向毎の信号a,b,
cを分離し出力する。
In this radio receiver, each signal received by a plurality of antenna elements x1, x2, x3, x4 is divided on the frequency axis by frequency separation means 41, 42, 43, 44, respectively, and The weighting circuits 48 in the signal processing circuits 45, 46, 47 provided in accordance with the number
49, 50 and 51 respectively. Subsequent operations are the same as those of the wireless receiver of the embodiment shown in FIG.
That is, each of the weighting circuits 48, 49, 50, and 51 respectively converts the input received signal into an antenna control signal W1, W2, W generated by the antenna control signal generating means 52.
3, weighting according to W4 (modulated weighting vector). The signals weighted by the respective weighting circuits 48, 49, 50, 51 are combined by a signal combining unit 53 and then input to an analog signal processing unit 54.
The analog signal processing means 54 amplifies the synthesized signal,
Frequency conversion, channel selection, and the like are performed, and the results are input to an analog / digital converter (ACD) 55. ACD
55 converts the output signal of the analog signal processing means 54 into a digital signal and outputs the digital signal to the orthogonal signal separation means 56. The orthogonal signal separating means 56 outputs the orthogonal signals Ca, Cb, Cc inputted from the orthogonal signal generating means 58 through the delay means 57.
Is multiplied by the output signal of the ACD 55, a low-frequency component is extracted from the signal resulting from the multiplication, and the signals a, b, and
Separate and output c.

【0041】[0041]

【発明の効果】以上説明したように、本発明の無線受信
機によれば、受信信号に重み付けをする回路がアンテナ
素子の数だけで済むとともに、受信信号をA/D変換す
る高い分解能を持った高価なA/D変換器が1つで済
む。したがって空間分割多重方式の無線受信機を安価に
提供することができる。
As described above, according to the radio receiver of the present invention, a circuit for weighting a received signal requires only the number of antenna elements and has a high resolution for A / D converting the received signal. Only one expensive A / D converter is required. Therefore, a space-division multiplex wireless receiver can be provided at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態である無線受信機の構
成を示す図である。
FIG. 1 is a diagram illustrating a configuration of a wireless receiver according to a first embodiment of the present invention.

【図2】図1の無線受信機の作用を説明するための図で
ある。
FIG. 2 is a diagram for explaining an operation of the wireless receiver in FIG. 1;

【図3】直交信号分離手段の構成例を示す図である。FIG. 3 is a diagram illustrating a configuration example of a quadrature signal separation unit.

【図4】本発明の第2の実施形態である空間分割多重方
式と周波数分割多重方式を併用した無線受信機の構成を
示す図である。
FIG. 4 is a diagram illustrating a configuration of a wireless receiver using a space division multiplexing system and a frequency division multiplexing system according to a second embodiment of the present invention.

【図5】従来の無線受信機の構成を示す図である。FIG. 5 is a diagram illustrating a configuration of a conventional wireless receiver.

【図6】従来の他の無線受信機の構成を示す図である。FIG. 6 is a diagram illustrating a configuration of another conventional wireless receiver.

【符号の説明】[Explanation of symbols]

x1,x2,x3,x4 アンテナ素子 1,2,3,4 周波数選択手段 5,6,7,8 重み付け回路 10 アンテナ制御信号発生手段 11,12,13,14 アンテナ制御信号発生回路 16 アナログ信号処理手段 17 アナログ/デジタル変換器(ACD) 18 直交信号分離手段 19 直交信号発生手段 20 遅延手段 x1, x2, x3, x4 Antenna elements 1, 2, 3, 4 Frequency selection means 5, 6, 7, 8 Weighting circuit 10 Antenna control signal generation means 11, 12, 13, 14 Antenna control signal generation circuit 16 Analog signal processing Means 17 Analog / digital converter (ACD) 18 Quadrature signal separation means 19 Quadrature signal generation means 20 Delay means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村上 康 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 Fターム(参考) 5K052 AA14 BB02 BB15 BB21 CC04 CC06 DD03 EE19 EE38 EE40 FF05 GG31 GG32 GG41 GG48 5K059 BB01 CC03 CC04 CC09 DD32 DD37 DD39 EE02  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Yasushi Murakami 1-term, Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa F-term in the Toshiba R & D Center (reference) 5K052 AA14 BB02 BB15 BB21 CC04 CC06 DD03 EE19 EE38 EE40 FF05 GG31 GG32 GG41 GG48 5K059 BB01 CC03 CC04 CC09 DD32 DD37 DD39 EE02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 それぞれ到来方向の異なる複数の信号を
受信する複数のアンテナ素子と、 前記各アンテナ素子により受信されたそれぞれの信号か
ら予め決められた周波数帯域の信号を選択して出力する
周波数選択手段と、 互いに直交する複数の周期的な直交信号を発生する直交
信号発生手段と、 前記周波数選択手段により選択された各アンテナ素子毎
の受信信号にそれぞれ付与する重み信号を前記直交信号
により変調する重み信号変調手段と、 前記重み信号変調手段より出力された重み変調信号で、
前記周波数選択手段により選択された各アンテナ素子毎
の受信信号にそれぞれ重み付けする重み付け手段と、 前記重み付け手段によってそれぞれ重み付けられた各受
信信号を合成する合成手段と、 前記合成信号をA/D変換するA/D変換手段と、 前記A/D変換手段の出力信号から前記直交信号発生手
段より発生された直交信号の周期に同期した信号に基づ
いて前記各到来方向毎の受信信号を分離する分離手段と
を備えることを特徴とする無線受信機。
1. A plurality of antenna elements for receiving a plurality of signals having different directions of arrival, respectively, and a frequency selection for selecting and outputting a signal of a predetermined frequency band from each signal received by each of the antenna elements. Means, orthogonal signal generating means for generating a plurality of periodic orthogonal signals orthogonal to each other, and a weighting signal to be given to a reception signal for each antenna element selected by the frequency selection means, respectively, is modulated by the orthogonal signal. Weight signal modulation means, and a weight modulation signal output from the weight signal modulation means,
Weighting means for weighting the reception signal for each antenna element selected by the frequency selection means; synthesis means for synthesizing the reception signals weighted by the weighting means; and A / D conversion of the synthesized signal A / D conversion means, and separation means for separating the received signal for each direction of arrival from an output signal of the A / D conversion means based on a signal synchronized with a cycle of the orthogonal signal generated by the orthogonal signal generation means. And a wireless receiver.
【請求項2】 それぞれ到来方向の異なる複数の周波数
分割多重信号を受信する複数のアンテナ素子と、 前記各アンテナ素子により受信されたそれぞれの周波数
分割多重信号を所望の周波数帯域毎に分離する周波数分
離手段と、 互いに直交する複数の周期的な直交信号を発生する直交
信号発生手段と、 前記周波数分離手段により分離された各アンテナ素子毎
の受信信号にそれぞれ付与する重み信号を前記直交信号
により変調する重み信号変調手段と、 前記重み信号変調手段より出力された重み変調信号で、
前記周波数分離手段により分離された各アンテナ素子毎
の受信信号にそれぞれ重み付けする重み付け手段と、 前記重み付け手段によってそれぞれ重み付けられた各受
信信号を合成する合成手段と、 前記合成信号をA/D変換するA/D変換手段と、 前記A/D変換手段の出力信号から前記直交信号発生手
段より発生された直交信号の周期に同期した信号に基づ
いて前記各到来方向毎の受信信号を分離する分離手段と
を備えることを特徴とする無線受信機。
2. A plurality of antenna elements for receiving a plurality of frequency division multiplex signals each having a different direction of arrival, and frequency separation for separating each frequency division multiplex signal received by each antenna element into a desired frequency band. Means, orthogonal signal generating means for generating a plurality of periodic orthogonal signals orthogonal to each other, and a weighting signal to be given to a reception signal for each antenna element separated by the frequency separation means, respectively, is modulated by the orthogonal signal. Weight signal modulation means, and a weight modulation signal output from the weight signal modulation means,
Weighting means for weighting the received signals for each antenna element separated by the frequency separating means; combining means for combining the received signals weighted by the weighting means; and A / D conversion of the combined signal A / D conversion means, and separation means for separating the received signal for each direction of arrival from an output signal of the A / D conversion means based on a signal synchronized with a cycle of the orthogonal signal generated by the orthogonal signal generation means. And a wireless receiver.
【請求項3】 請求項1または2記載の無線受信機にお
いて、 前記直交信号が0と1の値をとる信号であることを特徴
とする無線受信機。
3. The radio receiver according to claim 1, wherein the orthogonal signal is a signal having values of 0 and 1.
【請求項4】 請求項1または2記載の無線受信機にお
いて、 前記直交信号が周波数の異なる正弦波であることを特徴
とする無線受信機。
4. The radio receiver according to claim 1, wherein the quadrature signal is a sine wave having a different frequency.
【請求項5】 請求項1または2記載の無線受信機にお
いて、 前記直交信号が擬似乱数であることを特徴とする無線受
信機。
5. The radio receiver according to claim 1, wherein the orthogonal signal is a pseudo random number.
JP10301441A 1998-10-22 1998-10-22 Radio receiver Withdrawn JP2000134141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10301441A JP2000134141A (en) 1998-10-22 1998-10-22 Radio receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10301441A JP2000134141A (en) 1998-10-22 1998-10-22 Radio receiver

Publications (1)

Publication Number Publication Date
JP2000134141A true JP2000134141A (en) 2000-05-12

Family

ID=17896939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10301441A Withdrawn JP2000134141A (en) 1998-10-22 1998-10-22 Radio receiver

Country Status (1)

Country Link
JP (1) JP2000134141A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007243506A (en) * 2006-03-08 2007-09-20 Nec Corp Radio communication system and receiver used for it
WO2014112366A1 (en) * 2013-01-18 2014-07-24 日本電気株式会社 Radio communication apparatus, radio communication method and radio communication system
JP2020141292A (en) * 2019-02-28 2020-09-03 日本電信電話株式会社 Wireless communication device and wireless communication method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007243506A (en) * 2006-03-08 2007-09-20 Nec Corp Radio communication system and receiver used for it
JP4742917B2 (en) * 2006-03-08 2011-08-10 日本電気株式会社 Wireless communication system and receiver used therefor
WO2014112366A1 (en) * 2013-01-18 2014-07-24 日本電気株式会社 Radio communication apparatus, radio communication method and radio communication system
JP2020141292A (en) * 2019-02-28 2020-09-03 日本電信電話株式会社 Wireless communication device and wireless communication method
JP7144808B2 (en) 2019-02-28 2022-09-30 日本電信電話株式会社 Wireless communication device and wireless communication method

Similar Documents

Publication Publication Date Title
US10432283B2 (en) Digital beam forming system and method
US6009130A (en) Multiple access digital transmitter and receiver
US8224387B2 (en) Beamforming system and method
EP1073214B1 (en) Radio communication system, transmitter and receiver
US10050680B2 (en) Method and apparatus for real time multiplexing with transmitter and antenna array elements
EP3300256B1 (en) Method for controlling digital-to-analogue converters and rf transmit circuit arrangement
KR20130111934A (en) Method and apparatus for real time multiplexing with receiver and antenna array elements
CN1318958A (en) Multi-branch receiver system and method
JP3299952B2 (en) Digital signal demultiplexer, digital signal multiplexer, digital signal transmitter
JP2000134141A (en) Radio receiver
WO2020261261A1 (en) Phased array system and method
JP2000201135A (en) Radio receiver and inverse diffuser
Akram et al. Massive-MIMO and digital mm-wave arrays on RF-SoCs using FDM for M-fold increase in antennas per ADC/DAC
JP5188402B2 (en) Optically controlled phased array antenna
JP2002185378A (en) Array antenna system
EP1394972A1 (en) High speed interface for radio systems
WO2019155952A1 (en) Satellite receiver and satellite communication system
JP3259025B2 (en) Wireless communication device
WO2022260097A1 (en) Wireless communication device and wireless communication method
JPH08265215A (en) Parallel spread spectrum communication system
JP3930456B2 (en) Array antenna communication device
JP4012522B2 (en) Array antenna communication device
JP2003134017A (en) Digital beam forming antenna system
RU2099879C1 (en) Communication relay station
JP2917980B2 (en) Signal extraction apparatus and method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110