JP2000133310A - All solid secondary battery - Google Patents

All solid secondary battery

Info

Publication number
JP2000133310A
JP2000133310A JP10305979A JP30597998A JP2000133310A JP 2000133310 A JP2000133310 A JP 2000133310A JP 10305979 A JP10305979 A JP 10305979A JP 30597998 A JP30597998 A JP 30597998A JP 2000133310 A JP2000133310 A JP 2000133310A
Authority
JP
Japan
Prior art keywords
secondary battery
negative electrode
acrylonitrile
electrolyte
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10305979A
Other languages
Japanese (ja)
Other versions
JP4161431B2 (en
Inventor
Teruyuki Yamada
輝之 山田
Yoshihiko Hosako
芳彦 宝迫
Mitsuo Hamada
光夫 浜田
Ken Orui
研 大類
Hiroyuki Akashi
寛之 明石
Masahiro Aoki
正裕 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Sony Corp
Original Assignee
Mitsubishi Rayon Co Ltd
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd, Sony Corp filed Critical Mitsubishi Rayon Co Ltd
Priority to JP30597998A priority Critical patent/JP4161431B2/en
Publication of JP2000133310A publication Critical patent/JP2000133310A/en
Application granted granted Critical
Publication of JP4161431B2 publication Critical patent/JP4161431B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an all solid secondary battery constructed small and light, equipped with excellent high capacity, large current discharging characteristic, unlikely to cause liquid leakage or fire breaking, having small interface impedance between a positive electrode, negative electrode and an electrolyte layer, and having good cyclic characteristics. SOLUTION: An all solid secondary battery is configured so that an electrolyte layer consisting of gel-form organic polymer electrolytic substance is inserted between a positive and a negative electrode and fixed, wherein the positive electrode is made of a positive electrode active material and gel-form organic polymer electrolyte while the negative electrode is formed from a negative electrode active material and gel-form organic polymer electrolyte. The gel-form organic polymer electrolyte should preferably consist of a compound including an organic polymer having a relative permittivity 4 or above, non- protonic solvent and electrolyte salt, or the organic polymer should preferably be acrylonitrile polymer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、全固体二次電池に
関し、詳しくは、小型軽量で、かつ高容量であるととも
に、液漏れや火災発生の不都合が生じにくく、正極、負
極と電解質層との間の界面インピーダンスの小さな全固
体二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an all-solid-state secondary battery, and more particularly, to a small, lightweight, high-capacity battery that is unlikely to cause inconvenience of liquid leakage and fire, and has a positive electrode, a negative electrode, an electrolyte layer The present invention relates to an all-solid-state secondary battery having a small interfacial impedance between the two.

【0002】[0002]

【従来の技術】軽量で、かつ高容量のリチウム二次電池
としては、リチウムイオンをドープ・脱ドープする炭素
材料等の負極活物質をポリフッ化ビニリデン系ポリマー
バインダーで結着したもの、あるいはリチウム金属また
はその合金からなる負極、リチウム含有遷移金属カルコ
ゲナイト等の正極活物質をポリフッ化ビニリデン系ポリ
マーバインダーで結着したものからなる正極、および、
金属塩を非プロトン性溶媒に溶解した非水電解液からな
る電解質を用いた非水系二次電池が知られている。
2. Description of the Related Art A light-weight, high-capacity lithium secondary battery is obtained by binding a negative electrode active material such as a carbon material for doping / dedoping lithium ions with a polyvinylidene fluoride-based polymer binder, or lithium metal. Or a negative electrode comprising an alloy thereof, a positive electrode comprising a positive electrode active material such as lithium-containing transition metal chalcogenite bound with a polyvinylidene fluoride-based polymer binder, and
A non-aqueous secondary battery using an electrolyte composed of a non-aqueous electrolyte in which a metal salt is dissolved in an aprotic solvent is known.

【0003】この型のリチウム二次電池は、電池温度が
高くなった場合、非プロトン性溶媒の電池内部での揮発
が生じるため、電池の膨れが生じたり、リーク弁からの
揮発ガスの拡散や洩液が生じたりするという問題点を有
している。
[0003] In this type of lithium secondary battery, when the battery temperature rises, the aprotic solvent volatilizes inside the battery, so that the battery swells or the volatile gas diffuses from the leak valve. There is a problem that a leaked liquid is generated.

【0004】この様な問題を生じにくいリチウム二次電
池としては、主鎖にポリエーテル結合を有するポリマ
ー、ポリメタクリレート、ポリメチルメタクリレート、
ポリアクリロニトリル、アクリロニトリル−スチレン共
重合体、塩化ビニル−アクリロニトリル共重合体等の有
機ポリマーと、非プロトン性溶媒と、電解質塩とからな
る固体電解質膜を用いたものが、特開平7−82450
号公報、特開平7−320781号公報等に開示されて
いる。
[0004] Lithium secondary batteries that are unlikely to cause such problems include polymers having a polyether bond in the main chain, polymethacrylate, polymethylmethacrylate, and the like.
Japanese Patent Application Laid-Open No. 7-82450 discloses a method using a solid electrolyte membrane comprising an organic polymer such as polyacrylonitrile, acrylonitrile-styrene copolymer, vinyl chloride-acrylonitrile copolymer, an aprotic solvent, and an electrolyte salt.
And Japanese Patent Application Laid-Open No. 7-32081.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このリ
チウム二次電池を構成する正極は、正極活物質として二
酸化マンガン(MnO2 )を用い、導電材としての黒鉛
粉末を用い、バインダーとして非プロトン性溶媒に不溶
のポリテトラフルオロエチレン粉末を用い、これらの均
一混合物を集電体面に塗工し、プレスすることにより成
形されたものであり、その表面は比較的粗くなってい
る。そのため、正極と電解質層との密着性は十分なもの
とは言えず、正極と電解質層との間の界面インピーダン
スが大きくなり、高容量で、大電流放電特性に優れた全
固体二次電池とはなりにくかった。また、該電池に強い
振動や衝撃を与えたり、長期にわたるリチウムイオンの
ドープ・脱ドープに伴う活物質層(正極)の伸縮を受け
ることにより、層間の界面剥離が生じ、電池のサイクル
寿命が低下し易いという難点を有していた。
However, the positive electrode constituting this lithium secondary battery uses manganese dioxide (MnO 2 ) as a positive electrode active material, graphite powder as a conductive material, and an aprotic solvent as a binder. Is formed by applying a uniform mixture of these to a current collector surface and pressing the same, using a polytetrafluoroethylene powder insoluble in water. The surface is relatively rough. Therefore, the adhesion between the positive electrode and the electrolyte layer cannot be said to be sufficient, the interface impedance between the positive electrode and the electrolyte layer becomes large, and a high-capacity, all-solid secondary battery excellent in large-current discharge characteristics is obtained. It was difficult. In addition, the battery is subjected to strong vibration or shock, or undergoes long-term expansion and contraction of the active material layer (positive electrode) due to lithium ion doping / de-doping, thereby causing interfacial delamination between layers and shortening the cycle life of the battery. Had the drawback of being easy to do.

【0006】よって、本発明における課題は、小型軽量
で、かつ高容量で大電流放電特性に優れるとともに、液
漏れや火災発生の不都合が生じにくく、正極または負極
と電解質層との間の界面インピーダンスが小さく、サイ
クル特性の良好な全固体型二次電池を提供することにあ
る。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a compact, lightweight, high-capacity, excellent large-current discharge characteristic, less likely to cause liquid leakage and inconvenience of fire, and an interface impedance between a positive electrode or a negative electrode and an electrolyte layer. It is to provide an all-solid-state secondary battery having a small cycle and good cycle characteristics.

【0007】[0007]

【課題を解決するための手段】そこで本発明者らは、上
記の課題を解決すべく検討した結果、比誘電率の高い重
合体、電解質塩及び非プロトン性溶媒からなる膜状固体
(ゲル状)電解質層の両面に、正極活物質及び負極活物
質のバインダーとして比誘電率の高い有機ポリマーと非
プロトン性溶媒とからなるゲル状電解質を用いて作った
正極及び負極をそれぞれ接合した積層体を少なくとも一
つ有する本発明の全固体二次電池を完成した。
The inventors of the present invention have studied to solve the above-described problems, and as a result, have found that a film-like solid (gel-like solid) comprising a polymer having a high relative dielectric constant, an electrolyte salt, and an aprotic solvent. ) On both sides of the electrolyte layer, a laminate is formed by bonding a positive electrode and a negative electrode, each of which is formed using a gel electrolyte comprising an organic polymer having a high relative dielectric constant and an aprotic solvent as a binder for the positive electrode active material and the negative electrode active material. The all-solid-state secondary battery of the present invention having at least one is completed.

【0008】すなわち、本発明の全固体二次電池は、正
極と負極との間にゲル状有機ポリマー電解質からなる電
解質層を挿入、固定化した構造を有する全固体二次電池
であって、正極が正極活物質とゲル状有機ポリマー電解
質とからなり、負極が負極活物質とゲル状有機ポリマー
電解質とからなることを特徴とする。また、前記ゲル状
有機ポリマー電解質は、比誘電率4以上の有機ポリマー
と非プロトン性溶媒と電解質塩とを有する均一組成物か
らなることが望ましい。また、前記有機ポリマーは、ア
クリロニトリル系重合体であることが望ましい。また、
前記アクリロニトリル系重合体は、アクリロニトリルユ
ニットを50モル%以上含有する(共)重合体であるこ
とが望ましい。
That is, the all-solid secondary battery of the present invention is an all-solid secondary battery having a structure in which an electrolyte layer made of a gel organic polymer electrolyte is inserted and fixed between a positive electrode and a negative electrode. Is composed of a positive electrode active material and a gelled organic polymer electrolyte, and the negative electrode is composed of a negative electrode active material and a gelled organic polymer electrolyte. Further, it is desirable that the gel organic polymer electrolyte is composed of a uniform composition having an organic polymer having a relative dielectric constant of 4 or more, an aprotic solvent, and an electrolyte salt. The organic polymer is preferably an acrylonitrile-based polymer. Also,
The acrylonitrile-based polymer is preferably a (co) polymer containing 50 mol% or more of acrylonitrile units.

【0009】また、前記正極は、アクリロニトリル系重
合体と、非プロトン性溶媒と、電解質塩と、正極活物質
とを有する組成物を製膜し、ゲル化したものであり、前
記負極は、アクリロニトリル系重合体と、非プロトン性
溶媒と、電解質塩と、負極活物質とを有する組成物を製
膜し、ゲル化したものであってもよい。また、前記正極
は、アクリロニトリル系重合体と、ポリフッ化ビニリデ
ンと、非プロトン性溶媒と、電解質塩と、正極活物質と
を有する組成物を製膜し、ゲル化させたものであり、前
記負極は、アクリロニトリル系重合体と、ポリフッ化ビ
ニリデンと、非プロトン性溶媒と、電解質塩と、負極活
物質とを有する組成物を製膜し、ゲル化させたものであ
ってもよい。また、前記電解質層は、アクリロニトリル
系重合体と、非プロトン性溶媒と、電解質塩とを有する
組成物、あるいはアクリロニトリル系重合体と、ポリフ
ッ化ビニリデンと、非プロトン性溶媒と、電解質塩とを
有する組成物がゲル化したものであってもよい。また、
前記電解質層は、アクリロニトリル系重合体からなる繊
維またはパルプ状物より作った織布、不織布、紙状物の
いずれか1種に、電解質塩が溶解した非プロトン性溶媒
を含浸し、これがゲル化したものであってもよい。
The positive electrode is formed by gelling a composition comprising an acrylonitrile-based polymer, an aprotic solvent, an electrolyte salt, and a positive electrode active material, and is gelled. The negative electrode is formed of acrylonitrile. The composition may be formed into a film having a system polymer, an aprotic solvent, an electrolyte salt, and a negative electrode active material, and may be gelled. Further, the positive electrode is an acrylonitrile-based polymer, polyvinylidene fluoride, an aprotic solvent, an electrolyte salt, and a film formed of a composition having a positive electrode active material, and the positive electrode is formed by gelation, May be obtained by forming a film of a composition containing an acrylonitrile-based polymer, polyvinylidene fluoride, an aprotic solvent, an electrolyte salt, and a negative electrode active material, and gelling the composition. Further, the electrolyte layer has an acrylonitrile-based polymer, an aprotic solvent, and a composition having an electrolyte salt, or an acrylonitrile-based polymer, polyvinylidene fluoride, an aprotic solvent, and an electrolyte salt. The composition may be gelled. Also,
The electrolyte layer is formed by impregnating any one of a woven fabric, a nonwoven fabric, and a paper-like material made of fibers or pulp-like materials made of an acrylonitrile-based polymer with an aprotic solvent in which an electrolyte salt is dissolved, and this gels. May be done.

【0010】また、前記非プロトン性溶媒は、カーボネ
ート系溶媒を含有するものであることが望ましい。ま
た、前記正極または負極の表面には、金属薄膜からなる
集電体が設けられていることが望ましい。また、前記負
極として、負極活物質とゲル状有機ポリマー電解質とか
らなるものの代わりに、リチウム金属またはリチウム合
金を用いてもよい。また、前記電解質層を構成する織
布、不織布または紙状物が、アクリロニトリル系重合体
からなるパルプ状物、繊維の少なくとも1種と、フッ化
ビニリデンまたはポリオレフィンからなる繊維、パルプ
状物、フィブリル状物の少なくとも1種との混合物にて
構成されていてもよい。
It is preferable that the aprotic solvent contains a carbonate-based solvent. It is preferable that a current collector made of a metal thin film is provided on the surface of the positive electrode or the negative electrode. Further, as the negative electrode, lithium metal or a lithium alloy may be used instead of the negative electrode active material and the gel organic polymer electrolyte. Further, the woven fabric, nonwoven fabric or paper-like material constituting the electrolyte layer is a pulp-like material made of an acrylonitrile polymer, at least one kind of fiber, and a fiber, pulp-like, fibril-like material made of vinylidene fluoride or polyolefin. It may be composed of a mixture with at least one of the substances.

【0011】[0011]

【発明の実施の形態】以下、本発明を詳しく説明する。
本発明の全固体二次電池の正極は、正極活物質とゲル状
有機ポリマー電解質とからなるものであり、負極は、負
極活物質とゲル状有機ポリマー電解質とからなるもので
ある。また、本発明の全固体二次電池の電解質層は、ゲ
ル状有機ポリマー電解質からなるものである。本発明の
全固体二次電池の正極に用いられる正極活物質として
は、例えば、LiCoO2 、LiMnO2 、LiNiO
2 等の遷移金属カルコゲナイトが好ましくは用いられる
が、リチウムイオンのドープ・脱ドープをし得る物質で
あれば何れの化合物でも用いることができる。また、負
極に用いられる負極活物質としては、リチウムイオンを
ドープ・脱ドープするものであればよく、例えば、熱分
解炭素類、コークス類(ピッチコークス、ニードルコー
クス等)、グラファイト、ガラス状炭素類、有機高分子
焼成体(フェノール樹脂、フラン樹脂、ポリアクリロニ
トリル、ポリビニルアルコールなどの焼成物)等を用い
ることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The positive electrode of the all solid state secondary battery of the present invention comprises a positive electrode active material and a gel organic polymer electrolyte, and the negative electrode comprises a negative electrode active material and a gel organic polymer electrolyte. Further, the electrolyte layer of the all solid state secondary battery of the present invention is made of a gel organic polymer electrolyte. As the positive electrode active material used for the positive electrode of the all solid state secondary battery of the present invention, for example, LiCoO 2 , LiMnO 2 , LiNiO
Although transition metal chalcogenites such as 2 are preferably used, any compound can be used as long as it can dope and undope lithium ions. In addition, the negative electrode active material used for the negative electrode may be any material that can be doped and dedoped with lithium ions. Examples thereof include pyrolytic carbons, cokes (pitch coke, needle coke, etc.), graphite, glassy carbons, and the like. And an organic polymer fired body (a fired product of a phenol resin, a furan resin, polyacrylonitrile, polyvinyl alcohol, or the like) or the like can be used.

【0012】上記ゲル状有機ポリマー電解質は、比誘電
率4以上の有機ポリマーと、非プロトン性溶媒と、電解
質塩とを有する均一組成物からなることが望ましい。有
機ポリマーの比誘電率が4以上であれば、全固体二次電
池におけるイオン移動性を良好なものとすることができ
る。ゲル状有機ポリマー電解質を形成するのに用いられ
る比誘電率4以上の有機ポリマーとしては、例えば、ア
クリロニトリル系重合体、ポリフッ化ビニリデン、ポリ
オキシメチレン等が挙げられる。中でも、アクリロニト
リル系重合体が好ましく、特にアクリロニトリルユニッ
トを50〜100mol%含有する(共)重合体が好適
に用いられる。
The above-mentioned gelled organic polymer electrolyte is desirably composed of a uniform composition having an organic polymer having a relative dielectric constant of 4 or more, an aprotic solvent, and an electrolyte salt. When the relative permittivity of the organic polymer is 4 or more, the ion mobility in the all-solid secondary battery can be improved. Examples of the organic polymer having a dielectric constant of 4 or more used to form the gel organic polymer electrolyte include acrylonitrile-based polymers, polyvinylidene fluoride, and polyoxymethylene. Among them, acrylonitrile-based polymers are preferred, and (co) polymers containing 50 to 100 mol% of acrylonitrile units are particularly preferred.

【0013】アクリロニトリルと共重合可能なモノマー
としては、例えば、アクリル酸、メタクリル酸、イタコ
ン酸、スチレンスルホン酸、酢酸ビニル、塩化ビニル、
スチレン、プロピオン酸ビニル、炭素数4以下のアルキ
ルエステル基を有するアクリレート類やメタアクリレー
ト類、ブタジエン、イソプレンなどを挙げることができ
る。中でも、アクリロニトリルと共重合可能なモノマー
として、カルボン酸類を含有するモノマーを0.1〜2
0重量%用いたものは、密着性向上効果を発揮したもの
となる。有機ポリマーとしてアクリロニトリル系重合体
を用いる場合には、アクリロニトリルユニットの含有率
が50mol%以上、好ましくは80mol%以上、よ
り好ましくは85mol%以上とすることが望ましい。
アクリロニトリルユニットの含有率が大きい場合は、非
プロトン性溶媒への溶解性を良好に保持しうるととも
に、得られるゲル状固体電解質のイオン伝導度を良好な
ものとすることができる。
Examples of monomers copolymerizable with acrylonitrile include acrylic acid, methacrylic acid, itaconic acid, styrenesulfonic acid, vinyl acetate, vinyl chloride,
Examples include styrene, vinyl propionate, acrylates and methacrylates having an alkyl ester group having 4 or less carbon atoms, butadiene, and isoprene. Among them, as a monomer copolymerizable with acrylonitrile, a monomer containing a carboxylic acid is used in an amount of 0.1 to 2;
When used in an amount of 0% by weight, the effect of improving the adhesion is exhibited. When an acrylonitrile-based polymer is used as the organic polymer, the content of the acrylonitrile unit is desirably 50 mol% or more, preferably 80 mol% or more, and more preferably 85 mol% or more.
When the content of the acrylonitrile unit is large, the solubility in an aprotic solvent can be kept good, and the ionic conductivity of the obtained gelled solid electrolyte can be made good.

【0014】これらアクリロニトリル系重合体は、非プ
ロトン性溶媒に対する親和性が高く、ゲル状有機ポリマ
ー電解質を作りやすく、また、電解質塩との親和性も高
く、高イオン導電性のゲルポリマーとすることができる
ため、本発明の全固体二次電池の高容量化に適するもの
である。また、上記有機ポリマーをバインダーとして用
いた正極または負極と、上記有機ポリマーを用いて作製
した膜状の電解質層との密着性は極めて良好であり、各
電極と電解質層との界面密着性が高くなる。そのため、
界面インピーダンスが小さな電池となるとともに、界面
剥離を起こしにくい固体電池となり得るという大きな特
徴を有している。また、正極活物質または負極活物質の
バインダーとして、アクリロニトリル系重合体を用いる
際には、製膜性やバインダー層の力学強度、電極の柔軟
性を改良する目的で、ポリフッ化ビニリデンを混合した
ものを用いてもよい。
These acrylonitrile-based polymers have a high affinity for aprotic solvents, are easy to form a gel-like organic polymer electrolyte, have a high affinity for an electrolyte salt, and have a high ionic conductivity gel polymer. Therefore, it is suitable for increasing the capacity of the all solid state secondary battery of the present invention. In addition, the adhesion between the positive electrode or the negative electrode using the organic polymer as a binder and the electrolyte layer formed using the organic polymer is extremely good, and the interface adhesion between each electrode and the electrolyte layer is high. Become. for that reason,
The battery has a great feature that it can be a battery having low interface impedance and a solid battery that is unlikely to cause interface delamination. In addition, when using an acrylonitrile-based polymer as a binder for the positive electrode active material or the negative electrode active material, a mixture of polyvinylidene fluoride is used for the purpose of improving film forming properties, mechanical strength of the binder layer, and flexibility of the electrode. May be used.

【0015】ゲル状有機ポリマー電解質に用いられる非
プロトン性溶媒としては、従来のリチウム二次電池の電
解液形成用溶媒として用いられてきた非プロトン性溶媒
であればいずれのものも用いることができ、例えば、エ
チレンカーボネート(比誘電率90)、プロピレンカー
ボネート(比誘電率65)、ジメチルカーボネート(比
誘電率3.1)、ジエチルカーボネート(比誘電率2.
8)、テトラヒドロフラン(比誘電率7.4)、γ−ブ
チロラクトン(比誘電率42)等を挙げることができ
る。本発明においては、比誘電率が10以上、特に20
以上の非プロトン性溶媒を主体としたものを用いるのが
好ましい。これらの非プロトン性溶媒は単独で用いるこ
ともできるが、これらの2種以上の混合物を用いても良
い。比誘電率が10以上、特に20以上の非プロトン性
溶媒を用いた本発明の全固体二次電池は、正極または負
極と、有機ポリマー電解質層との間の密着性が良好であ
り、層間インピーダンスの低い二次電池とすることがで
きる。
As the aprotic solvent used for the gelled organic polymer electrolyte, any aprotic solvent that has been used as a solvent for forming an electrolytic solution of a conventional lithium secondary battery can be used. For example, ethylene carbonate (relative dielectric constant 90), propylene carbonate (relative dielectric constant 65), dimethyl carbonate (relative dielectric constant 3.1), and diethyl carbonate (relative dielectric constant 2. 1).
8), tetrahydrofuran (dielectric constant 7.4), γ-butyrolactone (dielectric constant 42) and the like. In the present invention, the relative dielectric constant is 10 or more, especially 20
It is preferable to use a solvent mainly containing the above aprotic solvent. These aprotic solvents may be used alone, or a mixture of two or more thereof may be used. The all-solid secondary battery of the present invention using an aprotic solvent having a relative dielectric constant of 10 or more, particularly 20 or more, has good adhesion between the positive electrode or the negative electrode and the organic polymer electrolyte layer, and has an interlayer impedance. Low rechargeable battery.

【0016】ゲル状有機ポリマー電解質に用いられる電
解質塩としては、従来のリチウム二次電池の電解質塩と
して用いられてきたものであればいずれのものも用いる
ことができ、例えば、LiPF6 、LiClO4 、Li
BF4 、LiAsF6 、LiCF3SO3、Li(CF3
SO22N等を用いることができる。また、正極には
導電材を添加することができる。導電材としては、例え
ば、アセチレンブラック、グラファイト(リン片状黒
鉛、粒状黒鉛)、カーボンブラック、ケッチェンブラッ
クなどが挙げられる。
As the electrolyte salt used for the gel organic polymer electrolyte, any electrolyte salt which has been used as a conventional electrolyte salt for a lithium secondary battery can be used. For example, LiPF 6 , LiClO 4 , Li
BF 4 , LiAsF 6 , LiCF 3 SO 3 , Li (CF 3
SO 2 ) 2 N or the like can be used. Further, a conductive material can be added to the positive electrode. Examples of the conductive material include acetylene black, graphite (flake graphite, granular graphite), carbon black, and Ketjen black.

【0017】本発明の全固体二次電池の正極または負極
の表面には、集電体を設けることが望ましい。集電体と
しては、例えば、アルミニウム箔、銅箔、ニッケル箔、
ステンレス箔などの金属薄膜が挙げられる。これら集電
体は、目的に応じて適宜選択して用いることが好まし
い。また、本発明の全固体二次電池の負極としては、ゲ
ル状有機ポリマー電解質中に負極活物質を含有させたも
のの代わりに、リチウム、またはリチウム合金を用いて
もよい。
It is desirable to provide a current collector on the surface of the positive electrode or the negative electrode of the all solid state secondary battery of the present invention. As the current collector, for example, aluminum foil, copper foil, nickel foil,
A metal thin film such as a stainless steel foil may be used. It is preferable that these current collectors are appropriately selected and used depending on the purpose. Further, as the negative electrode of the all-solid secondary battery of the present invention, lithium or a lithium alloy may be used instead of a gel organic polymer electrolyte containing a negative electrode active material.

【0018】正極または負極の形成法としては、例え
ば、非プロトン性溶媒に有機ポリマーおよび電解質塩を
溶解した溶液に、所定量の正極活物質または負極活物質
を均一に混合し、次いでこのペースト状混合物を上記集
電体用金属箔の片面あるいは両面に均一に塗工し、適宜
溶媒を一部揮散した後、ゲル化する方法を用いることが
できる。この際、非プロトン性溶媒に前記有機ポリマー
および電解質塩を溶解する場合は、有機ポリマーを溶媒
に十分膨潤させた後、溶媒が揮発しない程度に加熱する
ことにより有機ポリマーの溶解性を高めることが有効で
ある。この様に加熱溶解した有機ポリマー溶液を塗工後
冷却することにより、塗膜は流動性のあるゾル状態よ
り、流動性がなくかつ溶剤保持能を有するゲル状態に転
移する。なお有機ポリマー溶液中の溶媒量が多い場合に
は、塗工後一部溶媒を減圧、加熱等の手法により揮散せ
しめ、所定の組成のゲルを得る方法を用いることもでき
る。
As a method of forming a positive electrode or a negative electrode, for example, a predetermined amount of a positive electrode active material or a negative electrode active material is uniformly mixed with a solution in which an organic polymer and an electrolyte salt are dissolved in an aprotic solvent. A method in which the mixture is uniformly applied to one or both surfaces of the metal foil for a current collector, a solvent is volatilized appropriately, and then gelling can be used. At this time, when dissolving the organic polymer and the electrolyte salt in an aprotic solvent, after sufficiently swelling the organic polymer in the solvent, it is possible to increase the solubility of the organic polymer by heating the solvent to such an extent that the solvent does not evaporate. It is valid. By cooling the heated and dissolved organic polymer solution after coating, the coating film changes from a fluid sol state to a gel state having no fluidity and a solvent retaining ability. When the amount of the solvent in the organic polymer solution is large, a method of obtaining a gel having a predetermined composition by partially evaporating the solvent after application by a technique such as reduced pressure and heating may be used.

【0019】また、他の形成方法としては、溶解性の高
い有機溶剤に有機ポリマーと、必要に応じて電解質塩と
を溶解した溶液に、所定量の正極活物質または負極活物
質を均一に混合し、次いでこのペースト状混合物を集電
体用金属箔の片面あるいは両面に均一に塗工し、加熱等
により有機溶剤を完全に揮散せしめた後、非プロトン性
溶媒を含浸させてゲル化する方法が挙げられる。この
際、含浸させる非プロトン性溶媒は、有機ポリマー内へ
の溶媒の拡散を早くする目的で、電解質塩を溶解した電
解液として含浸操作に供されることが好ましい。
In another method, a predetermined amount of a positive electrode active material or a predetermined amount of a negative electrode active material is uniformly mixed with a solution in which an organic polymer is dissolved in a highly soluble organic solvent and, if necessary, an electrolyte salt. Then, the paste-like mixture is uniformly coated on one or both surfaces of the metal foil for a current collector, and the organic solvent is completely volatilized by heating or the like, followed by impregnation with an aprotic solvent and gelation. Is mentioned. At this time, the aprotic solvent to be impregnated is preferably subjected to the impregnation operation as an electrolytic solution in which an electrolyte salt is dissolved in order to accelerate the diffusion of the solvent into the organic polymer.

【0020】また、正極または負極形成用バインダーと
して、アクリロニトリル系重合体と共にポリフッ化ビニ
リデンを用いる場合には、これら有機ポリマーと、正極
活物質または負極活物質と、場合によっては電解質塩と
を、アクリロニトリル系重合体とポリフッ化ビニリデン
の両者を溶解する有機溶剤に溶解し、この溶液を集電体
用金属箔表面に塗工し、加熱等により有機溶剤を完全に
揮散せしめた後、非プロトン性溶媒を含浸させる方法を
用いてもよい。この際、アクリロニトリル系重合体とポ
リフッ化ビニリデンの両者を溶解する有機溶剤として
は、ジメチルスルホキシド、N,N−ジメチルホルムア
ミド、N,N−ジメチルアセトアミド、N−メチル−2
−ピロリドンなどを用いることができる。また、この溶
剤に電解質形成用の非プロトン性溶媒を適宜混合して用
いても良い。また、含浸させる非プロトン性溶媒は、有
機ポリマー内への溶媒の拡散を早くする目的で、電解質
塩を溶解した電解液として含浸操作に供されることが好
ましい。
When polyvinylidene fluoride is used together with an acrylonitrile-based polymer as a binder for forming a positive electrode or a negative electrode, these organic polymers, a positive electrode active material or a negative electrode active material, and, in some cases, an electrolyte salt are converted into acrylonitrile. After dissolving both the base polymer and polyvinylidene fluoride in an organic solvent that dissolves the solution, applying this solution to the surface of the metal foil for a current collector and completely volatilizing the organic solvent by heating, etc., the aprotic solvent May be used. At this time, dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2 are used as organic solvents for dissolving both the acrylonitrile-based polymer and polyvinylidene fluoride.
-Pyrrolidone and the like can be used. Further, an aprotic solvent for forming an electrolyte may be appropriately mixed and used in this solvent. Further, the aprotic solvent to be impregnated is preferably subjected to the impregnation operation as an electrolytic solution in which an electrolyte salt is dissolved, for the purpose of accelerating the diffusion of the solvent into the organic polymer.

【0021】電解質層の形成法としては、正極または負
極の形成法と同様に、非プロトン性溶媒に電解質塩およ
び有機ポリマーを均一に溶解し、これを離型性成形材や
シート表面に塗工あるいは流延し、これをゲル化する方
法を用いることができる。特に、非プロトン性溶媒に電
解質塩および有機ポリマーを加熱溶解し、この溶液をシ
ート表面等に塗工または流延後、冷却する事によりゲル
化させる方法が好ましい。
The electrolyte layer is formed by uniformly dissolving an electrolyte salt and an organic polymer in an aprotic solvent and coating the same on a mold release material or sheet surface in the same manner as the method for forming a positive electrode or a negative electrode. Alternatively, a method of casting and gelling this can be used. In particular, a method in which an electrolyte salt and an organic polymer are dissolved in an aprotic solvent by heating, and the resulting solution is applied or cast on a sheet surface or the like and then cooled to be gelled is preferable.

【0022】また、電解質層の形成法としては、正極と
負極との間にアクリロニトリル系重合体繊維、パルプよ
り作った不織布、織布、紙状物等のシート状物を挾着
し、このシート状物に電解質塩を溶解した非プロトン性
溶媒を含浸し、溶解、ゲル化する方法も用いることがで
きる。またこの際、非プロトン性溶媒に不溶性のポリフ
ッ化ビニリデンやポリオレフィンからなる繊維、パル
プ、フィブリル状物等を併用することにより、機械的強
度が高く、取扱い性の良好なゲル状電解質層とすること
ができる。
As a method for forming the electrolyte layer, a sheet-like material such as a non-woven fabric, a woven fabric, a paper-like material made of acrylonitrile-based polymer fiber or pulp is sandwiched between the positive electrode and the negative electrode. A method of impregnating an aprotic solvent in which an electrolyte salt is dissolved in a substance and dissolving and gelling the same can also be used. Also, at this time, by using a combination of fibers made of polyvinylidene fluoride or polyolefin insoluble in an aprotic solvent, pulp, fibrils, etc., a gel electrolyte layer having high mechanical strength and good handleability. Can be.

【0023】本発明の全固体二次電池は、上述のごとく
作製した電解質層の両面に、正極、負極を接合した積層
物を少なくとも1つ以上用いることによって作製するこ
とができる。この様にして作製した全固体二次電池の電
解質層と正極、負極電極界面との密着性は良好であり、
本発明の全固体二次電池を過酷な条件下で使用しても、
界面剥離が生じることはなく、極めてサイクル特性の良
好な電池となる。
The all-solid secondary battery of the present invention can be manufactured by using at least one laminate in which a positive electrode and a negative electrode are joined on both sides of the electrolyte layer manufactured as described above. The adhesiveness between the electrolyte layer of the all-solid secondary battery thus prepared, the positive electrode, and the negative electrode interface is good,
Even when the all-solid secondary battery of the present invention is used under severe conditions,
No interfacial delamination occurs, and the battery has extremely good cycle characteristics.

【0024】さらに、正極および負極と電解質層との密
着性は、各層を積層した後、活物質の劣化が促進されな
い程度で熱処理を施すことにより大きく向上する。特に
ゲル状有機ポリマー電解質のゾルゲル転移温度近傍で熱
処理を施した後、冷却することにより正極および負極と
電解質層とは相互に接着し、密着性は飛躍的に向上す
る。
Furthermore, the adhesion between the positive electrode and the negative electrode and the electrolyte layer is greatly improved by stacking the respective layers and then performing a heat treatment to such an extent that the deterioration of the active material is not promoted. In particular, after performing heat treatment near the sol-gel transition temperature of the gel-like organic polymer electrolyte, by cooling, the positive electrode, the negative electrode, and the electrolyte layer adhere to each other, and the adhesion is dramatically improved.

【0025】また、本発明の全固体二次電池は、電極界
面の接合性が良好なため、界面インピーダンスが極めて
小さく、高容量で大電流放電特性に優れた二次電池とな
っているという大きな特徴を有している。
Further, the all-solid-state secondary battery of the present invention has a very small interface impedance, a high capacity, and a high current discharge characteristic because of good bonding properties at the electrode interface. Has features.

【0026】[0026]

【実施例】以下、実施例により本発明を具体的に説明す
る。
The present invention will be described below in detail with reference to examples.

【0027】〔実施例1〕(重合体調製)ジャケット付
きの2000mlのガラス製反応容器に、水/モノマー
比が14/1になるような条件でアクリロニトリルを9
3.6mol%、酢酸ビニルを6.4mol%仕込み、
重合触媒として反応液に対し1.0重量%のNa2
3、1.5重量%のNaHSO3 、0.12重量%の
2SO4を用いて水系懸濁重合を行った。反応温度は5
5℃に保った。反応容器中に生成した重合物を回収し十
分洗浄した後乾燥を行い、白色の粉末状物を得た。得ら
れた粉体の重量から反応収率を計算したところ73%で
あった。
Example 1 (Preparation of polymer) Acrylonitrile was added to a 2000 ml glass-made reaction vessel equipped with a jacket under the condition that the water / monomer ratio was 14/1.
3.6 mol%, 6.4 mol% of vinyl acetate was charged,
1.0% by weight of Na 2 S based on the reaction solution as a polymerization catalyst
Aqueous suspension polymerization was carried out using O 3 , 1.5% by weight of NaHSO 3 and 0.12% by weight of H 2 SO 4 . Reaction temperature is 5
It was kept at 5 ° C. The polymer produced in the reaction vessel was collected, washed sufficiently, and dried to obtain a white powder. The reaction yield was calculated from the weight of the obtained powder to be 73%.

【0028】得られた重合体の組成分析を元素分析によ
り行ったところ、アクリロニトリルが96.0mol
%、酢酸ビニルが4.0mol%の共重合体であった。
また、この重合体の分子量をGPCにより測定したとこ
ろ、ポリスチレン換算で5.1×105 という値を示し
た。ここでGPCの測定は、溶媒として0.01MLi
Cl/DMFを用い、重合体濃度は0.1g/dlで行
った。
When the composition of the obtained polymer was analyzed by elemental analysis, it was found that acrylonitrile was 96.0 mol.
%, Vinyl acetate was 4.0 mol%.
The molecular weight of this polymer measured by GPC was 5.1 × 10 5 in terms of polystyrene. Here, GPC measurement was performed using 0.01 M Li as a solvent.
The polymer concentration was 0.1 g / dl using Cl / DMF.

【0029】(正極の作製)リチウム・コバルト複合酸
化物(LiCoO2 )を正極活物質として用い、この正
極活物質50重量部に対し、導電材としてアセチレンブ
ラック5重量部、バインダーポリマーとして上記アクリ
ロニトリル/酢酸ビニル系共重合体5重量部を加え、適
量のN−メチルピロリドンと混合し、ペースト状物を調
製した。調製は窒素雰囲気下で行った。このペースト状
物をアルゴン雰囲気下のもと正極集電体のアルミ箔(厚
さ20μm)の上に均一に塗布した後、加熱する事でN
−メチルピロリドンを完全に揮発させ、さらに加圧プレ
スすることで厚さ50μmの正極を形成した。
(Preparation of Positive Electrode) Lithium-cobalt composite oxide (LiCoO 2 ) was used as a positive electrode active material, and 50 parts by weight of the positive electrode active material was 5 parts by weight of acetylene black as a conductive material and the above-mentioned acrylonitrile / binder was used as a binder polymer. 5 parts by weight of a vinyl acetate copolymer was added and mixed with an appropriate amount of N-methylpyrrolidone to prepare a paste. Preparation was performed under a nitrogen atmosphere. This paste is uniformly applied on an aluminum foil (thickness: 20 μm) of a positive electrode current collector under an argon atmosphere, and then heated to be N 2.
-Methylpyrrolidone was completely volatilized, and further pressed under pressure to form a positive electrode having a thickness of 50 μm.

【0030】(負極の作製)非晶質炭素粉末を負極活物
質として用い、この炭素粉末を60重量部に対し、バイ
ンダーポリマーとして上記アクリロニトリル/酢酸ビニ
ル共重合体4重量部を加え、適量のN−メチルピロリド
ンと混合し、ペースト状物を調製した。調製は窒素雰囲
気下で行った。このペースト状物をアルゴン雰囲気下の
もと負極集電体の銅箔(厚さ30μm)の上に均一に塗
布した後、加熱することでN−メチルピロリドンを完全
に揮発させ、さらに加圧プレスすることで厚さ60μm
の負極を形成した。
(Preparation of Negative Electrode) Amorphous carbon powder was used as a negative electrode active material, and 4 parts by weight of the acrylonitrile / vinyl acetate copolymer as a binder polymer was added to 60 parts by weight of this carbon powder. -Methylpyrrolidone to prepare a paste. Preparation was performed under a nitrogen atmosphere. This paste was uniformly applied on a copper foil (thickness: 30 μm) of a negative electrode current collector under an argon atmosphere, and then heated to completely volatilize N-methylpyrrolidone. 60μm thick
Was formed.

【0031】(固体電解質膜の作製)上記アクリロニト
リル/酢酸ビニル共重合体11重量部に対し、プロピレ
ンカーボネートにLiPF6 を1M/リットルとなるよ
うに溶かした電解液を89重量部加え、膨潤・加熱・混
合することにより均一なペースト状物を調製した。調製
は窒素雰囲気下で行った。このペースト状物をアルゴン
雰囲気下のもと、厚さ200μmのポリエステルフィル
ム上に均一に塗布した。塗布後室温まで徐冷したとこ
ろ、塗布液は流動性を失い不透明なゲル状有機ポリマー
電解質膜を形成した。この膜の厚みを測定したところ9
5μmであった。
(Preparation of Solid Electrolyte Membrane) To 11 parts by weight of the acrylonitrile / vinyl acetate copolymer, 89 parts by weight of an electrolyte obtained by dissolving LiPF 6 in propylene carbonate so as to have a concentration of 1 M / liter were added, followed by swelling and heating. -A uniform paste was prepared by mixing. Preparation was performed under a nitrogen atmosphere. The paste was uniformly applied on a 200 μm-thick polyester film under an argon atmosphere. When slowly cooled to room temperature after coating, the coating liquid lost its fluidity and formed an opaque gel-like organic polymer electrolyte membrane. When the thickness of this film was measured, it was 9
It was 5 μm.

【0032】この様にして調製した高分子固体電解質膜
の電気伝導度を、ヒューレットパッカード製プレシジョ
ンLCRメーター4284Aを用い、交流インピーダン
ス法により測定した。測定に用いた電気伝導度測定用の
アタッチメントは、対向する直径14.8mmの円盤状
ステンレス製電極よりなり、この電極間に高分子固体電
解質を挟んで測定を行った。測定時は、バネを利用して
両極間に11.8kPaの荷重を与え、試料とステンレ
ス製電極との密着性を一定に保った。なおこれらの操作
はアルゴン置換したグロ−ボックス中で行った。
The electric conductivity of the thus prepared polymer solid electrolyte membrane was measured by an alternating current impedance method using a precision LCR meter 4284A manufactured by Hewlett-Packard. The attachment for electric conductivity measurement used for the measurement was made of a disc-shaped stainless steel electrode having a diameter of 14.8 mm facing the electrode, and the measurement was performed with a polymer solid electrolyte interposed between the electrodes. At the time of measurement, a load of 11.8 kPa was applied between both electrodes using a spring to keep the adhesion between the sample and the stainless steel electrode constant. Note that these operations were performed in a glove box replaced with argon.

【0033】周波数100Hzから1MHzの範囲でピ
ーク電圧20mVの交流を印加し、試料の複素インピー
ダンスを測定した。測定で得られた複素インピーダンス
の軌跡をコールコールプロット法により解析し、高周波
側で実軸上と交わる点を試料の抵抗値として、電極面積
と電極間距離より電気伝導度を導出した。25℃での試
料の電気伝導度は6.8×10-3S/cmであった。
An alternating current having a peak voltage of 20 mV was applied in a frequency range of 100 Hz to 1 MHz, and the complex impedance of the sample was measured. The locus of the complex impedance obtained by the measurement was analyzed by the Cole-Cole plot method, and the electrical conductivity was derived from the electrode area and the inter-electrode distance, with the point intersecting the real axis on the high frequency side as the resistance value of the sample. The electrical conductivity of the sample at 25 ° C. was 6.8 × 10 −3 S / cm.

【0034】(二次電池の形成)上記の正極、負極およ
び固体電解質膜を用いて、図1に示すような薄膜型の全
固体二次電池を組み立てた。正極1および負極2は直径
25mmの円盤状、固体電解質膜3は直径27mmの円
盤状に打ち抜き、専用のフッ素樹脂製セル4に設けたス
テンレス電極5上に、正極1、固体電解質膜3、負極2
の順に積層し、さらに負極2上にステンレス電極6を乗
せた。このとき正極1は、正極活物質層7を固体電解質
膜3側に向け、正極集電体8をステンレス電極5側に向
けて積層し、負極2は、負極活物質層9を固体電解質膜
3側に向け、負極集電体10をステンレス電極6側に向
けて積層した。ついで、バネ11により所定の圧力を積
層体に与え二次電池とした。荷重圧力は9.8kPaと
した。この操作は全てアルゴン置換されたグローブボッ
クス中で行った。
(Formation of Secondary Battery) Using the above positive electrode, negative electrode and solid electrolyte membrane, a thin-film type all solid secondary battery as shown in FIG. 1 was assembled. The positive electrode 1 and the negative electrode 2 are punched into a disk shape having a diameter of 25 mm, and the solid electrolyte membrane 3 is punched into a disk shape having a diameter of 27 mm, and the positive electrode 1, the solid electrolyte film 3, and the negative electrode are placed on a stainless steel electrode 5 provided in a dedicated fluororesin cell 4. 2
, And a stainless steel electrode 6 was placed on the negative electrode 2. At this time, the positive electrode 1 is laminated with the positive electrode active material layer 7 facing the solid electrolyte membrane 3 side and the positive electrode current collector 8 facing the stainless steel electrode 5 side, and the negative electrode 2 is laminated with the negative electrode active material layer 9 facing the solid electrolyte membrane 3. The negative electrode current collector 10 was laminated toward the stainless steel electrode 6 side. Next, a predetermined pressure was applied to the stacked body by the spring 11 to obtain a secondary battery. The load pressure was 9.8 kPa. This operation was all performed in a glove box purged with argon.

【0035】かかる手順によって形成された全固体二次
電池においては、当該固体電解質膜3に含まれる電解液
の一部が、正極1および負極2と接触する事によって、
正極1および負極2に浸漬し、バインダーポリマーであ
るアクリロニトリル/酢酸ビニル系共重合体に含浸され
ることで、当該バインダーポリマーの固体電解質化が達
成される。この過程は、固体電解質膜3と正極1および
負極2に用いられている高分子が、同じ組成を有し、親
和性が高いために、滞りなく進行し、その結果、密着性
が良好で、界面インピーダンス、内部抵抗が低く、電気
特性の良好な二次電池が得られる。
In the all-solid-state secondary battery formed according to the above procedure, a part of the electrolyte contained in the solid electrolyte membrane 3 comes into contact with the positive electrode 1 and the negative electrode 2.
By being immersed in the positive electrode 1 and the negative electrode 2 and impregnated with an acrylonitrile / vinyl acetate copolymer as a binder polymer, the binder polymer is converted into a solid electrolyte. In this process, the polymer used for the solid electrolyte membrane 3 and the positive electrode 1 and the negative electrode 2 has the same composition and high affinity, so that the process proceeds smoothly, and as a result, the adhesion is good, A secondary battery having low interface impedance and low internal resistance and excellent electric characteristics can be obtained.

【0036】(放電容量の測定)上記の如くして作製し
た二次電池を室温(24℃)下にて、2.45mAで
4.0Vまで充電した後、2.45mAで2.0Vまで
放電する工程を1サイクルとする充放電試験を行い、5
サイクル目の放電容量を求めた。この二次電池の放電容
量は52mAhであった。またこの電池の容量維持率を
5サイクル目の放電容量に対する30サイクル後の放電
容量の比で定義し測定したところ82%であった。
(Measurement of Discharge Capacity) The secondary battery prepared as described above was charged at room temperature (24 ° C.) to 4.0 V at 2.45 mA, and then discharged to 2.0 V at 2.45 mA. Charge / discharge test with one cycle as
The discharge capacity at the cycle was determined. The discharge capacity of this secondary battery was 52 mAh. The capacity retention of this battery was defined as the ratio of the discharge capacity after the 30th cycle to the discharge capacity at the 5th cycle, and was found to be 82%.

【0037】(密着特性の評価)上記の如くして作製し
た二次電池において、正極1および負極2と固体電解質
膜3との密着性の評価を行った。各層は互いに密着し、
溶媒和しており、溶媒の滲みだし等は認められなかっ
た。
(Evaluation of Adhesion Characteristics) In the secondary battery prepared as described above, the adhesion between the positive electrode 1 and the negative electrode 2 and the solid electrolyte membrane 3 was evaluated. Each layer adheres to each other,
It was solvated and no bleeding of the solvent was observed.

【0038】〔実施例2〕(重合体調製)実施例1と同
様の手法で、アクリロニトリルユニットが96.0mo
l%、酢酸ビニルユニットが4.0mol%の組成のア
クリロニトリル系重合体を得た。
[Example 2] (Preparation of polymer) In the same manner as in Example 1, acrylonitrile unit was 96.0 mol.
An acrylonitrile polymer having a composition of 1% and a vinyl acetate unit of 4.0 mol% was obtained.

【0039】(正極・負極の作製)上記アクリロニトリ
ル系重合体をバインダーとして用い、実施例1と同様の
手法で調製したペーストを、集電体である金属箔上に塗
布、ゲル化させることにより正極および負極を作製し
た。
(Preparation of Positive Electrode / Negative Electrode) A paste prepared in the same manner as in Example 1 using the acrylonitrile-based polymer as a binder was coated on a metal foil as a current collector and gelled to form a positive electrode. And a negative electrode were produced.

【0040】(固体電解質膜の作製)特開平9−241
917号公報に開示されている手法に準じて、直径が
0.2mmφの溶液吐出口、直径が2mmφ、長さが
1.5mmの円筒状の混合セル部、および水蒸気流路が
スリット状で開度を250μmに調整し、溶液流路の中
心線とスリット中心線のなす角度が60度になるように
作製したノズルを用いて、高分子溶液の供給量18ml
/min、水蒸気の供給圧1.5kg/cm2 の条件
で、上記アクリロニトリル系重合体のN,N−ジメチル
アセトアミド溶液を温度30℃の水中へ噴出し、アクリ
ロニトリル系重合体のパルプ状繊維を得た。上記の如く
して得たパルプ状繊維の水分散液を用いて、標準角形シ
ートマシンによりJIS P−8209法に準じた湿式
抄紙を行い、坪量25g/m2 、シート平均厚み155
μmのアクリロニトリル系重合体よりなる繊維質シート
状物を得た。
(Preparation of Solid Electrolyte Membrane) JP-A-9-241
According to the method disclosed in Japanese Patent No. 917, a solution discharge port having a diameter of 0.2 mmφ, a cylindrical mixing cell portion having a diameter of 2 mmφ and a length of 1.5 mm, and a steam flow path opened in a slit shape. Of the polymer solution was supplied using a nozzle prepared such that the angle between the center line of the solution flow path and the center line of the slit was 60 degrees.
The N, N-dimethylacetamide solution of the acrylonitrile-based polymer is jetted into water at a temperature of 30 ° C. under the conditions of 1.5 kg / cm 2 and a steam supply pressure of 1.5 kg / cm 2 to obtain acrylonitrile-based polymer pulp fibers. Was. Using the aqueous dispersion of pulp-like fibers obtained as described above, wet papermaking is performed by a standard square sheet machine in accordance with JIS P-8209, and the basis weight is 25 g / m 2 and the average sheet thickness is 155.
A fibrous sheet made of an acrylonitrile polymer having a thickness of μm was obtained.

【0041】この繊維質シート状物を打ち抜き器を用い
て直径42mmの丸形に打ち抜き、支持電解質として1
M/kgのLiPF6 を含むプロピレンカーボネート溶
液を含浸させた。含浸操作後のシートを密閉容器中に移
し80℃で12時間保持する事により熱処理を施し、こ
の含浸シートを膨潤・ゲル化させ、固体電解質膜とし
た。このシートの25℃での電気伝導度は5.4×10
-3S/cmであった。
The fibrous sheet was punched out into a round shape having a diameter of 42 mm using a punching machine, and 1
A propylene carbonate solution containing M / kg LiPF 6 was impregnated. The sheet after the impregnation operation was transferred to a closed vessel and kept at 80 ° C. for 12 hours to perform a heat treatment, and the impregnated sheet was swollen and gelled to obtain a solid electrolyte membrane. The electrical conductivity of this sheet at 25 ° C. is 5.4 × 10
-3 S / cm.

【0042】(二次電池の作製)上記の正極、負極およ
び固体電解質膜を用いて、実施例1と同様にして、薄膜
型の全固体二次電池を組み立てた。
(Preparation of Secondary Battery) A thin-film type all-solid secondary battery was assembled in the same manner as in Example 1 using the above-described positive electrode, negative electrode and solid electrolyte membrane.

【0043】(放電容量の測定)上記の如くして作製し
た二次電池を室温(24℃)下にて、2.45mAで
4.0Vまで充電した後、2.45mAで2.0Vまで
放電する工程を1サイクルとする充放電試験を行い、5
サイクル目の放電容量を求めた。この二次電池の放電容
量は49mAhであった。またこの電池の容量維持率を
5サイクル目の放電容量に対する30サイクル後の放電
容量の比で定義し測定したところ86%であった。
(Measurement of Discharge Capacity) The secondary battery prepared as described above was charged at room temperature (24 ° C.) at 2.45 mA to 4.0 V, and then discharged at 2.45 mA to 2.0 V. Charge / discharge test with one cycle as
The discharge capacity at the cycle was determined. The discharge capacity of this secondary battery was 49 mAh. The capacity retention of the battery was defined as the ratio of the discharge capacity after 30 cycles to the discharge capacity at the 5th cycle, and was measured to be 86%.

【0044】(密着特性の評価)この放電試験の終わっ
た二次電池を分解し、正極および負極と固体電解質膜と
の密着性の評価を行った。各層は互いに密着しており、
溶媒の滲みだし等は認められなかった。
(Evaluation of Adhesion Characteristics) The secondary battery after the discharge test was disassembled, and the adhesion between the positive electrode and the negative electrode and the solid electrolyte membrane was evaluated. Each layer is in close contact with each other,
No seepage of the solvent was observed.

【0045】〔実施例3〕 (重合体調製)実施例1と同様の手法で、アクリロニト
リルユニットが96.0mol%、酢酸ビニルユニット
が4.0mol%の組成のアクリロニトリル系重合体を
得た。
Example 3 (Preparation of Polymer) An acrylonitrile-based polymer having a composition of 96.0 mol% of acrylonitrile units and 4.0 mol% of vinyl acetate units was obtained in the same manner as in Example 1.

【0046】(正極・負極の作製)上記アクリロニトリ
ル系重合体をバインダーとして用い実施例1と同様の手
法で作製したペーストを、集電体である金属箔上に塗布
し、ゲル化させることにより正極および負極を作製し、
直径25mmの円盤状電極に打ち抜いた。
(Preparation of Positive Electrode / Negative Electrode) A paste prepared in the same manner as in Example 1 using the acrylonitrile-based polymer as a binder is coated on a metal foil as a current collector, and gelled to form a positive electrode. And a negative electrode,
It was punched into a disk-shaped electrode having a diameter of 25 mm.

【0047】(アクリロニトリル系繊維製不織布の作
製)上記のアクリロニトリルユニットが96.0mol
%、酢酸ビニルユニットが4.0mol%のアクリロニ
トリル系重合体25重量部をジメチルアセトアミド75
重量部に溶解し、湿式紡糸することにより、単繊維繊度
1.0デニールのアクリロニトリル系繊維を得た。この
繊維を5mmにカットしたチョップドファイバー70重
量部とポリプロピレンパルプ(三井化学(株)製SWP
Y600)30重量部を所定の方法で水に分散し、標
準角形シートマシンを用いてJISP−8209法に準
じて抄紙を行い、乾燥後、165℃で加圧下に熱処理を
行い、紙状の不織布シートを得た。得られた不織布シー
ト中のポリプロピレンパルプは互いに熱融着し、多孔質
の支持相を形成していた。上記の如くして得た不織布シ
ートの坪量は42g/m2 、厚さ65μmであり、この
シートの引っ張り強さは15mm幅で28.7Nであっ
た。この不織布シートは紙類似の不透明な白色物であっ
た。この不織布シートを直径27mmの円盤状に打ち抜
き固体電解質形成用不織布とした。
(Preparation of Acrylonitrile Fiber Nonwoven Fabric) The above acrylonitrile unit was 96.0 mol.
%, 25 parts by weight of an acrylonitrile-based polymer having a vinyl acetate unit of 4.0 mol% in dimethylacetamide 75
The acrylonitrile-based fiber having a single fiber fineness of 1.0 denier was obtained by dissolving it in parts by weight and wet spinning. 70 parts by weight of chopped fiber obtained by cutting this fiber to 5 mm and polypropylene pulp (SWP manufactured by Mitsui Chemicals, Inc.)
Y600) Disperse 30 parts by weight in water by a predetermined method, make a paper according to the JISP-8209 method using a standard square sheet machine, dry, heat-treat under pressure at 165 ° C, and form a paper-like nonwoven fabric. I got a sheet. The polypropylene pulp in the obtained nonwoven fabric sheet was thermally fused to each other to form a porous support phase. The basis weight of the nonwoven fabric sheet obtained as described above was 42 g / m 2 and the thickness was 65 μm, and the tensile strength of this sheet was 15 mm width and 28.7 N. This nonwoven fabric sheet was an opaque white material similar to paper. This nonwoven fabric sheet was punched into a disk having a diameter of 27 mm to form a nonwoven fabric for forming a solid electrolyte.

【0048】(二次電池の作製)上記の正極の電極面
(正極活物質層)の上に、上記の固体電解質形成用不織
布を設置し、固体電解質形成用不織布の他面に負極の電
極面(負極活物質層)を接合し、フッ素樹脂製セルの底
部にステンレス電極を配置し、この上に負極/固体電解
質形成用不織布/正極となるように配置し、さらにその
上にステンレス電極を配置し、バネ圧にて圧力を加え
た。組み立てた上記積層体に実施例1で用いた電解液を
含浸した後、80℃で12時間保持する事により熱処理
を施し、固体電解質形成用不織布のアクリロニトリル系
重合体を溶解、ゲル化して固体電解質膜を形成し、二次
電池とした。
(Preparation of Secondary Battery) The non-woven fabric for forming a solid electrolyte was placed on the electrode surface (positive electrode active material layer) of the positive electrode, and the negative electrode surface was formed on the other surface of the non-woven fabric for forming a solid electrolyte. (Negative electrode active material layer), a stainless steel electrode is placed on the bottom of the fluororesin cell, and a negative electrode / nonwoven fabric for solid electrolyte formation / positive electrode is placed thereon, and a stainless steel electrode is placed thereon. Then, pressure was applied by a spring pressure. After impregnating the assembled laminate with the electrolytic solution used in Example 1, heat treatment is performed by holding the laminate at 80 ° C. for 12 hours to dissolve and gel the acrylonitrile-based polymer of the non-woven fabric for forming a solid electrolyte. A film was formed to obtain a secondary battery.

【0049】(放電容量の測定)実施例1と同様に、上
記の如くして作製した二次電池の充放電試験を行ったと
ころ、この二次電池の放電容量は51mAhであった。
また、この電池の容量維持率を5サイクル目の放電容量
に対する30サイクル後の放電容量の比で定義し測定し
たところ88%であった。
(Measurement of Discharge Capacity) A charge / discharge test of the secondary battery produced as described above was performed in the same manner as in Example 1. As a result, the discharge capacity of this secondary battery was 51 mAh.
The capacity retention of this battery was defined as the ratio of the discharge capacity after 30 cycles to the discharge capacity at the 5th cycle, and was measured to be 88%.

【0050】(密着特性の評価)この放電試験の終わっ
た二次電池を分解し、正極および負極と固体電解質膜と
の密着性の評価を行った。各層は互いに密着しており、
溶媒の滲みだし等は認められなかった。
(Evaluation of Adhesion Characteristics) The secondary battery after the discharge test was disassembled, and the adhesion between the positive electrode and the negative electrode and the solid electrolyte membrane was evaluated. Each layer is in close contact with each other,
No seepage of the solvent was observed.

【0051】〔実施例4〕 (重合体調製)実施例1と同様の手法で、アクリロニト
リルユニットが96.0mol%、酢酸ビニルユニット
が4.0mol%の組成のアクリロニトリル系重合体を
得た。
Example 4 (Preparation of Polymer) An acrylonitrile polymer having a composition of 96.0 mol% of acrylonitrile units and 4.0 mol% of vinyl acetate units was obtained in the same manner as in Example 1.

【0052】(正極・負極の作製)実施例1と同様の手
法で、上記のアクリロニトリル系重合体をバインダーと
して用いて作製したペーストを集電体である金属箔上に
塗布、ゲル化させることにより正極および負極を作製し
た。
(Preparation of Positive Electrode / Negative Electrode) In the same manner as in Example 1, a paste prepared using the acrylonitrile-based polymer as a binder was coated on a metal foil as a current collector and gelled. A positive electrode and a negative electrode were produced.

【0053】(固体電解質膜の作製)上記のアクリロニ
トリル系重合体18重量部をジメチルアセトアミド82
重量部に溶解し、紡糸することにより、単繊維繊度0.
2デニールのアクリロニトリル系繊維を得た。この繊維
を5mmにカットしたのち、該繊維濃度が0.3重量%
になるように粘剤とともに水に分散した液を調製した。
目付50g/m2 のポリプロピレン繊維織物を毎分5m
の速度でネット上を走行させながら、上記アクリロニト
リル系重合体繊維の水分散液を供給し、高圧水流によ
り、ポリプロピレン繊維織物中へポリアクリロニトリル
系カット繊維を交絡させた後、乾燥し、ポリプロピレン
繊維/ポリアクリロニトリル系繊維の重量比が2/3、
厚み350μmの複合シートを作製した。
(Preparation of Solid Electrolyte Membrane) 18 parts by weight of the acrylonitrile-based polymer was dissolved in dimethylacetamide 82
By dissolving in a part by weight and spinning, the fineness of a single fiber is 0.1.
An acrylonitrile fiber of 2 denier was obtained. After cutting this fiber to 5 mm, the fiber concentration becomes 0.3% by weight.
To prepare a liquid dispersed in water together with a viscous agent.
5 m / min of polypropylene fiber woven fabric with a basis weight of 50 g / m 2
An aqueous dispersion of the acrylonitrile-based polymer fiber is supplied while running on the net at a speed of, and the polyacrylonitrile-based cut fiber is entangled in a polypropylene fiber woven fabric by a high-pressure water flow, and then dried. The weight ratio of polyacrylonitrile fiber is 2/3,
A composite sheet having a thickness of 350 μm was prepared.

【0054】この複合シートをポリプロピレン繊維の融
点以上の温度である170℃に設定したプレスロールの
間で加圧下で熱処理したところ、ポリプロピレンは互い
に熱融着し、多孔質の支持相を形成していた。この複合
シートの厚みは142μmであった。この複合シートに
実施例2と同様に電解液を含浸した後、密閉容器中に移
し80℃で12時間保持する事により熱処理を施し、こ
の含浸シートを膨潤・ゲル化させ、固体電解質膜とし
た。この固体電解質膜の厚みは125μm前後で、室温
での導電率は8.6×10-3S/cmであった。
When this composite sheet was heat-treated under pressure between press rolls set at 170 ° C., which is higher than the melting point of the polypropylene fiber, the polypropylene was thermally fused to each other to form a porous support phase. Was. The thickness of this composite sheet was 142 μm. After impregnating the composite sheet with the electrolytic solution in the same manner as in Example 2, the composite sheet was transferred to a closed container and kept at 80 ° C. for 12 hours to perform a heat treatment, thereby swelling and gelling the impregnated sheet to obtain a solid electrolyte membrane. . The thickness of the solid electrolyte membrane was about 125 μm, and the conductivity at room temperature was 8.6 × 10 −3 S / cm.

【0055】(二次電池の作製)実施例1と同様に、上
記の正極、負極および固体電解質膜を用いて、薄膜型の
全固体二次電池を組み立てた。
(Preparation of Secondary Battery) In the same manner as in Example 1, a thin-film type all-solid secondary battery was assembled using the above-described positive electrode, negative electrode and solid electrolyte membrane.

【0056】(放電容量の測定)実施例1と同様に、上
記の如くして作製した二次電池の充放電試験を行ったと
ころ、この二次電池の放電容量は38mAhであった。
またこの電池の容量維持率を5サイクル目の放電容量に
対する30サイクル後の放電容量の比で定義し測定した
ところ86%であった。
(Measurement of Discharge Capacity) A charge / discharge test of the secondary battery prepared as described above was performed in the same manner as in Example 1. As a result, the discharge capacity of the secondary battery was 38 mAh.
The capacity retention of the battery was defined as the ratio of the discharge capacity after 30 cycles to the discharge capacity at the 5th cycle, and was measured to be 86%.

【0057】(密着特性の評価)この放電試験の終わっ
た二次電池を分解し、正極および負極と固体電解質膜と
の密着性の評価を行った。各層は互いに密着しており、
溶媒の滲みだし等は認められなかった。
(Evaluation of Adhesion Characteristics) The secondary battery after this discharge test was disassembled, and the adhesion between the positive electrode and the negative electrode and the solid electrolyte membrane was evaluated. Each layer is in close contact with each other,
No seepage of the solvent was observed.

【0058】〔実施例5〕実施例1と同様にしてアクリ
ロニトリルユニットが93.5mol%、酢酸ビニルユ
ニットが6.5mol%のアクリロニトリル/酢酸ビニ
ル共重合体を調製した。ここで得られた重合体の分子量
は4.0×105 であった。また上記アクリロニトリル
系重合体を用い実施例1と同様の手法で正極、負極およ
び固体電解質膜を調製した。この際、電解液として、プ
ロピレンカーボネート(比誘電率65)30重量部、エ
チレンカーボネート(比誘電率90)40重量部、およ
びジエチルカーボネート(比誘電率2.8)30重量部
を混合した溶媒に、支持電解質としてLiPF6 を1M
/リットルとなるように溶解したものを用いた。ここで
得られた固体電解質膜の電気伝導度は9.4×10-2
/cmであった。
Example 5 An acrylonitrile / vinyl acetate copolymer having an acrylonitrile unit of 93.5 mol% and a vinyl acetate unit of 6.5 mol% was prepared in the same manner as in Example 1. The molecular weight of the polymer obtained here was 4.0 × 10 5 . Further, a positive electrode, a negative electrode and a solid electrolyte membrane were prepared in the same manner as in Example 1 using the acrylonitrile-based polymer. At this time, a solvent obtained by mixing 30 parts by weight of propylene carbonate (relative dielectric constant: 65), 40 parts by weight of ethylene carbonate (relative dielectric constant: 90), and 30 parts by weight of diethyl carbonate (relative dielectric constant: 2.8) was used as an electrolytic solution. 1M LiPF 6 as supporting electrolyte
Per liter was used. The electric conductivity of the obtained solid electrolyte membrane is 9.4 × 10 −2 S
/ Cm.

【0059】実施例1と同様に、上記の如くして作製し
たこれら正極、負極および固体電解質膜を組合せ二次電
池を構成し、その充放電特性を測定したところ、放電容
量は54mAh、容量維持率は92%であった。また、
正極および負極と固体電解質膜との密着性にも問題はな
かった。
As in Example 1, a secondary battery was constructed by combining the positive electrode, the negative electrode and the solid electrolyte membrane produced as described above, and the charge / discharge characteristics were measured. The discharge capacity was 54 mAh, and the capacity was maintained. The rate was 92%. Also,
There was no problem in the adhesion between the positive and negative electrodes and the solid electrolyte membrane.

【0060】〔実施例6〕実施例1と同様にしてアクリ
ロニトリルユニットが98.4mol%、アクリル酸エ
チルユニットが1.6mol%のアクリロニトリル/ア
クリル酸エチル系共重合体を調製した。ここで得られた
重合体の分子量は4.5×105 であった。また実施例
1と同様の手法で正極、負極および固体電解質膜を調製
した。この際、電解液としては、実施例2と同様に、プ
ロピレンカーボネート30重量部、エチレンカーボネー
ト40重量部、ジエチルカーボネート30重量部を混合
した溶媒に、支持電解質としてLiPF6 を1M/リッ
トルとなるように溶解したものを用いた。ここで得られ
た固体電解質膜の電気伝導度は8.9×10-2S/cm
であった。
Example 6 An acrylonitrile / ethyl acrylate copolymer having an acrylonitrile unit of 98.4 mol% and an ethyl acrylate unit of 1.6 mol% was prepared in the same manner as in Example 1. The molecular weight of the obtained polymer was 4.5 × 10 5 . A positive electrode, a negative electrode, and a solid electrolyte membrane were prepared in the same manner as in Example 1. At this time, as in the case of Example 2, the solvent used was a mixture of 30 parts by weight of propylene carbonate, 40 parts by weight of ethylene carbonate, and 30 parts by weight of diethyl carbonate, and LiPF 6 was 1 M / liter as a supporting electrolyte. Was used. The electric conductivity of the obtained solid electrolyte membrane is 8.9 × 10 −2 S / cm.
Met.

【0061】実施例1と同様に、正極、負極および固体
電解質膜を組合せ二次電池を構成し、その充放電特性を
測定したところ、放電容量は51mAh、容量維持率は
91%であった。また、正極および負極と固体電解質膜
との密着性にも問題はなかった。
A secondary battery was constructed by combining the positive electrode, the negative electrode and the solid electrolyte membrane in the same manner as in Example 1, and the charge / discharge characteristics were measured. The discharge capacity was 51 mAh and the capacity retention was 91%. In addition, there was no problem in the adhesion between the positive and negative electrodes and the solid electrolyte membrane.

【0062】〔実施例7〕実施例1と同様にしてアクリ
ロニトリルユニットが100mol%、比誘電率6.5
のアクリロニトリル重合体を調製した。ここで得られた
重合体の分子量は3.8×105 であった。また、実施
例1と同様の手法で正極、負極および固体電解質膜を調
製した。この際、電解液としてプロピレンカーボネート
80重量部、エチレンカーボネート20重量部を混合し
た溶媒に、支持電解質としてLiPF6 を1M/リット
ルとなるように溶解したものを用いた。ここで得られた
固体電解質の電気伝導度は5.3×10-3S/cmであ
った。
[Example 7] In the same manner as in Example 1, the acrylonitrile unit was 100 mol%, and the relative dielectric constant was 6.5.
Acrylonitrile polymer was prepared. The molecular weight of the polymer obtained here was 3.8 × 10 5 . A positive electrode, a negative electrode, and a solid electrolyte membrane were prepared in the same manner as in Example 1. At this time, a solution prepared by dissolving LiPF 6 at a concentration of 1 M / liter as a supporting electrolyte in a solvent obtained by mixing 80 parts by weight of propylene carbonate and 20 parts by weight of ethylene carbonate as an electrolytic solution was used. The electric conductivity of the solid electrolyte obtained here was 5.3 × 10 −3 S / cm.

【0063】これら正極、負極および固体電解質膜を実
施例1と同様にして組合せ二次電池を構成し、その充放
電特性を測定したところ、放電容量は53mAh、容量
維持率は89%であった。また、正極および負極と固体
電解質膜層との密着性にも問題はなかった。
A secondary battery was constructed by combining the positive electrode, the negative electrode, and the solid electrolyte membrane in the same manner as in Example 1. The charge / discharge characteristics were measured. The discharge capacity was 53 mAh and the capacity retention was 89%. . In addition, there was no problem in the adhesion between the positive and negative electrodes and the solid electrolyte membrane layer.

【0064】〔比較例1〕実施例1と同様にしてアクリ
ロニトリルユニットが100mol%のアクリロニトリ
ル重合体を調製した。ここで得られた重合体の分子量は
3.8×105 であった。電解液として、プロピレンカ
ーボネート30重量部、エチレンカーボネート40重量
部、ジエチルカーボネート30重量部を混合した溶媒
に、支持電解質としてLiPF6 を1M/リットルとな
るように溶解したものを用い、アクリロニトリル重合体
の溶解を試みたが、ポリマー粉体が一部膨潤したのみで
溶解は認められなかった。
Comparative Example 1 An acrylonitrile polymer containing 100 mol% of acrylonitrile units was prepared in the same manner as in Example 1. The molecular weight of the polymer obtained here was 3.8 × 10 5 . As an electrolytic solution, a solution prepared by dissolving LiPF 6 at a concentration of 1 M / liter as a supporting electrolyte in a solvent in which 30 parts by weight of propylene carbonate, 40 parts by weight of ethylene carbonate, and 30 parts by weight of diethyl carbonate was used was used. An attempt was made to dissolve the polymer powder, but the polymer powder only partially swelled and was not dissolved.

【0065】〔実施例8〕 (重合体調製)実施例1と同様にしてアクリロニトリル
ユニットが93.5mol%、酢酸ビニルユニットが
6.5mol%のアクリロニトリル/酢酸ビニル系共重
合体を調製した。ここで得られた重合体の分子量は4.
0×105 であった。
Example 8 (Preparation of polymer) An acrylonitrile / vinyl acetate copolymer having an acrylonitrile unit of 93.5 mol% and a vinyl acetate unit of 6.5 mol% was prepared in the same manner as in Example 1. The molecular weight of the polymer obtained here is 4.
It was 0 × 10 5 .

【0066】(正極の作製)リチウム・コバルト複合酸
化物(LiCoO2 )を正極活物質として用い、この正
極活物質50重量部に対し、導電材としてアセチレンブ
ラック5重量部、バインダーポリマーとして上記アクリ
ロニトリル/酢酸ビニル系共重合体3重量部およびポリ
フッ化ビニリデン2重量部を加え、混合した。N−メチ
ルピロリドンにLiPF6 を0.2M/リットルとなる
ように溶かした電解液50重量部を、この混合物に加
え、加熱・混合することにより均一なペースト状物を調
製した。調製は窒素雰囲気下で行った。このペースト状
物をアルゴン雰囲気下のもと正極集電体のアルミ箔の上
に均一に塗布し、さらに150℃に設定した熱風乾燥機
中で溶剤を揮発させた。乾燥後塗布液は硬い皮膜を形成
した。プロピレンカーボネートにLiPF6 を1M/リ
ットルとなるように溶かした電解液に、この皮膜をさら
に室温で10時間浸漬し、皮膜を膨潤処理した。
(Preparation of Positive Electrode) Lithium-cobalt composite oxide (LiCoO 2 ) was used as a positive electrode active material, and 50 parts by weight of the positive electrode active material was 5 parts by weight of acetylene black as a conductive material, and the above-mentioned acrylonitrile / binder was used as a binder polymer. 3 parts by weight of the vinyl acetate copolymer and 2 parts by weight of polyvinylidene fluoride were added and mixed. 50 parts by weight of an electrolytic solution obtained by dissolving LiPF 6 in N-methylpyrrolidone at a concentration of 0.2 M / liter was added to this mixture, and the mixture was heated and mixed to prepare a uniform paste. Preparation was performed under a nitrogen atmosphere. This paste was uniformly applied on an aluminum foil of a positive electrode current collector under an argon atmosphere, and the solvent was volatilized in a hot-air dryer set at 150 ° C. After drying, the coating solution formed a hard film. This film was further immersed in an electrolyte solution obtained by dissolving LiPF 6 in propylene carbonate at a concentration of 1 M / liter at room temperature for 10 hours to swell the film.

【0067】(負極の作製)非晶質炭素粉末を負極活物
質として用い、この負極活物質60重量部に対し、バイ
ンダーポリマーとして上記アクリロニトリル/酢酸ビニ
ル系共重合体3重量部およびポリフッ化ビニリデン2重
量部を加え、混合した。N−メチルピロリドンにLiP
6 を0.2M/リットルとなるように溶かした電解液
50重量部を、この混合物に加え、加熱・混合すること
により均一なペースト状物を調製した。調製は窒素雰囲
気下で行った。このペースト状物をアルゴン雰囲気下の
もと負極集電体の銅箔の上に均一に塗布し、さらに15
0℃に設定した熱風乾燥機中で溶剤を揮発させた。乾燥
後塗布液は硬い皮膜を形成した。プロピレンカーボネー
トにLiPF6 を1M/リットルとなるように溶かした
電解液に、この皮膜をさらに室温で10時間浸漬し、皮
膜を膨潤処理した。
(Preparation of Negative Electrode) Amorphous carbon powder was used as a negative electrode active material, and 3 parts by weight of the acrylonitrile / vinyl acetate copolymer and 3 parts by weight of polyvinylidene fluoride Parts by weight were added and mixed. LiP to N-methylpyrrolidone
50 parts by weight of an electrolytic solution in which F 6 was dissolved at a concentration of 0.2 M / liter was added to this mixture, and the mixture was heated and mixed to prepare a uniform paste-like substance. Preparation was performed under a nitrogen atmosphere. This paste was uniformly coated on a copper foil of a negative electrode current collector under an argon atmosphere.
The solvent was volatilized in a hot air dryer set at 0 ° C. After drying, the coating solution formed a hard film. This film was further immersed in an electrolyte solution obtained by dissolving LiPF 6 in propylene carbonate at a concentration of 1 M / liter at room temperature for 10 hours to swell the film.

【0068】(固体電解質膜の作製)上記アクリロニト
リル/酢酸ビニル共重合体11重量部に対し、プロピレ
ンカーボネートにLiPF6 を1M/リットルとなるよ
うに溶かした電解液89重量部を加え、加熱・混合する
ことにより均一なペースト状物を調製した。調製は窒素
雰囲気下で行った。このペースト状物をアルゴン雰囲気
下のもと、厚さ200μmのポリエステルフィルム上に
均一に塗布した。塗布後室温まで徐冷したところ、同様
に塗布液は流動性を失い不透明なゲル状の皮膜を形成し
た。この皮膜の厚みを測定したところ95μmであっ
た。この固体電解質の25℃での試料の電気伝導度は
6.8×10-3S/cmであった。
(Preparation of Solid Electrolyte Membrane) To 11 parts by weight of the acrylonitrile / vinyl acetate copolymer, 89 parts by weight of an electrolyte obtained by dissolving LiPF 6 in propylene carbonate at a concentration of 1 M / liter were added, followed by heating and mixing. Thus, a uniform paste was prepared. Preparation was performed under a nitrogen atmosphere. The paste was uniformly applied on a 200 μm-thick polyester film under an argon atmosphere. When gradually cooled to room temperature after coating, the coating liquid similarly lost its fluidity and formed an opaque gel-like film. When the thickness of this film was measured, it was 95 μm. The electrical conductivity of the sample at 25 ° C. of the solid electrolyte was 6.8 × 10 −3 S / cm.

【0069】(二次電池の作製)上記の如くして作製し
た正極、負極および固体電解質膜を用いて、実施例1と
同様に、薄膜型の全固体二次電池を組み立てた。さら
に、この二次電池を80℃のオーブン中で5分間熱処理
を施した。
(Preparation of Secondary Battery) A thin-film type all solid secondary battery was assembled in the same manner as in Example 1 using the positive electrode, the negative electrode and the solid electrolyte membrane prepared as described above. Further, this secondary battery was subjected to a heat treatment in an oven at 80 ° C. for 5 minutes.

【0070】(放電容量の測定)上記二次電池を室温
(24℃)下にて、2.45mAで4.0Vまで充電し
た後、2.45mAで2.0Vまで放電する工程を1サ
イクルとする充放電試験を行い、5サイクル目の放電容
量を求めた。この二次電池の放電容量は50mAhであ
った。またこの電池の容量維持率を5サイクル目の放電
容量に対する30サイクル後の放電容量の比で定義し測
定したところ84%であった。
(Measurement of Discharge Capacity) A step of charging the above secondary battery at 4.05 V at 2.45 mA at room temperature (24 ° C.) and then discharging it to 2.0 V at 2.45 mA is defined as one cycle. And a discharge capacity at the fifth cycle was determined. The discharge capacity of this secondary battery was 50 mAh. The capacity retention of the battery was defined as the ratio of the discharge capacity after 30 cycles to the discharge capacity at the 5th cycle, and was found to be 84%.

【0071】(密着特性の評価)この放電試験の終わっ
た二次電池を分解し、正極および負極と固体電解質膜と
の密着性の評価を行った。各層は互いに密着しており、
溶媒の滲みだし等は認められなかった。
(Evaluation of Adhesion Characteristics) The secondary battery after the discharge test was disassembled, and the adhesion between the positive electrode and the negative electrode and the solid electrolyte membrane was evaluated. Each layer is in close contact with each other,
No seepage of the solvent was observed.

【0072】[0072]

【発明の効果】以上説明したように、本発明の全固体二
次電池にあっては、電解質層がゲル状有機ポリマー電解
質からなり、正極が正極活物質とゲル状有機ポリマー電
解質とからなり、負極が負極活物質とゲル状有機ポリマ
ー電解質とからなるので、電解質層と正極、負極との密
着性は良好であり、本発明の全固体二次電池を過酷な条
件下で使用しても、その界面剥離を生じることはなく、
極めてサイクル特性の良好な電池となる。また、本発明
の全固体二次電池は、正極および負極と電解質層との接
触界面の接合性が良好なため、界面インピーダンスが極
めて小さく、高容量で大電流放電特性に優れた二次電池
となるという大きな特徴を有している。
As described above, in the all solid state secondary battery of the present invention, the electrolyte layer is made of a gel organic polymer electrolyte, the positive electrode is made of a positive electrode active material and a gel organic polymer electrolyte, Since the negative electrode is composed of the negative electrode active material and the gel organic polymer electrolyte, the adhesion between the electrolyte layer and the positive electrode, the negative electrode is good, and even when the all-solid secondary battery of the present invention is used under severe conditions, Without causing the interfacial delamination,
A battery with extremely good cycle characteristics is obtained. Further, the all-solid-state secondary battery of the present invention is a secondary battery that has a very small interface impedance, a high capacity, and an excellent high-current discharge characteristic because of good bonding at the contact interface between the positive electrode and the negative electrode and the electrolyte layer. It has a great feature of becoming.

【0073】また、前記ゲル状有機ポリマー電解質が、
比誘電率4以上の有機ポリマーと、非プロトン性溶媒
と、電解質塩とを有する組成物からなる場合、全固体二
次電池におけるイオン移動性を良好なものとすることが
できる。また、前記有機ポリマーが、アクリロニトリル
系重合体である場合、アクリロニトリル系重合体の非プ
ロトン性溶媒に対する親和性が高いため、ゲル状有機ポ
リマー電解質を作りやすくなり、また、電解質塩との親
和性も高いため、高イオン導電性のゲルポリマーとする
ことができるため、全固体二次電池をさらに高容量化す
ることができる。また、前記アクリロニトリル系重合体
が、アクリロニトリルユニットを50モル%以上含有す
る(共)重合体である場合、アクリロニトリル系重合体
の非プロトン性溶媒への溶解性を良好に保持しうるとと
もに、得られるゲル状固体電解質のイオン伝導度を良好
なものとすることができる。また、前記非プロトン性溶
媒が、カーボネート系溶媒を主体とするものである場
合、正極または負極と、有機ポリマー電解質層との間の
密着性をさらに良好にすることができ、層間インピーダ
ンスがさらに低下した二次電池とすることができる。
Further, the gel organic polymer electrolyte is
When the composition includes an organic polymer having a relative dielectric constant of 4 or more, an aprotic solvent, and an electrolyte salt, ion mobility in an all solid state secondary battery can be improved. Further, when the organic polymer is an acrylonitrile-based polymer, the acrylonitrile-based polymer has a high affinity for an aprotic solvent, so that it is easy to form a gel-like organic polymer electrolyte, and the affinity with an electrolyte salt is also high. Since it is high, a gel polymer having high ionic conductivity can be obtained, so that the capacity of the all-solid secondary battery can be further increased. When the acrylonitrile-based polymer is a (co) polymer containing 50 mol% or more of an acrylonitrile unit, the acrylonitrile-based polymer can maintain good solubility in an aprotic solvent and can be obtained. The ionic conductivity of the gelled solid electrolyte can be improved. Further, when the aprotic solvent is mainly composed of a carbonate-based solvent, the adhesion between the positive electrode or the negative electrode and the organic polymer electrolyte layer can be further improved, and the interlayer impedance further decreases. A secondary battery can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例における全固体二次電池の側断面図で
ある。
FIG. 1 is a side sectional view of an all solid state secondary battery in an example.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 固体電解質膜(電解質層) DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Solid electrolyte membrane (electrolyte layer)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宝迫 芳彦 広島県大竹市御幸町20番1号 三菱レイヨ ン株式会社中央技術研究所内 (72)発明者 浜田 光夫 広島県大竹市御幸町20番1号 三菱レイヨ ン株式会社中央技術研究所内 (72)発明者 大類 研 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 (72)発明者 明石 寛之 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 (72)発明者 青木 正裕 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 Fターム(参考) 5H029 AJ03 AJ05 AJ06 AJ11 AJ12 AJ15 AK03 AK05 AL06 AL07 AL12 AM00 AM01 AM02 AM03 AM07 AM16 BJ04 DJ07 DJ09 DJ15 HJ07 HJ20  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshihiko Hosako 20-1 Miyukicho, Otake City, Hiroshima Prefecture Mitsubishi Rayon Co., Ltd. Central Research Laboratory (72) Inventor Mitsuo Hamada 201-1 Miyukicho, Otake City, Hiroshima Prefecture No. 72 in Central Research Laboratory, Mitsubishi Rayon Co., Ltd. (72) Inventor Taiken Lab No. 6-35, Kita-Shinagawa, Shinagawa-ku, Tokyo Inside Sony Corporation (72) Inventor Hiroyuki Akashi 6-7, Kita-Shinagawa, Shinagawa-ku, Tokyo No. 35 in Sony Corporation (72) Inventor Masahiro Aoki 6-7-35 Kita Shinagawa, Shinagawa-ku, Tokyo F-term in Sony Corporation (reference) 5H029 AJ03 AJ05 AJ06 AJ11 AJ12 AJ15 AK03 AK05 AL06 AL07 AL12 AM00 AM01 AM02 AM03 AM07 AM16 BJ04 DJ07 DJ09 DJ15 HJ07 HJ20

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 正極と負極との間に、ゲル状有機ポリマ
ー電解質からなる電解質層を挿入、固定化した構造を有
する全固体二次電池であって、 正極が、正極活物質とゲル状有機ポリマー電解質とから
なり、 負極が、負極活物質とゲル状有機ポリマー電解質とから
なることを特徴とする全固体二次電池。
1. An all-solid secondary battery having a structure in which an electrolyte layer made of a gel organic polymer electrolyte is inserted and fixed between a positive electrode and a negative electrode, wherein the positive electrode comprises a positive electrode active material and a gel organic An all-solid secondary battery comprising a polymer electrolyte, wherein the negative electrode comprises a negative electrode active material and a gel organic polymer electrolyte.
【請求項2】 前記ゲル状有機ポリマー電解質が、比誘
電率4以上の有機ポリマーと、非プロトン性溶媒と、電
解質塩とを有する均一組成物からなることを特徴とする
請求項1記載の全固体二次電池。
2. The gel organic polymer electrolyte according to claim 1, wherein the gel organic polymer electrolyte is a homogeneous composition having an organic polymer having a relative dielectric constant of 4 or more, an aprotic solvent, and an electrolyte salt. Solid secondary battery.
【請求項3】 前記有機ポリマーが、アクリロニトリル
系重合体であることを特徴とする請求項2記載の全固体
二次電池。
3. The all-solid secondary battery according to claim 2, wherein the organic polymer is an acrylonitrile-based polymer.
【請求項4】 前記アクリロニトリル系重合体が、アク
リロニトリルユニットを50モル%以上含有する(共)
重合体であることを特徴とする請求項3記載の全固体二
次電池。
4. The acrylonitrile-based polymer contains at least 50 mol% of an acrylonitrile unit (co).
The all-solid secondary battery according to claim 3, which is a polymer.
【請求項5】 前記正極が、アクリロニトリル系重合体
と、非プロトン性溶媒と、電解質塩と、正極活物質とを
有する組成物を製膜し、ゲル化したものであり、 前記負極が、アクリロニトリル系重合体と、非プロトン
性溶媒と、電解質塩と、負極活物質とを有する組成物を
製膜し、ゲル化したものであることを特徴とする請求項
1ないし4いずれか一項に記載の全固体二次電池。
5. The method according to claim 5, wherein the positive electrode is formed by forming a film of a composition including an acrylonitrile-based polymer, an aprotic solvent, an electrolyte salt, and a positive electrode active material into a gel, and the negative electrode is formed of acrylonitrile. The composition comprising a system polymer, an aprotic solvent, an electrolyte salt, and a negative electrode active material is formed into a film, and the composition is gelled. The method according to any one of claims 1 to 4, wherein All-solid rechargeable battery.
【請求項6】 前記正極が、アクリロニトリル系重合体
と、ポリフッ化ビニリデンと、非プロトン性溶媒と、電
解質塩と、正極活物質とを有する組成物を製膜し、ゲル
化させたものであり、 前記負極が、アクリロニトリル系重合体と、ポリフッ化
ビニリデンと、非プロトン性溶媒と、電解質塩と、負極
活物質とを有する組成物を製膜し、ゲル化させたもので
あることを特徴とする請求項1ないし4いずれか一項に
記載の全固体二次電池。
6. The positive electrode is obtained by forming a film of a composition comprising an acrylonitrile-based polymer, polyvinylidene fluoride, an aprotic solvent, an electrolyte salt, and a positive electrode active material, and gelling the composition. The negative electrode, an acrylonitrile-based polymer, polyvinylidene fluoride, an aprotic solvent, an electrolyte salt, and a film formed of a composition having a negative electrode active material, characterized in that it is gelled. The all-solid-state secondary battery according to claim 1.
【請求項7】 前記電解質層は、アクリロニトリル系重
合体と、非プロトン性溶媒と、電解質塩とを有する組成
物、あるいはアクリロニトリル系重合体と、ポリフッ化
ビニリデンと、非プロトン性溶媒と、電解質塩とを有す
る組成物がゲル化したものであることを特徴とする請求
項1ないし6いずれか一項に記載の全固体二次電池。
7. The electrolyte layer comprises a composition having an acrylonitrile-based polymer, an aprotic solvent, and an electrolyte salt, or an acrylonitrile-based polymer, polyvinylidene fluoride, an aprotic solvent, and an electrolyte salt. 7. The all-solid secondary battery according to claim 1, wherein the composition having the following is a gelled composition.
【請求項8】 前記電解質層は、アクリロニトリル系重
合体からなる繊維またはパルプ状物より作った織布、不
織布、紙状物のいずれか1種に、電解質塩が溶解した非
プロトン性溶媒を含浸し、これがゲル化したものである
ことを特徴とする請求項1ないし7いずれか一項に記載
の全固体二次電池。
8. The electrolyte layer is formed by impregnating any one of a woven fabric, a nonwoven fabric, and a paper-like material made of a fiber or a pulp-like material made of an acrylonitrile-based polymer with an aprotic solvent in which an electrolyte salt is dissolved. The all-solid secondary battery according to any one of claims 1 to 7, wherein the all-solid secondary battery is gelled.
【請求項9】 前記非プロトン性溶媒が、カーボネート
系溶媒を含有するものであることを特徴とする請求項2
ないし8いずれか一項に記載の全固体二次電池。
9. The method according to claim 2, wherein the aprotic solvent contains a carbonate-based solvent.
9. The all-solid-state secondary battery according to any one of claims 8 to 8.
【請求項10】 前記正極または負極の表面に、金属薄
膜からなる集電体が設けられていることを特徴とする請
求項1ないし9のいずれか一項に記載の全固体二次電
池。
10. The all-solid secondary battery according to claim 1, wherein a current collector made of a metal thin film is provided on a surface of the positive electrode or the negative electrode.
【請求項11】 前記負極として、負極活物質とゲル状
有機ポリマー電解質とからなるものの代わりに、リチウ
ム金属またはリチウム合金を用いたことを特徴とする請
求項1ないし10のいずれか一項に記載の全固体二次電
池。
11. The negative electrode according to claim 1, wherein a lithium metal or a lithium alloy is used instead of a negative electrode active material and a gel organic polymer electrolyte. All-solid rechargeable battery.
【請求項12】 前記電解質層を構成する織布、不織布
または紙状物が、アクリロニトリル系重合体からなるパ
ルプ状物、繊維の少なくとも1種と、フッ化ビニリデン
またはポリオレフィンからなる繊維、パルプ状物、フィ
ブリル状物の少なくとも1種との混合物にて構成されて
いることを特徴とする請求項8記載の全固体二次電池。
12. The woven fabric, nonwoven fabric or paper-like material constituting the electrolyte layer is a pulp-like material made of an acrylonitrile-based polymer, a fiber or a pulp-like material made of at least one kind of fiber and vinylidene fluoride or polyolefin. 9. The all-solid-state secondary battery according to claim 8, comprising a mixture with at least one of fibril-like substances.
JP30597998A 1998-10-27 1998-10-27 All solid state secondary battery Expired - Fee Related JP4161431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30597998A JP4161431B2 (en) 1998-10-27 1998-10-27 All solid state secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30597998A JP4161431B2 (en) 1998-10-27 1998-10-27 All solid state secondary battery

Publications (2)

Publication Number Publication Date
JP2000133310A true JP2000133310A (en) 2000-05-12
JP4161431B2 JP4161431B2 (en) 2008-10-08

Family

ID=17951615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30597998A Expired - Fee Related JP4161431B2 (en) 1998-10-27 1998-10-27 All solid state secondary battery

Country Status (1)

Country Link
JP (1) JP4161431B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218385A (en) * 2006-09-19 2008-09-18 Sony Corp Electrode, method for manufacturing the electrode, and battery
JP2008293719A (en) * 2007-05-23 2008-12-04 Sony Corp Gelatinous electrolyte secondary battery
JP2009117052A (en) * 2007-11-01 2009-05-28 Nissan Motor Co Ltd Method and device for manufacturing bipolar battery
JP2009537066A (en) * 2006-05-12 2009-10-22 エイ 123 システムズ,インク. Apparatus and method for processing a coated sheet
JP2010147031A (en) * 2010-02-04 2010-07-01 Sony Corp Gel electrolyte secondary battery
US11342578B2 (en) 2017-05-15 2022-05-24 Lg Energy Solution, Ltd. Method for manufacturing solid electrolyte membrane for all solid type battery and solid electrolyte membrane manufactured by the method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009537066A (en) * 2006-05-12 2009-10-22 エイ 123 システムズ,インク. Apparatus and method for processing a coated sheet
JP2008218385A (en) * 2006-09-19 2008-09-18 Sony Corp Electrode, method for manufacturing the electrode, and battery
JP2008293719A (en) * 2007-05-23 2008-12-04 Sony Corp Gelatinous electrolyte secondary battery
JP2009117052A (en) * 2007-11-01 2009-05-28 Nissan Motor Co Ltd Method and device for manufacturing bipolar battery
JP2010147031A (en) * 2010-02-04 2010-07-01 Sony Corp Gel electrolyte secondary battery
US11342578B2 (en) 2017-05-15 2022-05-24 Lg Energy Solution, Ltd. Method for manufacturing solid electrolyte membrane for all solid type battery and solid electrolyte membrane manufactured by the method
US11908993B2 (en) 2017-05-15 2024-02-20 Lg Energy Solution, Ltd. Method for manufacturing solid electrolyte membrane for all solid type battery and solid electrolyte membrane manufactured by the method

Also Published As

Publication number Publication date
JP4161431B2 (en) 2008-10-08

Similar Documents

Publication Publication Date Title
JP4832430B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery
US6114068A (en) Sheet for forming a polymer gelled electrolyte, a polymer gelled electrolyte using it, and a method for manufacture thereof
CN110323493B (en) Combined sheet of positive pole piece and polymer electrolyte membrane and preparation method thereof
JP5174376B2 (en) Non-aqueous lithium ion secondary battery
US11749831B2 (en) Li—S battery with carbon coated separator
CA2662423C (en) Polymer electrolyte comprising a ketonic carbonyl group and electrochemical device comprising said electrolyte
JP4088755B2 (en) Nonaqueous electrolyte secondary battery
CN112038644A (en) Functional coating, electrode plate and electrochemical device
CN114094039B (en) Electrode plate and lithium ion battery comprising same
Hwang et al. Poly (vinylidene fluoride-hexafluoropropylene)-based membranes for lithium batteries
JP3443773B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
CN112615111A (en) High-liquid-retention self-repairing diaphragm, preparation method thereof and lithium ion battery
KR20170050278A (en) Polymer Electrolyte comprising Lithium Nitrate and All-Solid-State Battery comprising The Same
JP2000133271A (en) Binder for binding electrode active material
JPH11273452A (en) Porous sheet for forming gelatinous solid electrolyte and gelatinous solid electrolyte sheet using it
JP4161431B2 (en) All solid state secondary battery
CN115483431B (en) Diaphragm-free solid lithium ion battery and preparation method thereof
JP4318233B2 (en) Lithium secondary battery and manufacturing method thereof
CN113363573B (en) Preparation method of solid electrolyte, solid electrolyte and all-solid-state battery
KR102640767B1 (en) Polymeric solid electrolyte with improved mechanical strength and method for preparing the same, and lithium secondary battery comprising the solid electrolyte
JP4350953B2 (en) Lithium secondary battery separator and lithium secondary battery
JP2000058078A (en) Gel polymeric electrolyte and solid electrolyte battery using the same
JP3954682B2 (en) Method for producing polymer solid electrolyte battery
CN111072950A (en) Polyaryletherketone polymer synthesis method, PAEK membrane and PAEK-Al2O3Preparation method and application of composite membrane
JPH09274901A (en) Nonaqueous battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040312

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040312

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040315

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040315

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees