JP2000133058A - Feeding cable - Google Patents

Feeding cable

Info

Publication number
JP2000133058A
JP2000133058A JP10305494A JP30549498A JP2000133058A JP 2000133058 A JP2000133058 A JP 2000133058A JP 10305494 A JP10305494 A JP 10305494A JP 30549498 A JP30549498 A JP 30549498A JP 2000133058 A JP2000133058 A JP 2000133058A
Authority
JP
Japan
Prior art keywords
power supply
cable
cooling
power
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10305494A
Other languages
Japanese (ja)
Inventor
Takashi Hiyougo
隆 兵庫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyoda Automatic Loom Works Ltd filed Critical Toyota Motor Corp
Priority to JP10305494A priority Critical patent/JP2000133058A/en
Publication of JP2000133058A publication Critical patent/JP2000133058A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/302Cooling of charging equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/34Plug-like or socket-like devices specially adapted for contactless inductive charging of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Abstract

PROBLEM TO BE SOLVED: To provide a cable capable of inhibiting a heat generation at the time of charging and having an excellent low cost and handling property. SOLUTION: The feeding cable 2 is constituted of an outgoing passage 6, a coaxial cable 9 provided with a plurality of conductors 7a, 7b, and a return passage 10. The conductive wires 7a, 7b are fixed in a state coaxially disposed making the outgoing passage 6 as a center and a heat generation caused by an electric resistance of the conductors 7a, 7b at the time of charging is cooled. The return passage 10 is helically wound on an outer periphery of the coaxial cable 9 and distributes a cooling water flowing in the outgoing passage 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電池を充電する給
電用ケーブルに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply cable for charging a battery.

【0002】[0002]

【従来の技術】一般に、電気自動車の充電は、地上側に
設置されている電力供給装置の給電用ケーブルの先端に
設けられた送電側カプラを、電気自動車に搭載されてい
る受電側カプラに結合させて充電が行われる。具体的に
は、電力供給装置が商用交流電源等を電圧及び周波数変
換して、例えば、430Vの高周波(100kHz〜3
70kHz)電源を給電用ケーブルを介して送電側カプ
ラの1次コイルに供給するようになっている。
2. Description of the Related Art In general, an electric vehicle is charged by coupling a power transmitting coupler provided at the end of a power supply cable of a power supply device installed on the ground to a power receiving coupler mounted on the electric vehicle. Then, charging is performed. Specifically, the power supply device converts a commercial AC power supply or the like into a voltage and a frequency, and converts the voltage into a high frequency of 430 V (100 kHz to 3 kHz).
(70 kHz) power is supplied to the primary coil of the power transmission side coupler via a power supply cable.

【0003】このような電気自動車の充電装置として
は、充電時間を短くするため、即ち、急速充電を行うた
めに大電力(例えば、80キロワット)タイプの充電装
置が開発されている。
As a charging device for such an electric vehicle, a high-power (for example, 80 kW) type charging device has been developed to shorten the charging time, that is, to perform quick charging.

【0004】ところが、充電装置の大電力化に伴い給電
用ケーブルを高周波の大電流が流れることになり該ケー
ブルの発熱が問題となる。このため従来は、冷却用の水
路を給電用ケーブル内に設けて、該ケーブルの発熱を防
止するようにしていた。
[0004] However, with the increase in power of the charging device, a high-frequency large current flows through the power supply cable, and heat generation of the cable becomes a problem. For this reason, conventionally, a cooling water channel is provided in the power supply cable to prevent the cable from generating heat.

【0005】ここで、大電力(例えば、80キロワッ
ト)タイプの充電装置に適用される給電用ケーブルの断
面図を図5に示す。図5に示すように給電用ケーブル3
0は、その中心側から往路用水路31、導体(シールド
線)32、絶縁層33、導体(シールド線)34、復路
用水路35、絶縁層36となるように形成されている。
つまり、図5に示す給電用ケーブル30では、円環状の
導体32,34の内側及び外側に円筒状の往路用水路3
1と円環状の復路用水路35が同軸上に形成され、冷却
水が往路用水路31を流通して、図示しない送電側カプ
ラ内を循環した後に復路用水路35を流通するようにな
っている。このように、冷却水が往路用水路31と復路
用水路35を流通することによって、導線(シールド
線)32,34の冷却が行われるようになっている。
FIG. 5 is a cross-sectional view of a power supply cable applied to a high-power (for example, 80 kW) type charging device. As shown in FIG.
Numeral 0 is formed so as to be a forward waterway 31, a conductor (shielded wire) 32, an insulating layer 33, a conductor (shielded wire) 34, a return waterway 35, and an insulating layer 36 from the center side thereof.
In other words, in the power supply cable 30 shown in FIG. 5, the cylindrical outward waterway 3 is provided inside and outside the annular conductors 32 and 34.
1 and an annular return water channel 35 are formed coaxially, so that the cooling water flows through the outward water channel 31 and circulates in the power transmitting coupler (not shown), and then flows through the return water channel 35. As described above, the cooling water flows through the outward water passage 31 and the return water passage 35 to cool the conductors (shield wires) 32 and 34.

【0006】[0006]

【発明が解決しようとする課題】ところで、電気自動車
の充電は、電力供給装置の給電用ケーブル30の先端に
設けられた送電側カプラを、電気自動車に搭載されてい
る受電側カプラに結合させて充電が行われるため、給電
用ケーブル30は充電する際に、屈曲、ねじれ、引っ張
り等の外力を受ける。
By the way, the charging of the electric vehicle is performed by coupling the power transmitting coupler provided at the end of the power supply cable 30 of the power supply device to the power receiving coupler mounted on the electric vehicle. Since charging is performed, the power supply cable 30 receives an external force such as bending, twisting, or pulling when charging.

【0007】ところが、給電用ケーブル30では、円筒
状の往路用水路31及び円環状の復路用水路35が同軸
上に形成されているためケーブル30の径が大きくなっ
てしまい、可撓性や耐屈曲性に劣り取り扱い難いものと
なっていた。つまり、図5のような給電用ケーブル30
においては、各水路31,35部分がつぶれないように
補強する必要があり、特に、円環状の復路用水路35を
つぶれないようにするためには、特殊な補強部材が必要
となる。このため、給電用ケーブル30の製造が技術的
に困難となりコストアップを招くといった問題が生じて
しまう。
However, in the power supply cable 30, the diameter of the cable 30 becomes large because the cylindrical outward water path 31 and the annular return water path 35 are formed coaxially, and the flexibility and bending resistance are increased. And it was difficult to handle. That is, the power supply cable 30 as shown in FIG.
In this case, it is necessary to reinforce each of the water passages 31 and 35 so as not to be crushed. In particular, in order to prevent the annular return water passage 35 from being crushed, a special reinforcing member is required. For this reason, there arises a problem that the manufacture of the power supply cable 30 is technically difficult and the cost is increased.

【0008】本発明の目的は、充電時における発熱を抑
制することができ、コスト性及び取り扱い性に優れた給
電用ケーブルを提供することにある。
An object of the present invention is to provide a power supply cable which can suppress heat generation during charging, and which is excellent in cost and handling.

【0009】[0009]

【課題を解決するための手段】請求項1に記載の発明
は、電力を供給する導体と、前記導体の電気抵抗による
発熱を冷却する冷却液を流通させる第1の冷却通路とを
同軸上に形成した同軸ケーブルと、前記同軸ケーブルに
対し別に設けられ、前記第1の冷却通路を流れる冷却液
を流通させる第2の冷却通路を備えたことを特徴として
いる。
According to a first aspect of the present invention, a conductor for supplying electric power and a first cooling passage through which a coolant for cooling heat generated by electric resistance of the conductor flows are coaxially arranged. It is characterized in that a coaxial cable formed and a second cooling passage provided separately from the coaxial cable and through which the cooling liquid flowing through the first cooling passage flows are provided.

【0010】請求項2に記載の発明では、請求項1に記
載の発明において、前記導体は、複数の導線であり、前
記第1の冷却通路を中心として同心状に配置したことを
特徴としている。
According to a second aspect of the present invention, in the first aspect of the present invention, the conductor is a plurality of conductors, and is arranged concentrically around the first cooling passage. .

【0011】請求項3に記載の発明では、請求項2に記
載の発明において、前記複数の導線は、電力供給部材に
対して交流電力を供給するものであり、前記電力供給部
材の一方の端部に接続する導線と、前記電力供給部材の
他方の端部に接続する導線とが第1の冷却通路の回りに
交互に配置されたことを特徴としている。
According to a third aspect of the present invention, in the second aspect of the invention, the plurality of conductors supply AC power to a power supply member, and one end of the power supply member is provided. And a conductor connected to the other end of the power supply member is alternately arranged around the first cooling passage.

【0012】請求項4に記載の発明では、請求項1に記
載の発明において、前記第2の冷却通路を、前記同軸ケ
ーブルの外周に螺旋状に巻き付けたものである。請求項
5に記載の発明では、請求項1に記載の発明において、
前記第2の冷却通路を、前記同軸ケーブルと平行に、か
つ、当接された状態で固定したものである。
According to a fourth aspect of the present invention, in the first aspect of the present invention, the second cooling passage is spirally wound around the outer periphery of the coaxial cable. In the invention according to claim 5, in the invention according to claim 1,
The second cooling passage is fixed in parallel with and in contact with the coaxial cable.

【0013】請求項1に記載の発明によれば、第1の冷
却通路が導体と同軸上に設けられ、第1の冷却通路に流
れる冷却液により導体の電気抵抗による発熱が冷却され
る。そして、第2の冷却通路が同軸ケーブルに対し別に
設けられ、該第2の冷却通路に第1の冷却通路を流れる
冷却液が流通する。その結果、従来では、第1の冷却通
路及び第2の冷却通路が同軸上に形成されていたため、
径が大きくなり耐屈曲性等に劣り、取り扱い難いものと
なっていたが、第2の冷却通路が同軸ケーブルに対し別
に設けられることにより径を小さくすることができ取り
回しが容易となる。これに加え、従来のような特殊な補
強部材を設ける必要がなく、コスト性にも優れたものと
なる。
According to the first aspect of the present invention, the first cooling passage is provided coaxially with the conductor, and the heat generated by the electric resistance of the conductor is cooled by the coolant flowing through the first cooling passage. Then, a second cooling passage is provided separately from the coaxial cable, and the coolant flowing through the first cooling passage flows through the second cooling passage. As a result, conventionally, the first cooling passage and the second cooling passage are formed coaxially,
Although the diameter is large and the bending resistance is inferior and the like, it is difficult to handle. However, since the second cooling passage is provided separately from the coaxial cable, the diameter can be reduced and the handling becomes easy. In addition, there is no need to provide a special reinforcing member as in the related art, and the cost is excellent.

【0014】請求項2に記載の発明によれば、請求項1
に記載の発明の作用に加え、複数の導線が、第1の冷却
通路を中心として同心状に配置されている。その結果、
ケーブルの可撓性及び耐屈曲性の向上を図ることがで
き、取り回し易いものとなる。これに加え、熱のこもり
やすい同軸ケーブルの中心に第1の冷却通路を配置して
いるので、冷却効率の向上を図ることができる。
According to the invention described in claim 2, according to claim 1,
In addition to the operation of the invention described in (1), a plurality of conducting wires are arranged concentrically around the first cooling passage. as a result,
The flexibility and the bending resistance of the cable can be improved, and the cable can be easily handled. In addition, since the first cooling passage is arranged at the center of the coaxial cable in which heat is easily stored, the cooling efficiency can be improved.

【0015】請求項3に記載の発明によれば、請求項2
に記載の発明の作用に加え、電力供給部材に交流電力が
供給されたときにおいて、隣り合う導線に流れる電流の
向きが逆方向となる。つまり、ケーブルのインピーダン
スを小さくすることができる。従って、より高周波、か
つ、より大きな電力を扱うことが可能となる。さらに、
電流の偏りを抑制できるので冷却効率の向上を図ること
ができる。
According to the invention described in claim 3, according to claim 2
In addition to the operation of the invention described in the above, when the AC power is supplied to the power supply member, the direction of the current flowing in the adjacent conductor is reversed. That is, the impedance of the cable can be reduced. Therefore, it is possible to handle higher frequency and higher power. further,
Since the bias of the current can be suppressed, the cooling efficiency can be improved.

【0016】請求項4に記載の発明によれば、請求項1
に記載の発明の作用に加え、第2の冷却通路が、第1の
冷却通路が設けられた同軸ケーブルの外周に螺旋状に巻
き付けられる。その結果、導線から同軸ケーブルの外周
面に伝わった熱を第2の冷却通路により冷却することが
できる。
According to the invention described in claim 4, according to claim 1 of the present invention,
In addition to the effect of the invention described in the above, the second cooling passage is spirally wound around the outer periphery of the coaxial cable provided with the first cooling passage. As a result, heat transmitted from the conductor to the outer peripheral surface of the coaxial cable can be cooled by the second cooling passage.

【0017】請求項5に記載の発明によれば、請求項1
に記載の発明の作用に加え、第2の冷却通路が、同軸ケ
ーブルと平行に、かつ、当接した状態で固定される。
According to the invention described in claim 5, according to claim 1,
In addition to the effect of the invention described in (1), the second cooling passage is fixed in parallel with and in contact with the coaxial cable.

【0018】[0018]

【発明の実施の形態】以下、本発明を非接触型充電装置
に適用される給電用ケーブルに具体化した実施形態を図
1〜図3を用いて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is embodied in a power supply cable applied to a non-contact type charging device will be described in detail with reference to FIGS.

【0019】図1に示すように、本実施形態における非
接触型充電装置は、地上側に設置されている電力供給装
置1からの給電用ケーブル2の先端に設けられた送電側
カプラ3と、電気自動車4に搭載されている受電側カプ
ラ5とを具備している。本実施形態における電気自動車
4への充電は図1のように、電力供給装置1が設置され
ているガレージに車4を駐車して、送電側カプラ3を車
載側の受電側カプラ5に挿入して充電が行われる。
As shown in FIG. 1, the contactless charging device according to the present embodiment includes a power transmission side coupler 3 provided at a tip of a power supply cable 2 from a power supply device 1 installed on the ground side, And a power receiving side coupler 5 mounted on the electric vehicle 4. In order to charge the electric vehicle 4 in the present embodiment, as shown in FIG. 1, the vehicle 4 is parked in a garage where the power supply device 1 is installed, and the power transmission coupler 3 is inserted into the vehicle-mounted power reception coupler 5. Charging is performed.

【0020】具体的には、電力供給装置1は商用交流電
源等を電圧及び周波数変換して、例えば、430V,3
70kHzの高周波電源を給電用ケーブル2を介して送
電側カプラ3に供給するようになっている。さらに、電
力供給装置1は図示しない冷却用ポンプを具備してお
り、該冷却ポンプによる冷却水を用いて給電用ケーブル
2の発熱及び送電側カプラ3の発熱を冷却できるように
なっている。
Specifically, the power supply device 1 converts a commercial AC power supply or the like into a voltage and a frequency, and outputs, for example, 430 V, 3
A high-frequency power of 70 kHz is supplied to the power transmission side coupler 3 via the power supply cable 2. Further, the power supply device 1 is provided with a cooling pump (not shown), so that heat generated by the power supply cable 2 and heat generated by the power transmission side coupler 3 can be cooled by using cooling water from the cooling pump.

【0021】詳述すると、給電用ケーブル2は図2に示
すように、往路用水路6と導線(導体)7a,7bとシ
ース8とから構成される同軸ケーブル9と、復路用水路
10とを備えている。詳しくは、同軸ケーブル9におい
て絶縁体により被覆された8本の導線7a,7bが、樹
脂材からなる円管状の往路用水路6を中心として同心状
に配置した状態で樹脂製のシース8により固定されてい
る。さらに、本実施形態の給電用ケーブル2では、樹脂
材により円管状に形成された復路用水路10が、同軸ケ
ーブル9の外周面に当接した状態で、螺旋状に巻き付け
られている。
More specifically, as shown in FIG. 2, the power supply cable 2 includes a coaxial cable 9 composed of an outgoing water channel 6, conducting wires (conductors) 7a and 7b, and a sheath 8, and a returning water channel 10. I have. More specifically, in the coaxial cable 9, eight conductors 7 a and 7 b covered with an insulator are fixed by a resin sheath 8 in a state where the conductors 7 a and 7 b are arranged concentrically around a circular outgoing water channel 6 made of a resin material. ing. Further, in the power supply cable 2 of the present embodiment, the return waterway 10 formed in a tubular shape by a resin material is spirally wound in a state of contacting the outer peripheral surface of the coaxial cable 9.

【0022】そして、給電用ケーブル2は図3に示す分
岐部11において、導線7a,7bと往路用水路6及び
復路用水路10が分離されるとともに、導線7a,7b
は導線ケーブル12に束ねられる。導線ケーブル12、
往路用水路6及び復路用水路10は送電側カプラ3にそ
れぞれ接続されるようになっている。なお、後述する1
次コイル16の一方の端部に接続する導線7aと1次コ
イル16の他方の端部に接続する導線7bは、図2に示
すように交互に配置され、給電用ケーブル2のインピー
ダンス(リアクタンス)を小さくするようになってい
る。つまり、給電用ケーブル2に交流電力が供給された
ときに、導線7aを流れる電流の向きは、導線7bを流
れる電流に対し逆方向となる。
The power supply cable 2 is separated from the lead wires 7a and 7b, the outgoing water passage 6 and the return water passage 10 at the branch portion 11 shown in FIG.
Are bundled in the conductor cable 12. Lead cable 12,
The outward waterway 6 and the return waterway 10 are connected to the power transmission coupler 3 respectively. In addition, 1 described later
The conductor 7a connected to one end of the secondary coil 16 and the conductor 7b connected to the other end of the primary coil 16 are alternately arranged as shown in FIG. 2, and the impedance (reactance) of the power supply cable 2 Is designed to be smaller. That is, when the AC power is supplied to the power supply cable 2, the direction of the current flowing through the conductor 7a is opposite to the direction of the current flowing through the conductor 7b.

【0023】ここで、送電側カプラ3を図3(a),
(b)を用いて詳しく説明する。図3(a)は送電側カ
プラ3の平面図を示し、図3(b)は、図3(a)にお
ける送電側カプラ3のA−A断面図を示す。
Here, the power transmitting side coupler 3 is shown in FIG.
This will be described in detail with reference to FIG. FIG. 3A is a plan view of the power transmission coupler 3, and FIG. 3B is a cross-sectional view of the power transmission coupler 3 taken along the line AA in FIG.

【0024】送電側カプラ3は、図3(a)に示すよう
に、輪切り状の1次コイル基板13と円柱状の送電側コ
ア(フェライトコア)14と送電側コイルカバー15を
備えている。1次コイル基板13は絶縁基板に銅箔をラ
ミネートして積層した多層基板であり、本実施形態で
は、4枚の銅箔にて1次コイル16を形成している。詳
しくは、1次コイル16となる略C字状の4枚の銅箔が
絶縁基板を介して積層され、その端部をスルーホールに
て電気的に接続することにより、各層間の銅箔に流れる
電流が螺旋状となるように形成されている。なお、1次
コイル基板13の表裏面には1次コイル16を被覆する
絶縁皮膜が形成されている。さらに、1次コイル基板1
3には端子部13aが設けられ、該端子部13aの表面
に1次コイル16から延設された銅箔がラミネートされ
ている。そして、この端子部13aに前述した電力供給
装置1の給電用ケーブル2から分岐した導線ケーブル1
2が電気的に接続されるようになっている。具体的に
は、導線7aが1次コイル16の一方の端部となる1次
コイル基板13の表面における端子部13aに接続さ
れ、導線7bが1次コイル16の他方の端部となる1次
コイル基板13の裏面における端子部13aに接続され
る。
As shown in FIG. 3A, the power transmission side coupler 3 includes a ring-shaped primary coil substrate 13, a cylindrical power transmission side core (ferrite core) 14, and a power transmission side coil cover 15. The primary coil substrate 13 is a multilayer substrate obtained by laminating a copper foil on an insulating substrate. In the present embodiment, the primary coil 16 is formed of four copper foils. Specifically, four substantially C-shaped copper foils serving as the primary coil 16 are laminated via an insulating substrate, and the ends thereof are electrically connected to each other by through holes, so that the copper foil between the respective layers is formed. It is formed so that the flowing current becomes spiral. In addition, an insulating film that covers the primary coil 16 is formed on the front and back surfaces of the primary coil substrate 13. Furthermore, the primary coil substrate 1
3 is provided with a terminal portion 13a, and a copper foil extending from the primary coil 16 is laminated on the surface of the terminal portion 13a. Then, the conductor cable 1 branched from the power supply cable 2 of the power supply device 1 described above is connected to the terminal portion 13a.
2 are electrically connected. Specifically, the conducting wire 7a is connected to the terminal 13a on the surface of the primary coil substrate 13, which is one end of the primary coil 16, and the conducting wire 7b is the other end of the primary coil 16, It is connected to the terminal portion 13a on the back surface of the coil substrate 13.

【0025】送電側コイルカバー15は、図3(a),
(b)に示すように絶縁樹脂製の2つのカバー部材から
なり、該カバー部材の後端側には挿入口17と流入口1
8と流出口19及び把持部を形成するための開口部20
が設けられている。そして、図3(a)に示すように挿
入口17には、導線ケーブル12が挿入され、流入口1
8及び流出口19には、前述した往路用水路6及び復路
用水路10がそれぞれ接続するようになっている。ま
た、送電側コイルカバー15の前端側には円形の開口部
21が設けられ、該開口部21に送電側コア14が挿入
されるようになっている。
The power transmission side coil cover 15 is shown in FIG.
As shown in (b), the cover member is composed of two cover members made of insulating resin, and an insertion port 17 and an inflow port 1 are provided at the rear end side of the cover member.
8 and outlet 19 and opening 20 for forming a gripper
Is provided. Then, as shown in FIG. 3 (a), the lead wire cable 12 is inserted into the insertion port 17,
The outgoing waterway 6 and the returning waterway 10 are connected to the outlet 8 and the outlet 19, respectively. Further, a circular opening 21 is provided at the front end side of the power transmission side coil cover 15, and the power transmission side core 14 is inserted into the opening 21.

【0026】さらに、送電側コイルカバー15の内面に
は、冷却用水路22を形成する溝部23が開口部21の
周縁に設けられており、該溝部23における仕切り部2
4の両側から流入通路部25及び流出通路部26が流入
口18及び流出口19まで延設されている。また、図3
(b)に示すように溝部23の両側には1次コイル基板
13の端部を嵌合した状態で固定する収納溝27が形成
されている。そして、送電側コイルカバー15のカバー
部材間に導線ケーブル12が接続された1次コイル基板
13を収納するとともに開口部21に送電側コア14を
挿入し、2つのカバー部材を圧接した状態で超音波溶着
にて接合して送電側カプラ3が形成される。
Further, on the inner surface of the power transmission side coil cover 15, a groove 23 forming a cooling water channel 22 is provided on the periphery of the opening 21, and the partition 2 in the groove 23 is formed.
4, an inflow passage 25 and an outflow passage 26 extend from both sides to the inflow port 18 and the outflow port 19. FIG.
As shown in (b), storage grooves 27 are formed on both sides of the groove 23 to fix the ends of the primary coil substrate 13 in a fitted state. Then, the primary coil substrate 13 to which the conductor cable 12 is connected is housed between the cover members of the power transmission side coil cover 15, and the power transmission side core 14 is inserted into the opening 21, and the two cover members are pressed against each other. The power transmission side coupler 3 is formed by joining by sonic welding.

【0027】そして、2つのカバー部材を接合して送電
側カプラ3が形成されたときには、図3(a),(b)
に示すようにその内部に冷却用水路22が形成され、流
入口18より流入した冷却水は、冷却用水路22内にお
いて図3(a)に点線矢印で示す方向に循環し流出口1
9から流出する。つまり、図3(b)に示すように1次
コイル基板13の表裏を流れる冷却水により1次コイル
16による発熱を冷却できるようになっている。
When the power transmitting side coupler 3 is formed by joining the two cover members, FIGS. 3 (a) and 3 (b)
As shown in FIG. 3, a cooling water passage 22 is formed therein, and the cooling water flowing from the inlet 18 circulates in the cooling water passage 22 in the direction indicated by the dotted arrow in FIG.
Flow out of 9. That is, as shown in FIG. 3B, heat generated by the primary coil 16 can be cooled by the cooling water flowing on the front and back of the primary coil substrate 13.

【0028】なお、給電用ケーブル2の往路用水路6及
び復路用水路10は冷却ポンプと接続され、該ポンプを
駆動させることにより、往路用水路6→送電側カプラ3
内の冷却用水路22→復路用水路10に冷却水が循環す
るようになっている。
The outgoing water passage 6 and the return water passage 10 of the power supply cable 2 are connected to a cooling pump, and by driving the pump, the outgoing water passage 6 → the power transmission side coupler 3
The cooling water circulates from the cooling water passage 22 to the return water passage 10 in the inside.

【0029】次に、このように構成された本実施の形態
の作用を説明する。まず、作業者が図1に示すように送
電側カプラ3を車4に設けられている受電側カプラ5に
結合させる。即ち、送電側カプラ3の送電側コア14及
び1次コイル16と、受電側カプラ5の受電側コア及び
2次コイルとを電気的に非接触の状態で結合させる。そ
の後、電力供給装置1が給電用ケーブル2を介して送電
側カプラ3の1次コイル16に、430V,370kH
zの高周波電源を供給すると同時に冷却ポンプが駆動さ
れる。
Next, the operation of the present embodiment configured as described above will be described. First, an operator couples the power transmitting coupler 3 to the power receiving coupler 5 provided on the vehicle 4 as shown in FIG. That is, the power transmission side core 14 and the primary coil 16 of the power transmission side coupler 3 and the power reception side core and the secondary coil of the power reception side coupler 5 are electrically connected in a non-contact state. Thereafter, the power supply device 1 connects the primary coil 16 of the power transmission side coupler 3 via the power supply cable 2 to the primary coil 16 at 430 V, 370 kHz.
The cooling pump is driven at the same time when the high frequency power of z is supplied.

【0030】このとき、給電用ケーブル2の導線7a,
7bに高周波の大電流が流れるため該導線7a,7bは
発熱するが、冷却ポンプが駆動されることにより、往路
用水路6に冷却水が流れるため、導線7a,7bは効率
よく冷却される。さらに、この往路用水路6を流れる冷
却水は送電側カプラ3内の冷却用水路22を循環し、1
次コイル16による発熱も冷却して、復路用水路10に
流出される。そして、復路用水路10を流れる冷却水は
同軸ケーブル9の外周面を螺旋状に流れ、導線7a,7
bからシース8に伝わった熱を冷却し、冷却ポンプ側に
排出される。
At this time, the conducting wires 7a,
Although the conducting wires 7a and 7b generate heat because a high frequency high current flows through the conducting wire 7b, the cooling water flows through the outward water passage 6 when the cooling pump is driven, so that the conducting wires 7a and 7b are efficiently cooled. Further, the cooling water flowing through the outward water channel 6 circulates through the cooling water channel 22 in the power transmission side coupler 3 and
The heat generated by the next coil 16 is also cooled and flows out to the return waterway 10. The cooling water flowing through the return water channel 10 spirally flows on the outer peripheral surface of the coaxial cable 9, and the conductive wires 7 a and 7
The heat transmitted from b to the sheath 8 is cooled and discharged to the cooling pump side.

【0031】このように本実施の形態は、下記のような
特徴を示す。 (1)車載電池を充電するために給電用ケーブル2を介
して送電側カプラ3の1次コイル16に交流電力が供給
される。このとき、導体7a,7bの電気抵抗により電
力損失が発生し該ケーブル2は発熱するが、第1の冷却
通路としての往路用水路6が導線7a,7bと同軸上に
設けられ、往路用水路6に流れる冷却液としての冷却水
により導線7a,7bの発熱が冷却される。そして、こ
の往路用水路6を流れる冷却水は、送電側カプラ3内の
冷却用水路22を循環し、1次コイル16の発熱を冷却
する。さらに、この冷却水は同軸ケーブル9の外周面に
螺旋状に巻き付られて形成されている復路用水路10を
流通することによって、導線7a,7bから同軸ケーブ
ル9のシース8に伝わった熱を冷却する。その結果、図
5に示すように従来の給電用ケーブル30では、円柱状
の往路用水路31及び円環状の復路用水路35が同軸上
に形成されていたため、径が大きくなり耐屈曲性に劣
り、取り扱い難いものとなっていたが、本実施形態の給
電用ケーブル2は、復路用通路10が同軸ケーブル9に
対し別に設けられることにより径を小さくすることがで
き、その取り回しが容易となる。また、復路用水路10
を同軸ケーブル9の外周面に巻き付けることで、冷却効
率が向上するとともに取り扱い易いものとなっている。
As described above, the present embodiment has the following features. (1) AC power is supplied to the primary coil 16 of the power transmission side coupler 3 via the power supply cable 2 to charge the vehicle-mounted battery. At this time, power loss occurs due to the electric resistance of the conductors 7a and 7b, and the cable 2 generates heat. However, the outward water passage 6 as a first cooling passage is provided coaxially with the conductors 7a and 7b. Heat generated in the conductive wires 7a and 7b is cooled by the cooling water flowing as the cooling liquid. Then, the cooling water flowing through the outward water passage 6 circulates through the cooling water passage 22 in the power transmission side coupler 3 and cools the heat generated by the primary coil 16. Further, the cooling water flows through the return passage 10 formed by being spirally wound around the outer peripheral surface of the coaxial cable 9, thereby cooling the heat transmitted from the conductors 7 a and 7 b to the sheath 8 of the coaxial cable 9. I do. As a result, as shown in FIG. 5, in the conventional power supply cable 30, since the cylindrical outward water passage 31 and the annular return water passage 35 are formed coaxially, the diameter becomes large and the bending resistance is inferior. Although it was difficult, the diameter of the power supply cable 2 of the present embodiment can be reduced by providing the return path 10 separately from the coaxial cable 9, thereby facilitating the routing. In addition, return waterway 10
Is wound around the outer peripheral surface of the coaxial cable 9, thereby improving the cooling efficiency and making it easy to handle.

【0032】従って、充電時における発熱を抑制するこ
とができ、取り扱い性を向上させることができる。これ
に加え、従来のような特殊な補強部材を設ける必要がな
く、さらに、使用される部材は、一般に広く普及してい
るものを使用することができるのでコスト性にも優れた
ものとなる。 (2)同軸ケーブル9は、導線7a,7bが往路用水路
6を中心として同心状に配置した状態で形成されてい
る。その結果、給電用ケーブル2の可撓性及び耐屈曲性
の向上を図ることができ、取り回し性の優れたものとな
る。また、熱のこもりやすい同軸ケーブル9の中心部に
往路用水路6を配置しているので、冷却効率の向上を図
ることができ、給電用ケーブル2の発熱を防止すること
ができる。 (3)導線7aは電力供給部材としての1次コイル16
の一方の端部に接続されるとともに導線7bは1次コイ
ル16の他方の端部に接続され、図2に示すように同軸
ケーブル9内において導線7aと導線7bとが交互に配
置されている。その結果、1次コイル16に交流電力が
供給されたときにおいて、導線7aに流れる電流に対し
導線7bに流れる電流の向きは逆方向となる。つまり、
給電用ケーブル2のインピーダンス(リアクタンス)を
小さくするようになっているので、給電用ケーブル2に
おける電力損失を抑制することができる。従って、より
高周波、かつ、より大きな電力を扱うことが可能とな
る。さらに、給電用ケーブル2を流れる電流の偏りを抑
制できるので冷却効率の向上を図ることができる。
Therefore, heat generation during charging can be suppressed, and handleability can be improved. In addition to this, there is no need to provide a special reinforcing member as in the related art, and furthermore, a member that is widely used can be used, so that the cost is excellent. (2) The coaxial cable 9 is formed in a state where the conducting wires 7a and 7b are arranged concentrically around the outgoing water channel 6. As a result, the flexibility and bending resistance of the power supply cable 2 can be improved, and the maneuverability is excellent. Further, since the outward water channel 6 is arranged at the center of the coaxial cable 9 where heat is easily stored, cooling efficiency can be improved, and heat generation of the power supply cable 2 can be prevented. (3) The conducting wire 7a is a primary coil 16 as a power supply member.
The conductor 7b is connected to the other end of the primary coil 16 and the conductor 7a and the conductor 7b are alternately arranged in the coaxial cable 9 as shown in FIG. . As a result, when AC power is supplied to primary coil 16, the direction of the current flowing through conductor 7b is opposite to the direction of the current flowing through conductor 7a. That is,
Since the impedance (reactance) of the power supply cable 2 is reduced, power loss in the power supply cable 2 can be suppressed. Therefore, it is possible to handle higher frequency and higher power. Furthermore, since the bias of the current flowing through the power supply cable 2 can be suppressed, the cooling efficiency can be improved.

【0033】なお、発明の実施の形態は、上記実施の形
態に限定されるものではなく、下記のように実施しても
よい。 ○上記実施の形態では、復路用水路10を同軸ケーブル
9の外周面に巻き付けて実施していたが、図4に示すよ
うに、復路用水路10を同軸ケーブル9の外周面にクラ
ンプ28を用いて、平行かつ、当接させた状態で固定す
れば、取り扱い性が向上し実用上好ましいものとなる。
なお、クランプ28が設けられる間隔は、例えば、30
0mm程度で、同軸ケーブル9の径の大小に基づいて、
その取り回しに支障のない程度の間隔を選定すればよ
い。
The embodiment of the present invention is not limited to the above embodiment, but may be implemented as follows. In the above embodiment, the return waterway 10 is wound around the outer peripheral surface of the coaxial cable 9, but as shown in FIG. 4, the return waterway 10 is clamped on the outer peripheral surface of the coaxial cable 9 by using a clamp 28. If they are fixed in a state of being parallel and in contact with each other, handleability is improved, which is practically preferable.
The interval at which the clamp 28 is provided is, for example, 30.
About 0 mm, based on the diameter of the coaxial cable 9,
It is sufficient to select an interval that does not hinder the operation.

【0034】○上記実施の形態では、同軸ケーブル9の
中心に第1の冷却通路として往路用水路6を設けたが、
同軸ケーブル9の中心に第1の冷却通路として復路用水
路10を設けて実施してもよい。
In the above embodiment, the outgoing water passage 6 is provided as the first cooling passage at the center of the coaxial cable 9.
The return waterway 10 may be provided as the first cooling passage at the center of the coaxial cable 9 for implementation.

【0035】○上記実施形態では、冷却液として冷却水
を用いたが、これに限定せず、例えば、絶縁油を用いて
実施してもよい。このようにすれば、1次コイル基板1
3に絶縁皮膜を形成しないものにおいて実施することが
できる。つまり、1次コイル16を1次コイル基板13
の表裏面に露出した状態で、送電側カプラ3内に収納で
き、送電側カプラ3の薄型化が可能となる。
In the above embodiment, cooling water is used as the cooling liquid. However, the present invention is not limited to this. For example, cooling water may be used using insulating oil. By doing so, the primary coil substrate 1
3 can be carried out in a case where no insulating film is formed. That is, the primary coil 16 is
Can be housed in the power transmission side coupler 3 in a state where the power transmission side coupler 3 is exposed, and the power transmission side coupler 3 can be made thinner.

【0036】○上記実施形態では、送電側コイルカバー
15は2つの部材を超音波溶着にて接合して形成してい
たが、モールド樹脂を用いたモールド成形により送電側
コイルカバー15を形成してもよい。
In the above embodiment, the power transmission side coil cover 15 is formed by joining two members by ultrasonic welding. However, the power transmission side coil cover 15 is formed by molding using a molding resin. Is also good.

【0037】○上記実施形態では、図2及び図4示すよ
うに、同軸ケーブル9内において往路用水路6と導体7
a,7bとの間と、導体7a,7bとシース8との間に
空間部が形成されていたが、この空間部に熱伝導性のよ
い樹脂材を充填するようにしてもよい。このようにすれ
ば、導体7a,7bによる熱を往路用水路6及びシース
8に効率よく伝達することができ、冷却性能を向上させ
ることができる。また、充填する樹脂材とシース8を一
体成形するようにしてもよい。
In the above embodiment, as shown in FIG. 2 and FIG.
Although a space is formed between the conductors 7a and 7b and between the conductors 7a and 7b and the sheath 8, the space may be filled with a resin material having good heat conductivity. In this way, the heat generated by the conductors 7a and 7b can be efficiently transmitted to the outward waterway 6 and the sheath 8, and the cooling performance can be improved. Further, the resin material to be filled and the sheath 8 may be integrally formed.

【0038】○上記実施の形態では、地上側の送電側カ
プラ3と車載側の受電側カプラ5とを電気的に非接触の
状態で充電するインダクティブ方式の非接触型充電装置
において具体化したが、これに限定することなく、例え
ば、地上側の電源と車載側の充電装置とを金属金具等に
より電気的に接続して充電を行うコンダクティブ方式の
充電装置において具体化してもよい。
In the above-described embodiment, the inductive contactless charging device in which the power transmitting coupler 3 on the ground side and the power receiving coupler 5 on the vehicle are electrically charged in a non-contact state has been embodied. However, the present invention is not limited to this, and may be embodied in, for example, a conductive type charging device that performs charging by electrically connecting a power source on the ground and a charging device on the vehicle with metal fittings or the like.

【0039】○上記実施の形態のように、電気自動車4
の充電装置に用いたが、これに限定することなく、大電
流、高周波を扱う装置に適用される給電用ケーブル2に
おいて実施してもよい。
○ As in the above embodiment, the electric vehicle 4
However, the present invention is not limited to this, and the present invention may be applied to a power supply cable 2 applied to a device that handles a large current and a high frequency.

【0040】前記実施の形態から把握され、特許請求の
範囲に記載されていない技術的思想を、その効果ととも
に以下に記載する。 (イ) 請求項1〜請求項5のいずれか1項に記載の給
電用ケーブルは、非接触型充電装置における地上側に用
いられるものである。この構成によれば、冷却水を地上
側における充電装置の部材、例えば、送電側カプラー等
の冷却用として共通使用することができる。
The technical idea grasped from the above embodiment and not described in the claims is described below together with its effects. (A) The power supply cable according to any one of claims 1 to 5 is used on the ground side in a non-contact charging device. According to this configuration, the cooling water can be commonly used for cooling a member of the charging device on the ground side, for example, a power transmission side coupler or the like.

【0041】[0041]

【発明の効果】請求項1に記載の発明によれば、充電時
における発熱を抑制することができ、コスト性及び取り
扱い性を向上させることができる。
According to the first aspect of the present invention, heat generation during charging can be suppressed, and cost and handling can be improved.

【0042】請求項2に記載の発明によれば、請求項1
に記載の発明の効果に加え、ケーブルの発熱を抑制する
ことができ、かつ、取り回し性に優れたものとなる。請
求項3に記載の発明によれば、請求項2に記載の発明の
効果に加え、導線の発熱を防止することができる。
According to the invention described in claim 2, according to claim 1
In addition to the effects of the invention described in (1), the heat generation of the cable can be suppressed, and the cable has excellent maneuverability. According to the third aspect, in addition to the effect of the second aspect, it is possible to prevent heat generation of the conductor.

【0043】請求項4に記載の発明によれば、請求項1
に記載の発明の効果に加え、冷却効率の向上を図ること
ができる。請求項5に記載の発明によれば、請求項1に
記載の発明の効果に加え、ケーブルの取り扱い性を向上
させることができる。
According to the invention described in claim 4, according to claim 1
And the cooling efficiency can be improved. According to the invention described in claim 5, in addition to the effect of the invention described in claim 1, the handleability of the cable can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施形態における充電装置の構成図。FIG. 1 is a configuration diagram of a charging device according to an embodiment.

【図2】 実施形態における給電用ケーブルの斜視図。FIG. 2 is a perspective view of a power supply cable according to the embodiment.

【図3】 (a)は送電側カプラの平面図、(b)はそ
のA−A断面図。
FIG. 3A is a plan view of a power transmission side coupler, and FIG.

【図4】 他の実施形態を示す給電用ケーブルの斜視
図。
FIG. 4 is a perspective view of a power supply cable according to another embodiment.

【図5】 従来技術における給電用ケーブルの断面図。FIG. 5 is a cross-sectional view of a power supply cable according to the related art.

【符号の説明】[Explanation of symbols]

2…給電用ケーブル、6…第1の冷却通路としての往路
用水路、7a,7b…導体としての導線、9…同軸ケー
ブル、10…第2の冷却通路としての復路用水路、16
…電力供給部材としての1次コイル。
2 ... power supply cable, 6 ... outgoing waterway as first cooling passage, 7a, 7b ... conductor as conductor, 9 ... coaxial cable, 10 ... return waterway as second cooling passage, 16
... A primary coil as a power supply member.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電力を供給する導体と、前記導体の電気
抵抗による発熱を冷却する冷却液を流通させる第1の冷
却通路とを同軸上に形成した同軸ケーブルと、 前記同軸ケーブルに対し別に設けられ、前記第1の冷却
通路を流れる冷却液を流通させる第2の冷却通路を備え
た給電用ケーブル。
1. A coaxial cable in which a conductor for supplying electric power and a first cooling passage for flowing a cooling liquid for cooling heat generated by electric resistance of the conductor are formed coaxially, and separately provided for the coaxial cable. And a power supply cable having a second cooling passage through which a cooling liquid flowing through the first cooling passage flows.
【請求項2】 請求項1に記載の給電用ケーブルにおい
て、前記導体は、複数の導線であり、前記第1の冷却通
路を中心として同心状に配置した給電用ケーブル。
2. The power supply cable according to claim 1, wherein the conductor is a plurality of conductors, and is arranged concentrically with the first cooling passage as a center.
【請求項3】 請求項2に記載の給電用ケーブルにおい
て、前記複数の導線は、電力供給部材に対して交流電力
を供給するものであり、前記電力供給部材の一方の端部
に接続する導線と、前記電力供給部材の他方の端部に接
続する導線とが第1の冷却通路の回りに交互に配置され
た給電用ケーブル。
3. The power supply cable according to claim 2, wherein the plurality of conductors supply AC power to a power supply member, and are connected to one end of the power supply member. And a conducting wire connected to the other end of the power supply member, the power supply cable being arranged alternately around the first cooling passage.
【請求項4】 請求項1に記載の給電用ケーブルにおい
て、前記第2の冷却通路を、前記同軸ケーブルの外周に
螺旋状に巻き付けた給電用ケーブル。
4. The power supply cable according to claim 1, wherein the second cooling passage is spirally wound around an outer periphery of the coaxial cable.
【請求項5】 請求項1に記載の給電用ケーブルにおい
て、前記第2の冷却通路を、前記同軸ケーブルと平行
に、かつ、当接させた状態で固定した給電用ケーブル。
5. The power supply cable according to claim 1, wherein the second cooling passage is fixed in parallel with and in contact with the coaxial cable.
JP10305494A 1998-10-27 1998-10-27 Feeding cable Pending JP2000133058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10305494A JP2000133058A (en) 1998-10-27 1998-10-27 Feeding cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10305494A JP2000133058A (en) 1998-10-27 1998-10-27 Feeding cable

Publications (1)

Publication Number Publication Date
JP2000133058A true JP2000133058A (en) 2000-05-12

Family

ID=17945848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10305494A Pending JP2000133058A (en) 1998-10-27 1998-10-27 Feeding cable

Country Status (1)

Country Link
JP (1) JP2000133058A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102629506A (en) * 2011-02-04 2012-08-08 日立电线株式会社 Three-conductor cable
US8853532B2 (en) 2011-01-21 2014-10-07 Hitachi Metals, Ltd. Conducting path
WO2015083531A1 (en) * 2013-12-02 2015-06-11 矢崎総業株式会社 Transmission cable
CN106347166A (en) * 2016-11-22 2017-01-25 飞洲集团有限公司 Overall cooling charging device for electrical vehicle
JP2017507640A (en) * 2014-02-05 2017-03-16 テスラ・モーターズ・インコーポレーテッド Cooling the charging cable
WO2017064157A1 (en) * 2015-10-15 2017-04-20 Phoenix Contact E-Mobility Gmbh Electric cable comprising a fluid conduit for cooling
WO2017133893A1 (en) * 2016-02-01 2017-08-10 Huber+Suhner Ag Cable assembly
WO2017194361A1 (en) * 2016-05-12 2017-11-16 Phoenix Contact E-Mobility Gmbh Assembly for transmitting an electric current, in particular for a charging system for charging an electrically driven vehicle
CN109728459A (en) * 2019-01-22 2019-05-07 上海蔚来汽车有限公司 Electro-hydraulic integrated form attachment device and vehicle
WO2019135806A1 (en) * 2018-01-05 2019-07-11 Byton North America Corporation On-board liquid-cooled or gas-cooled charging cable for electric vehicles
EP3493224A4 (en) * 2016-07-29 2020-03-18 Fujikura Ltd. Electricity supply cable and connector-equipped electricity supply cable
US20200350098A1 (en) * 2019-05-01 2020-11-05 Prysmian S.P.A. Cable assembly
EP3812199A1 (en) * 2019-10-25 2021-04-28 Acome Cable with improved heat dissipation
FR3102605A1 (en) * 2019-10-25 2021-04-30 Acome Improved active heat dissipation cable
JP2021518638A (en) * 2018-03-26 2021-08-02 洛陽正奇机械有限公司Luoyang Zhengqi Mechanical Co., Ltd A kind of high-power charging stand Parallel coolant-cooled electric cable for positive and negative electrodes
US20220305926A1 (en) * 2021-03-26 2022-09-29 Toyota Motor Engineering & Manufacturing North America, Inc. Temperature regulation of vehicle charging components

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS467722Y1 (en) * 1968-04-26 1971-03-18
JPS4941269U (en) * 1972-07-17 1974-04-11
JPS63135718U (en) * 1987-02-27 1988-09-06
JPH10106362A (en) * 1996-08-07 1998-04-24 Sumitomo Wiring Syst Ltd Cooling cable for charging electric vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS467722Y1 (en) * 1968-04-26 1971-03-18
JPS4941269U (en) * 1972-07-17 1974-04-11
JPS63135718U (en) * 1987-02-27 1988-09-06
JPH10106362A (en) * 1996-08-07 1998-04-24 Sumitomo Wiring Syst Ltd Cooling cable for charging electric vehicle

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8853532B2 (en) 2011-01-21 2014-10-07 Hitachi Metals, Ltd. Conducting path
CN102629506A (en) * 2011-02-04 2012-08-08 日立电线株式会社 Three-conductor cable
US8575489B2 (en) 2011-02-04 2013-11-05 Hitachi Cable, Ltd. Three-conductor cable
WO2015083531A1 (en) * 2013-12-02 2015-06-11 矢崎総業株式会社 Transmission cable
JP2017507640A (en) * 2014-02-05 2017-03-16 テスラ・モーターズ・インコーポレーテッド Cooling the charging cable
WO2017064157A1 (en) * 2015-10-15 2017-04-20 Phoenix Contact E-Mobility Gmbh Electric cable comprising a fluid conduit for cooling
US10902977B2 (en) 2016-02-01 2021-01-26 Huber+Suhner Ag Cable assembly
WO2017133893A1 (en) * 2016-02-01 2017-08-10 Huber+Suhner Ag Cable assembly
CN108701513A (en) * 2016-02-01 2018-10-23 胡贝尔和茹纳股份公司 Cable group component
CN108701513B (en) * 2016-02-01 2020-09-29 胡贝尔和茹纳股份公司 Cable assembly
WO2017194361A1 (en) * 2016-05-12 2017-11-16 Phoenix Contact E-Mobility Gmbh Assembly for transmitting an electric current, in particular for a charging system for charging an electrically driven vehicle
EP3493224A4 (en) * 2016-07-29 2020-03-18 Fujikura Ltd. Electricity supply cable and connector-equipped electricity supply cable
US10636546B2 (en) 2016-07-29 2020-04-28 Fujikura Ltd. Power supply cable and connector-equipped power supply cable
CN106347166A (en) * 2016-11-22 2017-01-25 飞洲集团有限公司 Overall cooling charging device for electrical vehicle
WO2019135806A1 (en) * 2018-01-05 2019-07-11 Byton North America Corporation On-board liquid-cooled or gas-cooled charging cable for electric vehicles
US11660970B2 (en) 2018-01-05 2023-05-30 Byton Limited On-board liquid-cooled or gas-cooled charging cable for electric vehicles
JP2021518638A (en) * 2018-03-26 2021-08-02 洛陽正奇机械有限公司Luoyang Zhengqi Mechanical Co., Ltd A kind of high-power charging stand Parallel coolant-cooled electric cable for positive and negative electrodes
JP7075143B2 (en) 2018-03-26 2022-05-25 洛陽正奇机械有限公司 A kind of high-power charging stand Parallel coolant-cooled electric cable for positive and negative electrodes
CN109728459A (en) * 2019-01-22 2019-05-07 上海蔚来汽车有限公司 Electro-hydraulic integrated form attachment device and vehicle
US20200350098A1 (en) * 2019-05-01 2020-11-05 Prysmian S.P.A. Cable assembly
US11804315B2 (en) * 2019-05-01 2023-10-31 Prysmian S.P.A. EV charging cable system with cooling
EP3812199A1 (en) * 2019-10-25 2021-04-28 Acome Cable with improved heat dissipation
FR3102605A1 (en) * 2019-10-25 2021-04-30 Acome Improved active heat dissipation cable
US20220305926A1 (en) * 2021-03-26 2022-09-29 Toyota Motor Engineering & Manufacturing North America, Inc. Temperature regulation of vehicle charging components

Similar Documents

Publication Publication Date Title
JP2000133058A (en) Feeding cable
JP3253592B2 (en) Transmission side coupler
JP2986369B2 (en) Air / liquid cooled metal windings for high frequency high power transformers
JP2951593B2 (en) Charging device
KR100262916B1 (en) Oil cooled high power inductive coupler
US6396241B1 (en) Inductive charging system employing a fluid-cooled transformer coil and transmission cable
MXPA97005597A (en) High power cooling inductive coupler conace
US10471845B2 (en) Coil unit
EP0823766A1 (en) Cooling charge cable for electric vehicle
US20220410744A1 (en) Electric vehicle charging connector and electric vehicle charging assembly comprising same
US5594317A (en) Inductive charger field shaping using nonmagnetic metallic conductors
JPH08280139A (en) Management of heat using geometric arrangement of hybrid spiral/helical coil
WO2015083531A1 (en) Transmission cable
CN112154078A (en) Charging harness device for a battery of a motor vehicle
JP6554023B2 (en) Internal cooling cable
CN115966341A (en) High-voltage cable
JP2000133536A (en) Power-feeding coupler system, receiving-side coupler, and supplying-side coupler
JP4615425B2 (en) Matching transformer
JPH10106868A (en) Charging system for electric motor car
CN218471654U (en) Liquid cooling cable and charging device
US20240123850A1 (en) Charging Connector for an Electric Vehicle
JP2019149453A (en) Coil for wireless electric power transmission, wireless electric power transmission device, wireless electric power reception device, and wireless electric power transmission system
JP2023040543A (en) Quick-charging cable for electric cars
CN114822967A (en) Liquid cooling cable and charging device
JP2002190418A (en) Manufacturing method of feed coupler and primary coil