JP2000131446A - X-ray detector - Google Patents

X-ray detector

Info

Publication number
JP2000131446A
JP2000131446A JP30667998A JP30667998A JP2000131446A JP 2000131446 A JP2000131446 A JP 2000131446A JP 30667998 A JP30667998 A JP 30667998A JP 30667998 A JP30667998 A JP 30667998A JP 2000131446 A JP2000131446 A JP 2000131446A
Authority
JP
Japan
Prior art keywords
ray
rays
detector
ray detector
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30667998A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Konakawa
信好 粉川
Tetsuya Matsui
哲也 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP30667998A priority Critical patent/JP2000131446A/en
Publication of JP2000131446A publication Critical patent/JP2000131446A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compact X-ray detector to measure the intensity of X-rays only in a wavelength band useful for an X-ray source. SOLUTION: A slit 2 for regulating the amount of capturing of X-rays 30a is arranged in the front surface of an X-ray detector 10. In a detector case 1, only a band of an X-ray wavelength to be measured is reflected by both a metal thin film filter 3 for extracting only X-rays 30a by cutting light rays except the X-ray region of plasma 20a and a multilayer film mirror 4 to reflect an X-ray wavelength to be measured to make it incident onto the light receiving surface of a photodiode 6 for X-rays, and the dose of the incident X-rays is achieved by a measuring device 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、X線量を測定する
X線検出器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray detector for measuring an X-ray dose.

【0002】[0002]

【従来の技術】近年、X線リソグラフィ,X線顕微鏡,
X線分析器などに用いられる小型シンクロトロン放射光
やレーザプラズマX線源などのX線源の開発が行われて
いる。このようなX線源の利用には利用波長帯のX線強
度をモニタする必要がある。
2. Description of the Related Art In recent years, X-ray lithography, X-ray microscopes,
X-ray sources such as a small synchrotron radiation beam used for an X-ray analyzer and a laser plasma X-ray source are being developed. To use such an X-ray source, it is necessary to monitor the X-ray intensity in the used wavelength band.

【0003】従来は、特開平5−341051 号公報に記載の
ように、異なるX線透過波長域を有する複数のフィルタ
ー膜を透過したX線をそれぞれ別個のX線検出素子で検
出し、それらのX線検出素子の出力に基づいてX線量を
検出するものがある。
Conventionally, as described in Japanese Patent Application Laid-Open No. 5-341051, X-rays transmitted through a plurality of filter films having different X-ray transmission wavelength ranges are detected by separate X-ray detection elements, and those X-rays are detected. Some devices detect an X-ray dose based on the output of an X-ray detection element.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来技術は、測定したい波長帯のX線強度測定のためにフ
ィルター膜とX線検出素子で構成される検出部が複数必
要となり、それら複数のフィルター膜の透過率の差分で
X線強度を測定するため、検出処理過程が複雑化すると
ともに、複数の検出部の位置でX線強度が異なると測定
精度が低下した。本発明の目的は、X線源の利用波長帯
のX線強度を正確に測定する小型のX線検出器を提供す
ることにある。
However, the above-mentioned prior art requires a plurality of detecting sections each including a filter film and an X-ray detecting element for measuring the X-ray intensity in the wavelength band to be measured. Since the X-ray intensity is measured based on the difference in the transmittance of the film, the detection process is complicated, and the measurement accuracy is reduced when the X-ray intensity is different at the positions of the plurality of detection units. An object of the present invention is to provide a small-sized X-ray detector for accurately measuring the X-ray intensity in the wavelength band used by an X-ray source.

【0005】[0005]

【課題を解決するための手段】上記目的は、測定対象の
X線波長を反射するミラーと、前記ミラーから反射した
X線を検出するX線検出素子と、前記X線検出素子から
の出力に基づいてX線量を測定する測定手段とを備える
X線検出器により達成される。
An object of the present invention is to provide a mirror for reflecting an X-ray wavelength to be measured, an X-ray detecting element for detecting X-rays reflected from the mirror, and an output from the X-ray detecting element. Measurement means for measuring the X-ray dose based on the X-ray detector.

【0006】[0006]

【発明の実施の形態】発明者らは、半導体露光装置等、
X線源を必要とする装置でX線照射部までX線を導くた
めのミラーとして多層膜ミラーなど特有の反射波長帯を
持つものが用いられていることに着目し、そのような特
性のミラーをフィルタとして用いることで、測定したい
波長のみのX線強度を適確にモニタできることを考え付
いた。また、発明者らは、特にレーザプラズマX線など
のように、ターゲットの状態変化やターゲットに照射す
るレーザ光のエネルギー変化よりプラズマの形成位置が
変化することに着目し、検出器を回転させ、X線強度が
最も強くなった位置の回転角度を求めることで、プラズ
マの形成位置を確認できることを考え付いた。以下で、
測定対象のX線波長を反射するミラーを用いたX線検出
器の実施例について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION
Focusing on the fact that a mirror having a specific reflection wavelength band such as a multilayer mirror is used as a mirror for guiding X-rays to an X-ray irradiator in a device requiring an X-ray source, a mirror having such characteristics is used. As a filter, X-ray intensity of only the wavelength to be measured can be accurately monitored. In addition, the inventors pay attention to the fact that the plasma formation position changes due to a change in the state of the target or a change in the energy of the laser beam applied to the target, such as a laser plasma X-ray, and rotate the detector. By finding the rotation angle at the position where the X-ray intensity is the strongest, it was possible to confirm the plasma formation position. Below,
An embodiment of an X-ray detector using a mirror that reflects an X-ray wavelength to be measured will be described.

【0007】本発明の第1の実施例であるX線検出器を
図1に示す。金属などのターゲットに収束させたレーザ
光を照射すると、レーザ光の強力な電場などにより、光
学的に絶縁破壊をしてイオン化する。
FIG. 1 shows an X-ray detector according to a first embodiment of the present invention. When a converged laser beam is irradiated on a target such as a metal, the target is optically broken down and ionized by a strong electric field of the laser beam.

【0008】金属元素のイオン化により発生した電子
が、逆制動輻射などの過程によりレーザ光のエネルギー
を吸収して加熱され、ターゲットのレーザ光が貫く範囲
に、高温高密度なレーザプラズマ20が形成される。
The electrons generated by the ionization of the metal element are heated by absorbing the energy of the laser beam by a process such as reverse braking radiation, and a high-temperature, high-density laser plasma 20 is formed in a range where the target laser beam penetrates. You.

【0009】この時、レーザプラズマ20からX線30
が発生する。この発生したX線30の強度をモニタリン
グするためにX線検出器10がある。
At this time, the X-ray 30
Occurs. An X-ray detector 10 is provided for monitoring the intensity of the generated X-ray 30.

【0010】X線検出器10はX線の取込み量を調整す
るためのスリット2をX線検出器10の前面に配置し、
検出器ケース1の内部には、プラズマのX線領域以外の
光線をカットしてX線のみを取出すため、Al等の金属
薄膜フィルター3を取付ける。
The X-ray detector 10 has a slit 2 for adjusting the amount of X-rays taken in front of the X-ray detector 10.
A metal thin film filter 3 of Al or the like is mounted inside the detector case 1 in order to cut out light beams other than the X-ray region of the plasma and extract only X-rays.

【0011】取出されたX線は、測定対象のX線波長を
反射する多層膜ミラー4で装置で測定したい波長帯のみ
のX線が反射され、X線用フォトダイオード6の受光面
に入射される。
The extracted X-rays are reflected by the multilayer mirror 4 that reflects the X-ray wavelength of the object to be measured only in the wavelength band desired to be measured by the apparatus, and are incident on the light receiving surface of the photodiode 6 for X-rays. You.

【0012】この多層膜ミラー4はミラーホルダー5に
より保持されている。X線用フォトダイオード6は入射
された光パワーにより信号電流を発生し、プリアンプ7
により信号電流を出力電圧に変換される。出力電圧は測
定器8により波形を記録及び処理する。
The multilayer mirror 4 is held by a mirror holder 5. The X-ray photodiode 6 generates a signal current based on the incident optical power, and the preamplifier 7
Converts the signal current into an output voltage. The waveform of the output voltage is recorded and processed by the measuring device 8.

【0013】この時、測定で得られた電圧v(V)から
X線強度P(W)を求める式は、次式で表される。
At this time, an equation for obtaining the X-ray intensity P (W) from the voltage v (V) obtained by the measurement is represented by the following equation.

【0014】 P=K・v …(式1) K=1/(α・Tx・RT・R・RF) …(式2) ここで、スリット2でのX線取込率をα(%),金属薄
膜フィルター3のX線透過率をTx(%),多層膜ミラ
ー4のX線反射率をRT(%),X線用フォトダイオー
ド6の応答係数をR(A/W),プリアンプ7のゲイン
抵抗をRF(Ω),X線の強度係数をK(W/V)であ
る。
P = K · v (Equation 1) K = 1 / (α · Tx · RT · R · R F ) (Equation 2) Here, the X-ray capture rate at the slit 2 is α (% ), The X-ray transmittance of the metal thin film filter 3 is Tx (%), the X-ray reflectivity of the multilayer mirror 4 is RT (%), the response coefficient of the X-ray photodiode 6 is R (A / W), the preamplifier. 7 is R F (Ω), and the X-ray intensity coefficient is K (W / V).

【0015】この時、レーザプラズマ20から発生した
X線30をX線用フォトダイオード6の受光面上に導く
ために、スリット2及び多層膜ミラー4との位置関係を
次式に従って配置する。
At this time, in order to guide the X-rays 30 generated from the laser plasma 20 onto the light receiving surface of the X-ray photodiode 6, the positional relationship between the slit 2 and the multilayer mirror 4 is arranged according to the following equation.

【0016】 θ=tan-1(R1/D1)=tan-1(R2/D2)=tan-1(R3/D3) …(式3) W1>0 …(式4) W2>0 …(式5) ここで、レーザプラズマ20からスリット2までの距離
をR1,装置の光源に利用するX線30の光軸からスリ
ット2の中心までの距離をD1,レーザプラズマ20か
ら多層膜ミラー4までの距離をR2,X線30の光軸か
ら多層膜ミラー4の中心までの距離をD2,多層膜ミラ
ー4へのX線入射角度をθ,多層膜ミラー4からX線用
フォトダイオード6までの距離をL,多層膜ミラー4の
中心からX線用フォトダイオード6の中心までの距離を
D3,ケース1端部とX線30の光軸の隙間をW1,モ
ニタ用のX線30aとプリアンプ7端部の隙間はW2で
ある。
Θ = tan −1 (R1 / D1) = tan −1 (R2 / D2) = tan −1 (R3 / D3) (Equation 3) W1> 0 (Equation 4) W2> 0 (Equation 4) 5) Here, the distance from the laser plasma 20 to the slit 2 is R1, the distance from the optical axis of the X-ray 30 used as the light source of the apparatus to the center of the slit 2 is D1, and the distance from the laser plasma 20 to the multilayer mirror 4 is D1. The distance is R2, the distance from the optical axis of the X-ray 30 to the center of the multilayer mirror 4 is D2, the incident angle of X-rays on the multilayer mirror 4 is θ, and the distance from the multilayer mirror 4 to the photodiode 6 for X-rays. L, the distance from the center of the multilayer mirror 4 to the center of the X-ray photodiode 6 is D3, the gap between the end of the case 1 and the optical axis of the X-ray 30 is W1, the X-ray 30a for monitoring and the end of the preamplifier 7 The gap between the portions is W2.

【0017】次に、X線検出器10でのX線検出範囲に
ついて図2により説明する。装置に使用するミラーとし
ては、Mo/Si多層膜ミラーなどがあり、図に示すよ
うに反射率は13nm近傍と500〜600nmの可視
光線領域の2つのピークを有する。
Next, the X-ray detection range of the X-ray detector 10 will be described with reference to FIG. As a mirror used in the apparatus, there is a Mo / Si multilayer mirror or the like. As shown in the figure, the reflectance has two peaks in the vicinity of 13 nm and in a visible light region of 500 to 600 nm.

【0018】モニタしたい13nmの波長のX線強度の
みを検出するためには、可視光線領域をカットしX線領
域のみを透過するAl薄膜フィルターなどを用いれば良
い。この時、図中で示す矢印の範囲がX線の検出範囲と
なる。
In order to detect only the X-ray intensity at a wavelength of 13 nm to be monitored, an Al thin film filter or the like that cuts the visible light region and transmits only the X-ray region may be used. At this time, the range of the arrow shown in the figure is the X-ray detection range.

【0019】このようにX線検出器10をスリット2,
金属薄膜フィルター3,多層膜ミラー4,X線用フォト
ダイオード6及びプリアンプ7のみで構成できるので小
型軽量化できる。また、レーザプラズマX線源などのよ
うに発生するX線が角度分布特性を有する場合は、式
4,式5の値をより0に近づけることで、装置の光源に
利用するX線30と強度モニタ用のX線30aとの方向
が近づくため、装置の光源に利用するX線強度とモニタ
用で測定したX線強度の誤差をより小さくすることがで
きる。
As described above, the X-ray detector 10 is
Since it can be composed of only the metal thin film filter 3, the multilayer mirror 4, the photodiode 6 for X-rays and the preamplifier 7, the size and weight can be reduced. When the X-ray generated, such as a laser plasma X-ray source, has an angular distribution characteristic, the values of Expressions 4 and 5 are made closer to 0, so that the intensity of the X-rays 30 used as the light source of the apparatus is reduced. Since the direction of the monitor X-ray 30a approaches, the error between the X-ray intensity used for the light source of the apparatus and the X-ray intensity measured for the monitor can be further reduced.

【0020】本発明の第2の実施例を図3により説明す
る。本実施例は、第1の実施例におけるX線検出器10
に首振り機構40を付加し、プラズマ発生位置の変化に
対応できるようにしたものである。
A second embodiment of the present invention will be described with reference to FIG. This embodiment is different from the X-ray detector 10 in the first embodiment.
In addition, a swing mechanism 40 is added to the configuration of FIG.

【0021】レーザプラズマ20は、ターゲットの状態
変化やレーザ光のエネルギー変化よりプラズマの形成位
置が変化する。
In the laser plasma 20, the position where the plasma is formed changes due to a change in the state of the target or a change in the energy of the laser beam.

【0022】図3上図に示すようにプラズマの形成位置
が20aから20bに変化すると、X線検出器10はレ
ーザプラズマ20aから発生したX線30aが多層膜ミ
ラー4に当たるように調整されており、レーザプラズマ
の形成位置が変化して20bでX線30bが発生すると
X線30bが多層膜ミラー4から外れるため、X線を検
出できなくなる。
As shown in the upper part of FIG. 3, when the plasma formation position changes from 20a to 20b, the X-ray detector 10 is adjusted so that the X-ray 30a generated from the laser plasma 20a impinges on the multilayer mirror 4. When the position of the laser plasma is changed and the X-rays 30b are generated at 20b, the X-rays 30b come off the multilayer mirror 4, so that the X-rays cannot be detected.

【0023】そこで、図3下図のようにX線検出器10
の向きを制御する制御装置9により首振り機構40を回
転させ、X線強度が最も強くなった位置の回転角度βを
求めることで、プラズマの形成位置の変化量Sを算出す
ることができる。
Therefore, as shown in the lower diagram of FIG.
The rotation amount β of the position where the X-ray intensity becomes the highest is obtained by rotating the swinging mechanism 40 by the control device 9 that controls the direction of the plasma, thereby calculating the change amount S of the plasma formation position.

【0024】このように、本実施例によれば、特にレー
ザプラズマX線などのように、ターゲットの状態変化や
ターゲットに照射するレーザ光のエネルギー変化による
プラズマ形成位置の変化を確認できるという効果があ
る。
As described above, according to the present embodiment, it is possible to confirm a change in the plasma formation position due to a change in the state of the target or a change in the energy of the laser beam applied to the target, such as a laser plasma X-ray. is there.

【0025】[0025]

【発明の効果】本発明によれば、X線検出器を少ない部
品で構成できるので小型化でき、また、X線源の利用波
長のみのX線強度を正確に測定できるという効果があ
る。
According to the present invention, since the X-ray detector can be composed of a small number of components, the X-ray detector can be miniaturized, and the X-ray intensity at only the wavelength used by the X-ray source can be measured accurately.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例であるX線検出器を示す
図である。
FIG. 1 is a diagram showing an X-ray detector according to a first embodiment of the present invention.

【図2】本発明の実施例におけるX線検出範囲を示すグ
ラフ図である。
FIG. 2 is a graph showing an X-ray detection range according to the embodiment of the present invention.

【図3】本発明の第2の実施例であるX線検出器を示す
図である。
FIG. 3 is a diagram showing an X-ray detector according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…検出器ケース、2…スリット、3…金属薄膜フィル
ター、4…多層膜ミラー、6…X線用フォトダイオー
ド、7…プリアンプ、8…測定器、9…制御装置、10
…X線検出器、20…レーザプラズマ、30…X線、4
0…首振り機構。
DESCRIPTION OF SYMBOLS 1 ... Detector case, 2 ... Slit, 3 ... Metal thin film filter, 4 ... Multilayer mirror, 6 ... X-ray photodiode, 7 ... Preamplifier, 8 ... Measuring instrument, 9 ... Control device, 10
... X-ray detector, 20 ... laser plasma, 30 ... X-ray, 4
0: Swing mechanism.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】測定対象のX線波長を反射するミラーと、
前記ミラーから反射したX線を検出するX線検出素子
と、前記X線検出素子からの出力に基づいてX線量を測
定する測定手段とを備えるX線検出器。
A mirror for reflecting an X-ray wavelength to be measured;
An X-ray detector comprising: an X-ray detection element that detects X-rays reflected from the mirror; and a measuring unit that measures an X-ray dose based on an output from the X-ray detection element.
【請求項2】請求項1において、X線検出素子の前段に
光源のX線領域以外の光線をカットする金属薄膜フィル
ターを備えるX線検出器。
2. An X-ray detector according to claim 1, further comprising a metal thin-film filter at a stage preceding the X-ray detection element to cut off a light beam outside the X-ray region of the light source.
【請求項3】請求項1または請求項2において、X線検
出素子の前段にX線の光量を調整するスリットを備える
X線検出器。
3. An X-ray detector according to claim 1, further comprising a slit for adjusting the amount of X-rays at a stage preceding the X-ray detection element.
【請求項4】請求項1または請求項2または請求項3に
おいて、前記測定手段の測定値に基づいて検出器の向き
を制御する制御手段と、前記制御手段からの命令により
検出器の向きを変える首振り機構とを備えるX線検出
器。
4. The control means according to claim 1, 2 or 3, wherein said control means controls the direction of said detector based on the measured value of said measuring means, and the direction of said detector is controlled by a command from said control means. An X-ray detector including a swing mechanism for changing.
JP30667998A 1998-10-28 1998-10-28 X-ray detector Pending JP2000131446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30667998A JP2000131446A (en) 1998-10-28 1998-10-28 X-ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30667998A JP2000131446A (en) 1998-10-28 1998-10-28 X-ray detector

Publications (1)

Publication Number Publication Date
JP2000131446A true JP2000131446A (en) 2000-05-12

Family

ID=17960022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30667998A Pending JP2000131446A (en) 1998-10-28 1998-10-28 X-ray detector

Country Status (1)

Country Link
JP (1) JP2000131446A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008294436A (en) * 2007-05-02 2008-12-04 Asml Netherlands Bv Device to measure quantity relating to radiation, and lithographic equipment
CN107833820A (en) * 2017-11-30 2018-03-23 中国工程物理研究院激光聚变研究中心 A kind of new single channel x-ray diode detection system
CN108169790A (en) * 2017-11-27 2018-06-15 同济大学 A kind of microscopical intensity calibration method of Grazing Incidence X-Ray
US10444166B2 (en) 2015-12-21 2019-10-15 Hamamatsu Photonics K.K. Radiation detection device, radiation inspection system, and method for adjusting radiation detection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008294436A (en) * 2007-05-02 2008-12-04 Asml Netherlands Bv Device to measure quantity relating to radiation, and lithographic equipment
US10444166B2 (en) 2015-12-21 2019-10-15 Hamamatsu Photonics K.K. Radiation detection device, radiation inspection system, and method for adjusting radiation detection device
CN108169790A (en) * 2017-11-27 2018-06-15 同济大学 A kind of microscopical intensity calibration method of Grazing Incidence X-Ray
CN107833820A (en) * 2017-11-30 2018-03-23 中国工程物理研究院激光聚变研究中心 A kind of new single channel x-ray diode detection system

Similar Documents

Publication Publication Date Title
US5619548A (en) X-ray thickness gauge
US6744850B2 (en) X-ray reflectance measurement system with adjustable resolution
CA1139441A (en) Optical imaging system provided with an opto-electronic detection system for determining a deviation between the image plane of the imaging system and a second plane on which an image is to be formed
US6894285B2 (en) Arrangement for monitoring the energy radiated by an EUV radiation source
JP5820689B2 (en) Laser equipment
JP3308230B2 (en) Maintaining device and method for maintaining target separation distance between object of main optical system and optical output stage
CN110431391B (en) Measurement system for extreme ultraviolet light source
KR900005641B1 (en) Checking machine of thickness
JPS5848805A (en) Electrooptic measuring system
Krumrey et al. Precision soft x-ray reflectometry of curved multilayer optics
JPH11352079A (en) Xafs measuring method and apparatus thereof
JP2000131446A (en) X-ray detector
JP4220707B2 (en) Laser processing head
US6624403B2 (en) Autofocus system
Grether et al. Measurement of circumsolar radiation
Kühne et al. The radiometric laboratory of PTB at BESSY
JP2004333131A (en) Total reflection fluorescence xafs measuring apparatus
JP2001281097A (en) Method and apparatus for measuring scattered light
JP2007187477A (en) Fluorescence detector
CN104204951A (en) Lithographic apparatus, sensor and method
JPS5979122A (en) Laser power measuring device
CN108475027B (en) Beam measurement system, lithographic system and method
JP3217637B2 (en) Electronic probe microanalyzer with automatic focusing mechanism
JP2003121116A (en) Vacuum ultraviolet optical film thickness monitor and vacuum film forming apparatus provided therewith
JPH11281597A (en) Photoelectric spectrograph and surface analyzing method