JP2000130974A - Heat storing body and its manufacture - Google Patents

Heat storing body and its manufacture

Info

Publication number
JP2000130974A
JP2000130974A JP10303960A JP30396098A JP2000130974A JP 2000130974 A JP2000130974 A JP 2000130974A JP 10303960 A JP10303960 A JP 10303960A JP 30396098 A JP30396098 A JP 30396098A JP 2000130974 A JP2000130974 A JP 2000130974A
Authority
JP
Japan
Prior art keywords
pipe
heat storage
heat
shaped
bound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10303960A
Other languages
Japanese (ja)
Inventor
Takao Komatsu
隆夫 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUMIKO ENGINEERING KK
Original Assignee
SUMIKO ENGINEERING KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUMIKO ENGINEERING KK filed Critical SUMIKO ENGINEERING KK
Priority to JP10303960A priority Critical patent/JP2000130974A/en
Publication of JP2000130974A publication Critical patent/JP2000130974A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0004Particular heat storage apparatus
    • F28D2020/0021Particular heat storage apparatus the heat storage material being enclosed in loose or stacked elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Incineration Of Waste (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the amount of heat storage per unit volume, and at the same time to reduce the loss of pressure and costs by forming a heat reservoir that is used for collecting and reutilizing heat energy of a combustion exhaust gas by aggregate where a plurality of pipe-shaped members are bound. SOLUTION: Instead of a heat reservoir being formed by filling a conventional interlock saddle-shaped heat storing material made of ceramics, a heat reservoir 1 is formed by aggregate where a plurality of pipe-shaped members 1-1-1-n are bound. Then, the quality of the material of the pipe members 1-1-1-n is selected by considering treatment temperature due to combustion decomposition, corrosiveness, and the like. For example, metal is preferably used instead of ceramics since the metal is inexpensive and is easily subjected to machining such as welding. When the aggregate is bound at two places, one end part of the aggregate is firmly restrained by a tie ring 2, and the center part is preferably loosely restrained by a tie ring 3, thus absorbing the displacement of the pipe-shaped members 1-1-1-n due to difference in thermal expansion for allowing it to escape in one direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蓄熱燃焼式排気ガ
ス処理装置、より詳細には悪臭成分などを含む排気ガス
を燃焼により分解除去する脱臭装置において、燃焼分解
処理を行った排気ガスが保有する熱エネルギを回収し、
これを熱源として処理ガスの余熱を行うことにより廃熱
を有効に回収するための蓄熱燃焼式排気ガス処理装置用
の蓄熱体および該蓄熱体の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage combustion type exhaust gas treatment device, and more particularly, to a deodorization device for decomposing and removing exhaust gas containing a malodorous component by burning, the exhaust gas having undergone combustion decomposition treatment possessed. Heat energy,
The present invention relates to a regenerator for a regenerative combustion type exhaust gas processing device for effectively recovering waste heat by performing residual heat of a processing gas using the heat as a heat source, and a method for manufacturing the regenerator.

【0002】[0002]

【従来の技術】従来、各種の産業分野の製造設備から発
生する悪臭成分などを含む排気ガスの処理の方法として
は、燃焼法、吸着法および生物処理法などがある。これ
ら方法にはそれぞれ固有の特徴があり、対象とする処理
ガスの組成、濃度、ガス量および設備の設置条件または
回収した廃熱の用途などを適宜考慮していずれかの方式
を選択して用いられている。
2. Description of the Related Art Conventionally, methods for treating exhaust gas containing malodorous components generated from manufacturing facilities in various industrial fields include a combustion method, an adsorption method, and a biological treatment method. Each of these methods has unique characteristics, and any one of the methods is selected and used in consideration of the composition, concentration, amount of gas, and installation conditions of the target processing gas or the use of the recovered waste heat as appropriate. Have been.

【0003】このうち燃焼法には、高温度の条件下で悪
臭成分などを含む排気ガスを分解処理する直接燃焼方式
と触媒酸化作用により低温度の条件下で分解処理する触
媒燃焼方式がある。一般に燃焼方式で悪臭成分などを含
む排気ガスを分解処理する場含は、燃焼排気ガスが保有
する熱エネルギを有効に利用するため熱交換器を介して
処理ガスの予熱を行い、さらに余剰の熱エネルギによっ
て空気を加熱し、温風として廃熱を回収することが行わ
れている。特に高温の燃焼で分解処理する直接燃焼方式
では、廃熱ボイラにより廃熱を蒸気として回収する場合
が多い。しかしながら、処理ガスの予熱を除く各種の形
態で回収された熱エネルギの用途が特にない場合もあ
り、この場合には有効利用されない大量の熱エネルギが
大気に放出されることとなる。
[0003] The combustion method includes a direct combustion method in which exhaust gas containing malodorous components is decomposed under high temperature conditions and a catalytic combustion method in which decomposition is performed under low temperature conditions by catalytic oxidation. In general, when the exhaust gas containing odorous components is decomposed by the combustion method, the process gas is preheated via a heat exchanger to effectively use the thermal energy possessed by the combustion exhaust gas, and the surplus heat is further added. Background Art Heating air by energy and recovering waste heat as warm air has been performed. In particular, in a direct combustion method in which decomposition treatment is performed by high-temperature combustion, waste heat is often recovered as steam by a waste heat boiler. However, there is a case where there is no particular use of the heat energy recovered in various forms except for the preheating of the processing gas. In this case, a large amount of heat energy that is not effectively used is released to the atmosphere.

【0004】これに対し、燃焼方式で発生する燃焼排気
ガスが保有する熱エネルギを、最大限に処理ガスの予熱
に利用する方法として蓄熱燃焼方式がある。すなわちこ
れは燃焼排気ガスが保有する熱エネルギを、排気ガス処
理装置自体で有効に利用する方法である。
On the other hand, there is a heat storage combustion method as a method for maximally utilizing the heat energy held by the combustion exhaust gas generated in the combustion method for preheating the processing gas. That is, this is a method in which the heat energy held by the combustion exhaust gas is effectively used by the exhaust gas treatment device itself.

【0005】従来の蓄熱燃焼方式の排気ガス処理装置に
は、2塔式のものと3塔式のものがあり、そのうち2塔
式のものは図7に示す通り断熱筐体20からなり、該筐
体20は燃焼室21とこれに連通して並設された2塔の
蓄熱槽22、22′とで構成されており、該蓄熱槽2
2、22′にはそれぞれ各種の蓄熱材が充填されてい
る。また排気ファン23により供給された処理ガスの流
れは、図7(a)のように自動ダンパ24−1、24−
2、24−3、24−4の切替(ダンパ24−1、24
−4が開、ダンパ24−2、24−3が閉)により燃焼
条件が決まり、ある時間間隔で連続的に、かつ繰り返し
処理ガスの流れの方向が切替わるものである。そして燃
焼室21の前段に位置する蓄熱槽22を通過して予熱さ
れ燃焼室21で燃焼分解された悪臭成分などを含む処理
ガスの燃焼排気ガスは、大気に放出される前に後段に位
置する蓄熱槽22′を通過して、保有する熱エネルギを
一旦この蓄熱材に蓄熱する。このとき保有熱エネルギの
95%前後が後段に位置する蓄熱槽22′の蓄熱材に蓄
熱され、燃焼排気ガスは低温状態となってダクト25か
ら大気に放出される。
[0005] Conventional heat storage combustion type exhaust gas treatment devices include a two-tower type and a three-tower type. Of these, the two-tower type comprises a heat insulating casing 20 as shown in FIG. The housing 20 is composed of a combustion chamber 21 and two heat storage tanks 22 and 22 ′ arranged in parallel in communication with the combustion chamber 21.
2, 22 'are filled with various heat storage materials. The flow of the processing gas supplied by the exhaust fan 23 is, as shown in FIG.
Switching between 2, 24-3 and 24-4 (dampers 24-1, 24
-4 is open and the dampers 24-2 and 24-3 are closed), and the combustion conditions are determined, and the flow direction of the processing gas is switched continuously and repeatedly at certain time intervals. Then, the combustion exhaust gas of the processing gas containing the malodorous component and the like, which is preheated by passing through the heat storage tank 22 located in the preceding stage of the combustion chamber 21 and burned and decomposed in the combustion chamber 21, is located in the latter stage before being released to the atmosphere. After passing through the heat storage tank 22 ', the stored heat energy is temporarily stored in the heat storage material. At this time, about 95% of the stored heat energy is stored in the heat storage material of the heat storage tank 22 'located at the subsequent stage, and the combustion exhaust gas is discharged to the atmosphere from the duct 25 in a low temperature state.

【0006】一方燃焼室21の上流側に位置する蓄熱槽
22に充填された蓄熱材が保有する熱エネルギが処理ガ
スの予熱のために消費されると、図7(b)のように自
動ダンパ24−1、24−2、24−3、24−4の切
替(ダンパ24−1、24−4が閉、ダンパ24−2、
24−3が開)によって処理ガスの流れ方向が変わり、
上流側の蓄熱槽22が後段の蓄熱槽となり、下流側の蓄
熱槽22′が前段の蓄熱槽となって逆の機能を果たす。
蓄熱燃焼方式は、この動作を運続的に交互に繰り返すこ
とにより処理ガスを効率よく予熱し、燃焼排気ガスによ
り蓄熱するものである。すなわち燃焼室21の前段に位
置する蓄熱槽では、燃焼排気ガスで加熱された蓄熱材の
放熱により処理ガスの予熱が行われ、後段に位置する蓄
熱槽では燃焼排気ガスが保有する熱エネルギにより蓄熱
材への蓄熱が行われ、これを交互に繰返すのである。
On the other hand, when the heat energy held by the heat storage material filled in the heat storage tank 22 located on the upstream side of the combustion chamber 21 is consumed for preheating the processing gas, as shown in FIG. Switching of 24-1, 24-2, 24-3, 24-4 (dampers 24-1, 24-4 are closed, dampers 24-2,
24-3 is opened), the flow direction of the processing gas changes,
The upstream heat storage tank 22 serves as a rear heat storage tank, and the downstream heat storage tank 22 'serves as a front heat storage tank, and performs the opposite function.
In the heat storage combustion method, the processing gas is preheated efficiently by repeating this operation continuously and alternately, and heat is stored by the combustion exhaust gas. That is, in the heat storage tank located in the preceding stage of the combustion chamber 21, the processing gas is preheated by radiating the heat storage material heated by the combustion exhaust gas, and in the heat storage tank located in the subsequent stage, the heat energy is stored by the thermal energy held by the combustion exhaust gas. The heat is stored in the material and this is repeated alternately.

【0007】しかしながら2塔型蓄熱燃焼方式では、自
動ダンパの切替によって処理ガスの流れ方向が変わると
きに前記切替前には予熱工程側であった蓄熱槽に残留し
ていた未処理のガスが、蓄熱工程に入ってそのまま逆流
して大気に放出されることとなり、これによって脱臭性
能の低下をもたらす。この欠点を防止するために蓄熱槽
を3塔設け予熱工程から蓄熱工程に直接移行させず、予
熱工程で残留していた未処理ガスをパージして少量ずつ
処理ガスとともに予熱工程へ送り、残留未処理ガスを完
全に燃焼排気ガスに置換させてから、蓄熱工程に移行さ
せるものが図8に示す3塔型蓄熱燃焼方式である。
However, in the two-column thermal storage combustion system, when the flow direction of the processing gas changes due to the switching of the automatic damper, the unprocessed gas remaining in the thermal storage tank on the preheating step side before the switching is removed. After entering the heat storage process, the gas flows back to the atmosphere and is released to the atmosphere, thereby deteriorating the deodorizing performance. In order to prevent this drawback, three heat storage tanks are provided, and the process is not directly shifted from the preheating process to the heat storage process. Instead, the unprocessed gas remaining in the preheating process is purged and sent little by little to the preheating process together with the processing gas. The three-tower thermal storage combustion system shown in FIG. 8 is one in which the processing gas is completely replaced with the combustion exhaust gas before the process proceeds to the thermal storage step.

【0008】図8においては断熱筐体20は燃焼室21
とこれに連通して並設された3塔の蓄熱槽22、2
2′、22″とで構成されており、該蓄熱槽22、2
2′、22″にはそれぞれ各種の蓄熱材が充填されてい
る。そして排気ファン23により供給される処理ガス
は、自動ダンパ24−1、24−2、24−3、24−
4、24−5、24−6の切替によりダクト25を介し
て大気に放出されるよう構成され、さらに各蓄熱槽2
2、22′、22″の底部は自動弁26−1、26−
2、26−3を介してパージ用ダクト27により排気フ
ァン23の上流側に接続されているものである。
[0008] In FIG.
And the three tower heat storage tanks 22, 2
2 ′, 22 ″.
2 'and 22 "are filled with various heat storage materials. The processing gas supplied by the exhaust fan 23 is supplied to the automatic dampers 24-1, 24-2, 24-3 and 24-.
4, 24-5, and 24-6 are configured to be released to the atmosphere via the duct 25, and each heat storage tank 2
2, 22 'and 22 "have automatic valves 26-1, 26-
It is connected to the upstream side of the exhaust fan 23 by a purge duct 27 via the second and 26-3.

【0009】まず図8(a)では自動ダンパ24−1、
24−2、24−4、24−5が閉、24−3、24−
6が開に切替られており排気ファン23により供給され
る処理ガスは前段の蓄熱槽22′で予熱され、燃焼室2
1で燃焼分解されて蓄熱槽22″で蓄熱されてダクト2
5を介して大気に放出される。この際、自動弁26−1
のみが開に切替わっているために燃焼排気ガスは蓄熱槽
22を蓄熱するとともに、ここに残留した未処理ガスを
少量ずつパージ用ダクト27を介して排気ファン23に
再循環させ、さらに蓄熱槽22′に送られて予熱される
ことになる。したがって未処理のガスが、そのまま逆流
してダクト25より直接大気に放出されることがない。
First, in FIG. 8A, an automatic damper 24-1 is provided.
24-2, 24-4, 24-5 are closed, 24-3, 24-
6, the processing gas supplied by the exhaust fan 23 is preheated in the heat storage tank 22 'at the preceding stage,
1, the heat is stored in the heat storage tank 22 ", and the heat is stored in the duct 2.
5 to the atmosphere. At this time, the automatic valve 26-1
Since only the open state is switched to open, the combustion exhaust gas stores heat in the heat storage tank 22, and the untreated gas remaining there is recirculated little by little to the exhaust fan 23 through the purge duct 27. It is sent to 22 'to be preheated. Therefore, the untreated gas does not flow back to the atmosphere from the duct 25 directly to the atmosphere.

【0010】同様に図8(b)は蓄熱槽22′が残留未
処理ガスを予熱工程に送る蓄熱槽となる場合、また図8
(c)は蓄熱槽22″が残留未処理ガスを予熱工程に送
る蓄熱槽となる場合をそれぞれ示したものである。この
ように2塔型蓄熱燃焼方式、3塔型蓄熱燃焼方式のいず
れの場合であっても予熱された処理ガスは、燃焼室21
で燃焼分解に必要な温度までバーナ28などによってさ
らに加熱され、高温度の条件下で完全な燃焼分解処理が
行われるものであった。
Similarly, FIG. 8B shows a case where the heat storage tank 22 'is a heat storage tank for sending the residual untreated gas to the preheating step.
(C) shows the case where the heat storage tank 22 "is a heat storage tank for sending the residual untreated gas to the preheating step. In this manner, any of the two-column heat storage combustion method and the three-column heat storage combustion method is used. Even in such a case, the preheated processing gas is supplied to the combustion chamber 21.
Thus, the fuel is further heated by a burner 28 or the like to a temperature required for combustion decomposition, and complete combustion decomposition treatment is performed under high temperature conditions.

【0011】そして2塔型蓄熱燃焼方式や3塔型蓄熱燃
焼方式において蓄熱槽22、22′あるいは22″に充
填され蓄熱体を構成する蓄熱材29は図9に示す通りセ
ラミックス製のインタロックサドル形状のものが広く採
用されており、稀にハニカム構造体なども使われている
が、いずれにしてもこれらの蓄熱材29は比熱量が大き
く耐熱性にも優れている。
In the two-column heat storage combustion system or the three-column heat storage combustion system, the heat storage material 29 which is filled in the heat storage tanks 22, 22 'or 22 "to form a heat storage body is a ceramic interlock saddle as shown in FIG. Shaped materials are widely used, and a honeycomb structure or the like is rarely used. In any case, these heat storage materials 29 have a large specific heat amount and are excellent in heat resistance.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、蓄熱槽
に充填され蓄熱体を構成するサドル形状の蓄熱材29は
その形状から圧力損失が大きく、またダストの多い処理
ガスの場合はダストがここに分離堆積する欠点があっ
た。特に有機シリコンを含む処理ガスでは、これが燃焼
分解した際に発生する極微細なシリカ(SiO)ダス
トが蓄熱材29に堆積される傾向があり、そして加熱、
放熱の繰り返しによる熱変動の過程でこれが溶融して、
充填された複数の蓄熱材29を塊状に結合させて蓄熱槽
を閉塞させることがあった。また空隙率が大きいために
嵩比重が小さくなり、所定の蓄熱量を保有させるように
蓄熱材を充填するためには蓄熱槽を大きくせざるを得
ず、当然これに伴い装置全体が大型化してしまう欠点が
あった。
However, the saddle-shaped heat storage material 29 which is filled in the heat storage tank and constitutes a heat storage body has a large pressure loss due to its shape, and in the case of a processing gas containing a lot of dust, the dust is separated therefrom. There was a drawback to deposit. Particularly, in a processing gas containing organic silicon, ultrafine silica (SiO 2 ) dust generated when the processing gas is decomposed by combustion tends to be deposited on the heat storage material 29,
This melts in the process of heat fluctuation due to repeated heat radiation,
In some cases, the plurality of filled heat storage materials 29 are combined in a lump to close the heat storage tank. In addition, since the porosity is large, the bulk specific gravity is small, and in order to fill the heat storage material so as to hold a predetermined amount of heat storage, the heat storage tank has to be enlarged, and naturally the entire apparatus is enlarged accordingly. There was a disadvantage.

【0013】本発明は、セラミックス製インタロックサ
ドル形状の蓄熱材を充填して使用する蓄熱体と比べて、
単位容積当たりの蓄熱量が大きく、また圧力損失が小さ
く、かつ安価である、特に蓄熱燃焼式排気ガス処理装置
に用いる蓄熱体および該蓄熱体の製造方法を提供するこ
とを目的とするものである。
According to the present invention, a heat storage element which is filled with a ceramic interlock saddle-shaped heat storage material is used.
It is an object of the present invention to provide a heat storage body having a large amount of heat storage per unit volume, a small pressure loss, and a low price, particularly a heat storage body used for a heat storage combustion type exhaust gas treatment device and a method of manufacturing the heat storage body. .

【0014】[0014]

【課題を解決するための手段】上記課題を解決するため
本発明の第1の実施態様は、燃焼排気ガスが有する熱エ
ネルギの回収、再利用に用いる蓄熱体であって、該蓄熱
体が複数のパイプ状部材を束ねた集合体から構成されて
なることを特徴とし、また前記集合体の一端部では該集
合体を構成する各パイプ状部材が強固に束縛され、ほぼ
中央部では熱膨張による変位を解放し得るよう緩やかに
束縛され、さらに前記集合体の各パイプ状部材が強固に
束縛される端部近傍では、隣接するパイプ状部材の各当
接部において部分溶接され、さらにまた前記パイプ状部
材内に流通するガス流に乱れを発生させる金属または耐
熱材からなる部材が装着されている蓄熱体を特徴とする
ものである。
According to a first embodiment of the present invention, there is provided a heat storage element for recovering and reusing thermal energy of combustion exhaust gas, wherein the heat storage element comprises a plurality of heat storage elements. It is characterized by being constituted by an aggregate obtained by bundling the pipe-like members, and each pipe-like member constituting the aggregate is firmly bound at one end of the aggregate, and is substantially thermally expanded at a central portion. In the vicinity of the end where each pipe-shaped member of the assembly is firmly bound, the pipe is partially welded at each abutting portion of an adjacent pipe-shaped member, and further, the pipe is closed. A heat storage element is provided with a member made of a metal or a heat-resistant material that causes turbulence in a gas flow flowing through the shaped member.

【0015】また本発明の第2の実施態様は、所定長さ
に切断されたパイプ状部材を定盤の一表面に設けられた
直角となったほぼL字状の治具に当接するよう一列状に
置し、前記治具に当接されたパイプ状部材の一端部近傍
で隣接したパイプ状部材の外周面を相互に部分溶接して
一体となったパイプ状部材列を作製し、該パイプ状部材
列を積層した後、各パイプ状部材列間で隣接するパイプ
状部材同士を溶接するかあるいは一端部を結束リングに
より束ねて束縛して一体化する蓄熱体の製造方法を特徴
とするものである。
According to a second embodiment of the present invention, a pipe-like member cut to a predetermined length is arranged in a row so as to abut a right-angled substantially L-shaped jig provided on one surface of a surface plate. The outer peripheral surfaces of adjacent pipe-shaped members near one end of the pipe-shaped member abutted on the jig are partially welded to each other to produce an integrated pipe-shaped member row, Characterized by a method of manufacturing a heat storage body in which adjacent pipe-shaped members are welded to each other between the pipe-shaped member rows or one end is bound and bound together by a binding ring after stacking the row of shaped members. It is.

【0016】[0016]

【発明の実施の形態】以下本発明を添付図面に基いて説
明する。図1はパイプ状部材を束ねて結束してなる本発
明の蓄熱体の一実施例を示す斜視図、図2は本発明に係
る蓄熱体を構成するパイプ状部材の配列例を示す図で、
(a)はその一実施例を示す図、(b)は他の実施例を
示す図、図3は本発明の蓄熱体を製造する方法の第一工
程を示す図で、(a)は正面図、(b)は側面図、図4
は図3の詳細を示す図で、(a)は図3(a)の平面
図、(b)は(a)のA部分の拡大図、図5は第二工程
を示す図、図6はパイプ状部材を集合して全体としてほ
ぼ円柱状に形成された蓄熱体を示す概略平面図である。
図面において、1は蓄熱体、2は結束リング、3は結束
バンド、4は定盤、5は治具である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the accompanying drawings. FIG. 1 is a perspective view showing one embodiment of a heat storage body of the present invention in which pipe-like members are bundled and bound, and FIG. 2 is a diagram showing an example of arrangement of pipe-like members constituting a heat storage body according to the present invention.
(A) is a diagram showing one embodiment, (b) is a diagram showing another embodiment, FIG. 3 is a diagram showing a first step of a method for manufacturing a heat storage body of the present invention, and (a) is a front view. Figure, (b) is a side view, Figure 4
3 is a view showing details of FIG. 3, (a) is a plan view of FIG. 3 (a), (b) is an enlarged view of a portion A of (a), FIG. 5 is a view showing a second step, and FIG. It is a schematic plan view which shows the heat storage body which assembled the pipe-shaped member and was formed in the substantially column shape as a whole.
In the drawings, 1 is a heat storage body, 2 is a binding ring, 3 is a binding band, 4 is a surface plate, and 5 is a jig.

【0017】本発明では従来のセラミックス製インタロ
ックサドル形状の蓄熱材を充填して形成された蓄熱体に
替え、複数のパイプ状部材1−1、1−2、…1−nを
束ねた集合体から蓄熱体1を構成したものであり、該パ
イプ状部材1−1、1−2、…1−nの材質は、燃焼分
解による処理温度および腐食性などを考慮して選定さ
れ、特に限定されるものではないが例えば金属製の方が
セラミックス製より安価であり、溶接などの加工も容易
にできるため好ましい。またパイプ状部材1−1、1−
2、…1−nの断面の形状は円形、方形またはこれ以外
の如何なる形状であっても構わないが、熱交換効率の面
からは円形とすることが好ましい。
In the present invention, a plurality of pipe-like members 1-1, 1-2,... 1-n are bundled instead of a conventional heat storage body formed by filling a ceramic interlock saddle-shaped heat storage material. The heat storage element 1 is composed of a body, and the material of the pipe-shaped members 1-1, 1-2,... 1-n is selected in consideration of the processing temperature and the corrosiveness due to combustion decomposition, and is particularly limited. However, for example, metal is preferable because it is less expensive than ceramic and can be easily processed by welding or the like. Also, the pipe-like members 1-1 and 1-
The cross-sectional shape of 2,... 1-n may be circular, square or any other shape, but is preferably circular from the viewpoint of heat exchange efficiency.

【0018】また本発明の蓄熱体1を構成するパイプ状
部材1−1、1−2、…1−nの配列には特に制約され
ることはないが、例えば図2に例示される配列があり、
図2(a)の方が図2(b)の配列に比べて熱交換の効
率の面でより好ましい。また束ねられるパイプ状部材1
−1、1−2、…1−nのサイズは必ずしも同一である
必要はなく、異なるサイズのパイプにより構成されてい
ても何ら差し支えはない。望ましいパイプ状部材1−
1、1−2、…1−nのサイズは、外径が10〜40m
m、肉厚が0.2〜4mm程度である。あまり太い径や
薄い肉厚のパイプ状部材を用いると容積当たりの蓄熱量
が減少し、一方細すぎる径や厚い肉厚のパイプ状部材を
用いると圧力損失が増加するからである。
The arrangement of the pipe-like members 1-1, 1-2,... 1-n constituting the heat storage body 1 of the present invention is not particularly limited, but for example, the arrangement illustrated in FIG. Yes,
2A is more preferable in terms of heat exchange efficiency than the arrangement of FIG. 2B. Pipe-shaped member 1 to be bundled
The size of -1, 1-2,... 1-n does not necessarily have to be the same, and there is no problem even if pipes of different sizes are used. Desirable pipe member 1
The size of 1, 1-2,... 1-n has an outer diameter of 10 to 40 m.
m, and the thickness is about 0.2 to 4 mm. This is because the heat storage amount per volume decreases when a pipe-shaped member having an excessively large diameter or a small thickness is used, while a pressure loss increases when a pipe-shaped member having an excessively small diameter or a large thickness is used.

【0019】前記蓄熱体1を構成するため複数のパイプ
状部材1−1、1−2、…1−nからなる集合体は、束
ねたパイプ状部材の形状が崩れないようにパイプ状部材
同士を後述するように部分溶接するか、あるいは図1に
示すように金属製結束リング2や結束バンド3などによ
り束縛するのが好ましいが、部分溶接と結束リング2や
結束バンド3などによる束縛の両方の手段を用いてもよ
い。そしてパイプ状部材1−1、1−2、…1−nを束
ねて形成された集合体を2箇所で束縛する場合は、集合
体の一方の端部では結束リング2により強固に束縛し、
ほぼ中央部では結束バンド3により緩く束縛することが
好ましい。このように一方で強固に、他方で緩く束縛す
ることにより束ねられたパイプ状部材1−1、1−2、
…1−nの集合体全体が不均一に加熱されても、熱膨張
差による各パイプ状部材1−1、1−2、…1−nの相
互の変位を吸収して一方向に逃がすことができるからで
ある。
An assembly made up of a plurality of pipe-like members 1-1, 1-2,... 1-n for constituting the heat storage body 1 is made of pipe-like members so that the shape of the bundled pipe-like members does not collapse. It is preferable to perform partial welding as described later or to bind with a metal binding ring 2 or a binding band 3 as shown in FIG. 1, but both partial welding and binding with the binding ring 2 and the binding band 3 are preferable. May be used. When the aggregate formed by bundling the pipe-like members 1-1, 1-2,... 1-n is bound at two places, the bundle is strongly bound by the binding ring 2 at one end of the aggregate.
It is preferable that the cable be loosely bound by the binding band 3 at a substantially central portion. Thus, the pipe-like members 1-1, 1-2, which are bundled by being tightly bound on one side and loosely bound on the other.
.. 1-n are absorbed in one direction by absorbing mutual displacement of the pipe-shaped members 1-1, 1-2,. Because it can be.

【0020】パイプ状部材1−1、1−2、…1−nの
サイズおよび/または本数によっては、前記結束リング
2や結束バンド3に替え、あるいはこれらと併用して一
端部の近傍でそれぞれ隣接するパイプ状部材の当接した
外周面を相互に部分溶接することにより、一層各パイプ
状部材のずれを防ぐことができる。そして蓄熱体1内部
の気流の流れは乱流状態になることが熱交換効率を高め
るために好ましい。例えば金属または耐熱材からなる薄
肉の帯状部材の長手方向に捻りを与えて、パイプ状部材
1−1、1−2、…1−nの内部の全長または一部に装
着することにより、パイプ状部材1−1、1−2、…1
−n内のガス流に強制的に乱流を発生させて熱伝達率を
高め、これにより熱交換効率の向上を計ることができ
る。
Depending on the size and / or number of the pipe-shaped members 1-1, 1-2,... 1-n, the binding ring 2 and the binding band 3 may be replaced or used together with the binding ring 2 or the binding band 3 in the vicinity of one end. By partially welding the contacting outer peripheral surfaces of adjacent pipe-shaped members to each other, it is possible to further prevent the displacement of each pipe-shaped member. It is preferable that the flow of the air flow inside the heat storage body 1 be in a turbulent state in order to increase the heat exchange efficiency. For example, by applying a twist in the longitudinal direction of a thin band-shaped member made of metal or a heat-resistant material, and attaching it to the entire length or a part of the inside of the pipe-shaped members 1-1, 1-2,. Member 1-1, 1-2,... 1
The turbulence is forcibly generated in the gas flow in -n to increase the heat transfer coefficient, thereby improving the heat exchange efficiency.

【0021】つぎに多数のパイプ状部材1−1、1−
2、…1−nから蓄熱体1を製造する方法について図3
〜図5に基き説明すると、定盤4の一側面に直角を呈す
る水平板材5−1と垂直板材5−2からなる全体として
ほぼL字状の治具5を配設し、前記治具5の水平板材5
−1に一端部が、また垂直板材5−2にその外周面が当
接するようパイプ状部材1−1を配置し、ついで順次同
様にしてパイプ状部材1−2、…1−nを配置して一列
状となし、各パイプ状部材1−1、1−2、…1−nの
前記一端部近傍で隣接したパイプ状部材1−1、1−
2、…1−nの外周面を相互に部分溶接Wして、一体と
なったパイプ状部材列7−1、7−2、…7−nを複数
作製する。ついで該パイプ状部材列7−1、7−2、…
7−nを所定の形状に積層する。その際、例えば図1の
ように複数のパイプ状部材を集合して円柱状の蓄熱体1
を形成するには図6のように各パイプ状部材列7−1、
7−2、…7−nを構成するパイプ状部材の数を増減し
て、該パイプ状部材列7−1、7−2、…7−nを束ね
て積層した時に、全体として円柱状となるようにすれば
よい。
Next, a number of pipe members 1-1, 1-
2, a method for manufacturing the heat storage body 1 from 1-n is shown in FIG.
Referring to FIG. 5, a generally L-shaped jig 5 composed of a horizontal plate 5-1 and a vertical plate 5-2 exhibiting a right angle to one side surface of the surface plate 4 is disposed. Horizontal plate 5
-1, one end thereof, and the outer peripheral surface thereof abut on the vertical plate member 5-2, and then sequentially arrange the pipe-like members 1-2,... 1-n in the same manner. , 1-n adjacent to the pipe-shaped members 1-1, 1-, 1-n adjacent to the one end.
2,... 1-n are partially welded to each other to produce a plurality of integrated pipe-shaped member rows 7-1, 7-2,. Then, the pipe-shaped member rows 7-1, 7-2,.
7-n are laminated in a predetermined shape. At this time, for example, as shown in FIG.
In order to form the pipe-shaped member rows 7-1 as shown in FIG.
When the number of pipe-like members constituting 7-2,... 7-n is increased or decreased, and the pipe-like member rows 7-1, 7-2,. What is necessary is just to become.

【0022】その後所定形状に積層されたパイプ状部材
列7−1、7−2、…7−n間で隣接するパイプ状部材
1−1、1−2、…1−n同士を溶接して一体化する
か、あるいは部分溶接部を有する一端部側近傍の外周
を、緩むことなく強固に結束リング2で束縛して一体化
することで本発明の蓄熱体1が製造されるのである。
Then, the adjacent pipe-like members 1-1, 1-2,... 1-n between the pipe-like member rows 7-1, 7-2,. The heat storage element 1 of the present invention is manufactured by being integrated, or by tightly binding the outer periphery near the one end portion side having the partial welded portion with the binding ring 2 without loosening.

【0023】なお本発明に係る蓄熱体1は図3〜図5の
ような方法で製造することが効率的かつ安価であるが、
多数のパイプ状部材1−1、1−2、…1−nを単に束
ねて一端部を揃えた後に、該一端部を結束リングで強固
に束縛したり、あるいは揃えた一端部近傍を相互に部分
溶接したりして構成することもできる。
Although it is efficient and inexpensive to manufacture the heat storage body 1 according to the present invention by the method shown in FIGS.
After a number of pipe-shaped members 1-1, 1-2,... 1-n are simply bundled and one end is aligned, the one end is tightly bound with a binding ring, or the vicinity of the aligned one end is mutually connected. It can also be configured by partial welding.

【0024】[0024]

【実施例】つぎに本発明の実施例を比較例とともに説明
する。 実施例 本発明によるパイプ状部材の集合体からなる蓄熱体の単
位体積(m)当りの仕様を示すと、 蓄熱材 ボイラ・熱交換器用炭素鋼鋼管 パイプ寸法(径×肉厚) 15.0×2.0mm 総パイプ長さ 4,440m/m 蓄熱体重量 3,871kg/m 蓄熱体全表面積 460m/m 開口率 53.5% 比熱(400℃) 0.13Kcal/kg・℃ 熱伝導率(400℃) 33.19Kcal/m・hr・℃
Next, examples of the present invention will be described together with comparative examples. Example The specification per unit volume (m 3 ) of a heat storage body composed of an aggregate of pipe-shaped members according to the present invention is as follows. Heat storage material Carbon steel pipe for boiler / heat exchanger Pipe size (diameter x wall thickness) 15.0 × 2.0 mm Total pipe length 4,440 m / m 3 Heat storage unit weight 3,871 kg / m 3 Heat storage unit total surface area 460 m 2 / m 3 Opening ratio 53.5% Specific heat (400 ° C) 0.13 Kcal / kg · ° C Thermal conductivity (400 ° C) 33.19 Kcal / m · hr · ° C

【0025】そして実施例の蓄熱体の平均温度を400
℃とすると蓄熱体の蓄熱量(QN)は下記となる。 QN=0.13Kcal/kg・℃×3,871kg/m×400℃ =201,292Kcal/m
The average temperature of the heat storage body of the embodiment is set to 400
When the temperature is set to ° C., the heat storage amount (QN) of the heat storage body becomes QN = 0.13 Kcal / kg · ° C. × 3,871 kg / m 3 × 400 ° C. = 201,292 Kcal / m 3

【0026】比較例 セラミックス製インタロックサドル形状の蓄熱材を充填
してなる蓄熱体の単位体積(m)当りの仕様を示す
と、 蓄熱材 セラミックス製インタロックサドル 蓄熱材寸法(呼寸法) 25mm 蓄熱材の充填量 84,200個/m 蓄熱体の重量 700kg/m 蓄熱体総表面積 290m/m 比熱(400℃) 0.34Kcal/kg・℃ 熱伝導率(400℃) 1.76Kcal/m・hr・℃
COMPARATIVE EXAMPLE The specification per unit volume (m 3 ) of a heat storage body filled with a ceramic interlock saddle-shaped heat storage material is as follows. Heat storage material Ceramic interlock saddle Heat storage material dimensions (nominal dimensions) 25 mm Filling amount of heat storage material 84,200 pieces / m 3 Weight of heat storage body 700 kg / m 3 Total surface area of heat storage body 290 m 2 / m 3 Specific heat (400 ° C) 0.34 Kcal / kg · ° C Thermal conductivity (400 ° C) 76Kcal / m · hr · ° C

【0027】そして比較例による蓄熱体の平均温度を4
00℃とすると蓄熱体の蓄熱量(QO)は下記となる。 QO=0.34Kcal/kg・℃×700kg/m×400℃ =95,200Kcal/m
The average temperature of the heat accumulator according to the comparative example was 4
When the temperature is set to 00 ° C., the heat storage amount (QO) of the heat storage body is as follows. QO = 0.34 Kcal / kg · ° C. × 700 kg / m 3 × 400 ° C. = 95,200 Kcal / m 3

【0028】上記したように同一条件で蓄熱体の単位容
積当たりの蓄熱量を、本発明の蓄熱体と従来の蓄熱体で
比較すると、本発明の蓄熱体は同じ容積で約2倍の熱量
を蓄熱することが可能となった。すなわち同じ蓄熱量を
確保するためには、従来の蓄熱体では本発明の蓄熱体の
約2倍の大きさが必要となり、これに伴って設備が大型
とせざるを得なかった。同様に本発明の蓄熱体の圧力損
失は、同じ条件で実施した試験によれば従来の蓄熱体と
比べると1/2以下となった。また単位容積当りの蓄熱
量と熱伝導率を考慮すると、本発明の蓄熱体では処理ガ
スの蓄熱体面風速を高く取ることが可能となり、さらに
設備規模の小型化が計れた。
As described above, when the heat storage amount per unit volume of the heat storage body under the same conditions is compared between the heat storage body of the present invention and the conventional heat storage body, the heat storage body of the present invention has about twice the amount of heat in the same volume. It became possible to store heat. That is, in order to secure the same heat storage amount, the conventional heat storage body needs to be about twice as large as the heat storage body of the present invention, and the equipment must be large accordingly. Similarly, the pressure loss of the heat storage body of the present invention was less than half that of the conventional heat storage body in a test performed under the same conditions. Further, in consideration of the heat storage amount per unit volume and the thermal conductivity, the heat storage body of the present invention can have a high wind speed of the heat storage body surface of the processing gas, and the size of the equipment can be reduced.

【0029】[0029]

【発明の効果】以上述べた通り本発明によれば、セラミ
ックス製インタロックサドル形状の蓄熱材を充填して使
用する蓄熱体と比べて、単位容積当たりの蓄熱量が大き
く、また圧力損失が小さく、かつ安価である、特に蓄熱
燃焼式排気ガス処理装置に用いる蓄熱体および該蓄熱体
の製造方法を提供することが可能となった。
As described above, according to the present invention, the heat storage amount per unit volume is large and the pressure loss is small as compared with a heat storage body which is filled with a ceramic interlock saddle-shaped heat storage material. It has become possible to provide a heat storage element which is inexpensive, particularly used in a heat storage combustion type exhaust gas treatment apparatus, and a method for manufacturing the heat storage element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】パイプ状部材を束ねて結束してなる本発明の蓄
熱体の一実施例を示す斜視図である。
FIG. 1 is a perspective view showing one embodiment of a heat storage body of the present invention in which pipe-shaped members are bundled and bound.

【図2】本発明に係る蓄熱体を構成するパイプ状部材の
配列例を示す図で、(a)はその一実施例を示す図、
(b)は他の実施例を示す図である。
FIG. 2 is a view showing an example of arrangement of pipe-like members constituting a heat storage body according to the present invention, wherein (a) is a view showing one embodiment thereof,
(B) is a figure which shows another Example.

【図3】本発明の蓄熱体を製造する方法の第一工程を示
す図で、(a)は正面図、(b)は側面図である。
3A and 3B are diagrams showing a first step of a method for manufacturing a heat storage body of the present invention, wherein FIG. 3A is a front view and FIG. 3B is a side view.

【図4】図3の詳細を示す図で、(a)は図3(a)の
平面図、(b)は(a)のA部分の拡大図である。
4 is a view showing details of FIG. 3, wherein FIG. 4A is a plan view of FIG. 3A and FIG. 4B is an enlarged view of a portion A of FIG.

【図5】本発明の製造方法の第二工程を示す図である。FIG. 5 is a view showing a second step of the production method of the present invention.

【図6】パイプ状部材を集合して全体としてほぼ円柱状
に形成された蓄熱体を示す概略平面図である。
FIG. 6 is a schematic plan view showing a heat storage body formed by assembling pipe-like members and forming a substantially columnar shape as a whole.

【図7】従来の蓄熱体を用いた2塔式排気ガス処理装置
の概略断面図で、(a)および(b)はそれぞれ自動ダ
ンパの切替状態における処理ガスの流れを示す図であ
る。
FIGS. 7A and 7B are schematic cross-sectional views of a conventional two-tower exhaust gas processing apparatus using a heat storage body, wherein FIGS. 7A and 7B are diagrams illustrating the flow of a processing gas in a switching state of an automatic damper, respectively.

【図8】従来の蓄熱体を用いた3塔式排気ガス処理装置
の概略断面図で、(a)〜(c)はそれぞれ自動ダンパ
の切替状態における処理ガスの流れを示す図である。
FIG. 8 is a schematic cross-sectional view of a conventional three-tower type exhaust gas processing apparatus using a heat storage body, in which (a) to (c) each show a flow of a processing gas in a switching state of an automatic damper.

【図9】従来のセラミックス製インタロックサドル形状
の蓄熱材の斜視図である。
FIG. 9 is a perspective view of a conventional ceramic interlock saddle-shaped heat storage material.

【符号の説明】[Explanation of symbols]

1 蓄熱体 1−1、1−2、…1−n パイプ状部材 2 結束リング 3 結束バンド 4 定盤 5 治具 5−1 水平板材 5−2 垂直板材 7−1、7−2、…7−n パイプ状部材列 W 部分溶接 DESCRIPTION OF SYMBOLS 1 Heat storage body 1-1, 1-2, ... 1-n Pipe-shaped member 2 Binding ring 3 Binding band 4 Surface plate 5 Jig 5-1 Horizontal plate 5-2 Vertical plate 7-1, 7-2, ... 7 −n Pipe-shaped member row W Partial welding

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 燃焼排気ガスが有する熱エネルギの回
収、再利用に用いる蓄熱体であって、該蓄熱体が複数の
パイプ状部材を束ねた集合体から構成されてなることを
特徴とする蓄熱体。
1. A heat storage element used for recovering and reusing thermal energy of combustion exhaust gas, wherein the heat storage element is formed of an aggregate of a plurality of pipe-shaped members. body.
【請求項2】 前記集合体の一端部では該集合体を構成
する各パイプ状部材が強固に束縛され、ほぼ中央部では
熱膨張による変位を解放し得るよう緩やかに束縛されて
いることを特徴とする請求項1記載の蓄熱体。
2. The pipe-shaped members constituting the assembly are firmly bound at one end of the assembly, and loosely bound at a substantially central portion so that displacement due to thermal expansion can be released. The heat storage body according to claim 1, wherein
【請求項3】 前記集合体の各パイプ状部材が強固に束
縛される端部近傍では、隣接するパイプ状部材の各当接
部において部分溶接されていることを特徴とする請求項
1または2記載の蓄熱体。
3. The assembly according to claim 1, wherein each pipe-shaped member of the assembly is partially welded at an abutting portion of an adjacent pipe-shaped member near an end where the pipe-shaped member is firmly bound. The heat storage body as described.
【請求項4】 前記パイプ状部材内に流通するガス流に
乱れを発生させる金属または耐熱材からなる部材が装着
されていることを特徴とする請求項1〜3のいずれか1
項記載の蓄熱体。
4. The apparatus according to claim 1, wherein a member made of a metal or a heat-resistant material that causes turbulence in a gas flow flowing in the pipe-shaped member is mounted.
Item.
【請求項5】 所定長さに切断されたパイプ状部材を定
盤の一表面に設けられた直角となったほぼL字状の治具
に当接するよう一列状に置し、前記治具に当接されたパ
イプ状部材の一端部近傍で隣接したパイプ状部材の外周
面を相互に部分溶接して一体となったパイプ状部材列を
作製し、該パイプ状部材列を積層した後、各パイプ状部
材列間で隣接するパイプ状部材同士を溶接するか一端部
を結束リングにより束ねて束縛して一体化することを特
徴とする蓄熱体の製造方法。
5. A pipe-shaped member cut to a predetermined length is arranged in a line so as to abut a right-angled substantially L-shaped jig provided on one surface of a surface plate. The outer peripheral surfaces of adjacent pipe-shaped members near one end of the abutted pipe-shaped members were partially welded to each other to produce an integrated pipe-shaped member row, and after stacking the pipe-shaped member rows, A method for manufacturing a heat storage element, wherein adjacent pipe-shaped members between pipe-shaped member rows are welded to each other or one end is bound by a binding ring and bound to be integrated.
JP10303960A 1998-10-26 1998-10-26 Heat storing body and its manufacture Withdrawn JP2000130974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10303960A JP2000130974A (en) 1998-10-26 1998-10-26 Heat storing body and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10303960A JP2000130974A (en) 1998-10-26 1998-10-26 Heat storing body and its manufacture

Publications (1)

Publication Number Publication Date
JP2000130974A true JP2000130974A (en) 2000-05-12

Family

ID=17927351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10303960A Withdrawn JP2000130974A (en) 1998-10-26 1998-10-26 Heat storing body and its manufacture

Country Status (1)

Country Link
JP (1) JP2000130974A (en)

Similar Documents

Publication Publication Date Title
JP4413334B2 (en) Regenerative carbon dioxide separator and carbon dioxide separation system
AU703013B2 (en) Ceramic packing with channels for thermal and catalytic beds
CN205730886U (en) Activated carbon/Jiao's denitration integrated device
CN207667378U (en) A kind of activated carbon thermal analysis apparatus
US20090071135A1 (en) Reverse flow heat exchanger for exhaust systems
JPS60248220A (en) Method and apparatus for removing undesired gaseous component from flue gas
US10399034B2 (en) Catalyst and method for reducing hexavalent chromium Cr(VI)
JP2000130974A (en) Heat storing body and its manufacture
JPS61168792A (en) Heat transfer basket assembly for heat exchanger
US20060153755A1 (en) Heat exchanger and reactor and radiation heater using the heat exchanger
CN210107340U (en) Anticorrosive type exhaust-heat boiler system
CN110887050B (en) Device for removing VOC (volatile organic compounds) and reducing odor from waste gas
Geng et al. Application Study on Three-Bed Regenerative Thermal Oxidizers to Treat Volatile Organic Compounds
CN217698583U (en) Catalytic combustion adsorption and desorption system
CN205079244U (en) Burning of oil gas heating power and emission controlling means
CN213577524U (en) High-temperature organic waste gas circulation treatment system with thermal compensation
CN212039846U (en) Coal smoke denitration heat recovery device
CN213207913U (en) Steam boiler
CN218154184U (en) Waste heat recovery assembly based on synthetic ammonia process
CN219841553U (en) Flue gas treatment system and boiler system with same
WO2003083397A1 (en) Honeycomb heat reservoir, heat storage burner using the heat reservoir, heating furnace, and heating method
JPH0599586A (en) Combustion gas heat exchanger unit and its preparation
JPH05231623A (en) Catalyst combustion device
JPH08150314A (en) Vapor-liquid contact device
RU1780549C (en) Internal combustion engine catalytic neutralizer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110