JP2000129699A - Earthquake resisting underground structure - Google Patents

Earthquake resisting underground structure

Info

Publication number
JP2000129699A
JP2000129699A JP10298694A JP29869498A JP2000129699A JP 2000129699 A JP2000129699 A JP 2000129699A JP 10298694 A JP10298694 A JP 10298694A JP 29869498 A JP29869498 A JP 29869498A JP 2000129699 A JP2000129699 A JP 2000129699A
Authority
JP
Japan
Prior art keywords
underground structure
main body
earthquake
soil
frictional force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10298694A
Other languages
Japanese (ja)
Inventor
Yoshitaka Oshima
義隆 大嶋
Mitsuru Shibanuma
充 柴沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeda Corp
Original Assignee
Maeda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeda Corp filed Critical Maeda Corp
Priority to JP10298694A priority Critical patent/JP2000129699A/en
Publication of JP2000129699A publication Critical patent/JP2000129699A/en
Pending legal-status Critical Current

Links

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Lining And Supports For Tunnels (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an underground structure wherein the frictional force between the underground structure and soil mounted thereon at the time of an earthquake can be reduced and direct soil pressure can be prevented from increasing, and hence increase in cost can be limited, without increasing the strength of the structure as compared with a conventional one. SOLUTION: The earthquake resistant underground structure consists of an underground structure body 1, buried in the ground, a slide part 5 which is composed of low friction materials and laid on an upper slab 1a of the body 1, and a soft material 6 which is softer than the surrounding ground 3 and disposed on the sides of the body 1. In this case, the frictional force between the part 5 and the body 1 is made smaller than the frictional force between soil 2 mounted directly on the body 1 and the body 1, which prevents direct soil pressure from increasing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐震性地中構造物
に関する。
The present invention relates to an earthquake-resistant underground structure.

【0002】[0002]

【従来の技術】従来より、開削トンネルは地中に掘った
穴に構築されている。図2は、矩形状の地中構造物本体
1を地中に掘った穴Hに構築したものの従来例を示して
いる。図2において、地中構造物本体1の上スラブ1a
には、地中構造物本体1を埋設状態におくための土や砂
等2が隙間なく被せられている。これら土や砂等2は、
地中構造物本体1の上スラブ1aに載せられるので、以
下「上載土2」といい、地中構造物本体1の上スラブ1
a以外の外壁面に対応する穴Hの土や砂のことを「周辺
埋設土3」と便宜上いう。なお、図2、図3に符号1b
で示すものは、地中構造物本体1内の空間部であって、
この中を車や電車が通れるようになっている。
2. Description of the Related Art Conventionally, open-cut tunnels have been constructed in holes dug in the ground. FIG. 2 shows a conventional example in which a rectangular underground structure main body 1 is constructed in a hole H dug in the ground. In FIG. 2, the upper slab 1a of the underground structure main body 1
Is covered with no soil or sand 2 for keeping the underground structure main body 1 in a buried state. These soil and sand 2
Since it is mounted on the upper slab 1a of the underground structure main body 1, it is hereinafter referred to as "overlaying soil 2".
The soil or sand in the hole H corresponding to the outer wall surface other than a is referred to as “peripheral buried soil 3” for convenience. 2 and FIG.
Is a space in the underground structure main body 1,
Cars and trains can pass through them.

【0003】地中構造物本体1は矩形状であるからその
上スラブ1aは平面形状をしている。このような平面形
状の上スラブ1aを有する地中構造物本体1を穴Hに構
築してから上載土2を被せて埋設すると、上載土2は、
上スラブ1aで受け止められる。そして、地中構造物本
体1は、通常、地中深く埋設されるので、上スラブ1a
に掛かる上載土2の重量はかなり重い。このため、地中
構造物本体1は、上スラブ1aを介して上載土2によっ
て下方に押圧される。すなわち、上載土2は、その重量
が土圧として地中構造物本体1の上スラブ1aに直接作
用する。
[0003] Since the underground structure main body 1 has a rectangular shape, the slab 1a has a planar shape. When the underground structure main body 1 having the upper slab 1a having such a planar shape is constructed in the hole H and then buried with the overlying earth 2, the overlying earth 2 becomes
It is received by the upper slab 1a. And since the underground structure main body 1 is usually buried deep underground, the upper slab 1a
The weight of the overlying soil 2 hanging on is very heavy. For this reason, the underground structure main body 1 is pressed downward by the upper soil 2 via the upper slab 1a. That is, the weight of the upper soil 2 directly acts on the upper slab 1a of the underground structure main body 1 as the earth pressure.

【0004】一方、地中構造物本体1はコンクリートで
できているため、一般には、地中構造物本体1周りにあ
る上載土2や周辺埋設土3よりも剛性が高い。したがっ
て、地中構造物本体1を含む地面が、例えば地震によっ
て図2の矢印4で示すような横揺れをすると、そのとき
の慣性力によって上載土2は、図3で示すように地中構
造物本体1に対して相対的に位置ずれを起こす。
On the other hand, since the underground structure main body 1 is made of concrete, it generally has higher rigidity than the overlying soil 2 and the surrounding buried soil 3 around the underground structure main body 1. Therefore, when the ground including the underground structure main body 1 rolls as shown by an arrow 4 in FIG. 2 due to, for example, an earthquake, the overburden 2 is moved by the inertial force at that time as shown in FIG. A relative displacement occurs with respect to the object body 1.

【0005】このような位置ずれを生じると、上載土2
の重量は、単なる土圧として上スラブ1aに作用するの
ではなく、せん断土圧(矢印4と逆の方向に上スラブ1
aを水平に引っ張る力)として作用してしまう。このた
め、上載土2と上スラブ1aとの間では、大きな摩擦力
を生ずる。この摩擦力が、地中構造物本体1に大きなせ
ん断変形を生じさせてしまう虞れがある。
[0005] When such a displacement occurs, the upper ground 2
The weight of the upper slab 1a does not act on the upper slab 1a as mere earth pressure, but rather acts on the upper slab 1a in the direction opposite to the arrow 4
a) as a force for horizontally pulling a. For this reason, a large frictional force is generated between the upper soil 2 and the upper slab 1a. This frictional force may cause large shear deformation in the underground structure main body 1.

【0006】そこで、従来は、地中構造物本体1に用い
られる鉄筋の数を増やしたり、コンクリートの使用量を
増やしたりすることにより地中構造物本体1の強度を高
め、これによって地中構造物本体1が地震時に損傷を受
けるのを防止してきた。
Therefore, conventionally, the strength of the underground structure main body 1 is increased by increasing the number of reinforcing bars used for the underground structure main body 1 or by increasing the amount of concrete to be used. The object body 1 has been prevented from being damaged during an earthquake.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
地中構造物本体1においては、上述のように鉄筋の数や
コンクリートの使用量を増やすことにより、強度を上げ
る必要があるので、コストアップになるという問題があ
った。
However, in the conventional underground structure body 1, it is necessary to increase the strength by increasing the number of reinforcing bars and the amount of concrete used as described above, so that the cost is increased. There was a problem of becoming.

【0008】本発明の目的は、かかる従来の問題点を解
決するためになされたもので、地震時に大きな摩擦力が
地中構造物本体に伝わるのを防止できると共に、地中構
造物に作用する直土圧が過度に増大するのを防止でき、
これにより強度を従来ほど増大させる必要がなく、コス
トアップを従来より抑えた地中構造物を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to solve such a conventional problem, and it is possible to prevent a large frictional force from being transmitted to an underground structure body during an earthquake and to act on the underground structure. The direct earth pressure can be prevented from excessively increasing,
Accordingly, it is an object of the present invention to provide an underground structure which does not need to increase the strength as compared with the related art and suppresses an increase in cost as compared with the related art.

【0009】[0009]

【課題を解決するための手段】本発明は耐震性地中構造
物であり、前述の技術的課題を解決するために以下のよ
うに構成されている。すなわち、本発明の耐震性地中構
造物は、埋設状態にある地中構造物本体と、この地中構
造物本体の上スラブ上に布設された低摩擦材からなる滑
り部と、周辺地盤より軟質で前記地中構造物本体の側面
に配置された軟質材とから構成され、前記滑り部と前記
地中構造物本体との間の摩擦力が、前記地中構造物本体
に上載土を直接載せた場合に前記上載土と前記地中構造
物本体との間で生じる摩擦力よりも小さいことを特徴と
する。
SUMMARY OF THE INVENTION The present invention relates to an earthquake-resistant underground structure, and has the following structure to solve the above-mentioned technical problem. That is, the seismic resistant underground structure of the present invention comprises an underground structure body in a buried state, a sliding portion made of a low friction material laid on an upper slab of the underground structure body, and a surrounding ground. A soft material that is soft and disposed on the side surface of the underground structure main body, and the frictional force between the sliding portion and the underground structure main body directly applies the overburden to the underground structure main body. It is characterized in that it is smaller than a frictional force generated between the overlying soil and the underground structure main body when it is placed.

【0010】この耐震性地中構造物は、地震時に上スラ
ブと上載土との間に生じる摩擦力を小さくできる。ま
た、周辺地盤から地中構造物本体に作用する直土圧が軟
質材で吸収されて低減される。
[0010] This earthquake-resistant underground structure can reduce the frictional force generated between the upper slab and the upper soil during an earthquake. Further, the direct earth pressure acting on the underground structure main body from the surrounding ground is absorbed by the soft material and reduced.

【0011】前記軟質材は前記地中構造物本体の側面の
上部側に配置することができる。この場合は、滑り部の
端部に集中する地盤応力の分散力が軟質材で吸収される
ので、地中構造物の側面に作用する直土圧が増大するの
を防止できる。
[0011] The soft material may be disposed on an upper side of the side surface of the underground structure main body. In this case, since the dispersive force of the ground stress concentrated on the end of the sliding portion is absorbed by the soft material, it is possible to prevent an increase in the direct earth pressure acting on the side surface of the underground structure.

【0012】[0012]

【発明の実施の形態】以下、本発明に係る耐震性地中構
造物の実施の形態を図面を参照して詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of an earthquake-resistant underground structure according to the present invention will be described below in detail with reference to the drawings.

【0013】図1は、本発明に係る耐震性地中構造物A
1を示す。この耐震性地中構造物A1は、地中構造物本
体1と、その上スラブ1aの上面に配置された低摩擦材
からなる滑り部5と、地中構造物本体1の側面に配置さ
れた軟質材6とから構成されており、地中構造物本体1
は滑り部5及び軟質材6とともに埋設される。滑り部5
は、上スラブ1aとほぼ同一の幅で敷設されている。
FIG. 1 shows an earthquake-resistant underground structure A according to the present invention.
1 is shown. The earthquake-resistant underground structure A1 is disposed on the underground structure main body 1, a sliding portion 5 made of a low-friction material disposed on the upper surface of the upper slab 1a, and a side surface of the underground structure main body 1. The underground structure body 1 is made up of a soft material 6
Is embedded together with the sliding portion 5 and the soft material 6. Sliding part 5
Are laid with substantially the same width as the upper slab 1a.

【0014】なお、ここでいう低摩擦材は、この低摩擦
材と地中構造物本体1との間に発生する摩擦力が、地中
構造物本体1に上載土2を直接載せた場合に上載土2と
地中構造物本体1との間に発生する摩擦力よりも小さく
なるような材料で形成されたものである。また、軟質材
6としては、周辺埋設土3より軟らかく、周辺埋設土3
から地中構造物本体1に作用する直土圧Qを吸収するも
の、例えばゴムなどを使用することができる。本実施の
形態では、軟質材6が地中構造物本体1の側面の上部側
に配置すると効果的であるが、特に上部側に限定するも
のではなく、側面上部から下部まで連続していてもよ
い。
The low-friction material referred to here means that the frictional force generated between the low-friction material and the underground structure main body 1 is such that the upper soil 2 is directly placed on the underground structure main body 1. It is formed of a material that is smaller than a frictional force generated between the upper soil 2 and the underground structure main body 1. Further, the soft material 6 is softer than the surrounding buried soil 3 and is softer than the surrounding buried soil 3.
For example, a material that absorbs the direct earth pressure Q acting on the underground structure main body 1 such as rubber can be used. In the present embodiment, it is effective to arrange the soft material 6 on the upper side of the side surface of the underground structure main body 1, but it is not particularly limited to the upper side, and the soft material 6 may be continuous from the upper side to the lower side. Good.

【0015】本実施の形態の耐震性地中構造物A1が上
述の従来技術(図2、図3)と異なる点は、地中構造物
本体1の上スラブ1aの上面に滑り部5を被せ、この状
態で地中構造物本体1を埋設した点と、地中構造物本体
1の側面に軟質材6を配置した点にある。これ以外の構
成は、図2に示された従来の地中構造物1の場合と同一
であるので、同一の部分には同一の符号を付けて詳細な
説明を省略する。
The difference between the earthquake-resistant underground structure A1 of this embodiment and the above-mentioned prior art (FIGS. 2 and 3) is that the sliding portion 5 is placed on the upper surface of the upper slab 1a of the underground structure main body 1. The point is that the underground structure main body 1 is buried in this state, and the soft material 6 is arranged on the side surface of the underground structure main body 1. Other configurations are the same as those of the conventional underground structure 1 shown in FIG. 2, and therefore, the same portions are denoted by the same reference characters and will not be described in detail.

【0016】滑り部5は、埋設状態にある地中構造物本
体1が例えば地震等の振動によって上載土2と位置ずれ
を生じた際に、滑り部5とこの滑り部5が被される上ス
ラブ1aとの間で生ずる摩擦力が滑り部5を上スラブ1
aに被せなかったときの摩擦力、すなわち上スラブ1a
に上載土2を直接被せたときに両者間で生ずる摩擦力よ
りも小さくなるように、上スラブ1aとの間の摩擦係数
が、すなわち滑り部5の材質やその状態が、設定された
ものであればよい。また、この滑り部5及び軟質材6
は、長期間、地中で存在しなければならないものである
ので、熱や寒さ、湿気その他の外的要因に耐え得るよう
になっている。
When the underground structure main body 1 in the buried state is displaced from the upper soil 2 by vibration such as an earthquake, the sliding portion 5 is covered with the sliding portion 5. The frictional force generated between the upper slab 1a and the slab 1a
a, the upper slab 1a
The coefficient of friction between the upper slab 1a, that is, the material and the state of the sliding portion 5 are set so that the frictional force generated between the upper slab 1 and the upper slab 1a is smaller than the frictional force generated between the two when the upper soil 2 is directly covered. I just need. The sliding portion 5 and the soft material 6
Must be present in the ground for long periods of time, so that it can withstand heat, cold, moisture and other external factors.

【0017】このような耐震性地中構造物A1を地中に
埋設すると、滑り部5と地中構造物本体1との間で生じ
る摩擦力の方が、地中構造物本体1と上載土2との間で
生じる摩擦力よりも小さくなる。
When such an earthquake-resistant underground structure A1 is buried in the ground, the frictional force generated between the sliding portion 5 and the underground structure main body 1 is higher than that of the underground structure main body 1 and the overlying soil. 2 becomes smaller than the frictional force generated between them.

【0018】その結果、例えば地震の発生によって横方
向への位置ずれを生じるほどに耐震性地中構造物A1が
揺れて、そのときの慣性力の影響で地中構造物本体1が
その周囲の上載土2や周辺埋設土3に対して位置ずれを
生じたとしも、上スラブ1aと滑り部5との間で生じる
摩擦力は小さくなるので、地中構造物本体1の強度を従
来ほど増大することなく、すなわち、地中構造物本体1
に使用する鉄筋やコンクリートの使用量を従来ほど増や
すことなく、地中構造物本体1の地震時の損傷を防止す
ることができる。
As a result, for example, the seismic resistant underground structure A1 is shaken enough to cause a lateral displacement due to the occurrence of an earthquake, and the underground structure main body 1 is moved by the influence of inertia at that time. Even if a displacement occurs with respect to the upper soil 2 or the surrounding buried soil 3, the frictional force generated between the upper slab 1a and the sliding portion 5 is reduced, so that the strength of the underground structure main body 1 is increased as compared with the conventional case. That is, the underground structure body 1
The underground structure body 1 can be prevented from being damaged at the time of an earthquake without increasing the amount of reinforcing steel or concrete used in the conventional method.

【0019】また、軟質材6の厚さを適宜設定すること
により、周辺埋設土3から地中構造物本体1に作用する
直土圧Qを軟質材6で吸収することができる。特に、滑
り部5の端部5aには地盤応力が集中し、この集中した
地盤応力が軟質材6で吸収されるので、直土圧Qが増大
するのを防止できる。
By setting the thickness of the soft material 6 as appropriate, the direct earth pressure Q acting on the underground structure main body 1 from the surrounding buried soil 3 can be absorbed by the soft material 6. In particular, the ground stress concentrates on the end 5a of the sliding portion 5, and the concentrated ground stress is absorbed by the soft material 6, so that the increase in the direct earth pressure Q can be prevented.

【0020】このように、本発明に係る耐震性地中構造
物においては、地震時に上載土2から地中構造物本体1
に作用する摩擦力が小さくなると共に、周辺埋設土3か
ら地中構造物本体1に作用する直土圧Qが増大するのを
防止できるので、地中構造物本体1の鉄筋の数やコンク
リートの使用量を従来ほど増やすことなく、実質的に地
中構造物本体1の強度を高めたと同じにできるので、コ
ストダウンを図ることができる。
As described above, in the earthquake-resistant underground structure according to the present invention, the underground structure main body 1 is moved from the overlying soil 2 during an earthquake.
And the direct earth pressure Q acting on the underground structure body 1 from the surrounding buried soil 3 can be prevented from increasing, so that the number of reinforcing bars of the underground structure body 1 and the concrete Since the strength of the underground structure main body 1 can be substantially increased without increasing the used amount as compared with the conventional case, the cost can be reduced.

【0021】[0021]

【発明の効果】以上説明したように、本発明の耐震性地
中構造物によれば、地震時に発生する地中構造物と上載
土との摩擦力を小さくできると共に、滑り部の端部に発
生する地盤応力の集中を軟質材で吸収することにより、
周辺地盤から地中構造物に作用する直土圧が増大するの
を防止できるので、地中構造物が使用する鉄筋の数やコ
ンクリートの使用量を従来ほど増やして強度を高める必
要がないため、コストダウンを図ることができる。
As described above, according to the earthquake-resistant underground structure of the present invention, the frictional force between the underground structure generated during an earthquake and the overlying soil can be reduced, and at the end of the sliding portion. By absorbing the concentration of generated ground stress with soft material,
Since it is possible to prevent the direct earth pressure acting on the underground structure from increasing from the surrounding ground, it is not necessary to increase the number of reinforcing bars used by the underground structure and the amount of concrete used as before, and to increase the strength, Cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る耐震性地中構造物を示す断面図で
ある。
FIG. 1 is a sectional view showing an earthquake-resistant underground structure according to the present invention.

【図2】従来例に係る地中構造物を示す断面図である。FIG. 2 is a sectional view showing an underground structure according to a conventional example.

【図3】従来例に係る地中構造物の地震時の作用を示す
断面図である。
FIG. 3 is a cross-sectional view showing an operation of an underground structure according to a conventional example during an earthquake.

【符号の説明】[Explanation of symbols]

A1 耐震性地中構造物 1 地中構造物本体 1a 上スラブ 2 上載土 5 滑り部 6 軟質材 A1 Earthquake-resistant underground structure 1 Underground structure body 1a Upper slab 2 Overlay 5 Sliding part 6 Soft material

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 埋設状態にある地中構造物本体と、この
地中構造物本体の上スラブ上に布設された低摩擦材から
なる滑り部と、周辺地盤より軟質で前記地中構造物本体
の側面に配置された軟質材とから構成され、 前記滑り部と前記地中構造物本体との間の摩擦力が、前
記地中構造物本体に上載土を直接載せた場合に前記上載
土と前記地中構造物本体との間で生じる摩擦力よりも小
さいことを特徴とする耐震性地中構造物。
1. An underground structure main body in a buried state, a sliding portion made of a low friction material laid on an upper slab of the underground structure main body, and the underground structure main body softer than a surrounding ground And a soft material disposed on the side surface of the underground structure body, the frictional force between the sliding portion and the underground structure body, when the overlying soil is directly placed on the underground structure body, An earthquake-resistant underground structure having a frictional force smaller than a friction force generated between the underground structure body and the underground structure body.
【請求項2】 前記軟質材は前記地中構造物本体の側面
の上部側に配置されていることを特徴とする請求項1に
記載の耐震性地中構造物。
2. The earthquake-resistant underground structure according to claim 1, wherein the soft material is arranged on an upper side of a side surface of the underground structure main body.
JP10298694A 1998-10-20 1998-10-20 Earthquake resisting underground structure Pending JP2000129699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10298694A JP2000129699A (en) 1998-10-20 1998-10-20 Earthquake resisting underground structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10298694A JP2000129699A (en) 1998-10-20 1998-10-20 Earthquake resisting underground structure

Publications (1)

Publication Number Publication Date
JP2000129699A true JP2000129699A (en) 2000-05-09

Family

ID=17863081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10298694A Pending JP2000129699A (en) 1998-10-20 1998-10-20 Earthquake resisting underground structure

Country Status (1)

Country Link
JP (1) JP2000129699A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103821182A (en) * 2013-05-17 2014-05-28 林建省 Method utilizing horizontal interlayer between foundations to avoid destructive effect on building upper structure from earthquake horizontal waves
CN110243328A (en) * 2019-06-14 2019-09-17 上海交通大学 The sensor and method of measurement soil and underground structure contact interface dynamic Relative sliding
CN110243328B (en) * 2019-06-14 2024-06-04 上海交通大学 Sensor and method for measuring dynamic relative slippage of contact interface of soil and underground structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103821182A (en) * 2013-05-17 2014-05-28 林建省 Method utilizing horizontal interlayer between foundations to avoid destructive effect on building upper structure from earthquake horizontal waves
CN110243328A (en) * 2019-06-14 2019-09-17 上海交通大学 The sensor and method of measurement soil and underground structure contact interface dynamic Relative sliding
CN110243328B (en) * 2019-06-14 2024-06-04 上海交通大学 Sensor and method for measuring dynamic relative slippage of contact interface of soil and underground structure

Similar Documents

Publication Publication Date Title
JP2000129699A (en) Earthquake resisting underground structure
JP3597399B2 (en) Earthquake-resistant underground structure
JP2000129711A (en) Earthquake-resistant underground construction
JP6955958B2 (en) Vibration displacement suppression structure of structure
JP3595422B2 (en) Seismic resistant underground structure and method of forming the same
JP2684961B2 (en) How to build a building basement wall
JP3677696B2 (en) Damping structure
JP3495857B2 (en) Method of forming earthquake-resistant underground structures
JP3760299B2 (en) Ground lateral flow countermeasure structure
JP3189885B2 (en) Seismic pile structure and seismic pile construction method
JP2786014B2 (en) Wall side pressure reduction structure
JPS59498A (en) Application of concrete to all cross area of tunnel
JP3569631B2 (en) Seismic isolation structure of underground structures
JPH11323947A (en) Ground pressure reducing structure for wall body
JPH11172635A (en) Preventing pile for falling mater
JP2000034723A (en) Structure of earth retaining wall
JP3827490B2 (en) Seismic isolation structure
JPH11107295A (en) Foundation construction for structure
JP2002227185A (en) Method of preventing flotation of ground structure during ground liquefaction
JP2000160572A (en) Natural ground reinforcing construction method
JP2000320288A (en) Construction method for tunnel
JP2000080670A (en) Base isolation structure for pile
JP3742948B2 (en) Longitudinal underground structure with gradient
JPH0772421B2 (en) Yamadome structure
JP3713517B2 (en) Caisson-type seismic quay

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040622