JP2000125511A - Cooler of dynamo-electric machine - Google Patents

Cooler of dynamo-electric machine

Info

Publication number
JP2000125511A
JP2000125511A JP10293308A JP29330898A JP2000125511A JP 2000125511 A JP2000125511 A JP 2000125511A JP 10293308 A JP10293308 A JP 10293308A JP 29330898 A JP29330898 A JP 29330898A JP 2000125511 A JP2000125511 A JP 2000125511A
Authority
JP
Japan
Prior art keywords
rotor
cooling
heat exchanger
stator
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10293308A
Other languages
Japanese (ja)
Inventor
Shingo Yokoyama
真吾 横山
Hideaki Mori
英明 森
Shigekazu Kieda
茂和 木枝
Chiyuki Kato
千幸 加藤
Akiyoshi Iida
明由 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10293308A priority Critical patent/JP2000125511A/en
Publication of JP2000125511A publication Critical patent/JP2000125511A/en
Pending legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Cooling System (AREA)

Abstract

PROBLEM TO BE SOLVED: To cope with high output and ripples in output by raising and adjusting the cooling capacity of a rotor. SOLUTION: A heat exchanger is constituted, being divided into a heat exchanger 12a for cooling of a rotor and a heat exchanger 12b for cooling a stator. In the case of stator, the calorific value is larger than that of the rotor, but the tolerable temperature can be any temperature as long as it is not higher than the heat resistance temperature of insulating material. In the case of the rotor, the calorific value is less than that of the stator, but it is better for the air temperature at the outlet of the heat exchanger to be as low as as possible.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、大容量のガス直冷
式回転電機の冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling apparatus for a gas-cooled rotary electric machine having a large capacity.

【0002】[0002]

【従来の技術】ガス直冷式回転電機の回転子は、複数の
回転子巻線またはコイルが配置される軸方向に形成した
コイルスロットを持つ。これらコイルスロットは回転子
本体の磁極部分の両側で回転子本体の外周面に間隔をお
いて配置され、同じ磁極を構成する複数のコイルは、磁
極まわりに同心に配置する。これらコイルは、コイル導
体を半径方向に複数ターン積み重ねて形成したもので、
ターン間には絶縁層を設ける。このコイルに外部から通
電するとそれぞれの磁極に必要な電磁界を発生する。こ
のコイルは回転子が回転することによる強大な遠心力に
よってコイル外径方向にとばされないように、回転子に
おいてはコイルスロット内部にウエッジで強固に固定さ
れ、回転子端部においては、コイル外周部に接するよう
に設けられた円筒状のリテニングリングにより固定す
る。
2. Description of the Related Art A rotor of a gas direct cooling type rotary electric machine has an axially formed coil slot in which a plurality of rotor windings or coils are arranged. These coil slots are arranged at intervals on the outer peripheral surface of the rotor main body on both sides of the magnetic pole portion of the rotor main body, and a plurality of coils constituting the same magnetic pole are arranged concentrically around the magnetic pole. These coils are formed by stacking multiple turns of coil conductors in the radial direction.
An insulating layer is provided between turns. When the coil is energized from the outside, an electromagnetic field required for each magnetic pole is generated. This coil is firmly fixed with a wedge inside the coil slot in the rotor so that the coil is not skipped in the radial direction of the coil by the strong centrifugal force due to the rotation of the rotor. It is fixed by a cylindrical retaining ring provided so as to be in contact with the part.

【0003】コイルに通電することによりコイル導体に
てジュール発熱が生じる。コイルの絶縁層はマイカなど
の耐熱性の高い材料を使用するが、100度または12
0度の温度上昇が限界である。また、温度上昇に伴うコ
イル導体の熱膨張は、コイルおよび回転子に大きな歪み
を与え回転振動の原因となったりする。
When electricity is supplied to the coil, Joule heat is generated in the coil conductor. A material having high heat resistance such as mica is used for the insulating layer of the coil.
A temperature rise of 0 degrees is the limit. Further, the thermal expansion of the coil conductor due to the temperature rise gives a large distortion to the coil and the rotor, which may cause rotational vibration.

【0004】そこで米国特許第5652469 号公報記載のよ
うに、機内からファンにより吸い込まれた冷却ガスは熱
交換器へ流れ、熱交換後、固定子及び回転子へ分流して
各部を冷却する。そして機内で合流した冷却ガスはファ
ンにより吸い込まれ、再び熱交換器へ戻る。この冷却方
式は熱交換器通過直後の温度の低い冷却ガスが固定子及
び回転子へ直接導かれるので冷却効率が高い。
Therefore, as described in US Pat. No. 5,652,469, a cooling gas sucked by a fan from the inside of the machine flows to a heat exchanger, and after heat exchange, is divided into a stator and a rotor to cool each part. Then, the cooling gas that has merged in the machine is sucked by the fan and returns to the heat exchanger again. In this cooling method, the cooling gas having a low temperature immediately after passing through the heat exchanger is directly guided to the stator and the rotor, so that the cooling efficiency is high.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来技術では、下記の様な問題がある。
However, the above prior art has the following problems.

【0006】第1に、固定子以上に回転子の界磁コイル
の冷却は出力性能上重要である。すなわち、回転子の界
磁コイルの冷却が不十分であると、その温度上昇により
界磁電流が減少して起磁力が低下するために、固定子か
らの出力電流が著しく低下する。しかしながら、熱交換
器の性能を界磁コイルに必要な冷却性能分までそのまま
向上させると、熱交換後の全体の空気温度は低下する
が、固定子に対する冷却性能は必要以上のものとなり、
熱交換器のスペースやコストの面で好ましくない。
First, the cooling of the field coil of the rotor is more important than the stator in terms of output performance. That is, if the cooling of the field coil of the rotor is insufficient, the field current decreases due to the temperature rise and the magnetomotive force decreases, so that the output current from the stator significantly decreases. However, if the performance of the heat exchanger is directly improved to the cooling performance required for the field coil, the overall air temperature after the heat exchange decreases, but the cooling performance for the stator becomes more than necessary,
It is not preferable in terms of space and cost of the heat exchanger.

【0007】第2に、出力電流の変化、換言すると発熱
量の変動に対する冷却性能の調節手段が考慮されていな
い。
Secondly, no means for adjusting the cooling performance with respect to changes in output current, in other words, fluctuations in the amount of heat generated is taken into consideration.

【0008】本発明の第1の目的は、回転電機の回転子
を効率良く冷却する回転電機の冷却装置を提供すること
にある。
A first object of the present invention is to provide a cooling device for a rotating electric machine that efficiently cools a rotor of the rotating electric machine.

【0009】本発明の第2の目的は、出力に応じて冷却
性能を調節する手段を有する回転電機の冷却装置を提供
することにある。
A second object of the present invention is to provide a cooling device for a rotating electric machine having means for adjusting the cooling performance according to the output.

【0010】[0010]

【課題を解決するための手段】上記第1の目的は、回転
子と、電力を出力する固定子と、前記回転子に固着され
たファンと、前記ファンから吸い込まれる冷却ガスを熱
交換器に導くダクトと、前記熱交換器から前記固定子及
び前記回転子へ冷却ガスを導くダクトとを備えた回転電
機の冷却装置において、前記固定子及び回転子の熱交換
器を別々に備えることにより達成される。
A first object of the present invention is to provide a rotor, a stator for outputting electric power, a fan fixed to the rotor, and a cooling gas sucked from the fan to a heat exchanger. In a cooling device for a rotating electrical machine including a guiding duct and a duct for guiding a cooling gas from the heat exchanger to the stator and the rotor, this is achieved by separately providing the stator and the rotor heat exchanger. Is done.

【0011】また、前記熱交換器は冷却ガスと冷却塔よ
り導かれた冷却液と熱交換することで達成される。
The heat exchanger is achieved by exchanging heat with a cooling gas and a cooling liquid introduced from a cooling tower.

【0012】上記第2の目的は、回転子と、電力を出力
する固定子と、前記回転子に固着されたファンと、前記
ファンから吸い込まれる冷却ガスを熱交換器に導くダク
トと、前記熱交換器から前記固定子及び前記回転子へ冷
却ガスを導くダクトとを備えた回転電機の冷却装置にお
いて、前記熱交換器の熱交換量調節のために前記冷却液
の流量調節手段を備えることにより達成される。
[0012] The second object is to provide a rotor, a stator for outputting electric power, a fan fixed to the rotor, a duct for guiding cooling gas sucked from the fan to a heat exchanger, and a heat exchanger. A cooling device for a rotating electrical machine including a duct for guiding a cooling gas from an exchanger to the stator and the rotor, by including a flow rate adjusting means for the cooling liquid for adjusting a heat exchange amount of the heat exchanger. Achieved.

【0013】[0013]

【発明の実施の形態】図1にガスタービン発電機の概念
図を示す。ガスタービン発電機は、ガスタービン原動機
101の回転出力を回転軸103により発電機102に
伝達するものである。図2に空気冷却発電機の概略の構
造を示す。図2は、熱交換器を持ち空気を発電機内部で
循環させる閉鎖形空冷発電機の断面概略構造図である。
FIG. 1 is a conceptual diagram of a gas turbine generator. The gas turbine generator transmits the rotation output of the gas turbine motor 101 to the generator 102 via the rotating shaft 103. FIG. 2 shows a schematic structure of the air-cooled generator. FIG. 2 is a schematic cross-sectional structural view of a closed-type air-cooled generator having a heat exchanger and circulating air inside the generator.

【0014】ロータ1は、ステータ2中に軸受3によっ
て回転支持する。ロータ1には、同じ磁極を構成する複
数のコイル4を磁極まわりに同心に配置し固定する。コ
イル4に働く遠心力は、軸方向部については、ロータの
外周面に間隔をおいて形成したコイルスロットにて、ロ
ータ端部の周方向部についてはリテニングリング5にて
強固に支える。
The rotor 1 is rotatably supported by a bearing 3 in a stator 2. On the rotor 1, a plurality of coils 4 constituting the same magnetic pole are fixed concentrically around the magnetic pole. The centrifugal force acting on the coil 4 is firmly supported in the axial direction by coil slots formed at intervals on the outer peripheral surface of the rotor, and in the circumferential direction of the rotor end by the retaining ring 5.

【0015】リテニングリング5と軸受3との間にはフ
ァン6を配置し、ロータ1の回転により機内の空気を吸
込み、戻りダクト11から熱交換器12へ空気を送り込
む。そして熱交換により温度の下がった空気はステータ
ダクト13及びロータダクト14へ分流される。
A fan 6 is arranged between the retaining ring 5 and the bearing 3, and the air inside the machine is sucked by the rotation of the rotor 1, and the air is sent from the return duct 11 to the heat exchanger 12. The air whose temperature has been lowered by heat exchange is diverted to the stator duct 13 and the rotor duct 14.

【0016】ステータダクト13からの空気はステータ
2及びステータ2の両側の空間10へ流れる(空気の流
れを矢印7で示す)。一方、ロータダクト14からの空
気は、ロータ1端部のコイル4とロータ1の軸の間の空
間に流れ(矢印8)、コイル4を冷却した後にエアギャ
ップ9と呼ばれるロータ1とステータ2の隙間に排出さ
れる。ステータ及びロータから合流した空気はファン6
によって吸込まれ、再び戻りダクト11へ流れる。
The air from the stator duct 13 flows to the stator 2 and the space 10 on both sides of the stator 2 (the flow of air is indicated by an arrow 7). On the other hand, air from the rotor duct 14 flows into the space between the coil 4 at the end of the rotor 1 and the axis of the rotor 1 (arrow 8), and after cooling the coil 4, a gap between the rotor 1 and the stator 2 called an air gap 9 is formed. Is discharged. The air that has joined from the stator and the rotor is
And is returned to the return duct 11 again.

【0017】この冷却方式では、熱交換器12から出た
温度の低い空気が発熱部であるステータ2及びロータ1
に直接導かれるので冷却効率が高い。一方、コイル4は
できるだけ冷却した方が出力面で有利である。すなわ
ち、界磁コイルの冷却が不十分であると、その温度上昇
により界磁電流が減少して起磁力が低下するために、固
定子からの出力電流が著しく低下する。換言すると固定
子以上に界磁コイルの冷却は出力性能上重要である。
In this cooling system, the low-temperature air coming out of the heat exchanger 12 is heated by the stator 2 and the rotor 1 serving as heat-generating parts.
Cooling efficiency is high because it is led directly to On the other hand, it is advantageous that the coil 4 is cooled as much as possible in terms of output. That is, if the cooling of the field coil is insufficient, the field current decreases due to the temperature rise and the magnetomotive force decreases, so that the output current from the stator significantly decreases. In other words, the cooling of the field coil is more important than the stator in terms of output performance.

【0018】しかしながら、熱交換器12の性能をコイ
ル4に必要な冷却性能分までそのまま向上させると、確
かに熱交換後の空気温度は低下するが、ステータ2に対
して必要以上の冷却性能となり、熱交換器のスペースや
コストの面で好ましくない。
However, if the performance of the heat exchanger 12 is directly improved to the cooling performance required for the coil 4, the air temperature after the heat exchange certainly drops, but the cooling performance for the stator 2 becomes more than necessary. However, it is not preferable in terms of space and cost of the heat exchanger.

【0019】そこで図3に示すように、熱交換器12を
ロータ冷却用熱交換器12aとステータ冷却用熱交換器
12bとに分けて構成する。すなわち、ロータ及びステ
ータ各々の発熱量及び必要な熱交換器出口空気温度から
適切な熱交換器を決定する。ステータの場合、発熱量は
ロータよりも多いが、許容温度は絶縁材料の耐熱温度以
下であれば良い。一方、ロータの場合、その発熱量はス
テータよりも少ないが、熱交換器出口空気温度はできる
だけ低い方が良い。
Therefore, as shown in FIG. 3, the heat exchanger 12 is divided into a rotor cooling heat exchanger 12a and a stator cooling heat exchanger 12b. That is, an appropriate heat exchanger is determined from the calorific value of each of the rotor and the stator and the necessary heat exchanger outlet air temperature. In the case of the stator, the calorific value is larger than that of the rotor, but the allowable temperature may be lower than the heat resistant temperature of the insulating material. On the other hand, in the case of the rotor, the calorific value is smaller than that of the stator, but the air temperature at the outlet of the heat exchanger is preferably as low as possible.

【0020】この冷却方式では、機内の発熱が冷却風を
介して戻りダクト11に集められるので、ロータ冷却用
熱交換器12aとステータ冷却用熱交換器12bへ各々
分流される。ステータの方がロータよりも発熱量が多い
ため、風量はステータ冷却用熱交換器12bの方へ多く
分配する必要がある。その分ロータ冷却用熱交換器12
aへの風量分配は少なくならざるを得ないが、出口空気
温度をできるだけ下げるために熱交換器管内冷却液の流
量の増加や低い液温の供給等の手段により行う。なお、
本発明の回転電機の場合、ロータ1の回転数、換言する
とファン6の回転数を一定にして運転するので、風量が
ほぼ一定となり、それに対してロータ冷却用熱交換器1
2aとステータ冷却用熱交換器12bに必要な風量を予
め圧損調整等の手段で設定しておけば良い。
In this cooling system, the heat generated inside the machine is collected in the return duct 11 via the cooling air, so that the heat is separately diverted to the rotor cooling heat exchanger 12a and the stator cooling heat exchanger 12b. Since the stator generates more heat than the rotor, the air volume needs to be distributed more to the stator cooling heat exchanger 12b. The heat exchanger 12 for cooling the rotor
Although the distribution of the air volume to a must be reduced, it is performed by means such as increasing the flow rate of the cooling liquid in the heat exchanger tube or supplying a low liquid temperature in order to lower the outlet air temperature as much as possible. In addition,
In the case of the rotating electric machine of the present invention, the operation is performed with the rotation speed of the rotor 1, in other words, the rotation speed of the fan 6, constant, so that the air volume becomes substantially constant.
The air volume required for the heat exchanger 2a and the stator cooling heat exchanger 12b may be set in advance by means such as pressure loss adjustment.

【0021】上記熱交換器の管内冷却液は、本発明の回
転電機が臨海部に設置される場合は海水が用いられてい
る。すなわち図4に示すように海水15はポンプ16に
より熱交換器12の管内に送り込まれ、熱交換後、再び
海水15へ戻るようになっている。海水は無尽蔵にあ
り、コストが安い点で好ましいが、水温が気候により変
動するので、例えば電力負荷が増える夏季では海水温も
上昇するために熱交換器の性能が低下し、引いてはコイ
ル4の冷却不足により電力負荷の増大に対応できない問
題点がある。
As the coolant in the heat exchanger, seawater is used when the rotating electric machine of the present invention is installed in a coastal area. That is, as shown in FIG. 4, the seawater 15 is sent into the pipe of the heat exchanger 12 by the pump 16 and returns to the seawater 15 again after the heat exchange. Seawater is inexhaustible and is preferable in that it is inexpensive. However, since the water temperature fluctuates depending on the climate, for example, in summer when the power load increases, the seawater temperature also increases, so that the performance of the heat exchanger deteriorates. There is a problem that it is not possible to cope with an increase in power load due to insufficient cooling of the power supply.

【0022】そこで図5に示すように冷却塔17を別途
設ける。こうすることにより、海水温の変動に左右され
ずに熱交換器の冷却性能の安定、引いては電力負荷の変
動に対応できるようになる。また臨海部以外に回転電機
を設置、運転する場合にも有効である。なお、図示して
いないがステータ冷却用熱交換器12bの管内冷却液に
海水を、またロータ冷却用熱交換器12aの管内冷却液
には冷却塔17からの供給としても良い。
Therefore, a cooling tower 17 is separately provided as shown in FIG. By doing so, it becomes possible to stabilize the cooling performance of the heat exchanger and to cope with fluctuations in the power load without being affected by fluctuations in the seawater temperature. It is also effective when a rotary electric machine is installed and operated at a location other than the coastal area. Although not shown, seawater may be supplied to the cooling liquid in the pipe of the heat exchanger for cooling the stator 12b, and the cooling tower 17 may be supplied to the cooling liquid in the pipe of the heat exchanger for cooling the rotor 12a.

【0023】一方、回転電機の出力は連続的に100%
ではなく、通常はそれ以下で用いる。しかしながら上記
の様に一時的に100%、もしくはそれ以上の出力で運
転される場合がある。この場合、当然ながらステータ及
びロータの冷却性能も一時的に上げる必要がある。そこ
で図6に示すように、熱交換器12の管内冷却液として
海水15と冷却塔17を併用する。すなわち、通常運転
時には海水15のみを用いて冷却塔17は使用しない。
一方、100%時の負荷を要求される場合は、その信
号、もしくはロータ,ステータの温度上昇を感知して流
量調節弁18が作動し、冷却塔17から冷却液が供給さ
れ、熱交換器12の冷却性能を一時的に上昇させる。
On the other hand, the output of the rotating electric machine is continuously 100%
Rather, it is usually used below. However, as described above, there is a case where the operation is temporarily performed at an output of 100% or more. In this case, naturally, it is necessary to temporarily increase the cooling performance of the stator and the rotor. Therefore, as shown in FIG. 6, the seawater 15 and the cooling tower 17 are used together as the cooling liquid in the pipe of the heat exchanger 12. That is, during normal operation, only the seawater 15 is used and the cooling tower 17 is not used.
On the other hand, when a load of 100% is required, the flow rate control valve 18 is actuated by sensing the signal or the temperature rise of the rotor and the stator, the coolant is supplied from the cooling tower 17, and the heat exchanger 12 is operated. To temporarily increase the cooling performance.

【0024】このような構成を採ることにより、従来の
海水15からの冷却液供給配管に冷却塔17及び流量調
整弁18を付加するだけで負荷変動に対応したロータ,
ステータの冷却装置をコストを抑えた形で実現できる。
By adopting such a configuration, a rotor capable of coping with load variations can be obtained by simply adding a cooling tower 17 and a flow control valve 18 to a conventional cooling liquid supply pipe from seawater 15.
The cooling device for the stator can be realized at a reduced cost.

【0025】[0025]

【発明の効果】以上の如く、本発明によれば、回転電機
の回転子を効率良く冷却する回転電機の冷却装置が得ら
れる。また、出力に応じて冷却性能を調節する手段を有
する回転電機の冷却装置を低コストで得られる。
As described above, according to the present invention, a cooling device for a rotating electric machine that efficiently cools the rotor of the rotating electric machine can be obtained. Further, a cooling device for a rotating electric machine having a means for adjusting the cooling performance according to the output can be obtained at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わるガスタービン発電機の構成の概
略を説明する図である。
FIG. 1 is a diagram schematically illustrating the configuration of a gas turbine generator according to the present invention.

【図2】従来の回転電機の冷却装置を説明する図であ
る。
FIG. 2 is a diagram illustrating a conventional cooling device for a rotating electric machine.

【図3】本発明の一実施の形態を示す説明図である。FIG. 3 is an explanatory diagram showing one embodiment of the present invention.

【図4】従来の回転電機の冷却装置の系統図である。FIG. 4 is a system diagram of a conventional cooling device for a rotating electric machine.

【図5】本発明の一実施の形態を示す系統図である。FIG. 5 is a system diagram showing an embodiment of the present invention.

【図6】本発明の他の実施の形態を示す系統図である。FIG. 6 is a system diagram showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…ロータ、2…ステータ、3…軸受、4…コイル、5
…リテニングリング、6…ファン、7,8…矢印、9…
エアギャップ、10…空間、11…戻りダクト、12…
熱交換器、12a…ロータ冷却用熱交換器、12b…ス
テータ冷却用熱交換器、13…ステータダクト、14…
ロータダクト、15…海水、16…ポンプ、17…冷却
塔、18…流量調節弁、101…ガスタービン原動機、
102…発電機、103…回転軸。
DESCRIPTION OF SYMBOLS 1 ... rotor, 2 ... stator, 3 ... bearing, 4 ... coil, 5
... Retaining ring, 6 ... Fan, 7,8 ... Arrow, 9 ...
Air gap, 10 ... space, 11 ... return duct, 12 ...
Heat exchanger, 12a: Heat exchanger for cooling the rotor, 12b: Heat exchanger for cooling the stator, 13: Stator duct, 14:
Rotor duct, 15 seawater, 16 pump, 17 cooling tower, 18 flow control valve, 101 gas turbine motor,
102: generator, 103: rotating shaft.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木枝 茂和 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 加藤 千幸 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 飯田 明由 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 Fターム(参考) 5H609 BB19 PP02 PP06 PP07 PP08 PP09 QQ02 QQ03 QQ12 QQ13 QQ16 QQ17 RR03 RR27 RR32 RR33 RR37 RR42 RR43 RR46 RR53 RR67 RR70 RR73  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shigekazu Kieda 502, Kandate-cho, Tsuchiura-shi, Ibaraki Pref. Machinery Research Laboratory, Hitachi, Ltd. (72) Inventor Akiyoshi Iida 502, Kandachi-cho, Tsuchiura-shi, Ibaraki F-term in Machinery Research Laboratory, Hitachi, Ltd. RR33 RR37 RR42 RR43 RR46 RR53 RR67 RR70 RR73

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】回転子と、電力を出力する固定子と、前記
回転子に固着されたファンと、前記ファンから吸い込ま
れる冷却ガスを熱交換器に導くダクトと、前記熱交換器
から前記固定子及び前記回転子へ冷却ガスを導くダクト
とを備えた回転電機の冷却装置において、前記固定子及
び回転子の熱交換器を別々に備えたことを特徴とする回
転電機の冷却装置。
1. A rotor, a stator for outputting electric power, a fan fixed to the rotor, a duct for guiding cooling gas sucked from the fan to a heat exchanger, and the stator from the heat exchanger. What is claimed is: 1. A cooling apparatus for a rotating electric machine, comprising: a stator and a duct for guiding a cooling gas to the rotor, wherein the stator and the rotor heat exchangers are separately provided.
JP10293308A 1998-10-15 1998-10-15 Cooler of dynamo-electric machine Pending JP2000125511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10293308A JP2000125511A (en) 1998-10-15 1998-10-15 Cooler of dynamo-electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10293308A JP2000125511A (en) 1998-10-15 1998-10-15 Cooler of dynamo-electric machine

Publications (1)

Publication Number Publication Date
JP2000125511A true JP2000125511A (en) 2000-04-28

Family

ID=17793163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10293308A Pending JP2000125511A (en) 1998-10-15 1998-10-15 Cooler of dynamo-electric machine

Country Status (1)

Country Link
JP (1) JP2000125511A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002071578A1 (en) * 2001-03-07 2002-09-12 Hitachi, Ltd. Dynamo-electric machine
US7294943B2 (en) 2001-03-07 2007-11-13 Hitachi, Ltd. Electric rotating machine
CN110571979A (en) * 2019-09-24 2019-12-13 中车株洲电机有限公司 Motor and double-end ventilation cooling device thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002071578A1 (en) * 2001-03-07 2002-09-12 Hitachi, Ltd. Dynamo-electric machine
WO2002071577A1 (en) * 2001-03-07 2002-09-12 Hitachi, Ltd. Rotary electric machinery
US7071586B2 (en) 2001-03-07 2006-07-04 Hitachi, Ltd. Dynamo-electric machine
US7294943B2 (en) 2001-03-07 2007-11-13 Hitachi, Ltd. Electric rotating machine
CN110571979A (en) * 2019-09-24 2019-12-13 中车株洲电机有限公司 Motor and double-end ventilation cooling device thereof
WO2021056622A1 (en) * 2019-09-24 2021-04-01 中车株洲电机有限公司 Motor and double-end ventilation cooling device thereof
CN110571979B (en) * 2019-09-24 2021-09-24 中车株洲电机有限公司 Motor and double-end ventilation cooling device thereof

Similar Documents

Publication Publication Date Title
US7119461B2 (en) Enhanced thermal conductivity ferrite stator
US6882068B2 (en) Forced air stator ventilation system and stator ventilation method for superconducting synchronous machine
US8035261B2 (en) Method and device for cooling an electric machine
JP5642393B2 (en) Electromechanical cooling
US6621186B2 (en) Alternator for vehicles
JPH04229049A (en) Liquid cooling of rotor for electric machine
US20150372568A1 (en) Electrical machine with direct stator cooling
JP2006320104A (en) Coil cooling structure of electric motor
FI128650B (en) A stator of an electric machine and an electric machine
JP2000125511A (en) Cooler of dynamo-electric machine
JP2008067471A (en) Dynamo-electric machine and method of cooling the dynamo-electric machine
JP6890651B1 (en) Rotating machine
JP4640681B2 (en) Rotating electric machine
KR20230059928A (en) The AFPM motor equipped radiation fin and pumping elements structure
JP2006081379A (en) Motor unit mounted on vehicle
CN108667218B (en) Brushless doubly-fed motor self-driven cooling structure based on cooling liquid
JP6325339B2 (en) Rotating electrical machine system and wind power generation system
EA012865B1 (en) Stator cooling system of valve-type electrical inverted machine
WO2022086459A1 (en) A liquid - cooled cooling method for electric motors and alternators
KR20240064177A (en) Field discharge resistor and synchronous motor having the same
KR101165230B1 (en) Supercoducting motor
RU18599U1 (en) SYNCHRONOUS GENERATOR FOR SMALL HPS
JP2001016813A (en) Dynamo-electric machine