JP2000121675A - Light converter - Google Patents

Light converter

Info

Publication number
JP2000121675A
JP2000121675A JP10292336A JP29233698A JP2000121675A JP 2000121675 A JP2000121675 A JP 2000121675A JP 10292336 A JP10292336 A JP 10292336A JP 29233698 A JP29233698 A JP 29233698A JP 2000121675 A JP2000121675 A JP 2000121675A
Authority
JP
Japan
Prior art keywords
winding frame
measured
conductor
current transformer
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10292336A
Other languages
Japanese (ja)
Other versions
JP4215312B2 (en
Inventor
Kiyoshi Kurosawa
潔 黒澤
Kazunori Yamashita
和徳 山下
Kiyoshi Fujii
清 藤井
Hidenobu Koide
英延 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Fuji Electric Co Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP29233698A priority Critical patent/JP4215312B2/en
Publication of JP2000121675A publication Critical patent/JP2000121675A/en
Application granted granted Critical
Publication of JP4215312B2 publication Critical patent/JP4215312B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To fit or remove a measured conductor during energization by dividing a winding frame into two winding frame sections in the peripheral direction, connecting one-end sections in the peripheral direction with a hinge, and forming an opening section at the other ends. SOLUTION: A winding frame 3 is divided into two winding frame sections 3A, 3B, and one-end faces 3C of both winding frame sections 3A, 3B are formed into the linear shape and connected together via a hinge 11. The other split faces 3D of the winding frame sections 3A, 3B are formed into a Z-shape to be butted together, and the split faces 3D are opened in the peripheral direction by the hinge 11 to form an opening section 12 so that a measured conductor 1 can be inserted into it. The measured conductor 1 being energized can be fitted or removed to or from the winding frame 3, and a flowing current I can be measured. The measured conductor 1 is not required to be interrupted for current measurement, a light current transformer can be moved in a hot line, and the work efficiency of current measurement is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】この発明は、通過光の偏光面
が磁界の強さに比例して回転する性質を備え持つファラ
デ効果型光ファイバを用いて導体に流れる電流を計測す
る光変流器に関し、特に、被計測導体が通電されている
最中でも着脱可能な光変流器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical current transformer for measuring a current flowing through a conductor using a Faraday effect type optical fiber having a property that the plane of polarization of transmitted light rotates in proportion to the strength of a magnetic field. In particular, the present invention relates to an optical current transformer that can be detached even while the conductor to be measured is energized.

【従来の技術】電流の計測にファラデ効果型光ファイバ
を用いた光変流器を使用することによって、鉄心に巻線
が巻かれた従来型の変流器と比べて鉄心の飽和現象がな
いことや絶縁し易いことなどから小型化が可能である。
また、光変流器によって将来は電気所をトータル的に光
制御できるなどの利点もある。図11は、従来の光変流
器の構成を示す斜視図である。磁性を持たない巻枠3の
外周にファラデ効果型光ファイバ2が巻回され、ファラ
デ効果型光ファイバ2の入力端2Aに偏光子4を介して
入力用の光ファイバ7が接続され、ファラデ効果型光フ
ァイバ2の出力端2Bに検光子5とレンズ6とを介して
出力用の光ファイバ8が接続されている。巻枠3の内部
に電流が計測される被計測導体1が貫通している。図1
1において、ファラデ効果型光ファイバ2は、通過する
光の偏光面が磁界の強さに比例して回転する性質を備
え、例えば、鉛ガラス(酸化鉛を多量に含む石英ガラ
ス)で構成された光ファイバである。ファラデ効果と
は、磁界中に置かれた鉛ガラスなどを光が通過する際
に、その光の偏光面が回転角度θ=V・H・Lだけ回転
する現象である。ここで、Vはヴェルデ定数、Hは光の
進行方向の磁界、Lが光の行路長である。鉛ガラスは、
酸化鉛を含まない一般の石英ガラスに比べてヴェルデ定
数Vが約6倍も大きく、磁界Hに対する光の偏光面の回
転角度θが大きい。但し、入力用の光ファイバ7および
出力用の光ファイバ8は、酸化鉛を含まない普通の石英
ガラス製の光ファイバあるいはプラスチックス製の光フ
ァイバである。被計測導体1に電流Iが流れると、その
周囲にその電流Iに比例して増減する磁界Hが形成され
る。その状態で入力用の光ファイバ7に入射光P1を注
入すると、偏光子4によってその入射光P1が一方向に
直線偏光された光Pとなりファラデ効果型光ファイバ2
の入力端2Aに入る。光Pは、ファラデ効果型光ファイ
バ2を通過するときに磁界Hによってその偏光面が回転
角度θだけ回転する。回転角度θだけ傾いた光Pは、フ
ァラデ効果型光ファイバ2の出力端2Bに達して検光子
5に注入される。検光子5は、光Pのうち通過可能な方
向の光の成分だけを透過させ、レンズ6でもって集光さ
れ、透過光P2として出力用の光ファイバ8に出射され
る。被計測導体1に電流が流れていないときの透過光P
2の光量に対して、被計測導体1の電流が流れたときの
透過光P2の光量の変化分が回転角度θに比例するの
で、透過光P2の光量の変化分を求めることによって電
流Iを知ることができる。透過光P2の光量の変化分
は、図示されていない変換装置によって電気信号に変換
されて出力される。
2. Description of the Related Art By using an optical current transformer using a Faraday effect type optical fiber for current measurement, there is no iron core saturation phenomenon as compared with a conventional current transformer in which a winding is wound around an iron core. It is possible to reduce the size because it is easy to insulate.
In addition, there is an advantage that the electric substation can be totally controlled in the future by the optical current transformer. FIG. 11 is a perspective view showing a configuration of a conventional optical current transformer. A Faraday effect type optical fiber 2 is wound around the outer periphery of a winding frame 3 having no magnetism, and an input optical fiber 7 is connected to an input end 2A of the Faraday effect type optical fiber 2 via a polarizer 4 to form a Faraday effect. An output optical fiber 8 is connected to an output end 2B of the mold optical fiber 2 via an analyzer 5 and a lens 6. The conductor to be measured 1 through which the current is measured penetrates the inside of the bobbin 3. FIG.
In 1, the Faraday effect type optical fiber 2 has a property that the polarization plane of light passing therethrough rotates in proportion to the strength of the magnetic field, and is made of, for example, lead glass (quartz glass containing a large amount of lead oxide). Optical fiber. The Faraday effect is a phenomenon in which, when light passes through lead glass or the like placed in a magnetic field, the polarization plane of the light rotates by a rotation angle θ = V · H · L. Here, V is the Verdet constant, H is the magnetic field in the light traveling direction, and L is the path length of the light. Lead glass is
The Verde constant V is about six times as large as that of general quartz glass containing no lead oxide, and the rotation angle θ of the polarization plane of light with respect to the magnetic field H is large. However, the input optical fiber 7 and the output optical fiber 8 are ordinary silica glass optical fibers containing no lead oxide or plastics optical fibers. When the current I flows through the conductor 1 to be measured, a magnetic field H that increases and decreases in proportion to the current I is formed around the conductor I. In this state, when the incident light P1 is injected into the input optical fiber 7, the incident light P1 is converted into linearly polarized light P in one direction by the polarizer 4, and the Faraday effect type optical fiber 2
Input terminal 2A. When the light P passes through the Faraday effect type optical fiber 2, its polarization plane is rotated by the rotation angle θ due to the magnetic field H. The light P inclined by the rotation angle θ reaches the output end 2B of the Faraday effect type optical fiber 2 and is injected into the analyzer 5. The analyzer 5 transmits only light components in the direction that can pass through the light P, is condensed by the lens 6, and is emitted to the output optical fiber 8 as transmitted light P <b> 2. Transmitted light P when no current is flowing through conductor under test 1
The amount of change in the amount of the transmitted light P2 when the current flows through the conductor under measurement 1 is proportional to the rotation angle θ with respect to the amount of the light 2, so that the amount of change in the amount of the transmitted light P2 is calculated by You can know. The change in the amount of the transmitted light P2 is converted into an electric signal by a converter (not shown) and output.

【発明が解決しようとする課題】しかしながら、前述し
たような従来の装置は、被計測導体が通電されてる最中
は、光変流器を取り付けることができないという問題が
あった。すなわち、巻枠に被計測導体を貫通させる必要
があり、被計測導体の通電を一旦中止して、被計測導体
の一方端を結合されていた相手の導体から一旦外し、巻
枠に被計測導体を貫通させる必要があった。そのために
は、停電させねばならないので従来は、電流計測が非常
にやり難かった。この発明の目的は、被計測導体が通電
されている最中でも着脱可能な光変流器を提供すること
にある。
However, the conventional apparatus as described above has a problem that the optical current transformer cannot be mounted while the conductor to be measured is energized. In other words, it is necessary to penetrate the conductor to be measured through the bobbin, temporarily stop energization of the conductor to be measured, remove one end of the conductor to be measured from the mating conductor once, and place the conductor to be measured into the bobbin. Had to be penetrated. In order to do so, a power outage must be performed, so that current measurement has conventionally been very difficult. An object of the present invention is to provide an optical current transformer that can be detached even while the conductor to be measured is energized.

【課題を解決するための手段】上記目的を達成するため
に、この発明によれば、通過する光の偏光面が磁界の強
さに比例して回転する性質を備え持つファラデ効果型光
ファイバを被計測導体が貫通する巻枠の外周に周回させ
るとともに前記ファラデ効果型光ファイバの入力端から
出力端へ光を通過させ、ファラデ効果型光ファイバを通
過する光の偏光面の回転角度に比例する信号を出力さ
せ、この信号から被計測導体に流れている電流を計測す
る光変流器において、前記巻枠が周方向に二つに分割さ
れた巻枠部よりなるとともに巻枠に被計測導体が挿入さ
れる開口部が形成可能であるようにするとよい。それに
よって、被計測導体が通電されている最中でも被計測導
体を開口部から挿入し、被計測導体の電流計測が可能で
ある。また、かかる構成において、前記巻枠部の周方向
の一方端同士が蝶番を介して連結され、巻枠部の周方向
の他方端に前記開口部が形成されるようにしてもよい。
また、かかる構成において、前記巻枠部の一方端同士が
巻枠部の双方に埋め込まれたピンを介して連結され、巻
枠部の他方端に前記開口部が形成されるようにしてもよ
い。また、かかる構成において、前記巻枠部の端部同士
がねじ止めされ、ねじを外すことにより一方の巻枠部が
取り除かれ前記開口部が形成されるようにしてもよい。
According to the present invention, there is provided, in accordance with the present invention, a Faraday effect type optical fiber having a property that a plane of polarization of light passing therethrough rotates in proportion to the strength of a magnetic field. The conductor to be measured circulates around the outer periphery of the winding frame, and transmits light from the input end to the output end of the Faraday effect type optical fiber, and is proportional to the rotation angle of the polarization plane of the light passing through the Faraday effect type optical fiber. In an optical current transformer for outputting a signal and measuring a current flowing through the conductor to be measured from the signal, the winding frame includes a winding frame portion divided into two in a circumferential direction, and the measured conductor is It is preferable that the opening into which the is inserted can be formed. This allows the conductor to be measured to be inserted from the opening while the conductor to be measured is energized, and the current to be measured in the conductor to be measured can be measured. In such a configuration, one ends of the winding frame portion in the circumferential direction may be connected to each other via a hinge, and the opening may be formed at the other circumferential end of the winding frame portion.
Further, in such a configuration, one ends of the bobbin portions may be connected via pins embedded in both the bobbin portions, and the opening may be formed at the other end of the bobbin portion. . Further, in such a configuration, the ends of the bobbin portion may be screwed to each other, and one of the bobbin portions may be removed by removing the screw to form the opening.

【発明の実施の形態】以下、この発明を実施例に基づい
て説明する。図1は、この発明の実施例にかかる光変流
器の構成を示す斜視図である。巻枠3が周方向に二つに
分割された巻枠部3A,3Bよりなる。巻枠部3A,3
Bの一方の分割面3Cが直線状であるとともに蝶番11
を介して互いに連結されている。巻枠部3A,3Bの他
方の分割面3DはZ字状であり、互いに突き合わせにな
っている。その他は従来の構成である図11と同一であ
り同じ部分には同一参照符号を付け詳細な説明は省略す
る。図2は、図1の巻枠3に開口部12が形成された構
成を示す斜視図である。蝶番11によって、巻枠部3
A,3Bの分割面3Dが周方向に開かれ開口部12が形
成されている。この開口部12から被計測導体1が挿入
可能である。したがって、被計測導体1が通電されてい
る最中でも被計測導体1に流れている電流Iの計測が可
能である。それによって、被計測導体の電流計測時に停
電をする必要がなくなるとともに、光変流器を活線中に
移動することができ、電流計測の作業能率が非常に向上
する。図3は、この発明の異なる実施例にかかる光変流
器の構成を示す斜視図である。巻枠3が巻枠部3A,3
Bに分割され,巻枠部3A,3Bの一方の分割面3Cが
Z字状であるとともに周方向に平行に分割された面が蝶
番11を介して互いに連結されている。その他は図1と
同じである。図4は、図3の巻枠3に開口部12が形成
された構成を示す斜視図である。蝶番11によって、巻
枠部3A,3Bの分割面3Dが軸方向に開かれ開口部1
2が形成されている。この開口部12から被計測導体1
が挿入可能である。したがって、被計測導体1が通電さ
れている最中でも被計測導体1に流れている電流Iの計
測が可能である。図5は、この発明のさらに異なる実施
例にかかる光変流器の構成を示す斜視図である。巻枠3
が巻枠部3A,3Bに分割され,巻枠部3A,3Bの一
方の分割面3Cが直線状であるとともに分割面3C同士
の双方に周方向に向けて埋め込まれたピン13を介して
連結されている。その他は図1と同じである。図6は、
図5の巻枠3に開口部12が形成された構成を示す斜視
図である。ピン13を支点にして、巻枠部3A,3Bの
分割面3Dが軸方向に開かれ開口部12が形成されてい
る。この開口部12から被計測導体1が挿入可能であ
る。したがって、被計測導体1が通電されている最中で
も被計測導体1に流れている電流Iの計測が可能であ
る。図7は、この発明のさらに異なる実施例にかかる光
変流器の構成を示す斜視図である。巻枠3が巻枠部3
A,3Bに分割され,巻枠部3A,3Bの一方の分割面
3CがZ字状であるとともに周方向に平行に分割された
面同士の双方に軸方向に向けて埋め込まれたピン13を
介して連結されている。その他は図1と同じである。図
8は、図7の巻枠3に開口部12が形成された構成を示
す斜視図である。ピン13を支点にして、巻枠部3A,
3Bの分割面3Dが周方向に開かれ開口部12が形成さ
れている。この開口部12から被計測導体1が挿入可能
である。したがって、被計測導体1が通電されている最
中でも被計測導体1に流れている電流Iの計測が可能で
ある。図9は、この発明のさらに異なる実施例にかかる
光変流器の構成を示す斜視図である。巻枠3が巻枠部3
A,3Bに分割され,巻枠部3A,3Bの分割面3Eが
互いに嵌合する切り欠き面であるとともに分割面3E面
同士がねじ14でもって固定されている。その他は図1
と同じである。図10は、図9の巻枠3に開口部12が
形成された構成を示す斜視図である。ねじ14が抜か
れ、ねじ穴15の明いた巻枠部3A,3Bが分割面3E
で分離されるとともに周方向に開く開口部12が形成さ
れている。この開口部12から被計測導体1が挿入可能
である。したがって、被計測導体1が通電されている最
中でも被計測導体1に流れている電流Iの計測が可能で
ある。なお、巻枠に開口部を設ける方法としては、その
他にも種々の構成が考えられる。例えば、図1におい
て、蝶番11の代わりに板状のものにして、ねじでもっ
て巻枠部3A,3Bの分割面3Cを固定してもよい。ね
じを抜くことによって巻枠部3A,3Bを分割可能にし
て開口部12を形成することができる。あるいはまた、
巻枠部3A,3Bが分割面3Cに互いに嵌合し合うホッ
クを取り付けてもよい。ホックを外すことによって巻枠
部3A,3Bを分割可能にして開口部12を形成するこ
とができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments. FIG. 1 is a perspective view illustrating a configuration of an optical current transformer according to an embodiment of the present invention. The winding frame 3 comprises winding frame portions 3A and 3B divided into two in the circumferential direction. Reel 3A, 3
B, one of the divided surfaces 3C is linear and the hinge 11
Are connected to each other. The other divided surface 3D of the winding frame portions 3A and 3B is Z-shaped and abuts each other. The other parts are the same as those of the conventional configuration shown in FIG. FIG. 2 is a perspective view showing a configuration in which an opening 12 is formed in the winding frame 3 of FIG. With the hinge 11, the bobbin 3
A divided surface 3D of A and 3B is opened in the circumferential direction, and an opening 12 is formed. The conductor to be measured 1 can be inserted through the opening 12. Therefore, the current I flowing through the conductor to be measured 1 can be measured even while the conductor to be measured 1 is energized. This eliminates the need for a power outage when measuring the current of the conductor to be measured, and allows the optical current transformer to be moved into the live line, greatly improving the efficiency of current measurement. FIG. 3 is a perspective view showing a configuration of an optical current transformer according to another embodiment of the present invention. The winding frame 3 is a winding frame portion 3A, 3
B, one of the divided surfaces 3C of the winding frame portions 3A and 3B is Z-shaped, and the surfaces divided in parallel in the circumferential direction are connected to each other via the hinge 11. Others are the same as FIG. FIG. 4 is a perspective view showing a configuration in which an opening 12 is formed in the winding frame 3 of FIG. The hinge 11 opens the dividing surface 3D of the winding frame portions 3A and 3B in the axial direction, and opens the opening 1
2 are formed. The conductor 1 to be measured is
Can be inserted. Therefore, the current I flowing through the conductor to be measured 1 can be measured even while the conductor to be measured 1 is energized. FIG. 5 is a perspective view showing a configuration of an optical current transformer according to still another embodiment of the present invention. Reel 3
Is divided into reel portions 3A and 3B, and one of the divided surfaces 3C of the reel portions 3A and 3B is linear and connected via pins 13 embedded in both the divided surfaces 3C in the circumferential direction. Have been. Others are the same as FIG. FIG.
FIG. 6 is a perspective view illustrating a configuration in which an opening 12 is formed in the winding frame 3 of FIG. 5. With the pin 13 as a fulcrum, the dividing surface 3D of the winding frame portions 3A and 3B is opened in the axial direction to form the opening 12. The conductor to be measured 1 can be inserted through the opening 12. Therefore, the current I flowing through the conductor to be measured 1 can be measured even while the conductor to be measured 1 is energized. FIG. 7 is a perspective view showing a configuration of an optical current transformer according to still another embodiment of the present invention. The reel 3 is the reel 3
A, 3B, and one of the divided surfaces 3C of the winding frame portions 3A, 3B has a Z-shape, and the pins 13 embedded in the axial direction are embedded in both of the surfaces divided in parallel in the circumferential direction. Are connected via Others are the same as FIG. FIG. 8 is a perspective view showing a configuration in which an opening 12 is formed in the winding frame 3 of FIG. With the pin 13 as a fulcrum, the winding frame 3A,
An opening 12 is formed by opening the dividing surface 3D of 3B in the circumferential direction. The conductor to be measured 1 can be inserted through the opening 12. Therefore, the current I flowing through the conductor to be measured 1 can be measured even while the conductor to be measured 1 is energized. FIG. 9 is a perspective view showing a configuration of an optical current transformer according to still another embodiment of the present invention. The reel 3 is the reel 3
A, 3B, and the divided surfaces 3E of the winding frame portions 3A, 3B are cutout surfaces that fit together, and the divided surfaces 3E are fixed to each other with screws 14. Others are shown in Figure 1
Is the same as FIG. 10 is a perspective view showing a configuration in which the opening 12 is formed in the winding frame 3 of FIG. The screw 14 is removed, and the winding frame portions 3A and 3B with the screw holes 15 are formed.
An opening 12 is formed which is separated from the opening and opened in the circumferential direction. The conductor to be measured 1 can be inserted through the opening 12. Therefore, the current I flowing through the conductor to be measured 1 can be measured even while the conductor to be measured 1 is energized. In addition, as a method of providing an opening in the winding frame, various other configurations can be considered. For example, in FIG. 1, the hinge 11 may be replaced by a plate, and the divided surfaces 3C of the winding frames 3A and 3B may be fixed by screws. By removing the screws, the winding frames 3A and 3B can be divided so that the opening 12 can be formed. Alternatively,
Hooks in which the winding frame portions 3A and 3B fit each other may be attached to the division surface 3C. By removing the hooks, the winding frames 3A and 3B can be divided so that the opening 12 can be formed.

【発明の効果】この発明は前述のように、巻枠が周方向
に二つに分割された巻枠部よりなるとともに巻枠に被計
測導体が挿入される開口部が形成可能であるようにする
ことによって、被計測導体が通電されている最中でも被
計測導体を開口部から挿入し、被計測導体の電流計測が
可能になる。それによって、被計測導体の電流計測時に
停電をする必要がなくなるとともに、光変流器を活線中
に移動することができ電流計測の作業能率が非常に向上
する。
According to the present invention, as described above, the winding frame is formed of a winding frame portion divided into two in the circumferential direction, and the opening for inserting the conductor to be measured can be formed in the winding frame. By doing so, the conductor to be measured is inserted from the opening even while the conductor to be measured is energized, and current measurement of the conductor to be measured becomes possible. This eliminates the need for a power outage when measuring the current of the conductor to be measured, and also allows the optical current transformer to be moved into the live line, greatly improving the efficiency of current measurement.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例にかかる光変流器の構成を示
す斜視図
FIG. 1 is a perspective view showing a configuration of an optical current transformer according to an embodiment of the present invention.

【図2】図1の巻枠に開口部が形成された構成を示す斜
視図
FIG. 2 is a perspective view showing a configuration in which an opening is formed in the bobbin of FIG. 1;

【図3】この発明の異なる実施例にかかる光変流器の構
成を示す斜視図
FIG. 3 is a perspective view showing a configuration of an optical current transformer according to another embodiment of the present invention.

【図4】図3の巻枠に開口部が形成された構成を示す斜
視図
FIG. 4 is a perspective view showing a configuration in which an opening is formed in the bobbin of FIG. 3;

【図5】この発明のさらに異なる実施例にかかる光変流
器の構成を示す斜視図
FIG. 5 is a perspective view showing a configuration of an optical current transformer according to still another embodiment of the present invention.

【図6】図5の巻枠に開口部が形成された構成を示す斜
視図
FIG. 6 is a perspective view showing a configuration in which an opening is formed in the bobbin of FIG. 5;

【図7】この発明のさらに異なる実施例にかかる光変流
器の構成を示す斜視図
FIG. 7 is a perspective view showing a configuration of an optical current transformer according to still another embodiment of the present invention.

【図8】図7の巻枠に開口部が形成された構成を示す斜
視図
8 is a perspective view showing a configuration in which an opening is formed in the bobbin of FIG. 7;

【図9】この発明のさらに異なる実施例にかかる光変流
器の構成を示す斜視図
FIG. 9 is a perspective view showing a configuration of an optical current transformer according to still another embodiment of the present invention.

【図10】図9の巻枠に開口部が形成された構成を示す
斜視図
FIG. 10 is a perspective view showing a configuration in which an opening is formed in the bobbin of FIG. 9;

【図11】従来の光変流器の構成を示す斜視図FIG. 11 is a perspective view showing a configuration of a conventional optical current transformer.

【符号の説明】[Explanation of symbols]

1:被計測導体、2:ファラデ効果型光ファイバ、2
A:入力端、2B:出力端、3:巻枠、3A,3B:巻
枠部、3C,3D,3E:分割面、θ:回転角度、I:
電流、7,8:光ファイバ、11:蝶番、12:開口
部、14:ねじ、15:ねじ穴
1: conductor to be measured, 2: Faraday effect type optical fiber, 2
A: input end, 2B: output end, 3: reel, 3A, 3B: reel, 3C, 3D, 3E: division surface, θ: rotation angle, I:
Current, 7, 8: optical fiber, 11: hinge, 12: opening, 14: screw, 15: screw hole

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山下 和徳 神奈川県横浜市鶴見区江ヶ崎町4番1号 東京電力株式会社電力技術研究所内 (72)発明者 藤井 清 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 小出 英延 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 Fターム(参考) 2G025 AA03 AA04 AB09 AB10 AC06 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Kazunori Yamashita 4-1 Egasaki-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Inside the Electric Power Research Laboratory, Tokyo Electric Power Company (72) Inventor Kiyoshi Fujii Tanabe, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture No. 1-1 Nitta Fuji Electric Co., Ltd. (72) Inventor Hidenobu Koide 1-1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture F-term in Fuji Electric Co., Ltd. 2G025 AA03 AA04 AB09 AB10 AC06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】通過する光の偏光面が磁界の強さに比例し
て回転する性質を備え持つファラデ効果型光ファイバを
被計測導体が貫通する巻枠の外周に周回させるとともに
前記ファラデ効果型光ファイバの入力端から出力端へ光
を通過させ、ファラデ効果型光ファイバを通過する光の
偏光面の回転角度に比例する信号を出力させ、この信号
から被計測導体に流れている電流を計測する光変流器に
おいて、前記巻枠が周方向に二つに分割された巻枠部よ
りなるとともに巻枠に被計測導体が挿入される開口部が
形成可能であることを特徴とする光変流器。
1. A Faraday effect type optical fiber having a property that a plane of polarization of light passing therethrough rotates in proportion to the strength of a magnetic field is wrapped around the outer circumference of a bobbin through which a conductor to be measured passes. Passes light from the input end of the optical fiber to the output end, outputs a signal proportional to the rotation angle of the plane of polarization of the light passing through the Faraday effect type optical fiber, and measures the current flowing through the conductor to be measured from this signal. Wherein the winding frame comprises a winding frame portion divided into two in the circumferential direction, and an opening through which the conductor to be measured is inserted can be formed in the winding frame. Sink.
【請求項2】請求項1に記載の光変流器において、前記
巻枠部の周方向の一方端同士が蝶番を介して連結され、
巻枠部の周方向の他方端に前記開口部が形成されること
を特徴とする光変流器。
2. The optical current transformer according to claim 1, wherein one ends in a circumferential direction of the bobbin portion are connected via a hinge,
An optical current transformer, wherein the opening is formed at the other end in the circumferential direction of the winding frame.
【請求項3】請求項1に記載の光変流器において、前記
巻枠部の一方端同士が巻枠部の双方に埋め込まれたピン
を介して連結され、巻枠部の他方端に前記開口部が形成
されることを特徴とする光変流器。
3. The optical current transformer according to claim 1, wherein one ends of the reel portions are connected to each other via pins embedded in both of the reel portions, and the other ends of the reel portions are connected to the other ends of the reel portions. An optical current transformer, wherein an opening is formed.
【請求項4】請求項1に記載の光変流器において、前記
巻枠部の端部同士がねじ止めされ、ねじを外すことによ
り一方の巻枠部が取り除かれ前記開口部が形成されるこ
とを特徴とする光変流器。
4. The optical current transformer according to claim 1, wherein the ends of the bobbin portions are screwed to each other, and one of the bobbin portions is removed by removing a screw to form the opening. An optical current transformer, characterized in that:
JP29233698A 1998-10-14 1998-10-14 Light current transformer Expired - Fee Related JP4215312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29233698A JP4215312B2 (en) 1998-10-14 1998-10-14 Light current transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29233698A JP4215312B2 (en) 1998-10-14 1998-10-14 Light current transformer

Publications (2)

Publication Number Publication Date
JP2000121675A true JP2000121675A (en) 2000-04-28
JP4215312B2 JP4215312B2 (en) 2009-01-28

Family

ID=17780487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29233698A Expired - Fee Related JP4215312B2 (en) 1998-10-14 1998-10-14 Light current transformer

Country Status (1)

Country Link
JP (1) JP4215312B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005111633A1 (en) * 2004-05-13 2005-11-24 Abb Research Ltd Fibre-optic sensor and current or magnetic field sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005111633A1 (en) * 2004-05-13 2005-11-24 Abb Research Ltd Fibre-optic sensor and current or magnetic field sensor
US7450792B2 (en) 2004-05-13 2008-11-11 Abb Research Ltd Fiber-optic sensor coil and current or magnetic-field sensor
JP4842925B2 (en) * 2004-05-13 2011-12-21 アーベーベー・リサーチ・リミテッド Fiber optic sensor coil and current or magnetic field sensor

Also Published As

Publication number Publication date
JP4215312B2 (en) 2009-01-28

Similar Documents

Publication Publication Date Title
US4560932A (en) Magneto-optical converter utilizing Faraday effect
KR19980019168A (en) Photocurrent Transformer
FI100920B (en) Fiber optic arrangement for measuring electric current
CN1026159C (en) Optical fiber arrangement for measuring electric current strength
JP2000121675A (en) Light converter
Day et al. Design and performance of tuned fiber coil isolators
JP3663993B2 (en) Light current transformer
JPS61200477A (en) Current measuring apparatus
ATE154443T1 (en) CURRENT MEASURING ARRANGEMENT FOR A CABLE ROUTE
JP4215313B2 (en) Light current transformer
CN107247170A (en) A kind of single polarization-type annular all-optical fiber current sensor and its detection method
JPS5927266A (en) Current measuring apparatus using polarization plane-preserving optical fiber
JPH0229514Y2 (en)
JP4093676B2 (en) Light current transformer
JP2656308B2 (en) Current detector
JPH03216558A (en) Photocurrent sensor
JPH0664174U (en) Fiber optic current sensor
KR100428891B1 (en) Contactless current measuring apparatus using laser
JP2890744B2 (en) Crosstalk measurement method for polarization maintaining optical fiber
JPS62232586A (en) Optical magnetic field sensor
JPH04190164A (en) Photocurrent sensor
JPH07280849A (en) Optical current transformer
JPS59137866A (en) Optical current transformer
JPH05188090A (en) Optical current sensor
JPH02128164A (en) Current measuring method of three-phase conductors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081104

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees