JP2000121556A - Device for detecting substance dissolved in water and measuring device using the same - Google Patents

Device for detecting substance dissolved in water and measuring device using the same

Info

Publication number
JP2000121556A
JP2000121556A JP10298231A JP29823198A JP2000121556A JP 2000121556 A JP2000121556 A JP 2000121556A JP 10298231 A JP10298231 A JP 10298231A JP 29823198 A JP29823198 A JP 29823198A JP 2000121556 A JP2000121556 A JP 2000121556A
Authority
JP
Japan
Prior art keywords
water
ultraviolet
detector
ultraviolet light
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10298231A
Other languages
Japanese (ja)
Inventor
Toshihiko Matsuda
利彦 松田
Toshisuke Sakai
敏輔 酒井
Naoto Matsuo
直人 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10298231A priority Critical patent/JP2000121556A/en
Publication of JP2000121556A publication Critical patent/JP2000121556A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low-cost and compact device for detecting substances dissolved in water, and a measuring device superior in stability and little in measurement error, capable of measuring substances dissolved in water having absorption characteristics in 185 nm to 260 nm without using a spectral filter, a light gathering part, or a mechanism for shielding external visible light. SOLUTION: The device 1 for detecting substances dissolved in water, is provided with a sealed container 6 in which an ultraviolet receiving part 5 is formed of a light transmission regulating glass which does not transmit ultraviolet rays shorter than at least 185 nm, a cathode 7 formed of a material with a photoelectric threshold wavelength of at least 260 nm or less, a discharge gas 8 to multiply electrons discharged from the cathode 7, and an anode 9 to receive electrons multiplied by discharge gas 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は紫外線吸光度法を用
いて水中紫外線吸収物質の濃度を測定する水中溶存物質
検出器及びそれを用いた測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dissolved substance detector in water for measuring the concentration of an ultraviolet absorbing substance in water using an ultraviolet absorbance method, and a measuring device using the same.

【0002】[0002]

【従来の技術】従来、硝酸、亜硝酸、塩素イオン又は、
有機物等の短波長紫外線吸収特性を持つ物質の溶存量を
測定する水中溶存物質検出器として、紫外線吸光度法を
用いる分光光度計が最も広く使用されている。
2. Description of the Related Art Conventionally, nitric acid, nitrous acid, chloride ion, or
As a dissolved substance detector in water for measuring the dissolved amount of a substance having a short wavelength ultraviolet absorption property such as an organic substance, a spectrophotometer using an ultraviolet absorption method is most widely used.

【0003】図5は従来の水中溶存物質検出器の全体構
成図である。図5において、50は従来の分光光度計、
2は硝酸や亜硝酸や塩素イオン又は有機物等の短波長紫
外線吸収特性を持つ物質を含有する被測定水、3は被測
定水2を収納する収納容器、3aは収納容器3の紫外線
入光面、3bは収納容器3の紫外線出光面、51は重水
素ランプなどの測定波長を含む紫外線を放出する紫外線
発光源、52は紫外線発光源51より照射された紫外線
のうち測定波長域の紫外線のみを透過させる分光フィル
ター、53は分光フィルター52で分光された紫外線を
集光する集光部、54はフォトダイオードなどの被測定
水2中で紫外線吸収特性を持つ物質により、吸収減衰さ
れた測定光を検出する紫外線受光部、55は外部可視光
を遮断する外部可視光遮断壁である。
FIG. 5 is an overall configuration diagram of a conventional detector for dissolved substances in water. In FIG. 5, 50 is a conventional spectrophotometer,
Reference numeral 2 denotes water to be measured containing a substance having a short-wavelength ultraviolet absorption property such as nitric acid, nitrous acid, chlorine ion, or organic substance; 3, a storage container for storing the water 2 to be measured; Reference numeral 3b denotes an ultraviolet light emitting surface of the storage container 3, reference numeral 51 denotes an ultraviolet light source which emits ultraviolet light including a measurement wavelength, such as a deuterium lamp, and reference numeral 52 denotes only ultraviolet light in the measurement wavelength range of the ultraviolet light emitted from the ultraviolet light source 51. A spectral filter for transmitting light, 53 is a condensing part for condensing the ultraviolet light separated by the spectral filter 52, and 54 is a measuring light absorbed and attenuated by a substance having an ultraviolet absorbing property in the water to be measured 2 such as a photodiode. The ultraviolet light receiving portion 55 to be detected is an external visible light blocking wall that blocks external visible light.

【0004】以下、従来の分光光度計の測定原理につい
て説明する。紫外線発光源51から測定波長(185n
m〜260nm)を含む紫外線が放出され、紫外線発光
源より放出された紫外線のうち、185nm〜260n
mの波長域の紫外線のみを分光フィルター52に透過さ
せる。分光フィルター52により分光された紫外線が分
散されるので、集光部53が分光された紫外線を必要な
光束まで集光させる。集光部53により集光された測定
光が硝酸や亜硝酸や塩素イオン又は有機物等の物質を含
有する被測定水2に照射される。紫外線入光面3aと紫
外線出光面3b及び被測定水2で吸収減衰された測定光
を紫外線受光部54により検出させる。紫外線吸収特性
を持つ物質を測定する時、蒸留水或いは被測定水溶液と
同一ベースの標準溶液で分光光度計の透過率を100%
とする。次いで、硝酸や亜硝酸や塩素イオン又は有機物
等の短波長紫外線吸収特性を持つ物質を含有する被測定
水2を分光光度計にセットし、被測定水2の透過率を測
定する。透過率の値から上記紫外線吸収特性を持つ物質
の濃度を換算できる。
[0004] The measurement principle of a conventional spectrophotometer will be described below. The measurement wavelength (185 n
m-260 nm), and 185 nm-260 n of the ultraviolet light emitted from the ultraviolet light source.
Only the ultraviolet light in the wavelength range of m is transmitted through the spectral filter 52. Since the ultraviolet light separated by the spectral filter 52 is dispersed, the light collecting unit 53 collects the separated ultraviolet light to a necessary light flux. The measurement light condensed by the light condensing section 53 is applied to the water to be measured 2 containing a substance such as nitric acid, nitrous acid, chlorine ion, or an organic substance. The measuring light absorbed and attenuated by the ultraviolet light incident surface 3a, the ultraviolet light emitting surface 3b, and the measured water 2 is detected by the ultraviolet light receiving unit 54. When measuring a substance having ultraviolet absorption characteristics, the transmittance of the spectrophotometer is 100% with distilled water or a standard solution having the same base as the aqueous solution to be measured.
And Next, the water to be measured 2 containing a substance having a short-wavelength ultraviolet absorption property such as nitric acid, nitrous acid, chlorine ion, or an organic substance is set in a spectrophotometer, and the transmittance of the water to be measured 2 is measured. From the transmittance value, the concentration of the substance having the above-mentioned ultraviolet absorbing property can be converted.

【0005】従来の紫外線受光部54には、紫外線領域
に感度を有するフォトダイオードが用いられ、外部の太
陽光や室内灯など可視光がフォトダイオードに影響する
ため、外部可視光を遮断する外部可視光遮断壁55が必
要である。また、紫外線発光源51としては、紫外線領
域における発光強度が強く、しかもその強度が比較的安
定している点から重水素ランプが用いられる。
[0005] A photodiode having sensitivity in the ultraviolet region is used for the conventional ultraviolet light receiving section 54, and visible light such as external sunlight or room light affects the photodiode. A light blocking wall 55 is required. Further, as the ultraviolet light emitting source 51, a deuterium lamp is used because the light emission intensity in the ultraviolet region is strong and the intensity is relatively stable.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記従来
の分光光度計を用いて、硝酸、亜硝酸、塩素イオン又
は、有機物等の短波長紫外線吸収特性を持つ物質の溶存
量を測定する水中溶存物質検出器及び測定装置では、以
下の課題を有していた。
However, using the above-mentioned conventional spectrophotometer, a dissolved substance detection in water for measuring the dissolved amount of a substance having a short wavelength ultraviolet absorbing property such as nitric acid, nitrous acid, chloride ion or organic substance. The instrument and the measuring device had the following problems.

【0007】(1)分光光度計に使用されるフォトダイ
オードは高価である上に、紫外線に比べ、可視光線の感
度が非常に高いため、可視光線による測定誤差が大きい
という課題を有していた。
(1) A photodiode used in a spectrophotometer is expensive and has a problem that a measurement error due to visible light is large because the sensitivity of visible light is much higher than that of ultraviolet light. .

【0008】(2)可視光線によるフォトダイオードの
影響を避けるため、紫外線発光源からの照射光のうち、
測定雑音源となる可視光を除き、測定波長の紫外線のみ
を分光させる分光フィルターや太陽光、室内灯など外部
可視光の紫外線受光部への入光防止用外部可視光遮断壁
が必要であり、検出器が高価になる上、検出器が大型化
するという課題を有していた。
(2) In order to avoid the influence of the visible light on the photodiode, of the irradiation light from the ultraviolet light source,
It is necessary to have a spectral filter that separates only the ultraviolet light of the measurement wavelength, a sunlight filter, and an external visible light blocking wall to prevent the external visible light from entering the ultraviolet light receiving unit such as a room light, excluding the visible light that is the measurement noise source. There has been a problem that the detector becomes expensive and the detector becomes large.

【0009】(3)測定に必要としない185nmより
短い紫外線は、O2分子などによって、吸収されやす
く、周囲の雰囲気により変化するため安定した検出がで
きず、水質検出時の誤差になるという課題を有してい
た。
(3) Ultraviolet light shorter than 185 nm, which is not required for measurement, is easily absorbed by O 2 molecules and the like, and changes depending on the surrounding atmosphere. Had.

【0010】(4)紫外線発光源からの照射光のうち、
測定に必要としない紫外線(260nmより長い紫外
線)が原因となる発熱による検出器内部の温度変動とそ
れに伴う、紫外線受光部の受光感度変動によって、測定
誤差が大きいという課題を有していた。
(4) Of the irradiation light from the ultraviolet light emitting source,
There is a problem that a measurement error is large due to a temperature change inside the detector due to heat generated by ultraviolet rays (ultraviolet rays longer than 260 nm) not required for the measurement, and a change in the light receiving sensitivity of the ultraviolet ray receiving unit.

【0011】(5)温度変動による紫外線受光部の受光
感度変動を抑制するため、紫外線発光源と紫外線受光源
間の距離を充分長くとる方法や紫外線受光部冷却機構を
設ける方法が取られてきたが、検出器が大型化と高価化
になるという課題を有していた。
(5) In order to suppress a change in the light receiving sensitivity of the ultraviolet light receiving unit due to a temperature change, a method of sufficiently increasing the distance between the ultraviolet light emitting source and the ultraviolet light receiving light source and a method of providing an ultraviolet light receiving unit cooling mechanism have been adopted. However, there is a problem that the detector becomes large and expensive.

【0012】本発明は上記従来の課題を解決するもの
で、分光フィルターや集光部及び外部可視光の遮断構造
を用いずに水中溶存物質を測定できるとともに、安定性
に優れ、低原価、小型、且つ測定誤差が少ない水中溶存
物質検出器及びそれを用いた測定装置を提供することを
目的とする。
The present invention solves the above-mentioned conventional problems, and can measure dissolved substances in water without using a spectral filter, a light-collecting unit, and a structure for blocking external visible light, and has excellent stability, low cost, and small size. It is an object of the present invention to provide a dissolved substance detector in water with a small measurement error and a measuring device using the same.

【0013】[0013]

【課題を解決するための手段】この目的を達成するため
に本発明の水中溶存物質検出器及びそれを用いた測定装
置は次の構成からなる。
Means for Solving the Problems To achieve this object, a dissolved substance detector in water of the present invention and a measuring apparatus using the same are constituted as follows.

【0014】本発明の水中溶存物質検出器は、紫外線受
光部が少なくとも185nmより短い紫外線を透過しな
い透過光規制ガラスで形成される密栓容器と、少なくと
も光電限界波長が260nm以下の材料で形成される陰
極と、前記陰極より放出された電子を増倍する放電ガス
と、前記放電ガスにより増倍された電子を受ける陽極
と、を備えた構成を有している。
The detector for dissolved substances in water according to the present invention has a sealed container in which the ultraviolet ray receiving portion is formed of a transmission light regulating glass which does not transmit ultraviolet rays shorter than at least 185 nm, and a material having a photoelectric limit wavelength of at least 260 nm. It has a configuration including a cathode, a discharge gas for multiplying electrons emitted from the cathode, and an anode for receiving electrons multiplied by the discharge gas.

【0015】この構成により、(1)紫外線受光部が1
85nmより短い紫外線を透過しない透過光規制ガラス
製密栓容器に配設されることによって、測定に必要とし
ない185nmより短い紫外線が通過できずに、周囲の
雰囲気中O2ガス又は水中溶存したO2などが紫外線を吸
収することによる水質検出誤差を抑制させることができ
る。
According to this configuration, (1) the number of the ultraviolet ray receiving portions is one;
By being arranged on the transmitted light regulating glass sealed container that does not transmit shorter UV 85 nm, can not pass through the shorter UV than 185nm which does not require the measurement, O 2 in which O 2 and gas or water dissolved in the ambient atmosphere It is possible to suppress a water quality detection error caused by absorbing ultraviolet rays.

【0016】(2)光電限界波長が260nm以下の陰
極が用いられることにより、測定に必要としない260
nm以上の光に応答せず、外部可視光の遮断構造を用い
ずに水中溶存物質を測定できる。
(2) Since a cathode having a photoelectric limit wavelength of 260 nm or less is used, it is unnecessary for measurement.
The substance dissolved in water can be measured without responding to light of nm or more and without using an external visible light blocking structure.

【0017】(3)紫外線受光部が185nmより短い
紫外線を透過しない透過光規制ガラス製密栓容器に配設
されることと光電限界波長が260nm以下の陰極が用
いられることによって、分光フィルターや集光部を用い
ずに185〜260nmの紫外線を測定できる。
(3) The spectral filter and the light condensing element are provided by disposing the ultraviolet ray receiving portion in a hermetically sealed container made of a transmissive light regulating glass which does not transmit ultraviolet rays shorter than 185 nm and using a cathode having a photoelectric limit wavelength of 260 nm or less. UV light of 185 to 260 nm can be measured without using a part.

【0018】(4)紫外線発光部と紫外線受光部を被測
定水収納容器内に設置されることにより、被測定水が冷
却水の役目となり、温度変化を抑制し安定した紫外線を
測定できる。
(4) By installing the ultraviolet light emitting part and the ultraviolet light receiving part in the container for storing the water to be measured, the water to be measured serves as cooling water, and the temperature change can be suppressed and the stable ultraviolet light can be measured.

【0019】また、本発明の水中溶存物質測定装置は、
前記請求項1乃至4の内いずれか1項に記載の水中溶存
物質検出器と、前記紫外線発光部を駆動する駆動回路
と、前記陰極と前記陽極との間に流れる微電流を測定す
る計測回路と、前記計測回路からの信号を濃度に換算す
る演算回路と、前記演算回路の演算結果を表示する表示
部と、を備えた構成を有している。
Further, the apparatus for measuring dissolved substances in water according to the present invention comprises:
The underwater dissolved substance detector according to any one of claims 1 to 4, a driving circuit that drives the ultraviolet light emitting unit, and a measurement circuit that measures a minute current flowing between the cathode and the anode. And a calculation circuit for converting a signal from the measurement circuit into a concentration, and a display unit for displaying a calculation result of the calculation circuit.

【0020】この構成により、上記水中溶存物質検出器
を用いることにより、水中の硝酸、亜硝酸、塩素イオン
又は、有機物等の短波長紫外線吸収特性を持つ物質の溶
存量を測定することができ、安定性に優れ、小型、低原
価、量産性に優れ、且つ測定誤差が少ない水中溶存物質
測定装置を提供することができる。
With this configuration, by using the above-described dissolved substance detector in water, the dissolved amount of a substance having a short-wavelength ultraviolet absorption property such as nitric acid, nitrous acid, chloride ion, or an organic substance in water can be measured. It is possible to provide an apparatus for measuring dissolved substances in water which is excellent in stability, small in size, low in cost, excellent in mass productivity, and has few measurement errors.

【0021】[0021]

【発明の実施の形態】本発明の請求項1に記載の発明
は、短波長紫外線領域(185nm〜260nm)に紫
外線吸収特性をもつ物質を含む被測定水を収納する容器
と、短波長紫外線を含む紫外線を照射する紫外線発光源
と、前記紫外線発光源より照射され、前記被測定水中の
物質により、吸収減衰された短波長紫外線を検出する紫
外線受光部から構成される水中溶存物質検出器であっ
て、前記紫外線受光部が少なくとも185nmより短い
紫外線を透過しない透過光規制ガラスで形成される密栓
容器と、少なくとも光電限界波長が260nm以下の材
料で形成される陰極と、前記陰極より放出された電子を
増倍する放電ガスと、前記放電ガスにより増倍された電
子を受ける陽極と、を備えた構成を有している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention is directed to a container for storing a water to be measured containing a substance having an ultraviolet absorbing property in a short wavelength ultraviolet region (185 nm to 260 nm); An ultraviolet light emitting source for irradiating ultraviolet light including the ultraviolet light source, and an ultraviolet light receiving unit for detecting short wavelength ultraviolet light which is irradiated from the ultraviolet light emitting source and absorbed and attenuated by the substance in the water to be measured. A sealing container formed of a transparent light-controlling glass in which the ultraviolet ray receiving portion does not transmit ultraviolet rays shorter than at least 185 nm, a cathode formed of a material having a photoelectric limit wavelength of at most 260 nm, and electrons emitted from the cathode. , And an anode for receiving the electrons multiplied by the discharge gas.

【0022】これにより、(1)紫外線受光部が185
nmより短い紫外線を透過しない透過光規制ガラス製密
栓容器に配設されることによって、測定に必要としない
185nmより短い紫外線が通過できずに、周囲の雰囲
気中O2ガス又は水中溶存したO2などが紫外線を吸収に
よる水質検出誤差を抑制させることができる。
Thus, (1) the ultraviolet ray receiving section is 185
by being arranged on the transmitted light regulating glass sealed container that does not transmit shorter UV nm, can not pass through the shorter UV than 185nm which does not require the measurement, O 2 in which O 2 and gas or water dissolved in the ambient atmosphere Can suppress water quality detection errors due to absorption of ultraviolet rays.

【0023】(2)光電限界波長が260nm以下の陰
極が用いられることにより、測定に必要としない260
nm以上の光を応答しなく、外部可視光の遮断構造を用
いずに水中溶存物質を測定できる。
(2) Since a cathode having a photoelectric limit wavelength of 260 nm or less is used, it is unnecessary for measurement.
A substance dissolved in water can be measured without responding to light of nm or more and without using an external visible light blocking structure.

【0024】(3)紫外線受光部が185nmより短い
紫外線を透過しない透過光規制ガラス製密栓容器に配設
されることと光電限界波長が260nm以下の陰極が用
いられることによって、分光フィルターや集光部を用い
ずに185〜260nmの紫外線を測定できる。
(3) Since the ultraviolet ray receiving section is provided in a hermetically sealed container made of transmitted light control glass which does not transmit ultraviolet rays shorter than 185 nm and a cathode having a photoelectric limit wavelength of 260 nm or less is used, a spectral filter and a light condensing element are used. UV light of 185 to 260 nm can be measured without using a part.

【0025】ここで、透過光抑制ガラスとしては、UV
ガラス(透過波長限界185nm)、バイコールガラス
(220nm)、サファイヤガラス(190nm)、溶
融石英(185nm)、硼珪酸ガラス(240nm)が
用いられる。被測定水収納容器の紫外線入光面及び紫外
線出光面は、上記透過光抑制ガラスの少なくとも1種で
形成されている。
Here, as the transmitted light suppressing glass, UV
Glass (transmission wavelength limit: 185 nm), Vycor glass (220 nm), sapphire glass (190 nm), fused silica (185 nm), and borosilicate glass (240 nm) are used. The ultraviolet light incident surface and the ultraviolet light exit surface of the measured water storage container are formed of at least one of the above-mentioned transmitted light suppressing glasses.

【0026】陰極としては、光電限界波長が260nm
以下のNi(250nm)、Au(253nm)、Be
(240nm)、Co(249nm)、Pd(250n
m)、Cu(252nm)、Pt(225nm)等の単
体金属もしくはZrO2、MgS、CaS、SrS等の
化合物が用いられる。被測定物質の吸収波長に応じて、
組み合わせを適切に行うことが望まれる。というのは、
検知可能な波長範囲を限定できるため、測定精度があが
るからである。
The cathode has a photoelectric limit wavelength of 260 nm.
The following Ni (250 nm), Au (253 nm), Be
(240 nm), Co (249 nm), Pd (250 n
m), a simple metal such as Cu (252 nm) or Pt (225 nm) or a compound such as ZrO 2 , MgS, CaS, or SrS. Depending on the absorption wavelength of the substance to be measured,
It is desired that the combination is properly performed. I mean,
This is because the range of wavelengths that can be detected can be limited, so that measurement accuracy is improved.

【0027】放電ガスとしては、H2、Ar、He、N
e等の単一ガスの他にHe−Ne、Ar−N2等の混合
ガスが用いられる。
As the discharge gas, H 2 , Ar, He, N
In addition to He-Ne single gas e and the like, a mixed gas such as Ar-N 2 is used.

【0028】陽極としては、Fe、Ni、Co、Cu、
Cr、W、Mo、C、Au、Ag、Atが用いられる。
As the anode, Fe, Ni, Co, Cu,
Cr, W, Mo, C, Au, Ag, and At are used.

【0029】本発明の請求項2に記載の発明は、請求項
1の発明において、紫外線発光源が、短波長紫外線領域
に発光ピークをもつ紫外線ランプであった構成を有して
いる。
According to a second aspect of the present invention, in the first aspect, the ultraviolet light source is an ultraviolet lamp having an emission peak in a short wavelength ultraviolet region.

【0030】これにより、請求項1に得られた作用の
他、測定に不必要な260nmより長い波長の光量を弱
くできるため、発熱量を抑制でき、冷却装置を用いずに
安定且つ的確に紫外線を測定することができる。
Thus, in addition to the effect obtained in claim 1, the amount of light having a wavelength longer than 260 nm, which is unnecessary for measurement, can be weakened, so that the amount of heat generated can be suppressed, and the ultraviolet light can be stably and accurately obtained without using a cooling device. Can be measured.

【0031】ここで、紫外線ランプとしては短波長紫外
線(185nm〜260nm)を含んだ波長の紫外線を
放射できるものが用いられる。短波長紫外線を含む紫外
線を放射するものであればよいが短波長紫外線領域、特
に測定物質の吸収波長に発光ピークをもつ紫外線ランプ
が望ましい。というのは、測定に260nm以上の光
は、測定に不必要である上、発熱量も高く検出器内温度
変動の要因となるからである。紫外線ランプの具体的な
例として陰極グローランプ、Xeランプが挙げられる。
Here, an ultraviolet lamp capable of emitting ultraviolet light having a wavelength including short wavelength ultraviolet light (185 nm to 260 nm) is used. Any lamp that emits ultraviolet light including short-wave ultraviolet light may be used, but an ultraviolet lamp having an emission peak at a short-wave ultraviolet light region, particularly, at an absorption wavelength of a substance to be measured is desirable. The reason for this is that light having a wavelength of 260 nm or more is unnecessary for the measurement, has a high calorific value, and causes temperature fluctuation in the detector. Specific examples of the ultraviolet lamp include a cathode glow lamp and a Xe lamp.

【0032】本発明の請求項3に記載の発明は、請求項
1又は2の発明において、紫外線受光部及び/又は前記
紫外線発光源を前記被測定水の収納容器内に配設されて
いた構成を有している。
According to a third aspect of the present invention, in the first or second aspect of the present invention, the ultraviolet ray receiving section and / or the ultraviolet ray emitting source is disposed in the storage container for the water to be measured. have.

【0033】これにより、請求項1又は2に得られた作
用の他、紫外線受光部及び/又は前記紫外線発光源の被
測定水による冷却が行え、検出器内の温度上昇を抑制し
安定した紫外線を測定できる。
Thus, in addition to the effects obtained in claim 1 or 2, cooling of the ultraviolet ray receiving portion and / or the ultraviolet ray emitting source by the water to be measured can be performed, and the temperature rise in the detector can be suppressed and the ultraviolet ray can be stabilized. Can be measured.

【0034】本発明の請求項4に記載の発明は、請求項
1乃至3の発明において、被測定水が流水であった構成
を有している。
According to a fourth aspect of the present invention, in the first to third aspects, the water to be measured is flowing water.

【0035】これにより、請求項1乃至3に得られた作
用の他、紫外線発光源の冷却が効率よく行え、検出器内
温度を一定に保つことができるため、紫外線受光部感度
変動の防止ができる。
Thus, in addition to the effects obtained in the first to third aspects, the ultraviolet light emitting source can be efficiently cooled and the temperature in the detector can be kept constant. it can.

【0036】本発明の請求項5に記載の発明は、請求項
1乃至4の発明において、短波長紫外線領域に紫外線吸
収特性を持つ物質が、硝酸、亜硝酸、次亜塩素酸、塩素
イオン又は、250nm〜260nmに吸収特性を有す
る有機物であった構成を有している。
The invention according to claim 5 of the present invention is the invention according to claims 1 to 4, wherein the substance having an ultraviolet absorbing property in a short wavelength ultraviolet region is nitric acid, nitrous acid, hypochlorous acid, chlorine ion or , 250 nm to 260 nm.

【0037】これにより、請求項1乃至4に得られた作
用の他、硝酸、亜硝酸、次亜塩素酸、塩素イオンまた
は、250nm〜260nmに吸収特性を有する有機物
の測定が安定して行える小型検出器の低価格化が行え
る。
Thus, in addition to the effects obtained in claims 1 to 4, a small-sized device capable of stably measuring nitric acid, nitrous acid, hypochlorous acid, chloride ions, or an organic substance having an absorption characteristic at 250 nm to 260 nm. The cost of the detector can be reduced.

【0038】ここで、短波長紫外線領域に吸収特性を持
つ物質としては硝酸(200nm〜240nm)、亜硝
酸(210nm)、次亜塩素酸(254nm)、塩素イ
オン(190nm)、有機物(250nm〜260n
m)等が存在する。各々が185nm〜260nmの短
波長紫外線の測定範囲に吸収ピークをもつものである。
Here, as a substance having an absorption characteristic in a short wavelength ultraviolet region, nitric acid (200 nm to 240 nm), nitrous acid (210 nm), hypochlorous acid (254 nm), chlorine ion (190 nm), and organic substances (250 nm to 260 nm) are used.
m) and the like. Each has an absorption peak in the measurement range of the short wavelength ultraviolet light of 185 nm to 260 nm.

【0039】本発明の請求項6に記載の発明は、前記請
求項1乃至5の内いずれか1項に記載の水中溶存物質検
出器と、前記水中溶存物質検出器の紫外線発光部を駆動
する駆動回路と、前記水中溶存物質検出器の紫外線受光
部に流れる微電流を測定する計測回路と、前記計測回路
からの信号を濃度に換算する演算回路と、前記演算回路
の演算結果を表示する表示部と、を備えた構成を有して
いる。
According to a sixth aspect of the present invention, there is provided a detector for a dissolved substance in water according to any one of the first to fifth aspects, and an ultraviolet light emitting portion of the detector for the dissolved substance in water. A driving circuit, a measuring circuit for measuring a minute current flowing in the ultraviolet light receiving portion of the underwater dissolved substance detector, an arithmetic circuit for converting a signal from the measuring circuit into a concentration, and a display for displaying an arithmetic result of the arithmetic circuit. And a unit.

【0040】これにより、請求項1乃至5の内いずれか
1項に記載の水中溶存物質検出器を用いることにより、
水中の硝酸、亜硝酸、塩素イオン又は、有機物の短波長
紫外線吸収特性を持つ物質の溶存量を測定することがで
き、安定性に優れ、小型、低原価、量産性に優れ、且つ
測定誤差が少ない水中溶存物質測定装置を提供すること
ができる。
Thus, by using the detector for dissolved substances in water according to any one of claims 1 to 5,
It can measure the dissolved amount of nitric acid, nitrous acid, chloride ion or the substance with short wavelength ultraviolet absorption of organic matter in water, it is excellent in stability, small size, low cost, excellent in mass productivity, and measurement error It is possible to provide an apparatus for measuring a small amount of dissolved substances in water.

【0041】以下、本発明の実施の形態について、図1
乃至図4を用いて説明する。 (実施の形態1)図1は本発明の実施の形態1の水中溶
存物質検出器の全体構成図である。
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
This will be described with reference to FIGS. (Embodiment 1) FIG. 1 is an overall configuration diagram of a detector for dissolved substances in water according to Embodiment 1 of the present invention.

【0042】図1において、1は実施の形態1における
水中溶存物質検出器、2は硝酸や亜硝酸や塩素イオン又
は有機物等を含む被測定水、4は短波長紫外線(185
nm〜260nm)を含んだ紫外線を供給する紫外線発
光源、4a,4bは紫外線発光源4のリード線、5は紫
外線受光部、6は少なくとも185nmより短い紫外線
を透過しない透過光規制ガラスで形成された密栓容器、
7は光電限界波長が260nm以下の陰極、8は陰極7
より放出された電子を増倍する放電ガス、9は放電ガス
8により増倍された電子を受ける陽極、10は陰極7と
陽極9の間の距離を一定に保つ絶縁スペーサ、11a,
11bは紫外線受光部5のリード線である。尚、従来例
(図5)と同様のものには同一の符号を付して説明を省
略する。
In FIG. 1, reference numeral 1 denotes a detector for dissolved substances in water according to the first embodiment, 2 denotes water to be measured containing nitric acid, nitrous acid, chlorine ions or organic substances, and 4 denotes short-wavelength ultraviolet rays (185
ultraviolet light sources for supplying ultraviolet light including ultraviolet rays (nm to 260 nm), 4a and 4b are lead wires of the ultraviolet light source 4, 5 is an ultraviolet light receiving portion, and 6 is a transmission light regulating glass that does not transmit ultraviolet light shorter than at least 185 nm. Sealed container,
7 is a cathode having a photoelectric limit wavelength of 260 nm or less, 8 is a cathode 7
A discharge gas for multiplying the emitted electrons; 9 an anode receiving the electrons multiplied by the discharge gas 8; 10 an insulating spacer for maintaining a constant distance between the cathode 7 and the anode 9;
Reference numeral 11b denotes a lead wire of the ultraviolet light receiving unit 5. Note that the same components as those in the conventional example (FIG. 5) are denoted by the same reference numerals, and description thereof is omitted.

【0043】次に、実施の形態1の水中溶存物質検出器
の紫外線受光部5の制作について説明する。
Next, the production of the ultraviolet ray receiving section 5 of the detector for dissolved substances in water according to the first embodiment will be described.

【0044】密栓容器6中に紫外線の受光量を増やし検
出器の感度を高めるために、陽極9より大きい面積を持
つ陰極7、放出された電子を効率良く受けるように小さ
な面積で陰極7と電位差が均しくなるために、渦巻き状
或いは金網状にした陽極9を配し密栓容器6内に放電ガ
ス8を付入する。
In order to increase the amount of ultraviolet light received in the sealed container 6 and to increase the sensitivity of the detector, a cathode 7 having an area larger than the anode 9 and a potential difference from the cathode 7 in a small area so as to efficiently receive emitted electrons. In order to make the temperature uniform, a spiral or wire mesh-shaped anode 9 is arranged, and a discharge gas 8 is introduced into a sealed container 6.

【0045】次に、実施の形態1の水中溶存物質検出器
の動作について説明する。紫外線発光源4より短波長紫
外線を含む紫外線が連続または、周期的に被測定水2が
入った被測定水収納容器3に供給される。供給された紫
外線は、紫外線入光面3aを通り、被測定水2により各
測定物質の吸収波長域の紫外線を吸収減衰され、紫外線
出光面3bを透過して、紫外線受光部5に達する。そし
て、紫外線受光部5に達した紫外線は、密栓容器6の透
過光規制ガラスにより少なくとも185nmより短い紫
外線をカットされ、紫外線受光部5内に入光、陰極7に
衝突、光電効果により電子を放出する。放出された電子
は、陰極7と陽極9の間に印加される電圧により加速さ
れ陽極9に移動される。移動する際に、放電ガス8と衝
突し、電子増倍現象を起こしながら陽極9に達する。こ
の時発生した電流値から水溶液中の硝酸や亜硝酸や塩素
イオン又は有機物等の濃度を換算できる。
Next, the operation of the detector for dissolved substances in water according to the first embodiment will be described. Ultraviolet light including short-wavelength ultraviolet light is continuously or periodically supplied from the ultraviolet light source 4 to the measured water container 3 containing the measured water 2. The supplied ultraviolet light passes through the ultraviolet light incident surface 3a, is absorbed and attenuated by the water to be measured 2 in the absorption wavelength region of each measurement substance, passes through the ultraviolet light exit surface 3b, and reaches the ultraviolet light receiving unit 5. Then, the ultraviolet rays that have reached the ultraviolet ray receiving section 5 are cut off at least by ultraviolet rays shorter than 185 nm by the transmitted light regulating glass of the sealed container 6, enter the ultraviolet ray receiving section 5, collide with the cathode 7, and emit electrons by the photoelectric effect. I do. The emitted electrons are accelerated by a voltage applied between the cathode 7 and the anode 9 and are moved to the anode 9. When moving, it collides with the discharge gas 8 and reaches the anode 9 while causing an electron multiplication phenomenon. The concentration of nitric acid, nitrous acid, chlorine ions, organic substances, or the like in the aqueous solution can be converted from the current value generated at this time.

【0046】(実施の形態2)図2は本発明の実施の形
態2における水中溶存物質検出器の要部構成図である。
(Embodiment 2) FIG. 2 is a configuration diagram of a main part of a detector for dissolved substances in water according to Embodiment 2 of the present invention.

【0047】図2において、20は実施の形態2の水中
溶存物質検出器、21は硝酸や亜硝酸や塩素イオン又は
有機物等を含む被測定水を収納する収納容器、22は被
測定水2の入口、23は被測定水2の出口である。尚、
実施の形態1と同様のものには同一の符号を付して説明
を省略する。
In FIG. 2, reference numeral 20 denotes a detector for dissolved substances in water according to the second embodiment, reference numeral 21 denotes a storage container for storing the water to be measured containing nitric acid, nitrous acid, chloride ions, organic substances, and the like; An inlet 23 is an outlet of the measured water 2. still,
The same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

【0048】実施の形態2において、紫外線発光部4と
紫外線受光部5が被測定水収納容器21内に設置され、
被測定水2と接水している点が、実施の形態1と大きく
異なる点である。紫外線受光部5の制作方法には実施の
形態1と同じである。
In the second embodiment, the ultraviolet light emitting part 4 and the ultraviolet light receiving part 5 are installed in the water container 21 to be measured.
The point in contact with the measured water 2 is a point greatly different from the first embodiment. The method of producing the ultraviolet light receiving unit 5 is the same as that of the first embodiment.

【0049】次に、実施の形態2の水中溶存物質検出器
の動作について説明する。紫外線発光部4より発生され
た紫外線は、直接被測定水2に照射され、紫外線受光部
5により検出される。この時、紫外線発光部4の発熱が
原因となる検出器内の温度上昇は被測定水2が冷却水の
役目を行うため、発熱による検出器内部の温度変動によ
って紫外線受光部の受光感度の変動が抑制されることが
できる。尚、実施の形態1と同様の動作には説明を省略
する。
Next, the operation of the detector for dissolved substances in water according to the second embodiment will be described. The ultraviolet light generated by the ultraviolet light emitting unit 4 is directly irradiated on the water 2 to be measured, and is detected by the ultraviolet light receiving unit 5. At this time, the temperature rise in the detector caused by the heat generation of the ultraviolet light emitting unit 4 causes the measured water 2 to serve as cooling water. Can be suppressed. The description of the same operation as in the first embodiment is omitted.

【0050】ここで、被測定水2が流水の場合、冷却効
率は向上する。本発明の実施の形態1及び実施の形態2
によれば、分光フィルターや集光部及び外部可視光の遮
断構造を用いずに水中溶存物質を測定できるとともに、
温度の安定性に優れ、低原価、小型、且つ測定誤差が少
ないの水中溶存物質検出器を提供することができる。
Here, when the measured water 2 is flowing water, the cooling efficiency is improved. Embodiments 1 and 2 of the present invention
According to the method, dissolved substances in water can be measured without using a spectral filter, a light condensing part and a structure for blocking external visible light,
It is possible to provide a detector for dissolved substances in water which has excellent temperature stability, is low in cost, is small, and has little measurement error.

【0051】(実施の形態3)図3は本発明の実施の形
態3における水中溶存物質測定装置の模式図である。
(Embodiment 3) FIG. 3 is a schematic diagram of an apparatus for measuring dissolved substances in water according to Embodiment 3 of the present invention.

【0052】図3において、30は実施の形態3の水中
溶存物質測定装置、31は紫外線発光部4の駆動回路、
32は紫外線受光部5の陰極7と陽極9の間に発生した
微電流を測定して増幅する計測回路、33は計測回路3
2からの信号を濃度に換算する演算回路、34は演算回
路33の演算結果を表示する表示部である。尚、演算回
路33等はマイコンなどによりソフト的に構成できる。
尚、実施の形態1と同様のものには同一の符号を付して
説明を省略する。
In FIG. 3, reference numeral 30 denotes an apparatus for measuring dissolved substances in water according to the third embodiment, reference numeral 31 denotes a drive circuit of the ultraviolet light emitting section 4,
32 is a measuring circuit for measuring and amplifying a small current generated between the cathode 7 and the anode 9 of the ultraviolet light receiving section 5, and 33 is a measuring circuit 3
An operation circuit for converting the signal from 2 into a density is a display unit 34 for displaying the operation result of the operation circuit 33. Note that the arithmetic circuit 33 and the like can be configured by software using a microcomputer or the like.
Note that the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

【0053】次に、実施の形態3の水中溶存物質測定装
置の動作について説明する。駆動回路31より電圧を印
加されると紫外線発光部4より短波長紫外線を含む紫外
線が連続または、周期的に被測定水2が入った被測定水
収納容器3に照射される。紫外線受光部5に発生する電
流を計測回路32で測定して増幅する。増幅した電流を
演算回路33に送り、演算回路33が計測回路32から
の信号を紫外線吸収物質の濃度に換算する。その結果を
表示部34に表示する。尚、実施の形態1と同様の動作
には説明を省略する。
Next, the operation of the apparatus for measuring dissolved substances in water according to the third embodiment will be described. When a voltage is applied from the drive circuit 31, ultraviolet rays including short-wavelength ultraviolet rays are continuously or periodically irradiated to the measured water container 3 containing the measured water 2 from the ultraviolet light emitting unit 4. The current generated in the ultraviolet light receiving unit 5 is measured by the measuring circuit 32 and amplified. The amplified current is sent to the arithmetic circuit 33, and the arithmetic circuit 33 converts the signal from the measuring circuit 32 into a concentration of the ultraviolet absorbing substance. The result is displayed on the display unit 34. The description of the same operation as in the first embodiment is omitted.

【0054】(実施の形態4)図4は本発明の実施の形
態4における水中溶存物質測定装置の模式図である。
(Embodiment 4) FIG. 4 is a schematic diagram of an apparatus for measuring dissolved substances in water according to Embodiment 4 of the present invention.

【0055】図4において、40は実施の形態4におけ
る水中溶存物質測定装置である。尚、実施の形態1及び
実施の形態3と同様のものには同一の符号を付して説明
を省略する。
In FIG. 4, reference numeral 40 denotes an apparatus for measuring dissolved substances in water according to the fourth embodiment. The same components as those in the first and third embodiments are denoted by the same reference numerals, and the description is omitted.

【0056】実施の形態4において、実施の形態2の水
中溶存物質検出器20を用いて被測定水2を測定する点
が、実施の形態3と大きく異なる点である。
The fourth embodiment differs from the third embodiment in that the measured water 2 is measured using the dissolved substance detector 20 in water in the second embodiment.

【0057】次に、実施の形態4の水中溶存物質測定装
置40の動作について説明する。駆動回路31より電圧
を印加されると紫外線発光部4より短波長紫外線を含む
紫外線が連続または、周期的に被測定水2に照射され
る。紫外線受光部5に発生する電流を計測回路32で測
定して増幅する。増幅した電流が演算回路33に送り、
演算回路33が計測回路32からの信号を紫外線吸収物
質の濃度に換算する。その結果を表示部34に表示す
る。尚、実施の形態1及び実施の形態3と同様の動作に
は説明を省略する。
Next, the operation of the apparatus for measuring dissolved substances in water 40 according to the fourth embodiment will be described. When a voltage is applied from the drive circuit 31, the ultraviolet light including the short-wavelength ultraviolet light is continuously or periodically applied to the measured water 2 from the ultraviolet light emitting unit 4. The current generated in the ultraviolet light receiving unit 5 is measured by the measuring circuit 32 and amplified. The amplified current is sent to the arithmetic circuit 33,
The arithmetic circuit 33 converts the signal from the measuring circuit 32 into a concentration of the ultraviolet absorbing substance. The result is displayed on the display unit 34. The description of the same operation as in the first and third embodiments will be omitted.

【0058】なお、以上の説明では、被測定水2が紫外
線発光部4側から紫外線受光部5側に流れた例で説明し
たが、被測定水2が逆に流れたものについても同様に実
施可能である。
In the above description, an example has been described in which the measured water 2 flows from the ultraviolet light emitting unit 4 side to the ultraviolet light receiving unit 5 side. However, the same applies to the case where the measured water 2 flows reversely. It is possible.

【0059】本発明の実施の形態3及び実施の形態4に
よれば、実施の形態1及び実施の形態2の水中溶存物質
検出器を用いることにより、水中の硝酸、亜硝酸、塩素
イオン又は、有機物等の短波長紫外線吸収特性を持つ物
質の溶存量を測定することができ、安定性に優れ、小
型、低原価、量産性に優れ、且つ測定誤差が少ない水中
溶存物質測定装置を提供することができる。
According to the third and fourth embodiments of the present invention, by using the dissolved substance detector in water of the first and second embodiments, nitric acid, nitrous acid, chlorine ion or Provide an apparatus for measuring dissolved substances in water that can measure the dissolved amount of a substance having a short-wavelength ultraviolet absorption property such as an organic substance, has excellent stability, is small in size, has low cost, has excellent mass productivity, and has little measurement error. Can be.

【0060】[0060]

【発明の効果】以上のように本発明における水中溶存物
質検出器及びそれを用いた測定装置によれば、以下の優
れた効果を実現できる。
As described above, according to the detector for dissolved substances in water and the measuring apparatus using the same according to the present invention, the following excellent effects can be realized.

【0061】本発明の請求項1に記載の発明によれば、 (1)紫外線受光部が185nmより短い紫外線を透過
しない透過光規制ガラス製密栓容器に配設されることに
よって、測定に必要としない185nmより短い紫外線
が通過できずに、周囲の雰囲気中O2ガス又は水中溶存
したO2などが紫外線を吸収による水質検出誤差を抑制
させることができる。
According to the invention described in claim 1 of the present invention, (1) the ultraviolet ray receiving section is provided in a sealed container made of a transmission light regulating glass which does not transmit ultraviolet rays shorter than 185 nm, which is necessary for measurement. unable ultraviolet shorter than 185nm which is not the passage, it can be such as O 2 was dissolved in an O 2 gas or water surrounding atmosphere to suppress the water quality detection error due to absorption of ultraviolet radiation.

【0062】(2)光電限界波長が260nm以下の陰
極が用いられることにより、測定に必要としない260
nm以上の光を応答しなく、外部可視光の遮断構造を用
いずに水中溶存物質を測定できる。
(2) Since a cathode having a photoelectric limit wavelength of 260 nm or less is used, it is unnecessary for measurement.
A substance dissolved in water can be measured without responding to light of nm or more and without using an external visible light blocking structure.

【0063】(3)紫外線受光部が185nmより短い
紫外線を透過しない透過光規制ガラス製密栓容器に配設
されることと光電限界波長が260nm以下の陰極が用
いられることによって、分光フィルターや集光部を用い
ずに185〜260nmの紫外線を測定できる。
(3) Since the ultraviolet ray receiving portion is disposed in a hermetically sealed glass container which does not transmit ultraviolet rays shorter than 185 nm and which has a photoelectric limit wavelength of 260 nm or less, a spectral filter and a light condensing element are used. UV light of 185 to 260 nm can be measured without using a part.

【0064】本発明の請求項2に記載の発明によれば、
請求項1に記載の効果に加えて、 (4)測定に不必要な260nmより長い波長の光量を
弱くできるため、発熱量を抑制でき、冷却装置を用いず
に安定且つ的確に紫外線を測定することができる。
According to the second aspect of the present invention,
In addition to the effect of claim 1, (4) the amount of light having a wavelength longer than 260 nm, which is unnecessary for measurement, can be weakened, so that the calorific value can be suppressed, and ultraviolet rays can be measured stably and accurately without using a cooling device. be able to.

【0065】本発明の請求項3に記載の発明によれば、
請求項1又は2の内いずれか1項に記載の効果に加え
て、 (5)紫外線受光部及び/又は前記紫外線発光源の被測
定水による冷却が行え、検出器内の温度上昇を抑制する
事ができるとともに、紫外線の測定の安定性と正確性を
向上できる。
According to the third aspect of the present invention,
In addition to the effects described in any one of claims 1 and 2, (5) cooling of the ultraviolet light receiving unit and / or the ultraviolet light emission source by the water to be measured can be performed, and a temperature rise in the detector is suppressed. In addition to improving the stability and accuracy of UV measurement.

【0066】本発明の請求項4に記載の発明によれば、
請求項1乃至3の内いずれか1項に記載の効果に加え
て、 (6)紫外線発光源の冷却が効率よく行え、検出器内温
度を一定に保つことができるため、紫外線受光部感度変
動の防止ができると共に、分析操作の省力化、自動化を
図ることができる。
According to the invention described in claim 4 of the present invention,
In addition to the effects described in any one of claims 1 to 3, (6) the ultraviolet light emitting source can be cooled efficiently and the temperature inside the detector can be kept constant, so that the sensitivity variation of the ultraviolet light receiving unit can be maintained. Can be prevented, and labor and automation of the analysis operation can be reduced.

【0067】本発明の請求項5に記載の発明によれば、
請求項1乃至4の内いずれか1項に記載の効果に加え
て、 (7)硝酸、亜硝酸、次亜塩素酸、塩素イオンまたは、
250nm〜260nmに吸収特性を有する有機物の測
定が安定して行える小型、低原価で量産できる検出器を
提供できる。
According to the fifth aspect of the present invention,
In addition to the effects of any one of claims 1 to 4, (7) nitric acid, nitrous acid, hypochlorous acid, chloride ion, or
It is possible to provide a small-sized, low-cost, mass-production detector capable of stably measuring an organic substance having an absorption characteristic in the range of 250 nm to 260 nm.

【0068】本発明の請求項6に記載の発明によれば、 (8)請求項1乃至5の内いずれか1項に記載の水中溶
存物質検出器を用いることにより、水中の硝酸、亜硝
酸、塩素イオン又は、有機物等の短波長紫外線吸収特性
を持つ物質の溶存量を測定することができ、安定性に優
れ、小型、低原価、量産性に優れ、且つ測定誤差が少な
い水中溶存物質測定装置を提供できる。
According to the invention of claim 6 of the present invention, (8) the nitric acid and nitrous acid in water can be obtained by using the dissolved substance detector in water according to any one of claims 1 to 5. Measurement of dissolved substances in water, such as chlorine ions or organic substances, having short wavelength ultraviolet absorption characteristics, excellent stability, small size, low cost, excellent mass productivity, and little measurement error Equipment can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1における水中溶存物質検
出器の全体構成図
FIG. 1 is an overall configuration diagram of a dissolved substance detector in water according to Embodiment 1 of the present invention.

【図2】本発明の実施の形態2における水中溶存物質検
出器の全体構成図
FIG. 2 is an overall configuration diagram of a dissolved substance detector in water according to Embodiment 2 of the present invention.

【図3】本発明の実施の形態3における水中溶存物質測
定装置の模式図
FIG. 3 is a schematic diagram of an apparatus for measuring dissolved substances in water according to a third embodiment of the present invention.

【図4】本発明の実施の形態4における水中溶存物質測
定装置の模式図
FIG. 4 is a schematic diagram of an apparatus for measuring dissolved substances in water according to a fourth embodiment of the present invention.

【図5】従来の水中溶存物質検出器の全体構成図FIG. 5 is an overall configuration diagram of a conventional detector for dissolved substances in water.

【符号の説明】[Explanation of symbols]

1 実施の形態1の水中溶存物質検出器 2 被測定水 3 収納容器 3a 紫外線入光面 3b 紫外線出光面 4 紫外線発光部 4a,4b 紫外線発光部のリード線 5 紫外線受光部 6 密栓容器 7 陰極 8 放電ガス 9 陽極 10 絶縁スペーサ 11a,11b 紫外線受光部のリード線 20 実施の形態2の水中溶存物質検出器 21 収納容器 22 被測定水の入口 23 被測定水の出口 30 実施の形態3の水中溶存物質測定装置 31 駆動回路 32 計測回路 33 演算回路 34 表示部 40 実施の形態4の水中溶存物質測定装置 50 従来の水中溶存物質検出器 51 重水素ランプ 52 分光フィルター 53 集光部 54 フォトダイオード 55 外部可視光遮断壁 DESCRIPTION OF SYMBOLS 1 Underwater dissolved substance detector of Embodiment 1 2 Water to be measured 3 Storage container 3a Ultraviolet light incident surface 3b Ultraviolet light emitting surface 4 Ultraviolet light emitting portions 4a, 4b Lead wire of ultraviolet light emitting portion 5 Ultraviolet light receiving portion 6 Sealed container 7 Cathode 8 Discharge gas 9 Anode 10 Insulating spacer 11a, 11b Lead wire of ultraviolet ray receiving unit 20 Underwater dissolved substance detector 21 of Embodiment 2 Storage container 22 Inlet of measured water 23 Outlet of measured water 30 Dissolved in water of Embodiment 3 Substance measuring device 31 Drive circuit 32 Measurement circuit 33 Arithmetic circuit 34 Display unit 40 In-water dissolved substance measuring device of the fourth embodiment 50 Conventional dissolved-in-water substance detector 51 Deuterium lamp 52 Spectral filter 53 Light collecting unit 54 Photodiode 55 External Visible light blocking wall

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松尾 直人 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 2G059 AA01 BB05 CC02 CC12 DD13 EE01 HH03 HH06 JJ21 KK02 LL04 NN01  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Naoto Matsuo 1006 Kazuma Kadoma, Kadoma-shi, Osaka F-term in Matsushita Electric Industrial Co., Ltd. (reference) 2G059 AA01 BB05 CC02 CC12 DD13 EE01 HH03 HH06 JJ21 KK02 LL04 NN01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】短波長紫外線領域(185nm〜260n
m)に紫外線吸収特性をもつ物質を含む被測定水を収納
する容器と、短波長紫外線を含む紫外線を照射する紫外
線発光源と、前記紫外線発光源より照射され、前記被測
定水中の物質により、吸収減衰された短波長紫外線を検
出する紫外線受光部から構成される水中溶存物質検出器
であって、前記紫外線受光部が少なくとも185nmよ
り短い紫外線を透過しない透過光規制ガラスで形成され
る密栓容器と、少なくとも光電限界波長が260nm以
下の材料で形成される陰極と、前記陰極より放出された
電子を増倍する放電ガスと、前記放電ガスにより増倍さ
れた電子を受ける陽極と、を備えていることを特徴とす
る水中溶存物質検出器。
A short wavelength ultraviolet region (185 nm to 260 n)
m) a container for storing the water to be measured containing a substance having ultraviolet absorption properties, an ultraviolet light emitting source for irradiating ultraviolet rays including short-wavelength ultraviolet light, and a substance irradiated from the ultraviolet light emitting source and contained in the water to be measured, An underwater dissolved substance detector comprising an ultraviolet ray receiving section that detects absorption-attenuated short-wavelength ultraviolet rays, wherein the ultraviolet ray receiving section is formed of a transmission light control glass that does not transmit ultraviolet rays shorter than at least 185 nm. A cathode formed of a material having at least a photoelectric limit wavelength of 260 nm or less, a discharge gas for multiplying electrons emitted from the cathode, and an anode for receiving electrons multiplied by the discharge gas. A dissolved substance detector in water, characterized in that:
【請求項2】前記紫外線発光源が、短波長紫外線領域に
発光ピークをもつ紫外線ランプであることを特徴とする
請求項1記載の水中溶存物質検出器。
2. The detector according to claim 1, wherein said ultraviolet light source is an ultraviolet lamp having an emission peak in a short wavelength ultraviolet region.
【請求項3】前記紫外線受光部及び/又は前記紫外線発
光源を前記被測定水の収納容器内に配設されていること
を特徴とする請求項1または2に記載の水中溶存物質検
出器。
3. The detector for dissolved substances in water according to claim 1, wherein the ultraviolet ray receiving section and / or the ultraviolet ray emission source are disposed in the storage container of the water to be measured.
【請求項4】前記被測定水が流水であることを特徴とす
る請求項1乃至3の内いずれか1項に記載の水中溶存物
質検出器。
4. The detector according to claim 1, wherein the water to be measured is flowing water.
【請求項5】前記短波長紫外線領域に紫外線吸収特性を
持つ物質が、硝酸、亜硝酸、次亜塩素酸、塩素イオン又
は、250nm〜260nmに吸収特性を有する有機物
であることを特徴とする請求項1乃至4の内いずれか1
項に記載の水中溶存物質検出器。
5. The substance having an ultraviolet absorbing property in the short wavelength ultraviolet range is nitric acid, nitrous acid, hypochlorous acid, chloride ion or an organic substance having an absorbing property in a range of 250 nm to 260 nm. Any one of items 1 to 4
Item 8. A detector for dissolved substances in water according to item 7.
【請求項6】前記請求項1乃至5の内いずれか1項に記
載の水中溶存物質検出器と、前記水中溶存物質検出器の
紫外線発光部を駆動する駆動回路と、前記水中溶存物質
検出器の紫外線受光部に流れる微電流を測定する計測回
路と、前記計測回路からの信号を濃度に換算する演算回
路と、前記演算回路の演算結果を表示する表示部と、を
備えていることを特徴とする水中溶存物質測定装置。
6. A dissolved substance detector in water according to claim 1, a driving circuit for driving an ultraviolet light emitting portion of the dissolved substance detector in water, and the dissolved substance detector in water. A measuring circuit for measuring a minute current flowing through the ultraviolet light receiving unit, an arithmetic circuit for converting a signal from the measuring circuit into a concentration, and a display unit for displaying an arithmetic result of the arithmetic circuit. Water dissolved substance measuring device.
JP10298231A 1998-10-20 1998-10-20 Device for detecting substance dissolved in water and measuring device using the same Pending JP2000121556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10298231A JP2000121556A (en) 1998-10-20 1998-10-20 Device for detecting substance dissolved in water and measuring device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10298231A JP2000121556A (en) 1998-10-20 1998-10-20 Device for detecting substance dissolved in water and measuring device using the same

Publications (1)

Publication Number Publication Date
JP2000121556A true JP2000121556A (en) 2000-04-28

Family

ID=17856940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10298231A Pending JP2000121556A (en) 1998-10-20 1998-10-20 Device for detecting substance dissolved in water and measuring device using the same

Country Status (1)

Country Link
JP (1) JP2000121556A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171395A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Detector for substance dissolved in water and method for measuring substance dissolve in water
CN100456019C (en) * 2003-11-13 2009-01-28 吉林大学 Dissolving degree detector for continuously detecting multiple component medicine
JP2017040575A (en) * 2015-08-20 2017-02-23 新コスモス電機株式会社 Method and device for detecting gas or liquid
CN109392801A (en) * 2017-08-14 2019-03-01 宁波方太厨具有限公司 A kind of fish jar

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171395A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Detector for substance dissolved in water and method for measuring substance dissolve in water
CN100456019C (en) * 2003-11-13 2009-01-28 吉林大学 Dissolving degree detector for continuously detecting multiple component medicine
JP2017040575A (en) * 2015-08-20 2017-02-23 新コスモス電機株式会社 Method and device for detecting gas or liquid
CN109392801A (en) * 2017-08-14 2019-03-01 宁波方太厨具有限公司 A kind of fish jar
CN109392801B (en) * 2017-08-14 2024-05-14 宁波方太厨具有限公司 Fish tank

Similar Documents

Publication Publication Date Title
Dagnall et al. Some applications of microwave-excited electrodeless discharge tubes in atomic spectroscopy
JP2012501438A (en) Spectrum analyzer suitable for spectrum analysis of low concentration gas
US20110233414A1 (en) Method and device for monitoring the intensity of an electron beam
US4755675A (en) Gas analyzer and a source of IR radiation therefor
JP2000121556A (en) Device for detecting substance dissolved in water and measuring device using the same
Fujiwara et al. Waveguide capillary flow cell for fluorometry
Quickenden et al. The luminescence of water excited by ambient ionizing radiation
Chapman et al. An improved plasma jet system for spectrochemical analysis
CN211318204U (en) On-line detection device for sodium aerosol in air
Jamróz et al. Direct current atmospheric pressure microdischarge generated between a miniature flow helium microjet and a flowing liquid cathode
US20060284101A1 (en) Detector assembly
Dixon et al. Optoacoustic spectroscopy with a tunable cw dye laser: forbidden transitions in some unstable sulphur compounds
Rann Evaluation of a flame as the spectral source in atomic absorption spectroscopy
US3190172A (en) Optical resonance filters
US4454421A (en) Apparatus for measuring radiation dose
JP4269997B2 (en) Spectrophotometer
Pearce et al. Experimental estimation of fluorescence power efficiencies of several atoms in three turbulent flames used in atomic fluorescence flame spectrometry
US3430041A (en) Far ultraviolet non-dispersive analyzer utilizing resonant radiant energy from the periphery of the vapor cloud of the source
Cheng et al. Novel MCP-Windowed EUV Light Source and Its Mass Spectrometric Application for Detecting Chlorinated Methanes
US4523096A (en) Liquid chromatography apparatus
CN219512104U (en) Chemiluminescence method on-line gas analysis device with chopper
JP3900719B2 (en) Underwater dissolved substance detector and underwater dissolved substance measuring method
US3475099A (en) Apparatus for spectrochemical analysis
JPS6066155A (en) Detector for light absorption and ionization
JP2011053078A (en) Method and device for detection using plasma