JP2000121404A - Flow rate measuring unit - Google Patents

Flow rate measuring unit

Info

Publication number
JP2000121404A
JP2000121404A JP10289100A JP28910098A JP2000121404A JP 2000121404 A JP2000121404 A JP 2000121404A JP 10289100 A JP10289100 A JP 10289100A JP 28910098 A JP28910098 A JP 28910098A JP 2000121404 A JP2000121404 A JP 2000121404A
Authority
JP
Japan
Prior art keywords
flow rate
unit
measurement
circuit
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10289100A
Other languages
Japanese (ja)
Other versions
JP4021072B2 (en
JP2000121404A5 (en
Inventor
Takao Tokunami
敬雄 徳南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28910098A priority Critical patent/JP4021072B2/en
Publication of JP2000121404A publication Critical patent/JP2000121404A/en
Publication of JP2000121404A5 publication Critical patent/JP2000121404A5/ja
Application granted granted Critical
Publication of JP4021072B2 publication Critical patent/JP4021072B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To ensure flow rate precision by adjusting it by units. SOLUTION: The propagating time of ultrasonic waves in a gas flow passage 3 is measured by a control measuring circuit 1, and data-outputted to a data bus line 4. A flow rate is calculated by a data processing personal computer 5 based on the transmitted data, and a correction value calculated from a difference between the calculated flow rate and the real flow rate is written through the data bus line 4 in a non-volatile memory 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はガス通路に設けられ
異常時にガス通路を遮断するガス保安装置に利用される
流量計測ユニットに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow rate measurement unit used in a gas safety device provided in a gas passage and shutting off the gas passage when an abnormality occurs.

【0002】[0002]

【従来の技術】近年、都市ガスやLPガスが安全に使用
されることを目的として、燃料ガス(以下、ガスとい
う)の使用量を計測して、異常に使用量が増えた場合
や、通常の使用状態と大きく掛け離れた時間使用されて
いることを検知すると、ガス通路を遮断する保安装置が
普及している。
2. Description of the Related Art In recent years, for the purpose of safe use of city gas and LP gas, the amount of fuel gas (hereinafter, referred to as gas) has been measured. A security device that shuts off a gas passage when it is detected that the device has been used for a time greatly separated from the usage state of the device has become widespread.

【0003】この種の保安装置は、ガス流量の検出信号
を保安制御回路に取り込み、内部のマイクロコンピュー
タで処理してガス流量を監視し、異常があれば遮断信号
を出力し、遮断弁を閉止する。
[0003] This type of security device takes a detection signal of a gas flow rate into a security control circuit, processes the signal by an internal microcomputer, monitors the gas flow rate, outputs a cutoff signal if there is an abnormality, and closes a shutoff valve. I do.

【0004】ガス流量の検出には、所定容積の計量室を
ガスが換気する回数で通過体積を計測する膜式と、所定
の断面積のガス流路のガス流速を演算処理して流量を計
測する超音波式がある。
In order to detect the gas flow rate, a membrane type for measuring the passing volume by the number of times the gas ventilates a measuring chamber having a predetermined volume, and a gas flow rate of a gas flow path having a predetermined cross-sectional area are calculated to measure the flow rate. There is an ultrasonic type to do.

【0005】超音波式流量検出の原理は、ガス流路内の
2点間の超音波の伝搬時間はガス流速を含んだ関数であ
り、伝搬時間を計測すればガス流速が逆算でき、流速が
判ればこれと通過断面積とより流量が判ることを応用し
ている。
[0005] The principle of ultrasonic flow detection is that the propagation time of an ultrasonic wave between two points in a gas flow path is a function including the gas flow velocity. If known, this is applied to the fact that the flow rate can be determined from the cross-sectional area.

【0006】[0006]

【発明が解決しようとする課題】(1)超音波式ガス保
安装置では、内蔵する超音波センサーの配置距離、ガス
流路の形状、仕上り具合等の誤差が流速演算に影響する
ので、完成したガス保安装置ごとに実流量試験を行い、
実流量と演算結果を比較して補正することが必要で、流
量と流速が正確に比例しない場合は、流速の区分ごとに
比例計数の補正をする必要もあり、これら補正値をそれ
ぞれのガス保安装置ごとに内部の保安制御回路の流量演
算部に入力が必要であるという課題を有す。
(1) The ultrasonic gas safety device has been completed because errors such as the arrangement distance of the built-in ultrasonic sensor, the shape of the gas flow path, and the degree of finishing affect the flow velocity calculation. Perform an actual flow test for each gas safety device,
If it is necessary to compare the actual flow rate with the calculation result and correct it, and if the flow rate and the flow velocity are not exactly proportional, it is necessary to correct the proportional coefficient for each flow velocity category. There is a problem that an input is required for the flow rate calculation unit of the internal security control circuit for each device.

【0007】(2)超音波式ガス保安装置で、超音波セ
ンサー出力の信号処理をする際、超音波センサの過渡応
答特性等の差により、センサごとに信号波形に差を生ず
る場合があり、組立完成したガス保安装置ごとに内部の
制御計測回路の動作点の調整が必要であるという課題を
有す。
(2) When performing signal processing on the output of an ultrasonic sensor in an ultrasonic gas safety device, a difference may occur in the signal waveform for each sensor due to a difference in the transient response characteristics of the ultrasonic sensor. There is a problem that it is necessary to adjust the operating point of the internal control and measurement circuit for each of the assembled gas safety devices.

【0008】(3)超音波センサの直接出力は微少な為
増幅を必要とし、制御計測回路に増幅器を内蔵するが、
ノイズ等の影響を避けるためには超音波センサの搭載さ
れるガス流路本体直近に設置する必要があり、一方、流
量演算部を内蔵する保安制御回路は流量や、各種保安情
報の表示と、操作部の入出力信号の処理も行うので、機
能を優先した配置場所が必要で、両要求を満足する回路
基板配置は困難であるという課題を有す。
[0008] (3) The direct output of the ultrasonic sensor is very small and requires amplification, and an amplifier is built in the control measurement circuit.
In order to avoid the influence of noise etc., it is necessary to install it near the gas flow path main body where the ultrasonic sensor is mounted, while the security control circuit incorporating the flow rate calculation unit displays the flow rate and various security information, Since processing of input / output signals of the operation unit is also performed, there is a problem that an arrangement place giving priority to functions is required, and it is difficult to arrange a circuit board satisfying both requirements.

【0009】[0009]

【課題を解決するための手段】(1)本発明は上記課題
を解決するためにガス流路と、超音波センサ、制御計測
回路、不揮発メモリからなるユニット部品をユニット毎
に実流量測定を行い、別に設けたデータ処理用パソコン
でデータの送受信を実行して流量演算をし、実流量との
比較からユニット部品毎の固有補正データを不揮発メモ
リに書き込むようにしたものである。
(1) In order to solve the above-mentioned problems, the present invention measures the actual flow rate of each unit composed of a gas flow path, an ultrasonic sensor, a control measurement circuit, and a nonvolatile memory for each unit. In addition, data is transmitted and received by a separately provided data processing personal computer to calculate the flow rate, and the unique correction data for each unit component is written to the non-volatile memory based on comparison with the actual flow rate.

【0010】上記発明によれば、データバスラインを通
じて固有補正データを出力可能なため、等価的に規格化
された出力の流量計測ユニットとすることができる。
According to the present invention, since the unique correction data can be output through the data bus line, it is possible to provide an equivalently standardized flow rate measurement unit.

【0011】[0011]

【発明の実施の形態】(1)本発明はガス流路と、ガス
流路に設置する送受信用の超音波センサと、超音波セン
サの送受信の制御及び超音波の伝搬時間の計測をおこな
い、制御データと計測データをデータバスラインで入出
力する制御計測回路と、制御計測回路の制御内容の一部
を記憶する不揮発メモリを備え、各構成要素の組み合わ
せユニット部品毎に実流量測定を行い、別に設けたデー
タ処理用パソコンでデータの送受信を実行して流量演算
をし、実流量との比較からユニット部品毎の固有補正デ
ータを前記不揮発メモリに書き込み、保有させるもので
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (1) The present invention performs a gas flow path, a transmission / reception ultrasonic sensor installed in the gas flow path, a transmission / reception control of the ultrasonic sensor, and a measurement of an ultrasonic propagation time. A control measurement circuit that inputs and outputs control data and measurement data through a data bus line, and a non-volatile memory that stores a part of the control content of the control measurement circuit, perform actual flow measurement for each combination unit component of each component, Data transmission / reception is executed by a separately provided data processing personal computer to calculate the flow rate, and the unique correction data for each unit component is written to the non-volatile memory based on comparison with the actual flow rate and held.

【0012】そしてデータ処理パソコンで流量演算した
結果、実流量と差があれば、センサー間距離、流路断面
積等の演算計数を補正し、複数の流量区分で流速と流量
の比例関係が一義的に成立しなければ、流量区分毎に補
正計数を定め、これらの固有補正データを不揮発メモリ
に書き込む。
As a result of the flow rate calculation by the data processing personal computer, if there is a difference from the actual flow rate, the calculation count such as the distance between the sensors and the cross-sectional area of the flow path is corrected, and the proportional relationship between the flow velocity and the flow rate is unified in a plurality of flow rate divisions. If not, a correction count is determined for each flow rate section, and these unique correction data are written to the nonvolatile memory.

【0013】ガス保安装置組立完成後は、保安制御回路
の流量演算部が流量演算を行うが、不揮発メモリ内の固
有補正データを自動的に読み込んで演算処理するようプ
ログラムし、これにより組立完成後の再調整を不要にす
る。
After the assembly of the gas safety device, the flow rate calculation unit of the security control circuit performs the flow rate calculation. The program is programmed to automatically read the unique correction data in the non-volatile memory and perform the calculation processing. Eliminates the need for readjustment.

【0014】(2)また、超音波センサの特性バラツキ
を制御計測回路の動作点の修正で可能にする調整部を、
不揮発メモリと同一回路基板上に設けるものである。
(2) An adjusting unit that enables variation in the characteristics of the ultrasonic sensor by correcting the operating point of the control and measurement circuit,
It is provided on the same circuit board as the nonvolatile memory.

【0015】そして、補正計数等のデータだけでは対処
が困難な動作点の調整等、電気的な調整部も不揮発メモ
リと同一基板に設けるので、実流量測定の際、この部分
を同時に調整しておけば、ガス保安装置に組込み後調整
不要の流量計測ユニットとすることができる。
[0015] Since an electric adjustment unit, such as adjustment of an operating point, which is difficult to cope with only with data such as correction count, is provided on the same substrate as the nonvolatile memory, this part is adjusted simultaneously when measuring the actual flow rate. With this arrangement, it is possible to provide a flow measurement unit that does not need to be adjusted after being incorporated in the gas safety device.

【0016】(3)さらに、データバスライン部分で回
路基板を分割し、制御計測回路、調整部、不揮発メモリ
を含む部分はガス流路本体に設置し、流量演算部を内蔵
する保安制御回路を含む部分は操作部、表示部に近接し
て設置し、データバスラインで両基板を接続して完成さ
せるものである。
(3) Further, a circuit board is divided at a data bus line portion, a portion including a control measurement circuit, an adjusting section, and a non-volatile memory is installed in a gas flow path main body, and a security control circuit incorporating a flow rate calculating section is provided. The part that includes it is installed close to the operation unit and the display unit, and is completed by connecting both substrates with a data bus line.

【0017】そして、両回路基板ははノイズ等の影響を
うけにくいディジタルのデータバスラインで接続される
ので、両基板間の距離による影響が少なく、各々性能、
機能の面で最適な配置を取ることができる。
Since the two circuit boards are connected by a digital data bus line which is hardly affected by noise or the like, the influence of the distance between the two boards is small, and the performance and
An optimal arrangement can be taken in terms of functions.

【0018】[0018]

【実施例】以下、本発明の実施例について図面を用いて
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0019】(実施例1)図1は本発明の流量計測ユニ
ットの実施例1を示す構成図である。図において、制御
計測回路1の発振出力端子OUTより出力された電気信
号は発振用超音波センサ21で音響変換され、ガス流路
3内に超音波が発せられる。距離Lを隔てて設置された
受信用超音波センサ22は、捕らえた超音波を再び電気
信号に戻し、制御計測回路1の受信入力端子INに戻
す。
(Embodiment 1) FIG. 1 is a configuration diagram showing Embodiment 1 of a flow rate measuring unit of the present invention. In the figure, an electrical signal output from an oscillation output terminal OUT of the control measurement circuit 1 is acoustically converted by an oscillation ultrasonic sensor 21, and an ultrasonic wave is emitted in the gas flow path 3. The receiving ultrasonic sensor 22 installed at a distance L returns the captured ultrasonic wave to an electric signal again, and returns it to the receiving input terminal IN of the control measurement circuit 1.

【0020】制御計測回路1は発振出力から受信入力ま
での時間、即ちガス流路3内の距離Lの超音波の伝搬時
間Tを計測し、データ処理パソコン5はデータバスライ
ン4を通じて計測制御回路1から送られる伝搬時間Tの
データをもとに流量を演算する。
The control measurement circuit 1 measures the time from the oscillation output to the reception input, that is, the propagation time T of the ultrasonic wave at the distance L in the gas flow path 3, and the data processing personal computer 5 transmits the measurement control circuit through the data bus line 4. The flow rate is calculated based on the data of the propagation time T sent from No. 1.

【0021】ガス流路内の2点間の超音波の伝搬時間T
はガス流速を含んだ関数であり、伝搬時間Tを計測すれ
ばガス流速が逆算でき、流速が判れば通過断面積Sより
流量が判る原理に基づき流量演算した結果、実流量と差
があれば、センサー間距離、流路断面積等の演算計数を
補正し、複数の流量区分で流速と流量の比例関係が一義
的に成立しなければ、流量区分毎に補正計数を定め、こ
れらの固有補正データをデータバスライン4を通じて不
揮発メモリ6に書き込む。
The ultrasonic wave propagation time T between two points in the gas flow path
Is a function including the gas flow velocity. If the propagation time T is measured, the gas flow velocity can be calculated backward. If the flow velocity is known, the flow rate is calculated based on the principle that the flow rate can be determined from the passage cross-sectional area S. If the proportionality between the flow velocity and the flow rate is not uniquely established in a plurality of flow rate sections, the correction count is determined for each flow rate section, and the intrinsic correction of these is corrected. Data is written to the nonvolatile memory 6 through the data bus line 4.

【0022】ガス保安装置組立完成後の構成は後述の図
3で、保安制御回路7の流量演算部71が流量演算を行
うが、不揮発メモリ6内の固有補正データを自動的に読
み込んで演算処理するようプログラムし、これにより組
立完成後の再調整を不要にする。
The configuration after the gas security device assembly is completed is shown in FIG. 3, which will be described later. The flow rate calculation unit 71 of the security control circuit 7 performs the flow rate calculation. Program, thereby eliminating the need for readjustment after assembly is complete.

【0023】図2(a)、(b)は本発明の伝搬時間計
測の一例を説明する回路及び特性図である。図におい
て、計測に用いる超音波はバースト波で、(T)のごと
く信号の立ち上がりを捕らえれば容易に伝搬時間が測定
可能にみえるが、超音波センサの過渡応答により、受信
信号波形はS−OUTのごとく漸増するので、最初の数
波は振幅が不足でノイズ等の影響が大きく測定に適さな
い。
FIGS. 2A and 2B are a circuit and a characteristic diagram for explaining an example of the propagation time measurement according to the present invention. In the figure, the ultrasonic wave used for measurement is a burst wave, and the propagation time can be easily measured if the rising edge of the signal is captured as shown in (T). However, due to the transient response of the ultrasonic sensor, the received signal waveform is S-. Since the amplitude gradually increases like OUT, the first few waves have insufficient amplitude and are greatly affected by noise and the like, and are not suitable for measurement.

【0024】そこで受信信号波形の振幅をコンパレータ
100で監視し、監視レベルEを超えた後のゼロクロス
点Zを捕らえて伝搬時間Tの測定をする。
Therefore, the amplitude of the received signal waveform is monitored by the comparator 100, and the propagation time T is measured by capturing the zero-cross point Z after exceeding the monitoring level E.

【0025】流量センサの過渡応答にはバラツキがある
ので組み込んだ流量センサ毎にコンパレータ100の監
視レベルEを調整部8に設けたボリウムVRで調整す
る。実流量測定の際、この部分を同時に調整してガス保
安装置に組込み後調整不要の流量計測ユニットにする。
Since the transient response of the flow sensor varies, the monitoring level E of the comparator 100 is adjusted by the volume VR provided in the adjusting unit 8 for each of the incorporated flow sensors. At the time of actual flow rate measurement, this part is adjusted at the same time and assembled into the gas safety device to make a flow rate measurement unit that does not require adjustment.

【0026】図3は本発明の流量計測ユニットとガス保
安装置との関係を示す構成図である。図において、デー
タバスライン4部分で回路基板を分割し、制御計測回路
1、調整部8、不揮発メモリ6を含む回路基板200は
ガス流路3本体に設置し、保安制御回路7、操作部9、
表示部10、外部機器接続端子部11を含む回路基板3
00は機能、意匠上求められる位置に設置する。
FIG. 3 is a block diagram showing the relationship between the flow measurement unit of the present invention and the gas safety device. In the figure, a circuit board is divided at a data bus line 4, and a circuit board 200 including a control measurement circuit 1, an adjustment unit 8, and a non-volatile memory 6 is installed in a main body of the gas passage 3, and a security control circuit 7 and an operation unit 9 are installed. ,
Circuit board 3 including display unit 10 and external device connection terminal unit 11
00 is installed at a position required for function and design.

【0027】[0027]

【発明の効果】(1)以上のように本発明によればユニ
ット毎に実流量測定を行い、調整部分を調整し、また、
別に設けたデータ処理用パソコンでデータの送受信を実
行して流量演算をし、固有補正データを不揮発メモリに
書き込むから、ユニット単体で調整が終了しているに等
しく、これをガス保安装置に組込み、その完成時に再調
整が不要であり、また万一、構成部品の不良で補正デー
タや調整の範囲が許容範囲を超えて所定の性能が確保で
きない場合にも、被害はユニット(流量センサ部分)に
限られるので損失が低く、部品交換等による手直しも容
易に可能になるという効果を有す。
(1) As described above, according to the present invention, the actual flow rate is measured for each unit, the adjustment portion is adjusted, and
Since data transmission and reception are performed by a separately provided data processing personal computer to calculate the flow rate and write the unique correction data to the non-volatile memory, it is equal to the adjustment completed by the unit alone, and this is incorporated into the gas safety device, If it is not necessary to re-adjust it when it is completed, or if the correction data or the adjustment range exceeds the allowable range and the specified performance cannot be ensured due to a defective component, the damage will be caused to the unit (flow sensor part). Since it is limited, the loss is low, and there is an effect that it is possible to easily perform rework such as replacement of parts.

【0028】(2)実流量測定の際、流量演算、固有補
正データの算出、不揮発メモリへのデータ書き込みに専
用のデータ処理用パソコンを使用するので、実流量発生
装置等、外部装置とのデータの交換も容易で、一連の操
作を自動化できるという効果を有す。
(2) When measuring the actual flow rate, a dedicated data processing personal computer is used to calculate the flow rate, calculate the unique correction data, and write the data to the nonvolatile memory. It is easy to exchange the data and the effect is that a series of operations can be automated.

【0029】(3)性能、機能を最大限に発揮させるた
めに基板を分割配置する場合、配線数の多い表示部、操
作部、外部機器接続端子部で行うのに比べ、配線数が少
なく、製造コストが安価になるという効果を有す。
(3) When arranging the substrate in a divided manner in order to maximize the performance and function, the number of wirings is smaller than that of the display, operation, and external device connection terminals having many wirings. This has the effect of reducing the manufacturing cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の流量計測ユニットを示す構
成図
FIG. 1 is a configuration diagram illustrating a flow rate measurement unit according to a first embodiment of the present invention.

【図2】(a)同ユニットの伝搬時間計測の説明に係る
回路図 (b)同回路図における特性図
FIG. 2A is a circuit diagram for explaining propagation time measurement of the same unit. FIG. 2B is a characteristic diagram of the circuit diagram.

【図3】本発明の流量計測ユニットとガス保安装置との
関係を示す構成図
FIG. 3 is a configuration diagram showing the relationship between the flow measurement unit and the gas safety device according to the present invention.

【符号の説明】[Explanation of symbols]

1 制御計測回路 3 ガス流路 4 データバスライン 5 データ処理パソコン 6 不揮発メモリ 7 保安制御回路 8 調整部 9 操作部 10 表示部 11 外部機器接続端子部 21、22 超音波センサ DESCRIPTION OF SYMBOLS 1 Control measurement circuit 3 Gas flow path 4 Data bus line 5 Data processing personal computer 6 Non-volatile memory 7 Security control circuit 8 Adjustment unit 9 Operation unit 10 Display unit 11 External device connection terminal unit 21, 22 Ultrasonic sensor

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ガス流路と、前記ガス流路に設置する送受
信用の超音波センサと、前記超音波センサの送受信の制
御及び超音波の伝搬時間の計測をおこない計測データを
データバスラインで入出力する制御計測回路と、前記制
御計測回路の制御内容の一部を記憶する不揮発メモリを
備え、前記構成要素の組み合わせユニット部品毎に実流
量の測定を行い、別に設けたデータ処理用パソコンでデ
ータの送受信を実行して流量演算を行い、前記実流量と
の比較から前記ユニット部品毎の固有補正データを前記
不揮発メモリに書き込み、固有補正データを保有した状
態として成るガス保安装置の流量計測ユニット。
1. A gas flow path, a transmission / reception ultrasonic sensor installed in the gas flow path, and control of transmission / reception of the ultrasonic sensor and measurement of the propagation time of the ultrasonic wave, and measurement data is sent to a data bus line. A control measurement circuit for input and output, and a non-volatile memory for storing a part of the control content of the control measurement circuit, the actual flow rate is measured for each combination unit component of the components, and a separately provided data processing personal computer Data transmission / reception is performed to calculate the flow rate, and the unique correction data for each unit component is written to the nonvolatile memory from the comparison with the actual flow rate, and the flow rate measurement unit of the gas safety device is configured to hold the unique correction data. .
【請求項2】超音波センサの特性バラツキを制御計測回
路の動作点の修正で可能にする調整部を、不揮発メモリ
と同一回路基板上に設けた請求項1記載の流量計測ユニ
ット。
2. The flow rate measurement unit according to claim 1, wherein an adjustment unit that enables variation in the characteristics of the ultrasonic sensor by correcting the operating point of the control measurement circuit is provided on the same circuit board as the nonvolatile memory.
【請求項3】データバスライン部分で回路基板を分割
し、制御計測回路、調整部、不揮発メモリを含む部分は
ガス流路本体に設置し、流量演算部を内蔵する保安制御
回路を含む部分は操作部、表示部に近接して設置し、バ
スラインで両回路基板を接続する構成の請求項1または
2記載の流量計測ユニット。
3. A circuit board is divided at a data bus line part, a part including a control measurement circuit, an adjustment unit, and a nonvolatile memory is installed in a gas flow path main body, and a part including a security control circuit having a built-in flow rate calculation unit is included. The flow measurement unit according to claim 1, wherein the flow measurement unit is arranged near the operation unit and the display unit, and the two circuit boards are connected by a bus line.
【請求項4】操作部、表示部および外部機器接続端子部
を保安制御回路と同一の基板に配置した請求項1、2ま
たは3記載の流量計測ユニット。
4. The flow rate measurement unit according to claim 1, wherein the operation section, the display section, and the external device connection terminal section are arranged on the same board as the security control circuit.
JP28910098A 1998-10-12 1998-10-12 Flow measurement unit and flow measurement method Expired - Fee Related JP4021072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28910098A JP4021072B2 (en) 1998-10-12 1998-10-12 Flow measurement unit and flow measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28910098A JP4021072B2 (en) 1998-10-12 1998-10-12 Flow measurement unit and flow measurement method

Publications (3)

Publication Number Publication Date
JP2000121404A true JP2000121404A (en) 2000-04-28
JP2000121404A5 JP2000121404A5 (en) 2005-02-17
JP4021072B2 JP4021072B2 (en) 2007-12-12

Family

ID=17738804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28910098A Expired - Fee Related JP4021072B2 (en) 1998-10-12 1998-10-12 Flow measurement unit and flow measurement method

Country Status (1)

Country Link
JP (1) JP4021072B2 (en)

Also Published As

Publication number Publication date
JP4021072B2 (en) 2007-12-12

Similar Documents

Publication Publication Date Title
US20220178894A1 (en) Formaldehyde concentration measurement method and apparatus, and air purifier
CN101512373B (en) Error factor identification device, method, output correction device having the device, and reflection coefficient measuring device
US10274392B2 (en) Control system, pressure detection system, methods and programs therefor
EP2000784B1 (en) Ultrasonic flow meter with temperature compensation
US7720625B2 (en) Method of testing the installation of a measuring device
US20130152699A1 (en) Gas Flow Rate Measurement Device
US8930157B2 (en) Temperature compensated digital pressure transducer
US9389629B2 (en) Measuring arrangement for determining a measured variable and method for generating an output signal relating to the measured variable
JP2000121404A (en) Flow rate measuring unit
US20210116945A1 (en) Gas safety device
US9574925B2 (en) Fluid measurement device having a circuit for precise flow measurement
JPS59182318A (en) Measuring device
JP2000121404A5 (en)
CN112212908B (en) Intelligent sensor and intelligent method thereof
JP2002062306A (en) Flow-velocity detector
CN112098731A (en) Electromagnetic field probe with autonomous calibration function and calibration method thereof
CN113447099A (en) Automatic zero correction method for electromagnetic water meter
JP2006133156A (en) Gas safety device
EP3324155B1 (en) Modular metering system
CN111157032A (en) Signal calibration method of sensor
US20190324005A1 (en) Modular metering system
JP3817934B2 (en) Gas security device
JP7249594B2 (en) Gas safety device and gas safety system
CN102506966B (en) Correcting device for flow system
US7934426B2 (en) Measurement cell system, in particular pressure measurement cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040310

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040520

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050614

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050620

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees