JP2000120649A - Joining method for frp tubular body with metal component and shaft component - Google Patents

Joining method for frp tubular body with metal component and shaft component

Info

Publication number
JP2000120649A
JP2000120649A JP10290206A JP29020698A JP2000120649A JP 2000120649 A JP2000120649 A JP 2000120649A JP 10290206 A JP10290206 A JP 10290206A JP 29020698 A JP29020698 A JP 29020698A JP 2000120649 A JP2000120649 A JP 2000120649A
Authority
JP
Japan
Prior art keywords
teeth
serration
frp
cylindrical shaft
press
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10290206A
Other languages
Japanese (ja)
Other versions
JP3419324B2 (en
Inventor
Yasuchika Mita
泰哉 三田
Yoshiharu Yasui
義治 安居
Yasumi Miyashita
康己 宮下
Minoru Toeda
稔 戸枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP29020698A priority Critical patent/JP3419324B2/en
Publication of JP2000120649A publication Critical patent/JP2000120649A/en
Application granted granted Critical
Publication of JP3419324B2 publication Critical patent/JP3419324B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • F16C3/026Shafts made of fibre reinforced resin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/06Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end
    • F16D1/064Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end non-disconnectable
    • F16D1/072Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end non-disconnectable involving plastic deformation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/26Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected
    • F16D3/38Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another
    • F16D3/382Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another constructional details of other than the intermediate member
    • F16D3/387Fork construction; Mounting of fork on shaft; Adapting shaft for mounting of fork
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/10Quick-acting couplings in which the parts are connected by simply bringing them together axially
    • F16D2001/103Quick-acting couplings in which the parts are connected by simply bringing them together axially the torque is transmitted via splined connections

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Motor Power Transmission Devices (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high bonding strength between an FRP tubular body and metal component to be put in serration coupling by allowing the teeth of serration to bite on the metal component to bite deeply into the FRP tubular body. SOLUTION: The machining part 5a of a tool 5 is fitted by pressure to a cylindrical shaft 2 made of fiber-reinforced resin(FRP), and by teeth 6a, the internal surface of the shaft 2 is furnished previously with a guide groove for teeth 4a of normal serration 4. The tool 5 is drawn off from the cylindrical shaft 2. The joining part 3a of a yoke 3 is fitted by pressure to the cylindrical shaft 2 in such an arrangement that the teeth 4a of the serration 4 are positioned alongside the guide groove. Because of previous provision of guide groove, it is unlikely that the shaft 2 gets on the teeth 4a to cause diameteric enlargement when the joining part 3a of the yoke 3 is fitted in by pressure, and the teeth 4a carve deeply the internal surface of the shaft 2 and bite into it deeply.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば車両用のプ
ロペラシャフト等の軸部品の一部に繊維強化樹脂を使用
するため、繊維強化樹脂製の筒体とヨークなどの金属部
品とをセレーション結合で接合するFRP製筒体と金属
部品との接合方法及び軸部品に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a fiber reinforced resin for a part of a shaft component such as a propeller shaft for a vehicle, so that a fiber reinforced resin cylinder and a metal component such as a yoke are serrated. And a shaft component.

【0002】[0002]

【従来の技術】従来より自動車の燃費向上等を目的と
し、車両用部品の軽量化が進められている。例えばプロ
ペラシャフト等の軸部品では、一部に金属に替えて繊維
強化樹脂(FRP)を使用する試みがなされている。プ
ロペラシャフトの場合、プロペラシャフトの軸部をFR
P製とし、その両端部に自在継手のヨーク等の金属部品
(取付金具)を接合する構成が採られている。FRP製
の軸部はフィラメントワインディング法などの手法によ
り形成された円筒軸が使用される。FRP製の円筒軸と
ヨーク等の金属部品は、通常、セレーション結合によっ
て接合される(例えば特開平5−24455号公報
等)。
2. Description of the Related Art Conventionally, vehicle parts have been reduced in weight for the purpose of improving fuel efficiency of automobiles. For example, an attempt has been made to use a fiber reinforced resin (FRP) instead of metal for a part of a shaft such as a propeller shaft. In the case of a propeller shaft, set the shaft of the propeller shaft to FR
It is made of P and has a configuration in which metal parts (mounting fittings) such as a yoke of a universal joint are joined to both ends thereof. As the shaft portion made of FRP, a cylindrical shaft formed by a method such as a filament winding method is used. FRP cylindrical shafts and metal parts such as yokes are usually joined by serration bonding (for example, Japanese Patent Application Laid-Open No. H5-24455).

【0003】ヨークの接合部外周面には予めセレーショ
ンが形成され、一方、FRP製の円筒軸の内周面にはセ
レーションを形成しない。FRP製の円筒軸にヨークの
接合部を圧入することで、ヨーク側のセレーションの歯
によって、円筒軸の内周面に溝が刻設され、歯が溝に深
く喰い込むことで接合強度が確保される。
[0003] Serrations are formed in advance on the outer peripheral surface of the joint portion of the yoke, while no serrations are formed on the inner peripheral surface of the cylindrical shaft made of FRP. By inserting the joint of the yoke into the cylindrical shaft made of FRP, a groove is engraved on the inner peripheral surface of the cylindrical shaft by the serration teeth on the yoke side, and the teeth are deeply bitten into the groove to secure the joint strength. Is done.

【0004】[0004]

【発明が解決しようとする課題】しかし、円筒軸にヨー
クの接合部を圧入する過程で、FRP製である円筒軸
が、ヨークのセレーションの歯によって外周側に押され
て拡径し易かった。このため、ヨーク側のセレーション
の歯によって十分深い溝が刻設されず、ヨーク側のセレ
ーションの歯と円筒軸側のセレーションの溝との喰い込
みが浅くなる場合があった。その結果、円筒軸とヨーク
との接合強度に不十分なものがあるなど、接合強度にば
らつきが生じるという問題がった。
However, in the process of press-fitting the joint portion of the yoke to the cylindrical shaft, the cylindrical shaft made of FRP is easily pushed outward by the teeth of the serrations of the yoke, so that the diameter is easily expanded. For this reason, there is a case where a sufficiently deep groove is not formed by the teeth of the serrations on the yoke side, and the bite between the teeth of the serrations on the yoke side and the grooves of the serration on the cylindrical shaft side may be shallow. As a result, there is a problem that the bonding strength varies, for example, there is a case where the bonding strength between the cylindrical shaft and the yoke is insufficient.

【0005】本発明は、上記課題を解決するためになさ
れたものであり、その目的は、FRP製筒体と金属部品
とをセレーション結合する場合、金属部品側のセレーシ
ョンの歯をFRP製筒体に深く喰い込ませて、両者の接
合強度を高めることができるFRP製筒体と金属部品と
の接合方法及び軸部品を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a serration connection between an FRP cylinder and a metal part by connecting serration teeth on the metal part side to the FRP cylinder. It is an object of the present invention to provide a joining method between a FRP cylindrical body and a metal component and a shaft component, which can be deeply bitten into the joint and can enhance the joining strength between the two.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に請求項1に記載の発明では、FRP製筒体と金属部品
とをセレーション結合する接合方法において、FRP製
筒体の接合部周面上に、金属部品の接合部周面上に形成
されたセレーションの歯を案内するための案内溝を、正
規のセレーションの溝より小さなサイズで予め形成して
おき、前記セレーションの歯を前記案内溝に沿わせるよ
うに前記金属部品の接合部を前記FRP製筒体に圧入す
ることをその要旨とする。
According to the first aspect of the present invention, there is provided a joining method for serration-connecting an FRP cylinder and a metal part, the joining surface of the FRP cylinder being joined. A guide groove for guiding the serration teeth formed on the joint part peripheral surface of the metal component is formed in advance on a smaller size than the regular serration groove, and the serration teeth are formed in the guide groove. The gist of the invention is to press-fit the joint of the metal component into the FRP cylinder so as to conform to the above.

【0007】請求項2に記載の発明では、FRP製筒体
と金属部品とをセレーション結合する接合方法におい
て、FRP製筒体の接合端部をその内外周面のうち前記
金属部品と接合する周面でない側の周面からバックアッ
プし、該バックアップ状態で、セレーションの歯が形成
された前記金属部品の接合部を前記FRP製筒体に圧入
することをその要旨とする。
According to a second aspect of the present invention, in the joining method for serration-connecting an FRP cylinder and a metal part, a joining end of the FRP cylinder is joined to the metal part of the inner and outer peripheral surfaces thereof. The gist of the present invention is to back up from the peripheral surface on the side other than the surface and press-fit the joint of the metal component having serration teeth formed into the FRP cylinder in the backup state.

【0008】請求項3に記載の発明では、FRP製筒体
と金属部品とをセレーション結合する接合方法におい
て、金属部品の接合部に形成されたセレーションの歯を
長手方向に刻みを隔てて配列される歯群に形成するとと
もに、該歯群のうち最初に圧入される歯以外の残りの歯
については圧入側先端の歯面を切り立つ角度に形成し、
該金属部品の接合部を前記FRP製筒体に圧入すること
をその要旨とする。
According to a third aspect of the present invention, in the joining method for serration-connecting an FRP cylinder and a metal part, serration teeth formed at a joint part of the metal parts are arranged at intervals in the longitudinal direction. And the remaining teeth other than the first press-fitted tooth of the set of teeth are formed at an angle at which the tooth surface of the press-fit side tip is steep,
The gist of the invention is to press-fit the joint of the metal component into the FRP cylinder.

【0009】請求項4に記載の発明では、FRP製筒体
と金属部品とをセレーション結合する接合方法におい
て、金属部品の接合部に形成されたセレーションの歯の
圧入側先端の歯面を切り立つ角度とし、該金属部品の接
合部を前記FRP製筒体に圧入することをその要旨とす
る。
According to a fourth aspect of the present invention, in the joining method for serration-connecting the FRP cylinder and the metal part, the angle at which the tooth surface of the press-fitting tip of the serration tooth formed at the joint part of the metal part is formed. The gist of the present invention is to press-fit the joint of the metal component into the FRP cylinder.

【0010】請求項5に記載の発明では、軸部品は、請
求項3に記載の前記金属部品と前記FRP製筒体とがセ
レーション結合されて製造されている。請求項6に記載
の発明では、軸部品は、請求項4に記載の前記金属部品
と前記FRP製筒体とがセレーション結合されて製造さ
れている。
According to a fifth aspect of the present invention, the shaft component is manufactured by serration-connecting the metal component of the third aspect and the FRP cylinder. In the invention described in claim 6, the shaft component is manufactured by serration-coupling the metal component described in claim 4 and the FRP cylinder.

【0011】(作用)請求項1に記載の発明によれば、
FRP製筒体の接合部周面上に、正規のセレーションの
溝のサイズより小さな案内溝を予め形成しておく。そし
て、セレーションの歯を案内溝に沿わせるように金属部
品の接合部をFRP製筒体に圧入する。予め案内溝が切
ってあるので、正規のセレーションの歯によってFRP
製筒体の内周面に所定深さの溝が刻設されて、歯が強く
喰い込む。
(Operation) According to the first aspect of the present invention,
A guide groove smaller than the regular serration groove size is formed in advance on the joint surface of the FRP cylindrical body. Then, the joint of the metal component is pressed into the FRP cylinder so that the serration teeth are aligned with the guide groove. Since the guide groove is cut in advance, FRP
A groove having a predetermined depth is formed in the inner peripheral surface of the cylindrical body, and the teeth are bitten.

【0012】請求項2に記載の発明によれば、FRP製
筒体の接合端部を、その内外周面のうち金属部品と接合
する周面でない側の周面からバックアップする。このバ
ックアップ状態で、セレーションの歯が形成された金属
部品の接合部をFRP製筒体に圧入する。セレーション
の歯によってFRP製筒体が拡径するように逃げる変形
が抑えられるので、セレーションの歯によってFRP製
筒体の内周面に所定深さの溝が刻設され、歯が強く喰い
込む。
According to the second aspect of the invention, the joint end of the FRP cylinder is backed up from the inner peripheral surface of the inner peripheral surface which is not the peripheral surface to be joined to the metal component. In this back-up state, the joint of the metal part having the serration teeth is pressed into the FRP cylinder. Since the deformation of the FRP cylindrical body escaping so as to increase in diameter is suppressed by the serration teeth, a groove having a predetermined depth is formed in the inner peripheral surface of the FRP cylindrical body by the serration teeth, and the teeth are strongly bitten.

【0013】請求項3に記載の発明によれば、金属部品
の接合部に形成されたセレーションの歯群がFRP製筒
体に順次圧入される。歯群のうち最初に圧入された歯が
仮にFRP製筒体の内周面に溝を深く刻設できなかった
としても、後続する歯がその切り立つ角度の歯面によっ
て溝を所定深さに深く刻設するので、少なくとも後続の
歯が強く喰い込む。
According to the third aspect of the present invention, the serration teeth formed at the joint of the metal parts are sequentially pressed into the FRP cylinder. Even if the first press-fitted tooth of the group of teeth cannot cut the groove deeply into the inner peripheral surface of the FRP cylinder, the groove is deepened to a predetermined depth by the tooth surface at the angle at which the subsequent teeth are steep. Because it is carved, at least the following teeth bite hard.

【0014】請求項4に記載の発明によれば、金属部品
の接合部に形成されたセレーションの歯の圧入側先端の
歯面が切り立つ角度であることから、金属部品の接合部
をFRP製筒体に圧入する過程で、セレーションの歯に
よってFRP製筒体の内周面に所定深さの溝が刻設さ
れ、歯が強く喰い込む。
According to the fourth aspect of the present invention, since the tooth surface of the serration tooth formed at the joint portion of the metal component has a steep angle at the tip end on the press-fit side, the joint portion of the metal component is formed into an FRP cylinder. In the process of press-fitting into the body, a groove of a predetermined depth is carved on the inner peripheral surface of the FRP cylinder by the teeth of the serrations, and the teeth bite hard.

【0015】請求項5に記載の発明によれば、軸部品
は、請求項3に記載の金属部品とFRP製筒体とがセレ
ーション結合されて製造されるので、金属部品とFRP
製筒体との接合強度が高くなる。
According to the fifth aspect of the present invention, the shaft component is manufactured by serration-connecting the metal component and the FRP cylinder body according to the third aspect.
The joining strength with the cylindrical body is increased.

【0016】請求項6に記載の発明では、軸部品は、請
求項4に記載の金属部品とFRP製筒体とがセレーショ
ン結合されて製造されるので、金属部品とFRP製筒体
との接合強度が高くなる。
In the invention described in claim 6, the shaft component is manufactured by serration-connecting the metal component described in claim 4 and an FRP cylinder, so that the metal component is joined to the FRP cylinder. Strength increases.

【0017】[0017]

【発明の実施の形態】(第1の実施形態)以下、本発明
を、車両用のプロペラシャフトの製造に具体化した第1
の実施形態を図1〜図4に基づいて説明する。本実施形
態におけるプロペラシャフトは、その軸部が繊維強化樹
脂(FRP)により形成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) A first embodiment of the present invention applied to the manufacture of a propeller shaft for a vehicle will be described below.
Will be described with reference to FIGS. The shaft portion of the propeller shaft in the present embodiment is formed of fiber reinforced resin (FRP).

【0018】図4に示すように、プロペラシャフト1
は、繊維強化樹脂(FRP)製の円筒軸2と、その両端
部に接合された金属製の自在継手のヨーク3とを有す
る。円筒軸2とヨーク3は、ヨーク3の接合部3aが円
筒軸2に圧入されることでセレーション結合されてい
る。なお、円筒軸2がFRP製筒体となり、ヨーク3が
金属部品となる。
As shown in FIG. 4, the propeller shaft 1
Has a cylindrical shaft 2 made of fiber reinforced resin (FRP), and a yoke 3 of a metal universal joint joined to both ends thereof. The cylindrical shaft 2 and the yoke 3 are serrated by the joint 3a of the yoke 3 being pressed into the cylindrical shaft 2. The cylindrical shaft 2 is an FRP cylinder, and the yoke 3 is a metal part.

【0019】円筒軸2は、ほぼ一定の肉厚(但し、両端
部に締込み糸で補強された厚肉部がある)の円筒からな
り、例えばフィラメントワインディング法によって成型
されている。すなわち、樹脂含浸繊維をマンドレル(芯
材)に巻き付けて筒体に成形した後、繊維に含浸された
樹脂を熱硬化させ、その後、マンドレルを抜き取ること
によって円筒軸2は作製される。円筒軸2における繊維
の巻き付け方向は軸方向に対して所定角度±A゜で一層
毎に方向を変えて巻き付けられている。プロペラシャフ
ト1の場合、この角度Aは、A=5〜20゜の範囲に設
定され、繊維がほぼ軸方向に沿う方向に巻き付けられる
ことによって、プロペラシャフト1の捻り剛性や曲げ剛
性が確保される。
The cylindrical shaft 2 is formed of a cylinder having a substantially constant thickness (however, a thick portion reinforced with a tightening thread at both ends) is formed by, for example, a filament winding method. That is, the resin-impregnated fiber is wound around a mandrel (core material) to form a cylindrical body, the resin impregnated into the fiber is thermally cured, and then the mandrel is pulled out to produce the cylindrical shaft 2. The winding direction of the fibers on the cylindrical shaft 2 is changed by a predetermined angle ± A ° with respect to the axial direction, and the winding is changed every layer. In the case of the propeller shaft 1, this angle A is set in the range of A = 5 to 20 °, and the torsional rigidity and the bending rigidity of the propeller shaft 1 are secured by winding the fibers substantially in the direction along the axial direction. .

【0020】円筒軸2の材料であるFRPは、強化繊維
として炭素繊維を、マトリクス樹脂としてエポキシ樹脂
を使用している。なお、強化繊維として、アラミド繊
維、ガラス繊維等の一般に高弾性・高強度といわれるそ
の他の繊維を採用したり、マトリクス樹脂として、不飽
和ポリエステル樹脂、フェノール樹脂、ポリイミド樹脂
等のその他の熱硬化性樹脂を採用することができる。
FRP, which is the material of the cylindrical shaft 2, uses carbon fibers as the reinforcing fibers and epoxy resin as the matrix resin. In addition, as the reinforcing fibers, other fibers such as aramid fibers and glass fibers, which are generally referred to as having high elasticity and high strength, may be employed.As the matrix resin, other thermosetting materials such as unsaturated polyester resin, phenol resin, and polyimide resin may be used. Resin can be employed.

【0021】図1(b)に示すように、円筒軸2に圧入
されるヨーク3の接合部3aには、その外周面全域に、
軸方向と平行に延びる多数本の歯4aを有するセレーシ
ョン4が形成されている。図2(b)に示すように、セ
レーション4の歯4aは周方向に一定ピッチに形成さ
れ、その断面形状は台形を有する。
As shown in FIG. 1 (b), the joint 3a of the yoke 3 which is pressed into the cylindrical shaft 2 has
A serration 4 having a number of teeth 4a extending parallel to the axial direction is formed. As shown in FIG. 2B, the teeth 4a of the serration 4 are formed at a constant pitch in the circumferential direction, and have a trapezoidal cross-sectional shape.

【0022】この実施形態では、円筒軸2にヨーク3の
接合部3aを圧入する前に、円筒軸2の端部内周面に予
めヨーク3のセレーション4の歯4aを案内するための
案内溝2aを形成する。この案内溝2aを切るために図
1(a)に示す工具5が使用される。工具5はヨーク3
の接合部3aと同径の加工部5aを有しており、加工部
5aの外周面全域に、ヨーク3のセレーション4の歯4
aと同ピッチの多数本の歯6aを有するセレーション6
が形成されている。
In this embodiment, before press-fitting the joint 3a of the yoke 3 into the cylindrical shaft 2, a guide groove 2a for guiding the teeth 4a of the serrations 4 of the yoke 3 into the inner peripheral surface of the end of the cylindrical shaft 2 in advance. To form A tool 5 shown in FIG. 1A is used to cut the guide groove 2a. Tool 5 is yoke 3
And a processing portion 5a having the same diameter as the joining portion 3a of the yoke 3, and the teeth 4 of the serrations 4 of the yoke 3 are provided on the entire outer peripheral surface of the processing portion 5a.
Serration 6 having many teeth 6a of the same pitch as a
Are formed.

【0023】ヨーク3のセレーション4の歯4aの断面
形状が図2(b)に示す台形であるのに対し、工具5の
セレーション6の歯6aの断面形状は図2(a)に示す
ような山形である。工具5の歯6aの外径と、ヨーク3
の歯4aの外径は、本実施形態では図2に示すように共
にRで同径となっている。なお、ヨーク3の接合部3a
と、工具5の加工部5aには、各圧入側先端部に円筒軸
2への圧入を案内するための案内面(テーパ面)3b,
5b(図1に示す)がそれぞれ形成されている。
The cross-sectional shape of the teeth 4a of the serrations 4 of the yoke 3 is trapezoidal as shown in FIG. 2B, whereas the cross-sectional shape of the teeth 6a of the serrations 6 of the tool 5 is as shown in FIG. It is Yamagata. The outer diameter of the teeth 6a of the tool 5 and the yoke 3
In this embodiment, the outer diameters of the teeth 4a are equal to each other as R as shown in FIG. In addition, the joint 3a of the yoke 3
And a guide surface (taper surface) 3b for guiding press-fitting to the cylindrical shaft 2 at each press-fit side end portion in the processing portion 5a of the tool 5.
5b (shown in FIG. 1) are respectively formed.

【0024】以下、FRP製の円筒軸2とヨーク3との
接合方法について図1,図2を用いて説明する。まず、
工具5を用いて、円筒軸2の端部に工具5の加工部5a
を圧入する。この結果、円筒軸2の内周面には図3
(a)に示すような山形の案内溝2aが切られる。この
際、工具5の歯6aが山形と尖鋭であることから、工具
5を円筒軸2に圧入した際、円筒軸2が拡径する逃げは
小さく抑えられる。このため、必要な深さ(内径R)の
案内溝2aが形成される。工具5は、円筒軸2から引き
抜かれる。
Hereinafter, a method for joining the cylindrical shaft 2 made of FRP and the yoke 3 will be described with reference to FIGS. First,
Using the tool 5, the processing part 5a of the tool 5 is attached to the end of the cylindrical shaft 2.
Press-fit. As a result, as shown in FIG.
A mountain-shaped guide groove 2a as shown in FIG. At this time, since the teeth 6a of the tool 5 are angled and sharp, when the tool 5 is press-fitted into the cylindrical shaft 2, the escape of the cylindrical shaft 2 expanding in diameter is suppressed to a small value. For this reason, a guide groove 2a having a required depth (inner diameter R) is formed. The tool 5 is withdrawn from the cylindrical shaft 2.

【0025】次に、ヨーク3の接合部3aを円筒軸2の
端部に圧入する。このとき、ヨーク3の回転方向の位置
合わせをし、セレーション4の歯4aを案内溝2aに沿
わせる。例えば円筒軸2を固定しておき、圧入機を使っ
て工具5とヨーク3を圧入する方法を採れば、圧入機に
対する工具5とヨーク3のセット位置を合わせること
で、案内溝2aとセレーション4の歯4aを精度高く位
置合わせすることはできる。
Next, the joint 3a of the yoke 3 is pressed into the end of the cylindrical shaft 2. At this time, the yoke 3 is positioned in the rotational direction, and the teeth 4a of the serrations 4 are aligned with the guide grooves 2a. For example, if the cylindrical shaft 2 is fixed and the tool 5 and the yoke 3 are press-fitted using a press-fitting machine, the guide grooves 2a and the serrations 4 are adjusted by aligning the setting positions of the tool 5 and the yoke 3 with respect to the press-fitting machine. Can be positioned with high accuracy.

【0026】正規のセレーション4の歯4aが台形状で
あってその頂部が平坦面となっているため、歯4aの平
坦面が円筒軸2の内周面を押し広げるように働き易い。
特に歯4aが円筒軸2の内周面に溝を形成する削り代が
多いと、大きな抵抗を受けて円筒軸2が外周側に逃げて
拡径し易い。しかし、予め案内溝2aが切ってあるた
め、削り代が少なく抵抗も小さくて済む。そのため、円
筒軸2にヨーク3の接合部3aを圧入した際、円筒軸2
があまり押し広げられずに済み、ヨーク3のセレーショ
ン4の歯4aによって山形の案内溝2aの部位に、図3
(b)に示すような台形溝2bがしっかり刻設される。
そのため、ヨーク3のセレーション4の歯4aが台形溝
2bに深く喰い込み、円筒軸2とヨーク3とが高い強度
で接合される。円筒軸2の両端部に二つのヨーク3がこ
の接合方法によって接合されてプロペラシャフト1が製
造される。
Since the teeth 4a of the regular serrations 4 are trapezoidal and the tops thereof are flat, the flat surfaces of the teeth 4a can easily work to spread the inner peripheral surface of the cylindrical shaft 2.
In particular, if there are many shaving allowances in which the teeth 4a form a groove on the inner peripheral surface of the cylindrical shaft 2, the cylindrical shaft 2 receives a large resistance and escapes to the outer peripheral side, so that the diameter is easily increased. However, since the guide groove 2a is cut in advance, the cutting allowance is small and the resistance is small. Therefore, when the joint 3a of the yoke 3 is pressed into the cylindrical shaft 2, the cylindrical shaft 2
3 is not spread too much, and the teeth 4a of the serrations 4 of the yoke 3 are used to move
A trapezoidal groove 2b as shown in FIG.
Therefore, the teeth 4a of the serrations 4 of the yoke 3 bite into the trapezoidal groove 2b, and the cylindrical shaft 2 and the yoke 3 are joined with high strength. Two yokes 3 are joined to both ends of the cylindrical shaft 2 by this joining method, and the propeller shaft 1 is manufactured.

【0027】以上詳述したように本実施形態によれば、
以下に示す効果が得られる。 (1)工具5を使用して予めFRP製の円筒軸2の端部
内周面に案内溝2aを切っておき、案内溝2aにセレー
ション4の歯4aを沿わせるように、ヨーク3を円筒軸
2に圧入する方法を採った。このため、ヨーク3を円筒
軸2に圧入するときに円筒軸2が押し広げられて拡径す
る逃げを小さくでき、セレーション4の歯4aが円筒軸
2の内周面にしっかり喰い込ませることができる。よっ
て、円筒軸2とヨーク3との高い接合強度が確保され
る。
As described in detail above, according to the present embodiment,
The following effects can be obtained. (1) The guide groove 2a is cut in advance on the inner peripheral surface of the end portion of the cylindrical shaft 2 made of FRP using the tool 5, and the yoke 3 is attached to the cylindrical shaft 2 so that the teeth 4a of the serrations 4 follow the guide groove 2a. 2 was adopted. For this reason, when the yoke 3 is press-fitted into the cylindrical shaft 2, the escape of the cylindrical shaft 2 being expanded and expanded in diameter can be reduced, and the teeth 4 a of the serrations 4 can bite into the inner peripheral surface of the cylindrical shaft 2. it can. Therefore, high joining strength between the cylindrical shaft 2 and the yoke 3 is secured.

【0028】(2)工具5の歯6aの断面形状を山形と
したので、案内溝2aを必要な深さにしっかり形成でき
る。そして、案内溝2aが深く刻設されることから、ヨ
ーク3の圧入時にセレーション4の歯4aによって台形
溝2bを必要な深さにしっかり刻設できる。円筒軸2の
内周面へのヨーク3と歯4aの喰い込みを深くすること
ができる。また、台形の歯4aと台形溝2bとの噛み合
いで、その噛み合い強度が強いので、プロペラシャフト
1に過大な回転力が加わったときに、歯4aが円筒軸2
の内周面を回転方向に滑る不具合を抑えることができ
る。
(2) Since the cross-sectional shape of the teeth 6a of the tool 5 is angled, the guide grooves 2a can be formed firmly to a required depth. Since the guide groove 2a is deeply engraved, the trapezoidal groove 2b can be engraved to the required depth firmly by the teeth 4a of the serrations 4 when the yoke 3 is press-fitted. The bite of the yoke 3 and the teeth 4a into the inner peripheral surface of the cylindrical shaft 2 can be deepened. Further, since the meshing strength between the trapezoidal teeth 4a and the trapezoidal grooves 2b is high, when excessive rotational force is applied to the propeller shaft 1, the teeth 4a are
Can be prevented from slipping on the inner peripheral surface in the rotation direction.

【0029】(第2の実施形態)次に、本発明を、車両
用のプロペラシャフトの製造に具体化した第2の実施形
態を図5,図6に基づいて説明する。プロペラシャフト
1の構成部品であるFRP製の円筒軸2と金属製のヨー
ク3は、前記第1の実施形態と同様のものである。この
実施形態では、前記第1の実施形態で使用した工具5は
使用せず、円筒軸2へヨーク3を直接圧入するだけであ
る。なお、前記第1の実施形態と同様の部品等について
は同じ符号を付してその説明を省略し、特に異なる点に
ついてのみ説明する。
(Second Embodiment) Next, a second embodiment in which the present invention is embodied in the manufacture of a propeller shaft for a vehicle will be described with reference to FIGS. The FRP cylindrical shaft 2 and the metal yoke 3, which are the components of the propeller shaft 1, are the same as those in the first embodiment. In this embodiment, the tool 5 used in the first embodiment is not used, and the yoke 3 is simply pressed into the cylindrical shaft 2 directly. The same parts and the like as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. Only different points will be described.

【0030】この実施形態では、図5に示すように、円
筒軸2の接合端部を外周面側から拡径しないようにバッ
クアップできる支持装置10を使用する。支持装置10
は円筒軸2の外径と同径の内周面を有する一組の半円筒
形の固定型11と可動型12とを備える。支持装置10
は、可動型12が固定型11に対して離間する図5に示
す開状態と、可動型12と固定型11が接合して円筒と
なる閉状態とに駆動する。支持装置10が閉状態にある
ときに固定型11と可動型12とが接合してできる円筒
は、その内径が円筒軸2の端部の外径にほぼ等しい。そ
のため、図6に示すように、円筒軸2の端部を固定型1
1上に載せて可動型12が閉状態の位置に駆動される
と、円筒軸2の端部は拡径しないように外周面側から固
定型11と可動型12との内周面によってバックアップ
される。なお、支持装置10は例えば油圧駆動式であ
る。
In this embodiment, as shown in FIG. 5, a support device 10 is used which can back up the joined end of the cylindrical shaft 2 from the outer peripheral side so as not to expand its diameter. Supporting device 10
Is provided with a set of semi-cylindrical fixed mold 11 and movable mold 12 having an inner peripheral surface having the same diameter as the outer diameter of the cylindrical shaft 2. Supporting device 10
5 is driven into an open state in which the movable mold 12 is separated from the fixed mold 11 as shown in FIG. 5 and a closed state in which the movable mold 12 and the fixed mold 11 are joined to form a cylinder. The cylinder formed by joining the fixed mold 11 and the movable mold 12 when the support device 10 is in the closed state has an inner diameter substantially equal to the outer diameter of the end of the cylindrical shaft 2. For this reason, as shown in FIG.
When the movable die 12 is driven to the closed position while being placed on the top 1, the end of the cylindrical shaft 2 is backed up by the inner peripheral surface of the fixed die 11 and the movable die 12 from the outer peripheral surface side so as not to expand the diameter. You. The support device 10 is, for example, a hydraulic drive type.

【0031】円筒軸2にヨーク3の接合部3aを圧入す
るときは、その圧入作業の前に図5に示すように支持装
置10の固定型11に円筒軸2の接合端部を載せてセッ
トする。そして、支持装置10を開状態から閉状態に駆
動する。その結果、可動型12と固定型11とが接合
し、これらによって作られる円筒によって、図6に示す
ように円筒軸2の接合端部は外周面から拡径しないよう
に周全体でバックアップされる(図5における(1) の工
程)。
When the joint 3a of the yoke 3 is press-fitted into the cylindrical shaft 2, the joint end of the cylindrical shaft 2 is set on the fixed die 11 of the supporting device 10 as shown in FIG. I do. Then, the support device 10 is driven from the open state to the closed state. As a result, the movable mold 12 and the fixed mold 11 are joined to each other, and the joined end of the cylindrical shaft 2 is backed up by the cylinder formed by these parts so as not to expand from the outer peripheral surface as shown in FIG. (Step (1) in FIG. 5).

【0032】このようにバックアップされた円筒軸2に
対し、次にヨーク3の接合部3aが圧入される(図5に
おける(2) の工程)。ヨーク3のセレーション4の歯4
aによって円筒軸2を内周面から押し広げようとする力
が加わるが、円筒軸2の接合端部が外周面側から固定型
11と可動型12とによってバックアップされているた
め、円筒軸2が外周側に逃げることがなくなる。その結
果、セレーション4の歯4aによって円筒軸2の内周面
に台形溝2bがしっかり刻設される。よって、セレーシ
ョン4の歯4aが円筒軸2の内周面に刻設された台形溝
2bと深く喰い込み、円筒軸2とヨーク3とが高い強度
で接合される。
Next, the joint 3a of the yoke 3 is press-fitted into the backed-up cylindrical shaft 2 (step (2) in FIG. 5). Teeth 4 of serrations 4 of yoke 3
Although a force is applied to push the cylindrical shaft 2 from the inner peripheral surface by a, the joint end of the cylindrical shaft 2 is backed up by the fixed mold 11 and the movable mold 12 from the outer peripheral surface side. Will not escape to the outer peripheral side. As a result, the trapezoidal groove 2b is firmly formed on the inner peripheral surface of the cylindrical shaft 2 by the teeth 4a of the serrations 4. Thus, the teeth 4a of the serrations 4 bite deeply into the trapezoidal grooves 2b formed on the inner peripheral surface of the cylindrical shaft 2, and the cylindrical shaft 2 and the yoke 3 are joined with high strength.

【0033】この実施形態によれば、以下の効果が得ら
れる。 (3)円筒軸2の接合端部を外周面側からバックアップ
する状態で、ヨーク3の接合部3aを円筒軸2に圧入す
る方法を採った。従って、ヨーク3を円筒軸2に圧入す
るときに、円筒軸2が外周側に拡径する逃げが抑えられ
るので、セレーション4の歯4aと円筒軸2の内周面の
台形溝2aとを深く喰い込ませることができる。よっ
て、円筒軸2とヨーク3との高い接合強度を確保でき
る。
According to this embodiment, the following effects can be obtained. (3) A method is adopted in which the joint 3a of the yoke 3 is press-fitted into the cylindrical shaft 2 while the joint end of the cylindrical shaft 2 is backed up from the outer peripheral surface side. Therefore, when the yoke 3 is press-fitted into the cylindrical shaft 2, the escape of the cylindrical shaft 2 expanding to the outer peripheral side is suppressed, so that the teeth 4 a of the serration 4 and the trapezoidal groove 2 a on the inner peripheral surface of the cylindrical shaft 2 are deepened. You can bite it. Therefore, high joining strength between the cylindrical shaft 2 and the yoke 3 can be secured.

【0034】(第3の実施形態)次に、本発明を、車両
用のプロペラシャフトの製造に具体化した第3の実施形
態を図7〜図9に基づいて説明する。FRP製の円筒軸
2は前記各実施形態と同じものである。この実施形態で
は、ヨーク3に形成されたセレーションの歯の形状に特
徴がある。なお、前記第1の実施形態と同様の部品等に
ついては同じ符号を付してその説明を省略し、特に異な
る点についてのみ説明する。
(Third Embodiment) Next, a third embodiment in which the present invention is embodied in the manufacture of a propeller shaft for a vehicle will be described with reference to FIGS. The cylindrical shaft 2 made of FRP is the same as in each of the above embodiments. This embodiment is characterized by the shape of serration teeth formed on the yoke 3. The same parts and the like as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. Only different points will be described.

【0035】図7に示すように、ヨーク3の接合部3a
の外周面上には、セレーション7が軸方向に三つの領域
に分断されて形成されている。つまり、セレーション7
は、前記各実施形態のセレーション4に対し、その長手
方向において複数箇所(本実施形態では例えば2箇所)
に歯の無い刻み部3cを入れて、その長手方向に歯のあ
る部分と歯の無い部分とが交互に形成されている。
As shown in FIG. 7, the joint 3a of the yoke 3
The serration 7 is formed in the axial direction by being divided into three regions on the outer peripheral surface of. In other words, serration 7
Indicates a plurality of locations (for example, two locations in the present embodiment) in the longitudinal direction with respect to the serrations 4 of the above embodiments.
A toothless cutout 3c is inserted into the groove, and a toothed portion and a toothless portion are formed alternately in the longitudinal direction.

【0036】図8に示すように、ヨーク3の接合部3a
の外周面上に軸方向に列設された三種類の歯7a,7
b,7cは、圧入側先端に位置する歯7aを基準とし
て、残り二つの歯7b,7cが隣接するもの同士が所定
距離を隔てた位置関係となるように位置している。歯7
aの圧入先端側の歯面は、案内面3bのためテーパ面に
形成されている。これに対し、残り二つの歯7b,7c
の圧入先端側の歯面7dは、直角に切り立つ角度に形成
されている。
As shown in FIG. 8, the joint 3a of the yoke 3
Types of teeth 7a, 7 arranged in the axial direction on the outer peripheral surface of
The b and 7c are located such that the two adjacent teeth 7b and 7c are adjacent to each other with a predetermined distance from the tooth 7a located at the tip of the press-fit side. Tooth 7
The tooth surface on the press-fitting tip side of a is formed as a tapered surface for the guide surface 3b. On the other hand, the remaining two teeth 7b, 7c
The tooth surface 7d on the tip side of the press-fitting is formed at an angle that is steep at a right angle.

【0037】よって、円筒軸2にヨーク3の接合部3a
を圧入するとき、接合部3aはまずその圧入側先端部の
案内面3bによって円筒軸2に対して芯出しされながら
圧入される。この圧入は案内面3bに沿ってなされ、先
頭(最初)の歯7aのテーパ面によって円筒軸2が歯7
aの外周面(頂部)に乗り上げ易く、これが原因で円筒
軸2が外周側に逃げるように拡径する場合がある。この
場合、歯7aによって円筒軸2の内周面に必要な深さの
溝が刻設されず溝の深さにばらつきが起こる場合があ
る。
Therefore, the joint 3a of the yoke 3 is attached to the cylindrical shaft 2.
When press-fitting, the joint 3a is first press-fitted while being centered with respect to the cylindrical shaft 2 by the guide surface 3b at the front end of the press-fitting side. This press-fitting is performed along the guide surface 3b, and the cylindrical shaft 2 is formed by the tapered surface of the leading (first) tooth 7a.
It is easy to get on the outer peripheral surface (top) of a, and as a result, the diameter of the cylindrical shaft 2 may increase so as to escape to the outer peripheral side. In this case, a groove having a required depth is not formed on the inner peripheral surface of the cylindrical shaft 2 by the teeth 7a, and the depth of the groove may vary.

【0038】しかし、後続する刻み部3cの部位で、円
筒軸2の拡径が正規の径に一旦戻ることになる。次にそ
こへ、歯面7dが垂直に切り立った後列(二列目)の歯
7bが圧入されるため、歯7bによって円筒軸2の内周
面に台形溝2b(図3(b)を参照)がしっかり刻設さ
れる。さらに後列(三列目)の歯7cが圧入されるとき
も、刻み部3cの部位で円筒軸2が正規の径に戻った後
に歯7cが圧入されることになるため、その歯面7dに
よって円筒軸2の内周面に台形溝2bがしっかり刻設さ
れる。このように、圧入の過程において歯7aの後続に
刻み部3cと歯群7b,7cとが交互に現れることによ
って、円筒軸2の拡径が戻る度に歯7b,7cによる刻
設が順次繰り返される。よって、先頭の歯7aの円筒軸
2の内周面への喰い込みが仮に浅くても、後続の歯7
b,7cが円筒軸2の内周面に深く喰い込むので、円筒
軸2とヨーク3とが高い強度で接合される。
However, the expanded diameter of the cylindrical shaft 2 returns to the normal diameter once at the subsequent cut portion 3c. Next, the rear row (second row) of teeth 7b whose tooth surfaces 7d are vertically raised are press-fitted into the trapezoidal grooves 2b (see FIG. 3B) on the inner peripheral surface of the cylindrical shaft 2 by the teeth 7b. ) Is engraved firmly. Further, when the rear row (third row) of teeth 7c is press-fitted, the teeth 7c are press-fitted after the cylindrical shaft 2 returns to the normal diameter at the cut portion 3c. A trapezoidal groove 2b is firmly engraved on the inner peripheral surface of the cylindrical shaft 2. As described above, the notched portion 3c and the tooth groups 7b and 7c alternately appear after the tooth 7a in the process of press-fitting, so that the engraving by the teeth 7b and 7c is sequentially repeated each time the diameter of the cylindrical shaft 2 returns. It is. Therefore, even if the leading teeth 7a bit into the inner peripheral surface of the cylindrical shaft 2 shallowly, the following teeth 7a
Since b and 7c bite deep into the inner peripheral surface of the cylindrical shaft 2, the cylindrical shaft 2 and the yoke 3 are joined with high strength.

【0039】この実施形態によれば、以下の効果が得ら
れる。 (4)ヨーク3のセレーション7の歯7a,7b,7c
を長手方向に間欠的に形成し、案内面3bのために歯面
がテーパ面となった先頭の歯7aの後続に、歯面7dが
直角に切り立つ歯7b,7cを配列した。よって、ヨー
ク3の圧入時に、仮に円筒軸2が案内面3bに案内され
て歯7aに乗り上げて拡径したために歯7aの円筒軸2
の内周面に対する喰い込みが浅かったとしても、後続の
歯7b,7cを円筒軸2の内周面に深く喰い込ませるこ
とができる。従って、円筒軸2とヨーク3とを高い強度
で接合できる。
According to this embodiment, the following effects can be obtained. (4) Teeth 7a, 7b, 7c of serration 7 of yoke 3
Are formed intermittently in the longitudinal direction, and the teeth 7b and 7c whose tooth surfaces 7d are cut at a right angle are arranged after the leading tooth 7a whose tooth surfaces are tapered for the guide surface 3b. Therefore, when the yoke 3 is press-fitted, the cylindrical shaft 2 is temporarily guided by the guide surface 3b and rides on the teeth 7a to expand the diameter.
, The subsequent teeth 7b and 7c can be deeply bitten into the inner peripheral surface of the cylindrical shaft 2. Therefore, the cylindrical shaft 2 and the yoke 3 can be joined with high strength.

【0040】(第4の実施形態)次に、本発明を、車両
用のプロペラシャフトの製造に具体化した第4の実施形
態を図10,図11に基づいて説明する。FRP製の円
筒軸2は前記各実施形態と同じものである。この実施形
態では、ヨーク3の接合部3aの先端形状に特徴があ
る。なお、前記第1の実施形態と同様の部品等について
は同じ符号を付してその説明を省略し、特に異なる点に
ついてのみ説明する。
(Fourth Embodiment) Next, a fourth embodiment in which the present invention is embodied in the manufacture of a propeller shaft for a vehicle will be described with reference to FIGS. The cylindrical shaft 2 made of FRP is the same as in each of the above embodiments. This embodiment is characterized by the shape of the tip of the joint 3a of the yoke 3. The same parts and the like as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. Only different points will be described.

【0041】図10,図11に示すように、ヨーク3の
接合部3aの外周面上にはセレーション4が形成されて
いる。セレーション4の歯4aは、その断面形状が前記
第1の実施形態と同様に図2(b)に示す台形状であ
る。但し、歯4aの圧入側先端の歯面4bが直角(垂
直)に切り立っている点が、前記第1の実施形態と異な
る。このため、接合部3aの先端部には前記第1の実施
形態で形成されていた案内面3bが形成されておらず、
歯4aの歯面4bの位置を接合部3aの先端面から所定
距離だけ控えることで、接合部3aの先端部に歯4aの
歯面4bより先端側へ突出する円筒状のガイド部8を形
成している。図11に示すように、ガイド部8の外径R
1は、ヨーク3の接合部3aを円筒軸2の円筒内部に圧
入する際に芯出しできるように、円筒軸2の端部内径と
ほぼ等しく形成されている。
As shown in FIGS. 10 and 11, serrations 4 are formed on the outer peripheral surface of the joint 3a of the yoke 3. The teeth 4a of the serrations 4 have a trapezoidal cross-sectional shape as shown in FIG. 2B as in the first embodiment. However, it differs from the first embodiment in that the tooth surface 4b at the tip of the press-fit side of the tooth 4a is steeped at a right angle (vertically). For this reason, the guide surface 3b formed in the first embodiment is not formed at the distal end of the joint 3a,
By keeping the position of the tooth surface 4b of the tooth 4a a predetermined distance from the distal end surface of the joint 3a, a cylindrical guide portion 8 projecting toward the distal end side from the tooth surface 4b of the tooth 4a is formed at the distal end of the joint 3a. are doing. As shown in FIG.
1 is formed to be substantially equal to the inner diameter of the end of the cylindrical shaft 2 so that the joint 3a of the yoke 3 can be centered when the cylinder 3 is press-fitted into the inside of the cylindrical shaft.

【0042】よって、円筒軸2にヨーク3の接合部3a
を圧入するとき、ヨーク3の接合部3aはまずガイド部
8によって円筒軸2に対して芯出しされる。そして、芯
出しされた状態でヨーク3の接合部3aを円筒軸2に圧
入するとき、セレーション4の歯面4dが直角に切り立
った歯4aによって台形溝2b(図3(b)を参照)が
しっかり刻設される。つまり、案内面3bが無いため、
接合部3aの圧入時に円筒軸2が歯4aに乗り上げて拡
径する現象が起き難く、しかも歯面4bが直角に切り立
っているため、歯4aによって円筒軸2の内周面に台形
溝2bがしっかり刻設される。その結果、ヨーク3のセ
レーション4の歯4aが円筒軸2の内周面に深く喰い込
み、円筒軸2とヨーク3とが高い強度で接合される。
Therefore, the joint 3a of the yoke 3 is attached to the cylindrical shaft 2.
, The joint 3a of the yoke 3 is first centered with respect to the cylindrical shaft 2 by the guide portion 8. When the joint 3a of the yoke 3 is pressed into the cylindrical shaft 2 in the centered state, the trapezoidal groove 2b (see FIG. 3 (b)) is formed by the teeth 4a having the tooth surfaces 4d of the serrations 4 rising at right angles. Engraved firmly. That is, since there is no guide surface 3b,
When the joint 3a is press-fitted, the phenomenon that the cylindrical shaft 2 rides on the teeth 4a and expands its diameter is unlikely to occur, and the tooth surface 4b is steep at a right angle. Engraved firmly. As a result, the teeth 4a of the serrations 4 of the yoke 3 bite deeply into the inner peripheral surface of the cylindrical shaft 2, and the cylindrical shaft 2 and the yoke 3 are joined with high strength.

【0043】この実施形態によれば、以下の効果が得ら
れる。 (5)ヨーク3のセレーション4の歯4aの歯面4bを
直角に切り立つ角度に形成したので、歯4aによって円
筒軸2の内周面にしっかり溝を刻設して歯4aを円筒軸
2の内周面に深く喰い込ませることができる。よって、
円筒軸2とヨーク3との高い接合強度を確保できる。ま
た、ヨーク3の接合部3aにガイド部8を形成したの
で、圧入時に円筒軸2に対するヨーク3の芯出しを精度
よく行うことができる。
According to this embodiment, the following effects can be obtained. (5) Since the tooth surfaces 4b of the teeth 4a of the serrations 4 of the yoke 3 are formed so as to be steep at right angles, grooves are firmly formed on the inner peripheral surface of the cylindrical shaft 2 by the teeth 4a, and the teeth 4a are formed on the cylindrical shaft 2. It can bite deep into the inner peripheral surface. Therefore,
High joining strength between the cylindrical shaft 2 and the yoke 3 can be secured. Further, since the guide portion 8 is formed at the joint 3a of the yoke 3, the centering of the yoke 3 with respect to the cylindrical shaft 2 can be performed with high accuracy at the time of press-fitting.

【0044】なお、実施の形態は、上記に限定されず以
下のような形態で実施できる。 ○ 第3の実施形態において、接合部3aの先端部に第
4の実施形態のようなガイド部8を形成し、圧入側先端
に位置する歯7aの先端面をも垂直に切り立つ歯面とす
ることもできる。この構成によれば、各歯7a〜7cの
全てについて円筒軸2の内周面に強く喰い込ませること
ができる。
The embodiment is not limited to the above, and can be implemented in the following modes. In the third embodiment, the guide portion 8 as in the fourth embodiment is formed at the distal end of the joining portion 3a, and the distal end surface of the tooth 7a located at the press-in side distal end is also a tooth surface that is vertically cut. You can also. According to this configuration, all of the teeth 7a to 7c can be made to bite into the inner peripheral surface of the cylindrical shaft 2.

【0045】○ 第3又は第4実施形態において、切り
立つ歯面の角度は直角(90゜)に限定されない。案内
面3bのようにセレーションの歯に円筒軸が乗り上げる
ことのないように、歯によって円筒軸の内周面をしっか
り刻設できる角度であれば足り、例えば接合部3aの外
周面と歯面とのなす角度で45゜〜110゜の範囲であ
ればよい。45゜以上90゜未満では歯の先端が鋭角に
なるので、溝を刻設し易い。
In the third or fourth embodiment, the angle of the tooth surface to be steeped is not limited to a right angle (90 °). It is sufficient that the teeth can firmly engrave the inner peripheral surface of the cylindrical shaft so that the cylindrical shaft does not ride on the teeth of the serrations like the guide surface 3b. For example, the outer peripheral surface and the tooth surface of the joint 3a are sufficient. The angle may be in the range of 45 ° to 110 °. When the angle is 45 ° or more and less than 90 °, the tip of the tooth becomes an acute angle, so that a groove is easily formed.

【0046】○ 第4の実施形態において、ガイド部8
を無くしてもよい。 ○ 部品形状は円筒に限定されない。三角筒、四角筒等
の多角形筒形状であっても構わない。
In the fourth embodiment, the guide portion 8
May be eliminated. ○ The part shape is not limited to a cylinder. It may be a polygonal cylinder such as a triangular cylinder or a square cylinder.

【0047】○ FRPのマトリクス樹脂が熱硬化樹脂
であることに限定されない。例えば紫外線硬化樹脂や熱
可塑性樹脂をマトリクス樹脂として使用することもでき
る。これらの樹脂を使用した場合でも、特定の溶剤によ
って中子を溶解または膨潤させて除去できるので、従来
技術で述べた低融点合金の中子を除去するのに必要であ
った加熱装置が不要である。また、マトリクス樹脂とし
て熱可塑性樹脂を使用した場合、中子除去に加熱が不要
なので、筒部品の熱変形の心配もない。
The matrix resin of the FRP is not limited to a thermosetting resin. For example, an ultraviolet curable resin or a thermoplastic resin can be used as the matrix resin. Even when these resins are used, the core can be dissolved or swollen by a specific solvent and removed, so that the heating device required for removing the core of the low melting point alloy described in the prior art is unnecessary. is there. Further, when a thermoplastic resin is used as the matrix resin, heating is not required for core removal, so there is no need to worry about thermal deformation of the cylindrical component.

【0048】○ FRP製筒体の製造方法はフィラメン
トワインディング法に限定されない。例えばシートワイ
ンディング法を採用することもできる。軸体が部品とし
て使用されるときに必要な特性を満足できるようにFR
P製筒体を製造できれば、その製造方法は特に限定され
ない。
The method for manufacturing the FRP cylinder is not limited to the filament winding method. For example, a sheet winding method can be adopted. When the shaft is used as a part, FR
The manufacturing method is not particularly limited as long as the P-made cylinder can be manufactured.

【0049】○ 前記実施形態では、金属部品の接合部
は円筒状であったが、接合部が筒状であることに限定さ
れない。例えば金属部品の接合部が中実である円柱状で
あってもよい。
In the above embodiment, the joining part of the metal parts is cylindrical, but the joining part is not limited to a cylindrical one. For example, the joining part of the metal parts may be a solid cylindrical shape.

【0050】○ 前記各実施形態で使用した金属部品の
ように接合部が円筒状のものを使用し、前記各実施形態
の接合関係とは逆に、金属部品にFRP製筒体を圧入す
る構成を採ってもよい。このような接合構造であって
も、前記各実施形態の接合方法を採用することで、高い
接合強度を得ることができる。
A structure in which the joining part is cylindrical like the metal part used in each of the above embodiments, and the FRP cylindrical body is pressed into the metal part, contrary to the joining relationship in each of the above embodiments. May be taken. Even with such a bonding structure, high bonding strength can be obtained by employing the bonding method of each of the above embodiments.

【0051】○ FRP製筒体と金属部品とがセレーシ
ョン結合された接合部にリング等からなる補強部材を組
付け、接合強度をさらに高める方策を実施しても構わな
い。 ○ 軸部品は、プロペラシャフトに限定されない。その
他の駆動伝達軸に前記各実施形態の接合方法を採用でき
る。さらに軸部品は、駆動伝達軸に限定されるものでは
なく、FRP製筒体と金属部品とをセレーション結合し
て製造されるその他の部品の接合に前記各実施形態の接
合方法を採用してもよい。
A reinforcing member made of a ring or the like may be assembled at the joint where the FRP cylinder and the metal component are serrated and a measure may be taken to further increase the joint strength. ○ Shaft parts are not limited to propeller shafts. The joining method of each of the above embodiments can be adopted for other drive transmission shafts. Further, the shaft component is not limited to the drive transmission shaft, and the joining method of each of the above embodiments may be employed for joining other components manufactured by serration-connecting the FRP cylinder and the metal component. Good.

【0052】前記実施形態から把握される請求項に係る
発明以外の技術的思想をその効果とともに以下に記載す
る。 (1) 請求項1〜請求項4のいずれかにおいて、金属
部品は少なくとも接合部が筒形状を有し、金属部品をF
RP製筒体に圧入するのに替えて、FRP製筒体を金属
部品に圧入する。この構成によっても、セレーション結
合による強度を高めることができる。
The technical ideas other than the claimed invention grasped from the embodiment will be described below together with their effects. (1) In any one of claims 1 to 4, the metal component has a cylindrical shape at least at a joint portion, and the metal component is F
Instead of press-fitting the RP cylinder, press the FRP cylinder into the metal part. This configuration can also increase the strength due to serration coupling.

【0053】(2) 請求項1〜請求項4のいずれかに
おいて、前記金属部品の接合部とセレーション結合され
た前記FRP製筒体の周面上に形成されているセレーシ
ョンの溝は、前記金属部品の接合部をFRP製筒体に圧
入する際、前記金属部品のセレーションの歯によって刻
設される。この構成によれば、金属部品のセレーション
の歯がFRP製筒体にしっかり喰い込む。
(2) The serration groove according to any one of claims 1 to 4, which is formed on the peripheral surface of the FRP cylindrical body serrated and connected to the joint of the metal component. When press-fitting the joint part of components to a FRP cylinder, it is engraved by serration teeth of the metal component. According to this configuration, the serration teeth of the metal part bite into the FRP cylinder.

【0054】(3)請求項4において、前記金属部品の
接合部の圧入側先端部には、芯出し部が形成されてい
る。この構成によれば、FRP製筒体に金属部品を圧入
する際、金属部品の圧入位置が芯出し部によって芯出し
される。
(3) In the fourth aspect, a centering portion is formed at a front end of the joining portion of the metal component on the press-fitting side. According to this configuration, when the metal component is press-fitted into the FRP cylinder, the press-fit position of the metal component is centered by the centering portion.

【0055】(4)請求項3において、前記歯群のうち
最初に圧入される歯の圧入側先端の歯面は、前記FRP
製筒体への圧入を案内する案内面に形成されている。こ
の構成によれば、最初に圧入される歯の案内面によっ
て、金属部品がFRP製筒体に対して圧入案内される。
仮に案内面に沿ってFRP製筒体がセレーションの歯に
乗り上げて拡径し、最初の歯によって溝が深く刻設され
なかったとしても、後続の歯がFRP製筒体の内周面に
深い溝を刻設して強く喰い込むので、高い接合強度が確
保される。
(4) In claim 3, the tooth surface of the tip of the first group of teeth to be press-fitted on the press-fit side is the FRP.
It is formed on a guide surface for guiding press-fitting into the cylindrical body. According to this configuration, the metal component is press-fitted and guided into the FRP cylinder by the guide surface of the tooth that is press-fitted first.
Even if the FRP cylindrical body rides on the serration teeth and expands in diameter along the guide surface, even if the groove is not deeply engraved by the first tooth, the subsequent teeth are deep on the inner peripheral surface of the FRP cylindrical body. Since the grooves are engraved and bite deeply, high bonding strength is secured.

【0056】(5)請求項5又は6において、前記軸部
品は駆動伝達軸である。この構成によれば、駆動伝達軸
が回転駆動されたときに過酷な応力(例えば捻り応力
等)が加わっても、FRP製筒体と金属部品との高い接
合強度のため、FRP製筒体と金属部品との接合がしっ
かり維持される。なお、プロペラシャフト1によって駆
動伝達軸が構成される。
(5) In claim 5 or 6, the shaft component is a drive transmission shaft. According to this configuration, even when a severe stress (for example, torsional stress) is applied when the drive transmission shaft is rotationally driven, the FRP cylinder and the metal component have a high joining strength, so that the FRP cylinder and Bonding with metal parts is firmly maintained. Note that a drive transmission shaft is configured by the propeller shaft 1.

【0057】[0057]

【発明の効果】以上詳述したように請求項1に記載の発
明によれば、FRP製筒体の接合部周面上に正規のセレ
ーションの溝より小さなサイズの案内溝を予め形成した
後、金属部品の正規のセレーションの歯を案内溝に沿わ
せるように金属部品をFRP製筒体に圧入する方法を採
った。従って、正規のセレーションの歯をFRP製筒体
の内周面に強く喰い込ませることができ、FRP製筒体
と金属部品との高い接合強度を得ることができる。
As described in detail above, according to the first aspect of the present invention, after a guide groove having a size smaller than a regular serration groove is formed in advance on the joint peripheral surface of the FRP cylinder, A method was employed in which the metal component was pressed into the FRP cylinder so that the teeth of the regular serration of the metal component were aligned with the guide groove. Therefore, the teeth of regular serrations can be bitten into the inner peripheral surface of the FRP cylinder, and a high bonding strength between the FRP cylinder and the metal component can be obtained.

【0058】請求項2に記載の発明によれば、FRP製
筒体の接合端部をその内外周面のうち金属部品と接合す
る周面でない側の周面からバックアップし、このバック
アップ状態で金属部品の接合部をFRP製筒体に圧入す
る方法を採った。従って、金属部品のセレーションの歯
をFRP製筒体の内周面に強く喰い込ませることがで
き、FRP製筒体と金属部品との高い接合強度を得るこ
とができる。
According to the second aspect of the present invention, the joining end of the FRP cylinder is backed up from the inner peripheral surface of the inner peripheral surface which is not the peripheral surface to be joined to the metal component. A method was employed in which the joint of the parts was press-fitted into an FRP cylinder. Therefore, the serration teeth of the metal component can be strongly bitten into the inner peripheral surface of the FRP cylinder, and a high joining strength between the FRP cylinder and the metal component can be obtained.

【0059】請求項3に記載の発明によれば、金属部品
のセレーションの歯を長手方向に刻みを隔てて配列され
る歯群で構成し、歯群のうち最初に圧入される歯を除く
後続の歯の歯面を切り立つ角度としたので、少なくとも
後続の歯をFRP製筒体の内周面に強く喰い込ませるこ
とができる。従って、FRP製筒体と金属部品との高い
接合強度を得ることができる。
According to the third aspect of the invention, the teeth of the serration of the metal part are constituted by teeth arranged at intervals in the longitudinal direction, and the teeth other than the teeth which are first pressed in the teeth are removed. Since the tooth surface of the first tooth is set at an acute angle, at least the following tooth can be bitten into the inner peripheral surface of the FRP cylinder. Therefore, high joining strength between the FRP tubular body and the metal component can be obtained.

【0060】請求項4に記載の発明によれば、金属部品
のセレーションの歯の圧入側先端の歯面が切り立つ角度
であることから、歯をFRP製筒体の内周面に強く喰い
込ませることができ、FRP製筒体と金属部品との高い
接合強度を得ることができる。
According to the fourth aspect of the present invention, since the tooth surface of the press-fitting end of the tooth of the serration of the metal part is at an acute angle, the tooth is strongly bite into the inner peripheral surface of the FRP cylinder. And a high joining strength between the FRP cylinder and the metal component can be obtained.

【0061】請求項5及び請求項6に記載の発明によれ
ば、FRP製筒体と金属部品とが強い接合強度でセレー
ション結合された軸部品を提供することができる。
According to the fifth and sixth aspects of the present invention, it is possible to provide a shaft component in which the FRP cylindrical body and the metal component are serrated and connected with high bonding strength.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施形態における(a)は円筒軸と工具
を示す一部破断側面図、(b)は円筒軸とヨークを示す
一部破断側面図。
FIG. 1A is a partially cutaway side view showing a cylindrical shaft and a tool in the first embodiment, and FIG. 1B is a partially cutaway side view showing a cylindrical shaft and a yoke.

【図2】(a)は工具の図1(a)のII−II線における
部分断面図、(b)はヨークの図1(b)のIII−III線
における部分断面図。
2A is a partial sectional view of the tool taken along the line II-II in FIG. 1A, and FIG. 2B is a partial sectional view of the yoke taken along the line III-III in FIG. 1B.

【図3】円筒軸の部分正断面図。FIG. 3 is a partial front sectional view of a cylindrical shaft.

【図4】プロペラシャフトの一部破断側面図。FIG. 4 is a partially cutaway side view of the propeller shaft.

【図5】第2の実施形態における円筒軸とヨークとの接
合工程を示す一部破断側面図。
FIG. 5 is a partially cutaway side view showing a joining step between a cylindrical shaft and a yoke in the second embodiment.

【図6】支持装置によりバックアップされた状態の円筒
軸の正断面図。
FIG. 6 is a front sectional view of a cylindrical shaft backed up by a support device.

【図7】第3の実施形態における円筒軸とヨークを示す
一部破断側面図。
FIG. 7 is a partially cutaway side view showing a cylindrical shaft and a yoke according to a third embodiment.

【図8】ヨークの接合部の部分側断面図。FIG. 8 is a partial side sectional view of a joint of the yoke.

【図9】ヨークの接合部の部分正断面図を示し、(a)
は図8のIV−IV線における歯の断面図、(b)は図8の
V−V線における刻み部の断面図。
FIG. 9 is a partial front sectional view of a joining portion of a yoke, and (a).
8 is a cross-sectional view of the tooth taken along line IV-IV in FIG. 8, and FIG.
FIG. 5 is a cross-sectional view of a cut portion along line VV.

【図10】第4の実施形態における円筒軸とヨークを示
す一部破断側面図。
FIG. 10 is a partially cutaway side view showing a cylindrical shaft and a yoke according to a fourth embodiment.

【図11】ヨークの接合部の部分側断面図。FIG. 11 is a partial side sectional view of a joint of a yoke.

【符号の説明】[Explanation of symbols]

1…軸部品としてのプロペラシャフト、2…FRP製筒
体としての円筒軸、2a…案内溝、2b…正規の溝とし
ての台形溝、3…金属部品としてのヨーク、3a…接合
部、3b…案内面、3c…刻み部、4,7…セレーショ
ン、4a,7a〜7c…歯、4b,7d…歯面、5…工
具。
DESCRIPTION OF SYMBOLS 1 ... Propeller shaft as a shaft part, 2 ... Cylindrical shaft as a FRP cylinder, 2a ... Guide groove, 2b ... Trapezoidal groove as a regular groove, 3 ... Yoke as a metal part, 3a ... Joint part, 3b ... Guide surface, 3c: notched portion, 4, 7: serration, 4a, 7a to 7c: tooth, 4b, 7d: tooth surface, 5: tool.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮下 康己 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機製作所内 (72)発明者 戸枝 稔 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機製作所内 Fターム(参考) 3J033 AA01 AB02 AC01 BA07 BA20 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yasumi Miyashita 2-1-1 Toyota-cho, Kariya-shi, Aichi Pref. Inside Toyota Industries Corporation (72) Inventor Minoru Toeda 2-1-1 Toyota-cho, Kariya-shi, Aichi Pref. F-term in Toyota Industries Corporation (reference) 3J033 AA01 AB02 AC01 BA07 BA20

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 FRP製筒体と金属部品とをセレーショ
ン結合する接合方法において、 FRP製筒体の接合部周面上に、金属部品の接合部周面
上に形成されたセレーションの歯を案内するための案内
溝を、正規のセレーションの溝より小さなサイズで予め
形成しておき、前記セレーションの歯を前記案内溝に沿
わせるように前記金属部品の接合部を前記FRP製筒体
に圧入するFRP製筒体と金属部品との接合方法。
1. A joining method for serration-connecting an FRP cylinder and a metal part, wherein serration teeth formed on the joining part peripheral surface of the metal part are guided on a joint peripheral surface of the FRP cylinder. A guide groove for forming the serration is formed in advance with a smaller size than a regular serration groove, and a joint portion of the metal component is pressed into the FRP cylinder so that the serration teeth are aligned with the guide groove. A method for joining an FRP cylinder to a metal part.
【請求項2】 FRP製筒体と金属部品とをセレーショ
ン結合する接合方法において、 FRP製筒体の接合端部をその内外周面のうち前記金属
部品と接合する周面でない側の周面からバックアップ
し、該バックアップ状態で、セレーションの歯が形成さ
れた前記金属部品の接合部を前記FRP製筒体に圧入す
るFRP製筒体と金属部品との接合方法。
2. A joining method for serration-connecting an FRP cylinder and a metal component, wherein a joining end of the FRP cylinder is formed from an inner and outer peripheral surface of a non-peripheral surface to be joined to the metal component. A method of joining an FRP cylinder and a metal component by backing up and press-fitting a joint portion of the metal component having serration teeth formed into the FRP cylinder in the backup state.
【請求項3】 FRP製筒体と金属部品とをセレーショ
ン結合する接合方法において、 金属部品の接合部に形成されたセレーションの歯を長手
方向に刻みを隔てて配列される歯群に形成するととも
に、該歯群のうち最初に圧入される歯以外の残りの歯に
ついては圧入側先端の歯面を切り立つ角度に形成し、該
金属部品の接合部を前記FRP製筒体に圧入するFRP
製筒体と金属部品との接合方法。
3. A joining method for serration-coupling an FRP cylinder and a metal component, wherein serration teeth formed at a joining portion of the metal component are formed in a tooth group arranged at intervals in the longitudinal direction. An FRP for press-fitting the joints of the metal parts into the FRP cylinder body by forming the tooth surfaces of the press-fitting-side tips of the remaining teeth other than the first press-fitted teeth at an acute angle.
A method of joining a cylindrical body and metal parts.
【請求項4】 FRP製筒体と金属部品とをセレーショ
ン結合する接合方法において、 金属部品の接合部に形成されたセレーションの歯の圧入
側先端の歯面を切り立つ角度とし、該金属部品の接合部
を前記FRP製筒体に圧入するFRP製筒体と金属部品
との接合方法。
4. A joining method for serration-connecting a cylindrical body made of FRP and a metal part, wherein the tooth surface of the press-fitting-side tip of the serration tooth formed at the joint part of the metal part is set to an angle so as to be sharp. A method of joining an FRP cylinder and a metal component by press-fitting a part into the FRP cylinder.
【請求項5】 請求項3に記載の前記金属部品と前記F
RP製筒体とがセレーション結合されて製造されている
軸部品。
5. The metal part according to claim 3 and the F
A shaft component manufactured by serration coupling with an RP cylinder.
【請求項6】 請求項4に記載の前記金属部品と前記F
RP製筒体とがセレーション結合されて製造されている
軸部品。
6. The metal part according to claim 4, wherein
A shaft component manufactured by serration coupling with an RP cylinder.
JP29020698A 1998-10-13 1998-10-13 Method of joining FRP cylinder and metal part and shaft part Expired - Fee Related JP3419324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29020698A JP3419324B2 (en) 1998-10-13 1998-10-13 Method of joining FRP cylinder and metal part and shaft part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29020698A JP3419324B2 (en) 1998-10-13 1998-10-13 Method of joining FRP cylinder and metal part and shaft part

Publications (2)

Publication Number Publication Date
JP2000120649A true JP2000120649A (en) 2000-04-25
JP3419324B2 JP3419324B2 (en) 2003-06-23

Family

ID=17753133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29020698A Expired - Fee Related JP3419324B2 (en) 1998-10-13 1998-10-13 Method of joining FRP cylinder and metal part and shaft part

Country Status (1)

Country Link
JP (1) JP3419324B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1270965A2 (en) 2001-06-21 2003-01-02 Kabushiki Kaisha Toyota Jidoshokki Yoke, power transmission shaft, and method for manufacturing yoke
WO2008088007A1 (en) * 2007-01-17 2008-07-24 Ntn Corporation Constant velocity universal joint
WO2019131549A1 (en) * 2017-12-27 2019-07-04 Ntn株式会社 Power transmission shaft
WO2019216848A3 (en) * 2017-11-23 2019-12-19 Borusan Teknoloji̇ Geli̇şti̇rme Ve Arge A.Ş. A shaft and production method thereof
US10935068B2 (en) 2017-11-16 2021-03-02 Goodrich Corporation Designs and methods of making of joints for composite components under dominant bending load
WO2022129186A1 (en) * 2020-12-16 2022-06-23 Crrc Qingdao Sifang Co., Ltd. Connection arrangement between a load application element and a fiber-plastic composite component
US11512734B2 (en) * 2019-06-06 2022-11-29 Jilin University Shaft-tube joint structure of carbon fiber reinforced plastic drive shaft

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1270965A2 (en) 2001-06-21 2003-01-02 Kabushiki Kaisha Toyota Jidoshokki Yoke, power transmission shaft, and method for manufacturing yoke
JP2003004060A (en) * 2001-06-21 2003-01-08 Toyota Industries Corp Coupling and power transmission shaft and method of manufacturing coupling
WO2008088007A1 (en) * 2007-01-17 2008-07-24 Ntn Corporation Constant velocity universal joint
US8506202B2 (en) 2007-01-17 2013-08-13 Ntn Corporation Constant velocity universal joint
US10935068B2 (en) 2017-11-16 2021-03-02 Goodrich Corporation Designs and methods of making of joints for composite components under dominant bending load
WO2019216848A3 (en) * 2017-11-23 2019-12-19 Borusan Teknoloji̇ Geli̇şti̇rme Ve Arge A.Ş. A shaft and production method thereof
WO2019131549A1 (en) * 2017-12-27 2019-07-04 Ntn株式会社 Power transmission shaft
US11767876B2 (en) 2017-12-27 2023-09-26 Ntn Corporation Power transmission shaft
US11512734B2 (en) * 2019-06-06 2022-11-29 Jilin University Shaft-tube joint structure of carbon fiber reinforced plastic drive shaft
WO2022129186A1 (en) * 2020-12-16 2022-06-23 Crrc Qingdao Sifang Co., Ltd. Connection arrangement between a load application element and a fiber-plastic composite component

Also Published As

Publication number Publication date
JP3419324B2 (en) 2003-06-23

Similar Documents

Publication Publication Date Title
JP2002206562A (en) Junction structure between two members and propeller shaft
CA1265349A (en) Graphite drive shaft assembly
JP2003004060A (en) Coupling and power transmission shaft and method of manufacturing coupling
JPS5977965A (en) Steering shaft for steering gear of automobile, etc. and its manufacture
EP3040147B1 (en) Cutting tool and spline processing method
US5230661A (en) Shaft assembly including a tube of fiber synthetic composite material and a connection element of rigid material and method of making it
JP2000120649A (en) Joining method for frp tubular body with metal component and shaft component
JP4053346B2 (en) Power transmission joint member
JP2003065316A (en) Joining structure between two members and propeller shaft
JP3634514B2 (en) Internal clamping device
JP2003211985A (en) Joint for propeller shaft made of frp
US11525482B2 (en) Method for producing a shaft-hub connection, and motor vehicle shaft having such a connection
JP2003237396A (en) Frp propeller shaft
JP3173075B2 (en) Manufacturing method of propeller shaft
WO2007092775A2 (en) Self-centering broach
JP2509129B2 (en) Friction welding method for dissimilar metal materials and roll manufactured by this method.
JP7217587B2 (en) power transmission shaft
JP2003161332A (en) Metal yoke, connection structure and connection method between metal yoke and frp tube
JP2005140207A (en) Propeller shaft
JP2000329130A (en) Propeller shaft
JP2003184854A (en) Propeller shaft and method of manufacturing the same and shaft made of frp
CN219864873U (en) Steel chisel
KR20180104204A (en) Method for manufacturing drive shaft
GB2045390A (en) Coupling parts for rotation
JPH06207623A (en) Steering rod and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees