JP2000120484A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine

Info

Publication number
JP2000120484A
JP2000120484A JP10315474A JP31547498A JP2000120484A JP 2000120484 A JP2000120484 A JP 2000120484A JP 10315474 A JP10315474 A JP 10315474A JP 31547498 A JP31547498 A JP 31547498A JP 2000120484 A JP2000120484 A JP 2000120484A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
exhaust gas
engine
ignition timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10315474A
Other languages
Japanese (ja)
Other versions
JP3634167B2 (en
Inventor
Masahiro Sakanushi
政浩 坂主
Hiroshi Ono
弘志 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP31547498A priority Critical patent/JP3634167B2/en
Publication of JP2000120484A publication Critical patent/JP2000120484A/en
Application granted granted Critical
Publication of JP3634167B2 publication Critical patent/JP3634167B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PROBLEM TO BE SOLVED: To improve drivability by restraining a fluctuation in engine output in a cruise operation state by increasingly correcting a suction air quantity by a prescribed quantity when engine output by correction of an ignition timing delay is judged comparatively large. SOLUTION: A judgment is made on whether or not it is lean operation time (S10), and when it is YES, a judgment is made on whether or not SOx sticks by a prescribed quantity or more to an NOx absorber (S12). When it is YES, a judgment is made on whether or not a vehicle is put in a cruise operation state (S16), and when it is YES, a judgment is made on whether or not a crank angle speed variation ΔME is not less than a prescribed value SM (S16). When it is NO, that is, when judged that a fluctuation in engine output is comparatively small, the ignition timing is corrected so as to delay by a prescribed quantity (S18). While, when it is YES, that is, when judged that a fluctuation in engine output by correction of an ignition timing delay is comparatively large, a preset third map is searched from an engine speed and intake pipe inside absolute pressure to calculate an increasing correction quantity of a suction air quantity to open a bypass air control valve by a corresponding quantity (S20).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は内燃機関の排気浄
化装置に関する。
The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine.

【0002】[0002]

【従来の技術】近年、リーンバーン機関など空燃比のリ
ーン化が進みつつあり、そのような機関にあっては、排
気ガスがリーン雰囲気にあるときに排気ガス中の窒素酸
化物を吸収し、排気ガスが理論空燃比以下のリッチ雰囲
気にあるときに吸収した窒素酸化物を還元(浄化)する
NOx吸収材(NOx吸収触媒。窒素酸化物浄化手段)
などを用いてリーン雰囲気でのNOx(窒素酸化物)成
分の浄化を図っている。
2. Description of the Related Art In recent years, lean air-fuel ratios such as lean-burn engines have been developed. In such engines, when exhaust gas is in a lean atmosphere, nitrogen oxides in the exhaust gas are absorbed, A NOx absorbent (NOx absorption catalyst, nitrogen oxide purifying means) for reducing (purifying) nitrogen oxides absorbed when the exhaust gas is in a rich atmosphere below the stoichiometric air-fuel ratio.
Purification of NOx (nitrogen oxide) components in a lean atmosphere is performed by using such methods.

【0003】ところで、燃料には硫黄Sが含まれている
が、その硫黄が触媒表面あるいはミクロポアにSOx
(硫黄酸化物)として付着(吸収)すると、触媒の浄化
効率が低下する。特に、上記したNOx吸収材にあって
は、硫黄を吸収し易く、いわゆる硫黄被毒を生じてNO
x吸収効率が低下する。
[0003] By the way, the fuel contains sulfur S, and the sulfur is deposited on the catalyst surface or on the micropores by SOx.
When the catalyst is attached (absorbed) as (sulfur oxide), the purification efficiency of the catalyst is reduced. In particular, in the above-mentioned NOx absorbent, sulfur is easily absorbed, so-called sulfur poisoning occurs, and NO
x absorption efficiency decreases.

【0004】NOx吸収材の吸収(吸着)あるいは還元
(脱離)に適した温度は250℃から550℃である
が、硫黄被毒再生に適する温度はそれよりも高く、リッ
チ雰囲気であれば600℃程度であり、さらに700℃
程度まで昇温されると、一層効果的に硫黄被毒から再生
することができる。
[0004] The temperature suitable for absorption (adsorption) or reduction (desorption) of the NOx absorbent is from 250 ° C to 550 ° C, but the temperature suitable for sulfur poisoning regeneration is higher than 600 ° C in a rich atmosphere. ℃, and 700 ℃
When the temperature is raised to the extent, the sulfur poisoning can be more effectively regenerated.

【0005】そこで、特開平8−100639号公報に
おいて、走行距離などから硫黄による被毒状態にあるか
否か推定し、被毒状態にあるときは中高負荷域において
点火時期を遅角して排気温度を上昇させ、付着した硫黄
を燃焼除去すると共に、機関回転数および負荷からマッ
プを検索して得た値だけ吸入空気量を増量補正し、点火
時期遅角によって低下した機関出力を回復させている。
Therefore, in Japanese Patent Application Laid-Open No. Hei 8-100639, it is estimated from a traveling distance or the like whether or not the vehicle is poisoned by sulfur. By raising the temperature and burning off the attached sulfur, increasing the intake air amount by the value obtained by searching the map from the engine speed and load, correcting the increase in the intake air amount, and recovering the engine output reduced by the ignition timing retard I have.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記し
た従来技術においては、機関回転数と負荷から予め設定
された特性(マップ)を検索して増加吸入空気量を求め
て行うのみで、実際に機関出力の変動を検出して吸入空
気量の増量補正を行うものではなかった。
However, in the above prior art, the engine is actually searched only by searching for a predetermined characteristic (map) from the engine speed and the load to obtain the increased intake air amount, and actually performing the engine operation. It does not detect the fluctuation of the output and perform the increase correction of the intake air amount.

【0007】さらに、上記した従来技術においては、機
関出力が安定した運転フィーリングが悪化しない中負荷
域から高負荷域において点火時期遅角補正および吸入空
気量増加補正を行っているが、特にクルーズ運転状態の
ような低負荷域にあっては、遅角補正による機関出力変
化が大きくなり、ドライバビリティの低下を招く。
Further, in the above-described prior art, the ignition timing is corrected to be retarded and the intake air amount is increased in a medium load range to a high load range in which the engine feeling is stable and the driving feeling is not deteriorated. In a low load range such as an operation state, a change in the engine output due to the retard correction becomes large, leading to a decrease in drivability.

【0008】従って、この発明の目的は上記した不都合
を解消することにあり、クルーズ運転状態にあるとき、
クランク角速度の変化から機関出力の変動を監視し、ク
ランク角速度の変化が所定値未満のとき、点火時期を遅
角させて排気温度を昇温させると共に、クランク角速度
の変化が所定値以上のとき、吸入空気量を増量補正し、
よってクルーズ運転状態における機関出力の変動を抑制
してドライバビリティを向上させるようにした内燃機関
の排気浄化装置を提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned disadvantages, and when the vehicle is in a cruise driving state,
The engine output fluctuation is monitored from the change in the crank angular velocity, and when the change in the crank angular velocity is less than a predetermined value, the ignition timing is retarded to raise the exhaust gas temperature, and when the change in the crank angular velocity is equal to or more than the predetermined value, Increase the amount of intake air and correct it.
Accordingly, it is an object of the present invention to provide an exhaust gas purifying apparatus for an internal combustion engine which suppresses fluctuations in engine output in a cruise operation state and improves drivability.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1項にあっては、内燃機関の排気系に設け
られ、排気ガスの空燃比がリーンのときに排気ガス中の
窒素酸化物を吸収し、排気ガスの空燃比が理論空燃比あ
るいはリッチのときに吸収した窒素酸化物を還元する窒
素酸化物浄化手段を有する内燃機関の排気浄化装置にお
いて、前記内燃機関がクルーズ運転状態にあるか否か検
出するクルーズ運転状態検出手段、前記内燃機関がクル
ーズ運転状態にあることが検出されたとき、前記内燃機
関のクランク角速度の変化を検出して所定値と比較する
比較手段、前記検出されたクランク角速度の変化が所定
値未満のとき、前記窒素酸化物浄化手段が硫黄による被
毒状態にある場合、前記内燃機関に供給する点火時期を
遅角させて排気温度を上昇させる排気温度上昇手段、お
よび前記検出されたクランク角速度の変化が所定値以上
のとき、前記内燃機関に供給する吸入空気量を増量する
吸入空気量増量手段を備える如く構成した。
In order to achieve the above object, according to the present invention, an exhaust system of an internal combustion engine is provided, and when the air-fuel ratio of the exhaust gas is lean, the amount of the exhaust gas is reduced. In an exhaust gas purifying apparatus for an internal combustion engine having a nitrogen oxide purifying means for absorbing nitrogen oxides and reducing the absorbed nitrogen oxides when the air-fuel ratio of the exhaust gas is a stoichiometric air-fuel ratio or rich, the cruise operation A cruise operation state detection means for detecting whether or not the engine is in a state, a comparison means for detecting a change in the crank angular velocity of the internal combustion engine and comparing the detected change with a predetermined value when the internal combustion engine is detected to be in a cruise operation state; When the detected change in the crank angular speed is less than a predetermined value, and when the nitrogen oxide purifying means is poisoned by sulfur, the ignition timing supplied to the internal combustion engine is retarded to reduce the exhaust gas temperature. Exhaust gas temperature raising means for raising the, and the time change of the detected crank angular velocity is a predetermined value or more, and composed as provided an intake air amount increasing means for increasing an intake air quantity supplied to the internal combustion engine.

【0010】これにより、遅角補正によるエンジン出力
(トルク)が比較的大きいと判断されるときは吸入空気
量を増量、より詳しくは所定量だけ増量補正するので、
点火時期遅角補正によって低下したエンジン出力(トル
ク)を増加(回復)することができ、エンジン出力の変
動を抑制することができ、よってドライバビリティ、特
にクルーズ運転状態におけるドライバビリティを向上さ
せることができる。
Accordingly, when it is determined that the engine output (torque) due to the retard correction is relatively large, the intake air amount is increased, more specifically, the increase correction is performed by a predetermined amount.
The engine output (torque) reduced by the ignition timing retard correction can be increased (recovered), and the fluctuation of the engine output can be suppressed, so that the drivability, particularly, the drivability in a cruise driving state can be improved. it can.

【0011】さらに、吸入空気量の増加補正は、遅角補
正によるエンジン出力(トルク)の変動が比較的大きい
と判断されるときに行われることから、吸入空気量を不
要に増加させることがなく、よって燃料噴射量を不要に
増加させることがない。
Further, the increase correction of the intake air amount is performed when it is determined that the fluctuation of the engine output (torque) due to the retard correction is relatively large, so that the intake air amount is not unnecessarily increased. Therefore, the fuel injection amount is not unnecessarily increased.

【0012】[0012]

【発明の実施の形態】以下、添付図面に即してこの発明
に係る内燃機関の排気浄化装置の実施の形態を説明す
る。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of an exhaust gas purifying apparatus for an internal combustion engine according to the present invention.

【0013】図1は、その排気浄化装置を概略的に示す
全体図である。
FIG. 1 is an overall view schematically showing the exhaust gas purifying apparatus.

【0014】図において、符号10は4気筒などの多気
筒内燃機関(以下「エンジン」という)を示し、10a
はその本体を示す。
In FIG. 1, reference numeral 10 denotes a multi-cylinder internal combustion engine such as a four-cylinder engine (hereinafter referred to as "engine").
Indicates its body.

【0015】吸気管12の先端に配置されたエアクリー
ナ(図示せず)から導入された吸気は、スロットルボデ
ィ14に収容されたスロットルバルブ16でその流量を
調節されつつサージタンクおよび吸気マニホルド(共に
図示せず)を経て、各気筒へ流入される。
The intake air introduced from an air cleaner (not shown) disposed at the end of the intake pipe 12 is controlled in its flow rate by a throttle valve 16 housed in a throttle body 14 while a surge tank and an intake manifold (both in FIG. (Not shown), and flows into each cylinder.

【0016】各気筒の吸気バルブ(図示せず)の付近に
はインジェクタ(燃料噴射弁)18が設けられて燃料を
噴射する。噴射されて吸気と一体となった混合気は、各
気筒内で図示しない点火プラグで点火されて燃焼してピ
ストン(図示せず)を駆動する。
An injector (fuel injection valve) 18 is provided near an intake valve (not shown) of each cylinder to inject fuel. The air-fuel mixture injected and integrated with the intake air is ignited by an ignition plug (not shown) in each cylinder and burns to drive a piston (not shown).

【0017】燃焼後の排気ガスは、排気バルブ(図示せ
ず)および排気マニホルド(図示せず)を介して排気管
22に送られる。排気管22には三元触媒機能を備えた
NOx吸収材(NOx吸収触媒あるいは窒素酸化物浄化
手段)24が配置される。
The exhaust gas after combustion is sent to an exhaust pipe 22 via an exhaust valve (not shown) and an exhaust manifold (not shown). A NOx absorbent (NOx absorption catalyst or nitrogen oxide purifying means) 24 having a three-way catalyst function is disposed in the exhaust pipe 22.

【0018】NOx吸収材24は、先に述べた特開平6
−66129号公報あるいは特開平7−217474号
公報に記載されるNOx吸収剤と同種の触媒であって、
排気ガスの空燃比がリーンのときに排気ガス中の窒素酸
化物を吸収し、排気ガスの空燃比が理論空燃比あるいは
リッチのとき、換言すれば排気ガス中の酸素濃度が低下
すると、吸収したNOxを排気ガス中の未燃HC,CO
と反応させて還元浄化する。
The NOx absorbent 24 is the same as that described in
-66129 or a catalyst of the same type as the NOx absorbent described in JP-A-7-217474,
When the air-fuel ratio of the exhaust gas is lean, it absorbed nitrogen oxides in the exhaust gas, and when the air-fuel ratio of the exhaust gas was the stoichiometric air-fuel ratio or rich, in other words, when the oxygen concentration in the exhaust gas decreased, it was absorbed. NOx is converted to unburned HC and CO in exhaust gas.
And purify by reduction.

【0019】吸気管12において、インジェクタ18と
スロットルボディ14の間には、吸気管12を大気に連
通するバイパスエア通路26が接続される。バイパスエ
ア通路26の大気開口端にはエアクリーナ28が取り付
けられると共に、その途中にはバイパスエア制御バルブ
(EACV)30が配置される。
In the intake pipe 12, a bypass air passage 26 that connects the intake pipe 12 to the atmosphere is connected between the injector 18 and the throttle body 14. An air cleaner 28 is attached to the atmosphere opening end of the bypass air passage 26, and a bypass air control valve (EACV) 30 is arranged in the middle of the air cleaner 28.

【0020】バイパスエア制御バルブ30は常閉型であ
り、バイパスエア通路26の開度(開口面積)を連続的
に変化させるバルブ本体30aと、そのバルブ本体30
aを閉塞方向に付勢するスプリング30bと、通電時に
バルブ本体30aをスプリング力に抗して開放方向に移
動させる電磁ソレノイド30cからなる。
The bypass air control valve 30 is a normally closed type, and has a valve body 30a for continuously changing the opening degree (opening area) of the bypass air passage 26;
a spring 30b for urging the valve body 30a in the closing direction, and an electromagnetic solenoid 30c for moving the valve body 30a in the opening direction against the spring force when energized.

【0021】図1においてエンジン本体10のカム軸ま
たはクランク軸(共に図示せず)の付近にクランク角セ
ンサ(図で「NE」と示す)34が設けられ、特定気筒
の特定クランク角度ごとに気筒判別信号を、TDC(上
死点)あるいはその近傍ごとにTDC信号を、所定クラ
ンク角度ごとにCRK信号を出力する。
In FIG. 1, a crank angle sensor (shown as "NE" in the figure) 34 is provided near a camshaft or a crankshaft (both not shown) of the engine body 10, and a cylinder is provided for each specific crank angle of a specific cylinder. It outputs a discrimination signal, a TDC signal at or near TDC (top dead center), and a CRK signal at every predetermined crank angle.

【0022】スロットルバルブ16にはスロットル開度
センサ(図で「TH」と示す)36が接続され、スロッ
トル開度THに比例した信号を出力する。その下流の分
岐路38の末端には絶対圧センサ(図で「PBA」と示
す)40が設けられ、吸気管内絶対圧PBAに応じた信
号を出力する。
A throttle opening sensor (shown as "TH" in the figure) 36 is connected to the throttle valve 16, and outputs a signal proportional to the throttle opening TH. An absolute pressure sensor (indicated as “PBA” in the figure) 40 is provided at the end of the downstream branch path 38 and outputs a signal corresponding to the absolute pressure PBA in the intake pipe.

【0023】シリンダブロックなどの適宜位置には水温
センサ(図で「TW」と示す)42が設けられてエンジ
ン冷却水温TWに応じた信号を出力すると共に、排気管
22においてNOx吸収材24の上流にはO2 センサ
(図で「O2 」と示す)46が設けられ、排気ガス中の
酸素濃度に比例した信号を出力する。
A water temperature sensor (shown as "TW" in the figure) 42 is provided at an appropriate position such as a cylinder block to output a signal corresponding to the engine cooling water temperature TW, and is provided upstream of the NOx absorbent 24 in the exhaust pipe 22. Is provided with an O 2 sensor (shown as “O 2 ”) 46 in the figure, and outputs a signal proportional to the oxygen concentration in the exhaust gas.

【0024】さらに、NOx吸収材24の下流にはNO
x吸収材24に近接して温度センサ(図で「TCAT」
と示す)48が設けられ、NOx吸収材24の温度(あ
るいは排気温度)TCATに応じた信号を出力する。
Further, NO
x Temperature sensor close to the absorber 24 (“TCAT” in the figure)
And outputs a signal corresponding to the temperature (or exhaust temperature) TCAT of the NOx absorbent 24.

【0025】さらに、エンジン10が搭載された車両
(図示せず)のドライブシャフト(図示せず)の付近に
は車速センサ50が設けられ、ドライブシャフト所定回
転当たり、即ち、車速Vに応じた信号を出力する。
Further, a vehicle speed sensor 50 is provided near a drive shaft (not shown) of a vehicle (not shown) on which the engine 10 is mounted, and a signal corresponding to a predetermined rotation of the drive shaft, that is, a signal corresponding to the vehicle speed V is provided. Is output.

【0026】これらセンサ群の出力は、電子制御ユニッ
ト(以下「ECU」と言う)60に送られる。
The outputs of these sensor groups are sent to an electronic control unit (hereinafter referred to as “ECU”) 60.

【0027】ECU60は、入力回路60a、CPU6
0b、記憶手段60c、および出力回路60dよりな
る。入力回路60aは、各種センサからの入力信号波形
を整形する、信号レベルを所定レベルに変換する、アナ
ログ信号値をデジタル信号値に変換する、などの処理を
行う。記憶手段60cは、CPU60bが実行する各種
演算プログラムおよび演算結果などを記憶する。
The ECU 60 includes an input circuit 60a, a CPU 6
0b, storage means 60c, and output circuit 60d. The input circuit 60a performs processes such as shaping input signal waveforms from various sensors, converting a signal level to a predetermined level, and converting an analog signal value to a digital signal value. The storage unit 60c stores various calculation programs executed by the CPU 60b, calculation results, and the like.

【0028】CPU60bは前記したCRK信号をカウ
ントしてエンジン回転数NEを検出し、エンジン回転数
NEと吸気管内絶対圧PBAとから基本燃料噴射量(イ
ンジェクタ開弁時間)を演算し、目標空燃比などで補正
すると共に、エンジン回転数NEと吸気管内絶対圧PB
Aとから基本点火時期を演算し、水温などで補正する。
The CPU 60b counts the CRK signal to detect the engine speed NE, calculates a basic fuel injection amount (injector valve opening time) from the engine speed NE and the intake pipe absolute pressure PBA, and calculates a target air-fuel ratio. The engine speed NE and the intake pipe absolute pressure PB
The basic ignition timing is calculated from A and corrected by the water temperature or the like.

【0029】さらに、CPU60bは、続いて述べる如
く、点火時期を遅角補正させて排気温度を上昇させると
共に、吸入空気量を増量補正する。
Further, as will be described subsequently, the CPU 60b retards the ignition timing to increase the exhaust gas temperature and corrects the intake air amount to increase.

【0030】次いで、図2フロー・チャートを参照して
出願に係る装置の上記した動作を説明する。図示のプロ
グラムは、例えばTDCごとに実行される。
Next, the above-described operation of the apparatus according to the present application will be described with reference to the flowchart of FIG. The illustrated program is executed for each TDC, for example.

【0031】以下説明すると、先ずS10においてリー
ン運転中か否か判断し、否定されるときは以降の処理を
スキップする。ここで、リーン運転中とは、目標空燃比
が22:1付近のリーン空燃比に制御される運転状態に
あることを意味する。
In the following, first, in S10, it is determined whether or not the vehicle is in the lean operation. If the result is NO, the subsequent processing is skipped. Here, lean operation means that the vehicle is in an operation state in which the target air-fuel ratio is controlled to a lean air-fuel ratio of around 22: 1.

【0032】S10で肯定されるときはS12に進み、
NOx吸収材24にSOx(硫黄酸化物)が所定量以上
付着した、即ち、S(硫黄)、より詳しくはSOx(硫
黄酸化物)による被毒状態にあるか否か判断する。
When the result in S10 is affirmative, the program proceeds to S12,
It is determined whether or not SOx (sulfur oxide) has adhered to the NOx absorbent 24 in a predetermined amount or more, that is, whether or not it is poisoned by S (sulfur), more specifically, SOx (sulfur oxide).

【0033】この判断は前記した従来技術と同様に走行
距離から推定して行っても良く、あるいは特開平6−6
6129号公報で提案されるように、NOx吸収量など
から推定して行っても良く、あるいは特開平6−174
692号公報または特開平9−189678号公報で提
案されるSOxセンサを用いて排気ガス中のSOx濃度
を検出して行っても良い。
This determination may be made by estimating from the traveling distance in the same manner as in the above-mentioned prior art.
As proposed in Japanese Patent Application Laid-Open No. 6129, estimation may be performed from the NOx absorption amount or the like.
The detection may be performed by detecting the concentration of SOx in the exhaust gas using an SOx sensor proposed in Japanese Patent Application Laid-Open No. 692 or Japanese Patent Application Laid-Open No. 9-189678.

【0034】S12で否定されるときは以降の処理をス
キップすると共に、肯定されるときはS14に進み、車
両がクルーズ運転状態にあるか否か判断する。これは、
前記した車速センサ50の出力から、車速Vの変化が少
ない運転状態にあるか否か判断することで行う。
When the result in S12 is negative, the subsequent processing is skipped. When the result is affirmative, the process proceeds to S14, where it is determined whether or not the vehicle is in a cruise driving state. this is,
The determination is made based on the output of the vehicle speed sensor 50 as to whether or not the vehicle is in a driving state in which the change in the vehicle speed V is small.

【0035】S14で否定されるときは以降の処理をス
キップすると共に、肯定されるときはS16に進み、ク
ランク角速度変化量(クランク角速度の変化)ΔMEが
所定値SM以上か否か判断する。クランク角速度変化量
は、前記したクランク角センサ34が出力するTDC信
号あるいはCRK信号の周期の1階差分値(あるいは微
分値)を算出することで求める。
When the result in S14 is negative, the subsequent processing is skipped. When the result is affirmative, the process proceeds to S16, in which it is determined whether or not the amount of change in crank angular speed (change in crank angular speed) ΔME is equal to or greater than a predetermined value SM. The amount of change in the crank angular velocity is obtained by calculating the first-order difference value (or differential value) of the cycle of the TDC signal or the CRK signal output from the crank angle sensor 34 described above.

【0036】S16の処理は、具体的には、エンジン1
0の回転変動、より具体的にはエンジン出力(トルク)
の変動が比較的大きいか否か判断する作業であり、その
意図から所定値SMは適宜な値を選んで設定する。
The processing in S16 is specifically performed by the engine 1
0 rotation fluctuation, more specifically engine output (torque)
Is an operation for determining whether or not the variation of the predetermined value is relatively large. The predetermined value SM is selected and set as appropriate from the intention.

【0037】S16で否定され、クランク角速度変化量
ΔMEが所定値SM未満、換言すればエンジン10の出
力(トルク)の変動が比較的小さいと判断されるときは
S18に進み、点火時期を所定量遅角補正する。
If the result of the determination in S16 is negative, that is, if the variation in crank angular speed ΔME is smaller than the predetermined value SM, in other words, it is determined that the fluctuation of the output (torque) of the engine 10 is relatively small, the routine proceeds to S18, in which the ignition timing is reduced by a predetermined amount. Correct the retard angle.

【0038】点火時期制御は図示しない別ルーチンで行
われ、前記した如く、エンジン回転数NEおよび吸気管
内絶対圧PBAから得た吸気管内絶対圧PBAから予め
設定された特性(マップ)を検索して基本点火時期が算
出され、水温などで補正されて出力点火時期が決定され
る。
The ignition timing control is performed by a separate routine (not shown). As described above, a preset characteristic (map) is searched from the intake pipe absolute pressure PBA obtained from the engine speed NE and the intake pipe absolute pressure PBA. The basic ignition timing is calculated and corrected based on the water temperature or the like to determine the output ignition timing.

【0039】S16においてはエンジン回転数NEおよ
び吸気管内絶対圧PBAから予め設定された第2の特性
(マップ。特性図示省略)を検索して点火時期遅角量を
算出し、その量だけ出力点火時期を遅角補正する。
In step S16, a preset second characteristic (map; characteristic not shown) is retrieved from the engine speed NE and the intake pipe absolute pressure PBA to calculate the ignition timing retard amount, and the output ignition is calculated by that amount. The timing is corrected for delay.

【0040】それによって燃焼時期が遅延されて排気温
度が経時的に上昇させられ、NOx吸収材24に付着し
たSOxが燃焼除去される。それによって、NOx吸収
材24を硫黄被毒から再生することができる。
As a result, the combustion timing is delayed, the exhaust gas temperature is raised with time, and the SOx adhered to the NOx absorbent 24 is burned and removed. Thereby, the NOx absorbent 24 can be regenerated from sulfur poisoning.

【0041】尚、排気温度が前記した再生温度以上に上
昇した時点で理論空燃比以下のリッチ空燃比、例えば1
2:1を供給すると、付着したSOxが排気ガス中の未
燃HC、未燃COなどの還元剤により還元させられてN
Ox吸収材24から脱離することから、NOx吸収材2
4をより効果的に硫黄被毒から再生することができる。
When the exhaust gas temperature rises above the regeneration temperature, the rich air-fuel ratio below the stoichiometric air-fuel ratio, for example, 1
When 2: 1 is supplied, the attached SOx is reduced by a reducing agent such as unburned HC and unburned CO in the exhaust gas, and
Since the NOx absorbent 2 is desorbed from the Ox absorbent 24, the NOx absorbent 2
4 can be more effectively regenerated from sulfur poisoning.

【0042】他方、S16で肯定され、クランク角速度
変化量ΔMEが所定値SM以上、換言すれば遅角補正に
よるエンジン出力(トルク)の変動が比較的大きいと判
断されるときはS20に進み、吸入空気量を所定量だけ
増量補正する。
On the other hand, when the result in S16 is affirmative, and when it is determined that the crank angular speed change amount ΔME is equal to or greater than the predetermined value SM, in other words, the fluctuation of the engine output (torque) due to the retard correction is relatively large, the routine proceeds to S20, The air amount is increased and corrected by a predetermined amount.

【0043】より具体的には、エンジン回転数NEおよ
び吸気管内絶対圧PBAから予め設定された第3の特性
(マップ)を検索して吸入空気量の増加補正量を算出す
る。そして、図示しないEACV制御ルーチンにおいて
算出された量に相当する量だけ前記したEACVバルブ
が開弁され、結果的に、算出された増加補正量に相当す
る空気量がバイパスエア通路26を通って吸気管12に
流入されられる。
More specifically, a predetermined third characteristic (map) is searched from the engine speed NE and the intake pipe absolute pressure PBA to calculate an increase correction amount of the intake air amount. Then, the EACV valve is opened by an amount corresponding to an amount calculated in an EACV control routine (not shown). As a result, an air amount corresponding to the calculated increase correction amount passes through the bypass air passage 26 and is taken in by the intake air. Flowed into tube 12.

【0044】燃料噴射も図示しない別ルーチンで行わ
れ、前記の如く、エンジン回転数NEおよび吸気管内絶
対圧PBAから予め設定された第4の特性(マップ)を
検索して基本燃料噴射量が算出され、O2 センサ46の
出力などから適宜補正されて出力燃料噴射量が前記した
インジェクタ18の開弁時間で算出される。
The fuel injection is also performed in a separate routine (not shown). As described above, the preset fourth characteristic (map) is retrieved from the engine speed NE and the intake pipe absolute pressure PBA to calculate the basic fuel injection amount. Then, the output fuel injection amount is appropriately corrected based on the output of the O 2 sensor 46 and the like, and the output fuel injection amount is calculated based on the valve opening time of the injector 18.

【0045】上記した処理を、NOx吸収材温度TCA
Tが前記した再生温度に達するまで繰り返す。
The above-described processing is carried out at the temperature of the NOx absorbent TCA.
Repeat until T reaches the regeneration temperature described above.

【0046】この実施の形態にあっては、以上の如く、
内燃機関(エンジン10)の排気系(排気管22)に設
けられ、排気ガスの空燃比がリーンのときに排気ガス中
の窒素酸化物NOxを吸収し、排気ガスの空燃比が理論
空燃比あるいはリッチのときに吸収した窒素酸化物を還
元する窒素酸化物浄化手段(NOx吸収材24)を有す
る内燃機関の排気浄化装置において、前記内燃機関がク
ルーズ運転状態にあるか否か検出するクルーズ運転状態
検出手段(ECU60,S14)、前記内燃機関がクル
ーズ運転状態にあることが検出されたとき、前記内燃機
関のクランク角速度の変化(クランク角速度変化量)Δ
MEを検出して所定値SMと比較する比較手段(ECU
60,S16)、前記検出されたクランク角速度の変化
が所定値未満のとき、前記窒素酸化物浄化手段が硫黄に
よる被毒状態にある場合、前記内燃機関に供給する点火
時期を遅角させて排気温度を上昇させる排気温度上昇手
段(ECU60,S12,S18)、および前記検出さ
れたクランク角速度の変化が所定値以上のとき、前記内
燃機関に供給する吸入空気量を増量する吸入空気量増量
手段(ECU60,S20)を備える如く構成した。
In this embodiment, as described above,
It is provided in an exhaust system (exhaust pipe 22) of an internal combustion engine (engine 10). When the air-fuel ratio of the exhaust gas is lean, it absorbs nitrogen oxides NOx in the exhaust gas, and the air-fuel ratio of the exhaust gas becomes the stoichiometric air-fuel ratio or A cruise operation state for detecting whether or not the internal combustion engine is in a cruise operation state in an exhaust gas purification apparatus for an internal combustion engine having a nitrogen oxide purification means (NOx absorbent 24) for reducing nitrogen oxides absorbed when rich. Detecting means (ECU 60, S14), when it is detected that the internal combustion engine is in a cruise operation state, a change in crank angular velocity of the internal combustion engine (crank angular velocity change amount) Δ
Comparison means (ECU for detecting ME and comparing with a predetermined value SM
60, S16), when the detected change in the crank angular velocity is less than a predetermined value, and when the nitrogen oxide purifying means is poisoned by sulfur, the ignition timing supplied to the internal combustion engine is retarded and the exhaust gas is exhausted. Exhaust temperature increasing means for increasing the temperature (ECU 60, S12, S18), and intake air amount increasing means for increasing the amount of intake air supplied to the internal combustion engine when the detected change in the crank angular speed is equal to or greater than a predetermined value ( ECU60, S20).

【0047】尚、上記において、NOx吸収材温度をセ
ンサから検出したが、適宜な論理を用いて推定しても良
い。
In the above description, the temperature of the NOx absorbent is detected from the sensor, but it may be estimated using appropriate logic.

【0048】また、三元触媒機能を備えたNOx吸収材
を使用したが、三元触媒を独立に設けても良い。
Although a NOx absorbent having a three-way catalyst function is used, a three-way catalyst may be provided independently.

【0049】[0049]

【発明の効果】請求項1項にあっては、遅角補正による
エンジン出力(トルク)が比較的大きいと判断されると
きは吸入空気量を増量、より詳しくは所定量だけ増量補
正するので、点火時期遅角補正によって低下したエンジ
ン出力(トルク)を増加(回復)することができ、エン
ジン出力の変動を抑制することができ、よってドライバ
ビリティ、特にクルーズ運転状態におけるドライバビリ
ティを向上させることができる。
According to the first aspect, when it is determined that the engine output (torque) by the retard correction is relatively large, the intake air amount is increased, and more specifically, the intake air amount is increased and corrected by a predetermined amount. The engine output (torque) reduced by the ignition timing retard correction can be increased (recovered), and the fluctuation of the engine output can be suppressed, so that the drivability, particularly, the drivability in a cruise driving state can be improved. it can.

【0050】さらに、吸入空気量の増加補正は、遅角補
正によるエンジン出力(トルク)の変動が比較的大きい
と判断されるときに行われることから、吸入空気量を不
要に増加させることがなく、よって燃料噴射量を不要に
増加させることがない。
Further, the increase correction of the intake air amount is performed when it is determined that the fluctuation of the engine output (torque) due to the retard angle correction is relatively large, so that the intake air amount is not unnecessarily increased. Therefore, the fuel injection amount is not unnecessarily increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係る内燃機関の排気浄化装置を含む
内燃機関の制御装置を全体的に示す概略図である。
FIG. 1 is a schematic diagram showing an entire control device of an internal combustion engine including an exhaust gas purification device for an internal combustion engine according to the present invention.

【図2】この発明に係る内燃機関の排気浄化装置の動作
を示すフロー・チャートである。
FIG. 2 is a flowchart showing the operation of the exhaust gas purifying apparatus for an internal combustion engine according to the present invention.

【符号の説明】[Explanation of symbols]

10 内燃機関(エンジン) 12 吸気管 16 スロットルバルブ 18 インジェクタ 22 排気管 24 NOx吸収材(NOx吸収触媒。窒素酸化物浄化
手段) 30 EACV(バイパスエア制御バルブ) 34 クランク角センサ 40 絶対圧センサ 48 温度センサ 60 ECU(電子制御ユニット)
DESCRIPTION OF SYMBOLS 10 Internal combustion engine (engine) 12 Intake pipe 16 Throttle valve 18 Injector 22 Exhaust pipe 24 NOx absorbent (NOx absorption catalyst. Nitrogen oxide purification means) 30 EACV (bypass air control valve) 34 Crank angle sensor 40 Absolute pressure sensor 48 Temperature Sensor 60 ECU (electronic control unit)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/24 F01N 3/24 R 3/28 301 3/28 301C F02D 41/04 310 F02D 41/04 310A F02P 5/15 F02P 5/15 B Fターム(参考) 3G022 AA03 AA06 CA00 DA02 EA00 GA00 GA01 GA05 GA07 GA08 GA09 GA10 GA19 3G084 AA03 AA04 BA06 BA13 BA17 CA05 DA10 DA11 EA11 EB09 EB12 FA00 FA05 FA10 FA11 FA20 FA27 FA28 FA29 FA33 FA34 FA38 FA39 3G091 AA12 AA28 AB06 BA11 BA14 CB02 CB05 DA07 DC03 EA00 EA01 EA07 EA16 EA17 EA19 EA33 EA34 EA38 EA39 FA18 FB03 FC02 HA36 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F01N 3/24 F01N 3/24 R 3/28 301 3/28 301C F02D 41/04 310 F02D 41/04 310A F02P 5/15 F02P 5/15 B F term (reference) 3G022 AA03 AA06 CA00 DA02 EA00 GA00 GA01 GA05 GA07 GA08 GA09 GA10 GA19 3G084 AA03 AA04 BA06 BA13 BA17 CA05 DA10 DA11 EA11 EB09 EB12 FA00 FA05 FA10 FA11 FA20 FA30 FA38 FA39 3G091 AA12 AA28 AB06 BA11 BA14 CB02 CB05 DA07 DC03 EA00 EA01 EA07 EA16 EA17 EA19 EA33 EA34 EA38 EA39 FA18 FB03 FC02 HA36

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排気系に設けられ、排気ガス
の空燃比がリーンのときに排気ガス中の窒素酸化物を吸
収し、排気ガスの空燃比が理論空燃比あるいはリッチの
ときに吸収した窒素酸化物を還元する窒素酸化物浄化手
段を有する内燃機関の排気浄化装置において、 a.前記内燃機関がクルーズ運転状態にあるか否か検出
するクルーズ運転状態検出手段、 b.前記内燃機関がクルーズ運転状態にあることが検出
されたとき、前記内燃機関のクランク角速度の変化を検
出して所定値と比較する比較手段、 c.前記検出されたクランク角速度の変化が所定値未満
のとき、前記窒素酸化物浄化手段が硫黄による被毒状態
にある場合、前記内燃機関に供給する点火時期を遅角さ
せて排気温度を上昇させる排気温度上昇手段、および d.前記検出されたクランク角速度の変化が所定値以上
のとき、前記内燃機関に供給する吸入空気量を増量する
吸入空気量増量手段、 を備えたことを特徴とする内燃機関の排気浄化装置。
1. An exhaust system for an internal combustion engine, which absorbs nitrogen oxides in an exhaust gas when the air-fuel ratio of the exhaust gas is lean, and absorbs the nitrogen oxides in the exhaust gas when the air-fuel ratio of the exhaust gas is a stoichiometric air-fuel ratio or rich. An exhaust gas purification apparatus for an internal combustion engine having a nitrogen oxide purifying means for reducing nitrogen oxides, comprising: a. Cruise operation state detection means for detecting whether the internal combustion engine is in a cruise operation state, b. Comparing means for detecting a change in the crank angular speed of the internal combustion engine and comparing it with a predetermined value when it is detected that the internal combustion engine is in a cruise operation state; c. When the detected change in the crank angular speed is less than a predetermined value, and when the nitrogen oxide purifying means is poisoned by sulfur, the ignition timing supplied to the internal combustion engine is retarded to increase the exhaust temperature. Temperature increasing means; and d. An intake air amount increasing means for increasing an amount of intake air supplied to the internal combustion engine when the detected change in the crank angular speed is equal to or greater than a predetermined value.
JP31547498A 1998-10-19 1998-10-19 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP3634167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31547498A JP3634167B2 (en) 1998-10-19 1998-10-19 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31547498A JP3634167B2 (en) 1998-10-19 1998-10-19 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2000120484A true JP2000120484A (en) 2000-04-25
JP3634167B2 JP3634167B2 (en) 2005-03-30

Family

ID=18065799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31547498A Expired - Fee Related JP3634167B2 (en) 1998-10-19 1998-10-19 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3634167B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223680A (en) * 2007-03-14 2008-09-25 Toyota Motor Corp Control device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223680A (en) * 2007-03-14 2008-09-25 Toyota Motor Corp Control device for internal combustion engine

Also Published As

Publication number Publication date
JP3634167B2 (en) 2005-03-30

Similar Documents

Publication Publication Date Title
US6901749B2 (en) Exhaust emission control system for internal combustion engine
JP3805098B2 (en) Engine exhaust gas purification control device
US6484493B2 (en) Exhaust emission control device for internal combustion engine
JP4309908B2 (en) Exhaust gas purification device for internal combustion engine
JP3033449B2 (en) Combustion control device for spark ignition internal combustion engine
CN1877104B (en) Exhaust gas purification device for internal combustion engine
KR100408757B1 (en) Exhaust gas cleaning device of internal combustion engine
JPH11101154A (en) Emission control device for internal combustion engine
JP2009264341A (en) Internal combustion engine
JPH11229859A (en) Internal combustion engine
JPH0777033A (en) Exhaust gas purifier of internal combustion engine
JP3634167B2 (en) Exhaust gas purification device for internal combustion engine
JP2000110655A (en) Exhaust emission control device for internal combustion engine
JP3642194B2 (en) In-cylinder internal combustion engine
JP2000120428A (en) Exhaust emission control device of internal combustion engine
JP2005163590A (en) Exhaust emission control device for engine
US20210003086A1 (en) Engine system
JPH11315713A (en) Exhaust purification controlling device for engine
JP3551083B2 (en) Exhaust gas purification device for internal combustion engine
JP2010265802A (en) Exhaust emission control device of internal combustion engine
JP4697473B2 (en) Control device for internal combustion engine
JP5308875B2 (en) Exhaust gas purification device for internal combustion engine
JP5331554B2 (en) Exhaust gas purification device for internal combustion engine
KR20180067898A (en) Method for reducing exhaust gas of engine in case of controlling scavenging
JP2005083205A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees