JP2000119769A - Manufacture of spongy porous nickel metallic sheet excellent in thermal and electric conductivity - Google Patents

Manufacture of spongy porous nickel metallic sheet excellent in thermal and electric conductivity

Info

Publication number
JP2000119769A
JP2000119769A JP10296304A JP29630498A JP2000119769A JP 2000119769 A JP2000119769 A JP 2000119769A JP 10296304 A JP10296304 A JP 10296304A JP 29630498 A JP29630498 A JP 29630498A JP 2000119769 A JP2000119769 A JP 2000119769A
Authority
JP
Japan
Prior art keywords
powder
sponge
slurry
water
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10296304A
Other languages
Japanese (ja)
Inventor
Koji Hoshino
孝二 星野
Yoshiyuki Mayuzumi
良享 黛
Saburo Wakita
三郎 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP10296304A priority Critical patent/JP2000119769A/en
Publication of JP2000119769A publication Critical patent/JP2000119769A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a spongy porous metallic sheet excellent in thermal and electric conductivities and suitable for an electrode plate for a nickel-hydrogen battery. SOLUTION: The spongy porous nickel metallic sheet can be manufactured by adding a surfactant and a volatile organic solvent to slurry consisting of powdered raw material, water-soluble resin binder, plasticizer, and water to form foaming slurry, forming this foaming slurry into sheet-like state, foaming it into spongy state and applying drying to prepare a spongy green sheet, and then degreasing and burning this spongy green sheet. In this case, the powdered raw material is composed of a powder mixture of NiO powder of 0.1-10 μm average particle size and 2.0 to 4.0 g/cm3 underwater bulk density and Ni powder of 1-15 μm average particle size and 1.5 to 5.0 g/cm3 underwater bulk density.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、熱および電気伝
導性に優れたスポンジ状多孔質ニッケル金属板の製造方
法に関するものであり、この方法で製造した熱および電
気伝導性に優れたスポンジ状多孔質ニッケル金属板は、
高温用フィルター、空気清浄機用フィルター、アルカリ
二次電池の電極基板を作製するために使用されるが、特
にアルカリ二次電池特にニッケル水素電池の電極基板を
作製するのに適している。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sponge-like porous nickel metal sheet having excellent heat and electric conductivity, and a sponge-like porous sheet having excellent heat and electric conductivity produced by this method. Quality nickel metal plate
It is used for producing a high temperature filter, a filter for an air purifier, and an electrode substrate of an alkaline secondary battery, and is particularly suitable for producing an electrode substrate of an alkaline secondary battery, particularly a nickel hydride battery.

【0002】[0002]

【従来の技術】一般に、各種フィルター、アルカリ二次
電池の電極基板などには表面に開口し内部の空孔に連続
している空孔(以下、開口連続空孔という)を有するス
ポンジ状多孔質ニッケル金属板が使用されている。この
スポンジ状多孔質ニッケル金属板は、酸化ニッケル粉末
(以下、NiO粉末という)とニッケル粉末(以下、N
i粉末という)との混合粉末からなる原料粉末、水溶性
樹脂バインダー、可塑剤および水からなるスラリーに界
面活性剤および揮発性有機溶剤を添加して発泡スラリー
とし、この発泡スラリーを薄板状に成形し、前記揮発性
有機溶剤の蒸気圧および界面活性剤の起泡性を利用して
スポンジ状に発泡させたのち乾燥させてスポンジ状グリ
ーン板を作製し、このスポンジ状グリーン板を脱脂、焼
成することにより製造する。このスポンジ状多孔質ニッ
ケル金属板の製造方法を「スラリー発泡法」と言うが、
このスラリー発泡法で作製したスポンジ状多孔質ニッケ
ル金属板は、高温用フィルター、空気清浄機用フィルタ
ー、アルカリ二次電池特にニッケル水素電池の電極基板
などに使用されている。
2. Description of the Related Art Generally, various filters, electrode substrates of alkaline secondary batteries, and the like have a sponge-like porous material having pores opened on the surface and continuous with internal pores (hereinafter referred to as open continuous pores). Nickel metal plates are used. This sponge-like porous nickel metal plate is made of nickel oxide powder (hereinafter, referred to as NiO powder) and nickel powder (hereinafter, N
i) and a slurry comprising a water-soluble resin binder, a plasticizer, and water, to which a surfactant and a volatile organic solvent are added to form a foamed slurry. The foamed slurry is formed into a thin plate. A sponge-like green plate is prepared by foaming into a sponge shape by utilizing the vapor pressure of the volatile organic solvent and the foaming property of the surfactant, and then dried to prepare a sponge-like green plate. The sponge-like green plate is degreased and fired. It is manufactured by This method of producing a sponge-like porous nickel metal plate is called a "slurry foaming method".
The sponge-like porous nickel metal plate produced by the slurry foaming method is used for a high temperature filter, a filter for an air purifier, an electrode substrate of an alkaline secondary battery, particularly a nickel hydrogen battery, and the like.

【0003】従来、電気自動車や電動工具の電源として
鉛蓄電池やニッケル−カドミニウム電池などのアルカリ
二次電池が使用されていたが、鉛蓄電池やニッケル−カ
ドミニウム電池には鉛やカドミニウムなどの有害金属が
大量に使用され、古くなると廃棄されるところから産業
廃棄物処理が問題化している。特に電気自動車の電源と
して鉛蓄電池やニッケル−カドミニウム電池を使用する
場合は特に高容量を必要とするところから大型の鉛蓄電
池やニッケル−カドミニウム電池を使用し、そのため大
量の鉛やカドミニウムを使用する。電気自動車の普及と
共に鉛蓄電池やニッケル−カドミニウム電池が古くなる
と鉛やカドミニウムを含む大型の鉛蓄電池やニッケル−
カドミニウム電池が廃棄されることになり、その処理が
深刻な問題となりつつある。ところがニッケル水素電池
は、鉛やカドミニウムなどの有害金属を使用しないの
で、電気自動車や電動工具の代替電池として注目される
ようになってきた。
Conventionally, an alkaline secondary battery such as a lead storage battery or a nickel-cadmium battery has been used as a power source for an electric vehicle or a power tool. Industrial waste disposal has become a problem since it is used in large quantities and is discarded as it ages. In particular, when a lead storage battery or a nickel-cadmium battery is used as a power source for an electric vehicle, a large lead storage battery or a nickel-cadmium battery is used because a large capacity is required. Therefore, a large amount of lead or cadmium is used. As lead-acid batteries and nickel-cadmium batteries age with the spread of electric vehicles, large lead-acid batteries containing lead and cadmium and nickel-cadmium batteries
Cadmium batteries have to be discarded, and their disposal is becoming a serious problem. However, nickel-metal hydride batteries do not use harmful metals such as lead and cadmium, and have therefore attracted attention as alternative batteries to electric vehicles and power tools.

【0004】[0004]

【発明が解決しようとする課題】しかし、大型のニッケ
ル水素電池は、急速充放電を行うと、電池内部に熱がこ
もり電池の内部温度が上昇しやすく、電池の内部温度が
上昇すると、ニッケル水素電池の負極は水素吸蔵合金で
作られているところから水素吸蔵能力が低下し、従っ
て、ニッケル水素電池の電池特性が低下する。ニッケル
水素電池の内部の温度の上昇の原因の一つとしてニッケ
ル水素電池の電極基板がスポンジ状多孔質ニッケル金属
板で作られているために、熱伝導度および電気伝導度が
低く、従って放熱性が悪く、そのためにニッケル水素電
池内部の温度が上昇するといわれており、熱伝導度およ
び電気伝導度の一層優れたスポンジ状多孔質ニッケル金
属板が求められている。
However, when a large nickel-metal hydride battery is rapidly charged and discharged, heat is trapped inside the battery and the internal temperature of the battery easily rises. Since the negative electrode of the battery is made of a hydrogen-absorbing alloy, the hydrogen-absorbing ability is reduced, and accordingly, the battery characteristics of the nickel-metal hydride battery are reduced. One of the causes of the temperature rise inside the nickel-metal hydride battery is that the electrode substrate of the nickel-metal hydride battery is made of a sponge-like porous nickel metal plate, so that its thermal conductivity and electrical conductivity are low, and therefore heat dissipation However, it is said that the temperature inside the nickel-metal hydride battery rises, and there is a need for a sponge-like porous nickel metal plate having more excellent thermal conductivity and electric conductivity.

【0005】さらに、電気自動車などに用いられるニッ
ケル水素電池は、大型であるところから、通常のニッケ
ル水素電池に比べて極めて厚さの厚いスポンジ状多孔質
ニッケル金属板が電極基板として用いられるが、厚さの
厚いスポンジ状多孔質ニッケル金属板を製造する際のN
iO粉末とNi粉末を含む発泡スラリーを薄板状に成形
し発泡スラリーをスポンジ状に発泡させてスポンジ状グ
リーン板を作製する工程において、発泡スラリーに含ま
れるNiO粉末およびNi粉末が自重により沈殿し、表
と裏でNiの濃度分布が不均一となり、厚さ全体に亘っ
て均一な気孔率を有する厚いスポンジ状多孔質ニッケル
金属板が電極基板が得られない。
Further, nickel-metal hydride batteries used for electric vehicles and the like are large in size, and therefore, a sponge-like porous nickel metal plate which is much thicker than a normal nickel-metal hydride battery is used as an electrode substrate. N for producing a thick sponge-like porous nickel metal plate
In the step of forming a foamed slurry containing iO powder and Ni powder into a thin plate and foaming the foamed slurry into a sponge-like green plate to produce a sponge-like green plate, the NiO powder and the Ni powder contained in the foamed slurry precipitate by their own weight, The concentration distribution of Ni becomes uneven on the front and back sides, and a thick sponge-like porous nickel metal plate having a uniform porosity over the entire thickness cannot be obtained as an electrode substrate.

【0006】[0006]

【課題を解決するための手段】そこで、本発明者らは、
かかる課題を解決すべく研究を行った結果、(a)Ni
O粉末とNi粉末との混合粉末からなる原料粉末の密度
としてかさ密度、タップ密度、水中かさ密度などがある
が、スポンジ状多孔質ニッケル金属板の製造に使用する
原料粉末の密度は水中かさ密度が最も好ましく、スポン
ジ状多孔質ニッケル金属板の製造に使用する原料粉末
は、平均粒径:0.1〜10μmでかつ水中かさ密度:
2.0〜4.0g/cm3 のNiO粉末と、平均粒径:
1〜15μmでかつ水中かさ密度:1.5〜5.0g/
cm3 のNi粉末との混合粉末からなることが好まし
い、(b)前記原料粉末は、平均粒径:0.1〜10μ
mでかつ水中かさ密度が2.0〜4.0g/cm3 のN
iO粉末:10〜90重量%を含有し、残りが平均粒
径:1〜15μmでかつ水中かさ密度が1.5〜5.0
g/cm3 のNi粉末からなる混合粉末であることが一
層好ましい、(c)前記混合粉末からなる原料粉末は、
40〜80重量%含まれる発泡スラリーを用いることが
さらに一層好ましい、という知見を得たのである。
Means for Solving the Problems Accordingly, the present inventors have:
As a result of conducting research to solve this problem, (a) Ni
The density of a raw material powder composed of a mixed powder of O powder and Ni powder includes bulk density, tap density, bulk density in water, and the like. The density of the raw material powder used for producing a sponge-like porous nickel metal plate is the bulk density in water. The raw material powder used for producing the sponge-like porous nickel metal plate has an average particle diameter of 0.1 to 10 μm and a bulk density in water of:
2.0-4.0 g / cm 3 NiO powder and average particle size:
1 to 15 μm and bulk density in water: 1.5 to 5.0 g /
preferably made of mixed powder of Ni powder cm 3, (b) the raw material powder has an average particle size: 0.1~10Myu
m and an underwater bulk density of 2.0 to 4.0 g / cm 3
iO powder: containing 10 to 90% by weight, the balance having an average particle size of 1 to 15 µm and a bulk density in water of 1.5 to 5.0.
g / cm 3 Ni powder is more preferably a mixed powder. (c) The raw material powder comprising the mixed powder is:
It has been found that it is even more preferable to use a foamed slurry containing 40 to 80% by weight.

【0007】この発明は、かかる知見に基づいて成され
たものであって、(1)原料粉末、水溶性樹脂バインダ
ー、可塑剤および水からなるスラリーに界面活性剤およ
び揮発性有機溶剤を添加して発泡スラリーとし、この発
泡スラリーを薄板状に成形し、前記揮発性有機溶剤の蒸
気圧および界面活性剤の起泡性を利用してスポンジ状に
発泡させたのち乾燥させてスポンジ状グリーン板を作製
し、このスポンジ状グリーン板を脱脂、焼成することに
よりスポンジ状多孔質ニッケル金属板を製造する方法に
おいて、前記原料粉末は、平均粒径:0.1〜10μm
でかつ水中かさ密度が2.0〜4.0g/cm3 のNi
O粉末と、平均粒径:1〜15μmでかつ水中かさ密度
が1.5〜5.0g/cm3 のNi粉末との混合粉末か
らなる熱および電気伝導性に優れたスポンジ状多孔質ニ
ッケル金属板の製造方法、(2)原料粉末、水溶性樹脂
バインダー、可塑剤および水からなるスラリーに界面活
性剤および揮発性有機溶剤を添加して発泡スラリーと
し、この発泡スラリーを薄板状に成形し、前記揮発性有
機溶剤の蒸気圧および界面活性剤の起泡性を利用してス
ポンジ状に発泡させたのち乾燥させてスポンジ状グリー
ン板を作製し、このスポンジ状グリーン板を脱脂、焼成
することによりスポンジ状多孔質ニッケル金属板を製造
する方法において、前記原料粉末は、平均粒径:0.1
〜10μmでかつ水中かさ密度が2.0〜4.0g/c
3 のNiO粉末:10〜90重量%を含有し、残りが
平均粒径:1〜15μmでかつ水中かさ密度が1.5〜
5.0g/cm3 のNi粉末からなる混合粉末である熱
および電気伝導性に優れたスポンジ状多孔質ニッケル金
属板の製造方法、(3)前記混合粉末からなる原料粉末
は、発泡スラリー中に40〜80重量%含まれる前記
(1)または(2)記載の熱および電気伝導性に優れた
スポンジ状多孔質ニッケル金属板の製造方法、に特徴を
有するものである。
The present invention has been made on the basis of this finding. (1) A surfactant and a volatile organic solvent are added to a slurry composed of raw material powder, a water-soluble resin binder, a plasticizer and water. Into a foamed slurry, formed into a thin plate, foamed into a sponge utilizing the vapor pressure of the volatile organic solvent and the foaming properties of the surfactant, and then dried to form a sponge-like green plate. In the method for producing a sponge-like porous nickel metal plate by degreasing and firing this sponge-like green plate, the raw material powder has an average particle size of 0.1 to 10 μm.
Ni with a bulk density of 2.0 to 4.0 g / cm 3 in water
A sponge-like porous nickel metal excellent in heat and electric conductivity, comprising a mixed powder of an O powder and a Ni powder having an average particle diameter of 1 to 15 µm and a bulk density in water of 1.5 to 5.0 g / cm 3. (2) a surfactant and a volatile organic solvent are added to a slurry composed of raw material powder, a water-soluble resin binder, a plasticizer and water to form a foamed slurry, and the foamed slurry is formed into a thin plate. By using a vapor pressure of the volatile organic solvent and a foaming property of a surfactant to foam into a sponge, and then drying to produce a sponge-like green plate, the sponge-like green plate is degreased and fired. In the method for producing a sponge-like porous nickel metal plate, the raw material powder has an average particle diameter of 0.1.
10 to 10 µm and bulk density in water 2.0 to 4.0 g / c
NiO powder m 3: containing 10 to 90 wt%, the rest is an average particle size: 1 to 15 m a and 1.5 underwater bulk density
A method for producing a sponge-like porous nickel metal plate excellent in heat and electric conductivity, which is a mixed powder composed of 5.0 g / cm 3 Ni powder, (3) The raw powder composed of the mixed powder is mixed in a foamed slurry The method for producing a sponge-like porous nickel metal sheet having excellent heat and electric conductivity according to the above (1) or (2), which is contained in an amount of 40 to 80% by weight.

【0008】NiO粉末とNi粉末との混合粉末からな
る原料粉末のNiO粉末およびNi粉末のそれぞれの平
均粒径および水中かさ密度を前述のごとく限定した理由
を説明する。 (イ)NiO粉末およびNi粉末の平均粒径 発泡スラリーに含まれるNiO粉末およびNi粉末の粒
径が微細になればなるほど発泡スラリーのハンドリング
強度を得るために、発泡性スラリー中の有機バインダー
成分を多くしなければならないが、一方、有機バインダ
ー成分が多くなると、発泡性スラリーの粘性が高くなっ
て、ついには板状に成形できなくなるところから、発泡
スラリーに含まれるNiO粉末の平均粒径の下限を0.
1μm、Ni粉末の平均粒径の下限を1μmに定め、発
泡性スラリーをうまく調製できるようにした。一方、発
泡スラリーに含まれるNiO粉末の平均粒径が10μm
を越え、さらにNi粉末の平均粒径が15μmを越える
と、発泡スラリーから成形したスポンジ状グリーン板の
NiO粉末およびNi粉末の濃度分布が不均一となり、
得られたスポンジ状グリーン板を焼成しても骨格に焼成
ポアが残り、緻密化しないので所望の熱伝導を有するス
ポンジ状多孔質ニッケル金属板が得られなくなるので好
ましくない。従って、この発明の原料粉末を構成するN
iO粉末の平均粒径を0.1〜10μm(さらに好まし
くは1〜5μm)、およびNi粉末の平均粒径を1〜1
5μm(さらに好ましくは2〜10μm)の範囲内にあ
るように定めた。
[0008] The reason why the average particle diameter and the bulk density in water of the NiO powder and the Ni powder, which are the raw material powders composed of the mixed powder of the NiO powder and the Ni powder, are limited as described above will be described. (A) Average particle size of NiO powder and Ni powder As the particle size of NiO powder and Ni powder contained in the foamed slurry becomes finer, the organic binder component in the foamable slurry is used in order to obtain the handling strength of the foamed slurry. On the other hand, when the amount of the organic binder component increases, the viscosity of the foaming slurry increases, and it becomes impossible to form the foaming slurry into a plate shape. To 0.
The lower limit of the average particle size of the Ni powder was set to 1 μm, and the foamable slurry was successfully prepared. On the other hand, the average particle size of the NiO powder contained in the foamed slurry is 10 μm.
When the average particle size of the Ni powder exceeds 15 μm, the concentration distribution of the NiO powder and the Ni powder in the sponge-like green plate formed from the foamed slurry becomes non-uniform,
Even if the obtained sponge-like green plate is fired, fired pores remain in the skeleton and do not densify, so that a sponge-like porous nickel metal plate having desired heat conductivity cannot be obtained, which is not preferable. Therefore, the N constituting the raw material powder of the present invention
The average particle size of the iO powder is 0.1 to 10 μm (more preferably 1 to 5 μm), and the average particle size of the Ni powder is 1 to 1 μm.
It was determined to be within the range of 5 μm (more preferably 2 to 10 μm).

【0009】(ロ)NiO粉末およびNi粉末の水中か
さ密度 水中かさ密度の測定は、水を入れたメスシリンダーに一
定量の粉体を入れ、かさが一定になるまで(一昼夜以
上)放置し、メスシリンダーの目盛を読み取って粉体の
かさを測定し、水中かさ密度=(粉体のかさ)/(粉体
重量)の式から算出し求めることができ、粉体の水中か
さ密度は、スラリーにどれくらいの量の粉体を分散させ
ることができるか判定するための最も適切な指標とな
る。NiO粉末の水中かさ密度が2.0g/cm3 未満
であり、Ni粉末の水中かさ密度が1.5g/cm3
満であると、焼結収縮が大きくなりすぎ、焼結時にクラ
ックが入るようになるので好ましくない。一方、NiO
粉末の水中かさ密度が4.0g/cm3 を越え、さらに
Ni粉末の水中かさ密度が5.0g/cm3 を越えるよ
うになると、平均粒径から微粉側に裾の広い粒度分布を
持つ粉末となり、かかる粉末では発泡性スラリーをうま
く調製できなくなるので好ましくない。したがって、N
iO粉末かさ密度を2.0〜4.0g/cm3 (さらに
好ましくは2.5〜3.5g/cm3 )、Ni粉末かさ
密度を1.5〜5.0g/cm3 (さらに好ましくは
2.0〜4.0g/cm3 )の範囲内にあるように定め
た。
(B) Underwater bulk density of NiO powder and Ni powder The underwater bulk density is measured by placing a certain amount of powder in a graduated cylinder filled with water and leaving it until the bulk becomes constant (over the day and night). The scale of the powder is measured by reading the scale of the measuring cylinder, and the bulk density of the powder can be calculated from the formula of bulk density in water = (bulk weight of powder) / (weight of powder). This is the most appropriate index for determining how much powder can be dispersed in the powder. When the bulk density in water of the NiO powder is less than 2.0 g / cm 3 and the bulk density in water of the Ni powder is less than 1.5 g / cm 3 , sintering shrinkage becomes too large, and cracks may occur during sintering. Is not preferred. On the other hand, NiO
When the underwater bulk density of the powder exceeds 4.0 g / cm 3 and the underwater bulk density of the Ni powder exceeds 5.0 g / cm 3 , the powder having a wide particle size distribution from the average particle size to the fine powder side. Such a powder is not preferable because a foamable slurry cannot be successfully prepared. Therefore, N
The iO powder has a bulk density of 2.0 to 4.0 g / cm 3 (more preferably 2.5 to 3.5 g / cm 3 ), and the Ni powder has a bulk density of 1.5 to 5.0 g / cm 3 (more preferably 2.0 to 4.0 g / cm 3 ).

【0010】(ハ)Ni粉末に対するNiO粉末の配合
割合 NiO粉末は少量添加で焼結性が向上し、電気抵抗が低
くなり、熱伝導率が向上するが、原料混合粉末に10重
量%未満混合しても電気抵抗が低くなり、熱伝導率が向
上することはない。一方、NiO粉末を原料混合粉末に
90重量%を越えて添加すると、脱脂時に脱脂体の強度
が弱くなり、僅かな振動でクラックが入ってしまうので
好ましくない。従って、Ni粉末に対するNiO粉末の
配合割合は10〜90重量%に定めた。Ni粉末に対す
るNiO粉末の配合割合は30〜70重量%であると、
脱脂体に殆どクラックが入らなくなると共に、より一層
電気抵抗が低くなり、より一層熱伝導率が向上するとこ
ろからNi粉末に対するNiO粉末の配合割合は30〜
70重量%であることが一層好ましい。
(C) Compounding ratio of NiO powder to Ni powder NiO powder is added in a small amount to improve sinterability, lower electric resistance, and improve thermal conductivity. However, the electric resistance is low and the thermal conductivity is not improved. On the other hand, if NiO powder is added to the raw material mixed powder in an amount exceeding 90% by weight, the strength of the degreased body becomes weak at the time of degreasing, and cracks are caused by slight vibration, which is not preferable. Therefore, the mixing ratio of the NiO powder with respect to the Ni powder is set to 10 to 90% by weight. When the compounding ratio of the NiO powder to the Ni powder is 30 to 70% by weight,
Cracking hardly occurs in the degreased body, the electric resistance is further reduced, and the thermal conductivity is further improved.
More preferably, it is 70% by weight.

【0011】(ニ)NiO−Ni混合原料粉末のスラリ
ー中に占める割合 NiO粉末:10〜90重量%を含有し、残りがNi粉
末からなる混合原料粉末のスラリー中に占める割合は、
40重量%未満では焼結時にクラックが入ることがある
ので40重量%以上あることが必要であるが、一方、8
0重量%を越えて添加すると、スラリーの粘性が高くな
り過ぎるので成形が困難になる。従って、前記混合原料
粉末のスラリー中に占める割合は、40〜80重量%に
定めた。一層好ましい範囲は50〜70重量%である。
(D) Ratio of NiO-Ni mixed raw material powder in slurry NiO powder: The ratio of mixed raw material powder containing 10 to 90% by weight and the balance of Ni powder in the slurry is as follows:
If the content is less than 40% by weight, cracks may occur during sintering, so it is necessary that the content be 40% by weight or more.
If it is added in excess of 0% by weight, the viscosity of the slurry becomes too high and molding becomes difficult. Therefore, the proportion of the mixed raw material powder in the slurry was set to 40 to 80% by weight. A more preferred range is 50-70% by weight.

【0012】[0012]

【発明の実施の形態】実施例 表1〜表4に示される平均粒径および水中かさ密度を有
するNiO粉末およびNi粉末を表1〜表4に示される
配合比となるように配合し、混合してNiO−Ni混合
粉末を作製し、これら混合粉末を表1〜表4に示される
配合組成となるように配合し、混合することにより表1
〜表4に示される発泡性スラリーA〜Lを作製した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS NiO powder and Ni powder having the average particle diameter and the bulk density in water shown in Tables 1 to 4 are blended so as to have the blending ratios shown in Tables 1 to 4 and mixed. To prepare a NiO-Ni mixed powder, and the mixed powders were blended so as to have a blending composition shown in Tables 1 to 4 and mixed, thereby obtaining Table 1
-Expandable slurries A to L shown in Table 4 were prepared.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【表2】 [Table 2]

【0015】[0015]

【表3】 [Table 3]

【0016】[0016]

【表4】 [Table 4]

【0017】表1〜表4に示される発泡性スラリーA〜
Lをブレードギャップ:0.4mm、成形速度:200
mm/分の条件のドクターブレード法によりそれぞれ発
泡スラリーの薄板に成形し、得られた発泡性スラリーの
薄板を湿度:90%、温度:40℃、30分保持の条件
で発泡させたのち、空気雰囲気中、温度:80℃,15
分保持の条件で乾燥することによりスポンジ状グリーン
板を作製し、このスポンジ状グリーン板をさらに空気雰
囲気中、温度:600℃、20分保持の条件で脱脂し、
5%H2 −N2 雰囲気中、温度:1100℃、10分保
持の条件で焼成することにより開口連続空孔を有する本
発明スポンジ状多孔質金属板の製造方法(以下、本発明
法という)1〜7をおよび比較スポンジ状多孔質金属板
の製造方法(以下、比較法という)1〜5を実施した。
The foamable slurries A to A shown in Tables 1 to 4
L is blade gap: 0.4 mm, molding speed: 200
Each of the foamed slurries was formed into a thin plate by a doctor blade method under the condition of mm / min, and the obtained thin plate of the foamable slurry was foamed under the conditions of humidity: 90%, temperature: 40 ° C., and holding for 30 minutes, and then air Atmosphere, temperature: 80 ° C, 15
A sponge-like green plate was prepared by drying under the condition of holding for a minute, and the sponge-like green plate was further degreased in an air atmosphere at a temperature of 600 ° C. for 20 minutes.
A method for producing a sponge-like porous metal plate of the present invention having continuous open pores by firing in a 5% H 2 -N 2 atmosphere at a temperature of 1100 ° C. for 10 minutes (hereinafter referred to as the present method). 1 to 7 and Comparative Sponge-like Porous Metal Plate Manufacturing Methods (hereinafter referred to as Comparative Methods) 1 to 5 were performed.

【0018】この本発明法1〜7および比較法1〜5に
より得られたスポンジ状多孔質金属板について、目付重
量を測定し、4端子法により電気抵抗を測定し、その結
果を表5〜表6に示した。またこの本発明法1〜7およ
び比較法1〜5により得られたスポンジ状多孔質金属板
の断面を金属顕微鏡で調べたが原料粉末の濃度分布の不
均一なところは見られなかった。
For the sponge-like porous metal plates obtained by the methods 1 to 7 of the present invention and the comparative methods 1 to 5, the basis weight was measured, and the electric resistance was measured by a four-terminal method. The results are shown in Table 6. Further, the cross sections of the sponge-like porous metal plates obtained by the methods 1 to 7 of the present invention and the comparative methods 1 to 5 were examined with a metallographic microscope, and no unevenness in the concentration distribution of the raw material powder was found.

【0019】さらに本発明法1〜7および比較法1〜5
により得られたスポンジ状多孔質金属板に、 Ni(OH)2 粉末:70重量%、 CoO粉末:7重量%、 PTFE(ポリテトラフルオエチレン)分散溶液:13
重量%、 水:10重量%、 からなる配合組成の活物質スラリーをロール間隔1.0
mmの縦型充填ロールを用い、活物質スラリーを供給し
つつスポンジ状多孔質金属板を縦型充填ロール間に通過
させ、ついで、105℃の乾燥機で1時間乾燥させた
後、0.7mmになるように圧延プレスすることにより
アルカリ二次電池の電極基板を作製し、得られたアルカ
リ二次電池の電極基板の活物質充填量を表5〜表6に示
し、また得られたアルカリ二次電池の電極基板の熱伝導
度をレーザフラッシュ法および温度傾斜法によりそれぞ
れ測定し、その結果を表5〜表6に示した。
Further, methods 1 to 7 of the present invention and comparative methods 1 to 5
Ni (OH) 2 powder: 70% by weight, CoO powder: 7% by weight, PTFE (polytetrafluoroethylene) dispersion solution: 13
% Of water: 10% by weight of water.
The sponge-like porous metal plate was passed between the vertical filling rolls while supplying the active material slurry by using a vertical filling roll having a thickness of 0.7 mm. The electrode substrate of the alkaline secondary battery was prepared by rolling and pressing to obtain the active material filling amount of the obtained electrode substrate of the alkaline secondary battery shown in Tables 5 to 6, and the obtained alkaline The thermal conductivity of the electrode substrate of the secondary battery was measured by the laser flash method and the temperature gradient method, and the results are shown in Tables 5 to 6.

【0020】[0020]

【表5】 [Table 5]

【0021】[0021]

【表6】 [Table 6]

【0022】[0022]

【発明の効果】表1〜表6に示される結果から明らかな
ように、本発明法1〜7により得られたスポンジ状多孔
質金属板は、比較法1〜5により得られたスポンジ状多
孔質金属板に比べて、電気抵抗が小さく、さらに本発明
法1〜7により得られたスポンジ状多孔質金属板を使用
して作製したアルカリ二次電池の電極基板の熱伝導率
は、比較法1〜5により得られたスポンジ状多孔質金属
板を使用して作製したアルカリ二次電池の電極基板の熱
伝導率に比べて大きいことがわかる。
As is evident from the results shown in Tables 1 to 6, the sponge-like porous metal plates obtained by the methods 1 to 7 of the present invention are similar to the sponge-like porous metal plates obtained by the comparison methods 1 to 5. The electrical conductivity is smaller than that of the porous metal plate, and the thermal conductivity of the electrode substrate of the alkaline secondary battery manufactured using the sponge-like porous metal plate obtained by the methods 1 to 7 of the present invention is determined by the comparative method. It can be seen that the thermal conductivity of the electrode substrate of the alkaline secondary battery manufactured using the sponge-like porous metal plate obtained in each of Examples 1 to 5 is larger than that of the electrode substrate.

【0023】上述のように、この発明の方法によると、
電気抵抗が小さくかつ熱伝導率の大きいスポンジ状多孔
質金属板を提供することができ、この電気抵抗が小さく
かつ熱伝導率の大きいスポンジ状多孔質金属板をアルカ
リ二次電池の正極基板に用いると放熱性に優れたアルカ
リ二次電池を製造することができ、放熱性に優れたアル
カリ二次電池は電池の昇温が抑制されるので、急速充電
および効率放電を効率よく行うことができ、一層高性能
のアルカリ二次電池を提供できるところから、電池産業
の発展に大いに貢献し得るものである。
As described above, according to the method of the present invention,
A sponge-like porous metal plate having a small electric resistance and a large thermal conductivity can be provided, and this sponge-like porous metal plate having a small electric resistance and a large thermal conductivity is used as a positive electrode substrate of an alkaline secondary battery. Alkaline secondary battery with excellent heat dissipation can be manufactured.Alkaline secondary battery with excellent heat dissipation suppresses the temperature rise of the battery, so that rapid charging and efficient discharging can be performed efficiently. Since a higher performance alkaline secondary battery can be provided, it can greatly contribute to the development of the battery industry.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 脇田 三郎 埼玉県大宮市北袋町1−297 三菱マテリ アル株式会社総合研究所内 Fターム(参考) 5H017 AA02 BB04 BB06 BB10 BB12 BB14 BB16 CC28 DD08 EE04 EE09 HH01 HH03 HH06  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Saburo Wakita 1-297 Kitabukuro-cho, Omiya-shi, Saitama Mitsubishi Materials Co., Ltd. F-term (reference) 5H017 AA02 BB04 BB06 BB10 BB12 BB14 BB16 CC28 DD08 EE04 EE09 HH01 HH03 HH06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 原料粉末、水溶性樹脂バインダー、可塑
剤および水からなるスラリーに界面活性剤および揮発性
有機溶剤を添加して発泡スラリーとし、この発泡スラリ
ーを薄板状に成形し、前記揮発性有機溶剤の蒸気圧およ
び界面活性剤の起泡性を利用してスポンジ状に発泡させ
たのち乾燥させてスポンジ状グリーン板を作製し、この
スポンジ状グリーン板を脱脂、焼成することによりスポ
ンジ状多孔質ニッケル金属板を製造する方法において、 前記原料粉末は、平均粒径:0.1〜10μmでかつ水
中かさ密度が2.0〜4.0g/cm3 の酸化ニッケル
粉末(以下、NiO粉末という)と、平均粒径:1〜1
5μmでかつ水中かさ密度が1.5〜5.0g/cm3
のニッケル粉末(以下、Ni粉末という)との混合粉末
からなることを特徴とする熱および電気伝導性に優れた
スポンジ状多孔質ニッケル金属板の製造方法。
1. A foaming slurry obtained by adding a surfactant and a volatile organic solvent to a slurry comprising raw material powder, a water-soluble resin binder, a plasticizer and water, forming the foaming slurry into a thin plate, The sponge-like green plate is prepared by foaming into a sponge shape by utilizing the vapor pressure of the organic solvent and the foaming property of the surfactant, and then dried to produce a sponge-like green plate. In the method for producing a porous nickel metal plate, the raw material powder has a mean particle size of 0.1 to 10 μm and a bulk density in water of 2.0 to 4.0 g / cm 3 , which is hereinafter referred to as NiO powder. ) And average particle size: 1-1
5 μm and a bulk density in water of 1.5 to 5.0 g / cm 3
A method for producing a sponge-like porous nickel metal plate having excellent thermal and electrical conductivity, comprising a mixed powder with a nickel powder (hereinafter referred to as Ni powder).
【請求項2】 前記原料粉末は、NiO粉末:10〜9
0重量%を含有し、残りがNi粉末からなる混合粉末で
あることを特徴とする請求項1記載の熱および電気伝導
性に優れたスポンジ状多孔質ニッケル金属板の製造方
法。
2. The raw material powder is NiO powder: 10-9.
The method for producing a sponge-like porous nickel metal sheet having excellent heat and electric conductivity according to claim 1, wherein the powder is a mixed powder containing 0% by weight and the balance being Ni powder.
【請求項3】 前記発泡スラリー中に含まれる原料粉末
は40〜80重量%であることを特徴とする請求項1ま
たは2記載の熱および電気伝導性に優れたスポンジ状多
孔質ニッケル金属板の製造方法。
3. The sponge-like porous nickel metal plate excellent in heat and electric conductivity according to claim 1, wherein the raw material powder contained in the foamed slurry is 40 to 80% by weight. Production method.
JP10296304A 1998-10-19 1998-10-19 Manufacture of spongy porous nickel metallic sheet excellent in thermal and electric conductivity Withdrawn JP2000119769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10296304A JP2000119769A (en) 1998-10-19 1998-10-19 Manufacture of spongy porous nickel metallic sheet excellent in thermal and electric conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10296304A JP2000119769A (en) 1998-10-19 1998-10-19 Manufacture of spongy porous nickel metallic sheet excellent in thermal and electric conductivity

Publications (1)

Publication Number Publication Date
JP2000119769A true JP2000119769A (en) 2000-04-25

Family

ID=17831826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10296304A Withdrawn JP2000119769A (en) 1998-10-19 1998-10-19 Manufacture of spongy porous nickel metallic sheet excellent in thermal and electric conductivity

Country Status (1)

Country Link
JP (1) JP2000119769A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010071A (en) * 2008-06-30 2010-01-14 Hitachi Ltd Solid oxide fuel cell and method of manufacturing the same
CN105568032A (en) * 2016-03-04 2016-05-11 佛山市海科云筹信息技术有限公司 Injection molding type through hole foam metal and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010071A (en) * 2008-06-30 2010-01-14 Hitachi Ltd Solid oxide fuel cell and method of manufacturing the same
CN105568032A (en) * 2016-03-04 2016-05-11 佛山市海科云筹信息技术有限公司 Injection molding type through hole foam metal and preparation method thereof

Similar Documents

Publication Publication Date Title
TWI454580B (en) Method for manufacturing aluminum composite body having aluminum porous sintered body
WO2010116682A1 (en) Process for producing porous sintered aluminum, and porous sintered aluminum
JP5169591B2 (en) Metal porous electrode substrate and manufacturing method thereof
CN114050234B (en) Negative plate and lithium ion battery comprising same
JP2022540817A (en) Improvement of zinc electrode
JP2947284B2 (en) Non-sintered positive electrode for alkaline storage battery and alkaline storage battery using the same
JP2000119769A (en) Manufacture of spongy porous nickel metallic sheet excellent in thermal and electric conductivity
JP6071241B2 (en) Non-aqueous electrolyte secondary battery positive electrode, method for producing the non-aqueous electrolyte secondary battery positive electrode, and non-aqueous electrolyte secondary battery using the non-aqueous electrolyte secondary battery positive electrode
CN114276159A (en) Preparation method of porous alumina ceramic and preparation method of lithium ion battery diaphragm
JP6443725B2 (en) Porous aluminum sintered body, method for producing the same, and method for producing an electrode
JPH02262245A (en) Manufacture of nickel hydroxide electrode
JP3506365B2 (en) Nickel positive electrode active material
JP5083936B2 (en) Method for producing metal porous body
JP2004047125A (en) Porous metal gas diffusing sheet for solid high polymer fuel cell exhibiting superior contact surface conductivity for long period
JP5164412B2 (en) Alkaline storage battery and method for manufacturing sintered substrate
JPH11269506A (en) Manufacture of high strength spongy porous nickel metal sheet
US5833452A (en) Coated metal sintering carriers for fuel cell electrodes
JP3088649B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP4967263B2 (en) Method for producing electrode mixture paste for alkaline storage battery
Hryniewicz et al. Porous sinters for elevated-temperature natural-gas fuel cells
JP2004047126A (en) Porous metal gas diffusing sheet for solid high polymer fuel cell exhibiting superior contact surface conductivity for long period
JPH08287906A (en) Hydrogen storage alloy electrode
JP5064792B2 (en) Sintered nickel positive electrode for alkaline storage battery and alkaline storage battery
JP2003297371A (en) Sintered substrate for alkaline storage battery
JP2708088B2 (en) Nickel electrode for battery, method for producing the same, and alkaline storage battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110